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YOUNG’S SEMINORMAL BASIS VECTORS

AND THEIR DENOMINATORS

MING FANG, KAY JIN LIM, AND KAI MENG TAN

Abstract. We study Young’s seminormal basis vectors of the dual Specht modules of the
symmetric group, indexed by a certain class of standard tableaux, and their denominators.
These vectors include those whose denominators control the splitting of the canonical
morphism ∆(λ + µ) → ∆(λ) ⊗ ∆(µ) over Z(p), where ∆(ν) is the Weyl module of the
classical Schur algebra labelled by ν.

1. Introduction

Let n be a positive integer. It is well known that the dual Specht modules SQ
λ , as λ runs

over all partitions of n, give a complete set of irreducible modules of QSn. There are two

distinguished bases for each SQ
λ , namely the standard basis and Young’s seminormal basis,

both indexed by the set of standard λ-tableaux. These two bases play a significant role in
the study of the representation theory of symmetric groups; see for example [4] and the
references therein.

While the transition matrix between these two bases is unitriangular, its entries in general
are rational numbers and not integers. Although the off-diagonal entries of the transition
matrix can be computed recursively, we are not aware of any work that has been done
to determine a closed formula for any of these entries. For a standard λ-tableau t, the
denominator of Young’s seminormal basis vector ft, denoted dt, is the least positive integer
k such that kft lies in the Z-span of the standard basis. This is of course the least (positive)
common multiple of the denominators appearing in the row labelled by t of the transition
matrix from the standard basis to Young’s seminormal basis.

Young’s seminormal basis controls the modular representation theory of symmetric groups
in many ways; see for example [1, 4, 7, 8]. Natural questions related to the arithmetical
properties of Young’s seminormal basis vectors (such as their denominators) arise. As far
as we know, such knowledge is scant in the available literature, but is expected to connect
with the other parts of the modular representation theory [1, 7].

Indeed, the main motivation of the work presented here is [1], in which the authors
initiated a study into comparing the Jantzen filtrations of Weyl modules for a semisimple
algebraic group G over an algebraically closed field k of characteristic p > 0. They showed
that when the canonical G-morphism ιλ,µ : ∆(λ + µ) → ∆(λ) ⊗ ∆(µ) splits over Z(p),
the localised ring of Z at the prime ideal (p), then the Jantzen filtration of ∆(λ) may be
naturally ‘embedded’ into that of ∆(λ + µ) (see [1, Theorem 3.1]). This led to a detailed
study of the split condition of ιλ,µ when G is of type A, which was shown to be equivalent to
a condition in terms of θλ,µ, the greatest common divisor of the coefficients of the product
of certain Young symmetrizers associated to λ and µ, as well as a condition in terms of the
denominator dtλ⊘tµ of ftλ⊘tµ when the last column of the Young diagram [λ] is no shorter
than the first column of the Young diagram [µ] (see [1, Section 2.3] for the definition of s⊘ t

for general tableaux s and t). By [1, Theorem 3.13], the determination of θλ,µ is equivalent
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to that of dtλ⊘tµ . The examples in [1, Section 4] show that θλ,µ is very difficult to compute
in general.

In this paper, we develop some techniques to study the ftλ⊘tµ ’s mentioned above and
compute its denominator dtλ⊘tµ instead. In fact, we study ftλ↑ν for partitions λ and ν

such that the Young diagram [ν] contains the Young diagram [λ]. Here, tλ↑ν is the largest
standard ν-tableau that contains the initial λ-tableau tλ as a subtableau, and tλ ⊘ tµ =
tλ↑λ+µ when the last column of [λ] is no shorter than the first column of [µ]. This class of
Young’s seminormal basis elements has the following very nice property: each is spanned
by standard basis elements labelled by tableaux which are colour-semistandard, and those
with the same colour type have the same coefficients (see Definition 2.13 and Theorem
2.17).

Our first main result (Theorem 3.5) is the closed formula for f
tλ⊘t(1)

in terms of the

standard basis of SQ
λ+(1). This result may be considered as the counterpart of [6, Theorem

1.2], which provides a simplified way of computing the product of certain Young symmetriz-
ers, from which θλ,(1) could possibly be deduced. We note in addition that Theorem 3.5
may also be derived from [7, Theorem 1] in the context of Iwahori-Hecke algebras using a
different inductive approach.

We next study f
t(k,ℓ

s)⊘t(m) . We provide closed formulae for f
t(k,ℓ

s)⊘t(m) , and hence d
t(k,ℓ

s)⊘t(m) ,
in the cases s = 1 and ℓ = 1 (Theorem 4.7 and Corollary 4.13) respectively, which can be
used to determine θ(k,ℓ),(m) and θ(1n),(m) that have been computed in [1, Section 4]. Read-
ers who are familiar with [1] will appreciate the succinctness and superiority of this new
approach in computing these two numbers. While we did not succeed in providing a closed
formula for f

t(k,ℓ
s)⊘t(m) in the general case, we are able to obtain some reduction results

(Theorem 4.12).

Reduction actually holds in a more general setting, and using this, we obtain various
upper bounds for dtλ↑ν . We give some examples which show that these upper bounds are
optimal in some cases.

Our results on the denominator dtλ↑ν may be summarised as follows:

Theorem 1.1. Let λ = (λ1, . . . , λr), with λr > 0, and ν = (ν1, . . . , νt) be partitions such
that [λ] ⊆ [ν].

(1) If λ is obtained from ν by removing a removable node A, and B1, . . . , Bs are the remov-
able nodes of ν below A, then

dtλ↑ν =

s
∏

i=1

(res(A)− res(Bi)),

where res(C) denotes the residue of the node C.

(2) If r = 2, then

dtλ↑ν =
lcm [λ1 − λ2 + 1, λ1 − λ2 + 1 +min(λ2, ν1 − λ1)]

λ1 − λ2 + 1
.

Here [a, b] = {i | Z | a ≤ i ≤ b} for a, b ∈ Z, and lcmS denotes the least common
multiple of the elements in S for S ⊆ Z+.

(3) If r ≥ 2 and λ2 = · · · = λr = ν2 = · · · = νr, then

dtλ↑ν = d
t(k,ℓ

s)↑(k+ℓ,ℓs) ,

where k = max(λ1 − λ2 + r,min(λ1, ν1 − λ2)), ℓ = min(λ2, ν1 − λ1) and s = min(r, ℓ).

(4) We have

dtλ↑ν = d
tλ↑(ν1,...,νr−1,λr) ;

dtλ↑ν = d
t(λ2,...,λr)↑(ν2,...,νt) if λ1 = ν1 and r ≥ 2.
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(5) For all positive integers m with m ≤ ν1 − λ1, we have

dtλ↑ν | d
tλ↑λ+(m)dtλ+(m)↑ν .

(6) For all positive integers m and i with 2 ≤ i ≤ r − 1, we have

d
tλ↑λ+(m) | d

tλ
(i)

↑λ
(i)+(m)dtλ

6i↑λ
6i+(m) ,

where λ(i) = (λ1 + i− 1, λi+1, . . . , λr) and λ6i = (λ1, . . . , λi).

Parts (1) and (2) of Theorem 1.1 provide closed formulae for dtλ↑ν for specific ν and λ
respectively, while parts (3)–(6) relate dtλ↑ν to ‘smaller’ denominators, and hence may be
used to provide upper bounds for general dtλ↑ν not covered in parts (1) and (2).

We now indicate the organisation of this paper. After providing the necessary back-
ground in the next section, we look at the seminormal basis vector f

tλ⊘t(1)
in Section 3, and

f
t(k,ℓ

s)⊘t(m) in Section 4. In our concluding Section 5, we relate ftλ↑ν and its denominator

dtλ↑ν to f
tλ̃↑ν̃

and d
tλ̃↑ν̃

for some smaller λ̃ and ν̃.

Remark 1.2.

(1) As our motivation from [1] is to study dtλ⊘tµ for the symmetric groups, we choose to
present our work in this context here. We believe that most, if not all, of our results
should generalise to Iwahori-Hecke algebras without much difficulty.

(2) Our approach to Young’s seminormal basis vectors is different from [7]. We study
directly D(t) =

∑

s∈Std(λ) qt,sd(s) (see Definition 2.9), which is a distinguished element

of QS|λ| satisfying ft = D(t)etλ . With the introduction of our key notion of colour-

semistandardness (Definition 2.13), we are able to obtain closed formulae for D(tλ↑ν)
in some cases, and relate the coefficients qtλ↑ν ,s to those coming from smaller partitions
in some others.

2. Preliminaries

In this section, we recall the background theory and prove some preliminary results. For
a large part, we follow the notations that have been used in [1].

Throughout this paper, we use the following notation, for a, b ∈ Z:

[a, b] := {k ∈ Z | a ≤ k ≤ b}.

Also, for S ⊆ Z+, lcmS denotes the least common multiple of the integers in S.

2.1. Symmetric groups. Denote the group of bijections on a nonempty set X by SX .
We view elements of such a group as functions, so that we compose these elements from
right to left. When Y is a nonempty subset of X, we view SY as a subgroup of SX by
identifying an element of SY with its extension that sends x to x for all x ∈ X \ Y .

Let X ⊆ Z and k ∈ Z. Define X+k := {x+ k | x ∈ X}, and for any function σ : X → X,
write σ+k : X+k → X+k for the function such that σ+k(x + k) = σ(x) + k for all x ∈ X.
Then σ 7→ σ+k is a group isomorphism from SX to SX+k , and this extends further to
give an isomorphism QSX → QSX+k . If R ⊆ QSX , we write R+k for {r+k | r ∈ R}. In

particular, S+k
X = SX+k .

Let n ∈ Z+, the set of all positive integers. We write Sn for S[1,n]. It is well known that
Sn is a Coxeter group with the basic transpositions si := (i, i+1), one for each i ∈ [1, n−1],
as its Coxeter generators.

2.2. Compositions, partitions and Young tableaux. A composition λ = (λ1, λ2, . . . )
is a sequence of non-negative integers which are eventually zero. We write |λ| for

∑∞
i=1 λi.

If |λ| = n, we say that λ is a composition of n, and write λ � n. The Young subgroup Sλ

is
Sλ = Sλ1S

+λ1
λ2

S
+(λ1+λ2)
λ3

· · · ⊆ Sn.
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This is a parabolic subgroup of Sn as a Coxeter group. The dominance order D on all
compositions is given by: λ D µ if and only if λ1 + · · ·+ λk ≥ µ1 + · · ·+ µk for all k ∈ Z+.

Let λ � n. The Young diagram of λ is defined to be the set [λ] = {(a, b) ∈ (Z+)2 | b ≤ λa};
and we call its elements the nodes of λ. Following [4, 3.30], for a node (a, b) ∈ [λ], its residue
res((a, b)) is defined as res((a, b)) = b− a. We depict [λ] as an array of left-justified boxes
in which the i-th row comprises exactly λi boxes, with each box representing a node of λ.

A λ-tableau is a bijective map s : [λ] → [1, n], in which case λ is said to be the shape of
s, denoted by Shape(s). We identify s with the pictorial depiction of the Young diagram
[λ] in which each box in [λ] is filled with [1, n] so that each integer appears exactly once.
When s(i, j) = k, the residue of k in s, denoted ress(k), is res((i, j)). Denote the set of all
λ-tableaux by T (λ).

A λ-tableau s is said to be row standard (respectively, column standard) if its entries are
increasing along each row (respectively, down each column). If t ∈ T (λ), we write t for the
row standard λ-tableau obtained by rearranging the entries in each row of t. Let RStd(λ)
be the set of all row standard λ-tableaux. A λ-tableau is standard if it is both row and
column standard, and we denote the set of all standard λ-tableaux by Std(λ).

Let s ∈ RStd(λ) and r ∈ [1, n]. Since s is row standard, s−1([1, r]) is the Young diagram
of a composition, and we define the subtableau s↓r of s to be the restriction of s to this
subdomain. Pictorially, s↓r consists precisely of those boxes in [λ] which are filled with
1, . . . , r by s. The dominance order D on RStd(λ) is given by s D t if and only if, for each
r ∈ [1, n], we have

Shape(s↓r) D Shape(t↓r).

We write s ⊲ t and t ⊳ s if s D t and s 6= t.

Now suppose further that λ1 ≥ λ2 ≥ · · · . In this case, we call λ a partition of n, denoted
λ ⊢ n. In this paper, all partitions are nonempty (but we allow the composition (0, 0, . . . )),
and we write λ = (λ1, . . . , λr) where r = max{i ∈ Z+ | λi > 0}. A node (a, b) ∈ [λ] is
removable if (a+ 1, b), (a, b + 1) /∈ [λ].

Definition 2.1. Let λ ⊢ n.

(1) Let ν ⊢ m such that [λ] ⊆ [ν]. For s ∈ Std(λ), we define s↑ν to be the standard
ν-tableau where (s↑ν)↓n = s and the nodes of s↑ν lying in the skew Young diagram
[ν] \ [λ] are filled with [n + 1,m] in turn, starting with the top row, going from left to
right in each row, and down the rows.

(2) The initial λ-tableau, denoted tλ, is t0↑
λ, where t0 is the unique (standard) (1)-tableau.

(3) To ease the notation, for m ∈ Z+, we write tλ|m for tλ↑λ+(m). Here, and hereafter,
λ+ (m) = (λ1 +m,λ2, . . . , λr) when λ = (λ1, . . . , λr).

Remark 2.2. Note that s↑ν is the largest (with respect to D) row standard ν-tableau t such
that t↓n = s, and that tλ is the largest row standard λ-tableau.

We illustrate Definition 2.1 with the following example:

t
(2,2)↑(4,3,2) =

1 2 5 6

3 4 7

8 9

Lemma 2.3. Let λ ⊢ n and ν ⊢ m with [λ] ⊆ [ν]. If s ∈ Std(ν) such that s ⊲ tλ↑ν, then
Shape(s↓n) ⊲ λ.

Proof. If s ⊲ tλ↑ν , then Shape(s↓r) D Shape((tλ↑ν)↓r) for all r ∈ [1,m + n]. If the
inequality is not strict at r = n, then Shape(s↓n) = Shape((tλ↑ν)↓n) = Shape(tλ) = λ, and
so r := s↓n ∈ Std(λ). For each r ∈ [1, n], we have

Shape(r↓r) = Shape(s↓r) D Shape((tλ↑ν)↓r) = Shape(tλ↓r),

so that r D tλ, and hence r = tλ since tλ is the largest standard λ-tableau. But then
s ⊲ tλ↑ν and s↓n = r = tλ contradict the maximality of tλ↑ν . �
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Post-composition of λ-tableaux by elements of Sn gives a well-defined, faithful and tran-
sitive left action of Sn on T (λ), i.e. σ · s = σ ◦ s for σ ∈ Sn and s ∈ T (λ). For a λ-tableau
s, we denote the row and column stabilizers of s under this action by Rs and Cs, respec-
tively. In addition, we write d(s) for the unique element in Sn such that s = d(s) · tλ, or
equivalently d(s) = s ◦ (tλ)−1.

We shall require the following elementary result about standard λ-tableaux.

Lemma 2.4. Let λ ⊢ n.

(1) If w ∈ Sn and t ∈ Std(λ) such that w · t ∈ Std(λ), then w has a reduced expression
w = siℓsiℓ−1

· · · si1 such that (sij · · · si2si1) · t ∈ Std(λ) for every j ∈ [1, ℓ− 1].

(2) If t ∈ Std(λ) and (i + 1, j) ∈ [λ] with i > 0, then there exists w ∈ S[t(i,j), t(i+1,j)] such
that w · t ∈ Std(λ) and (w · t)(i+ 1, j) − (w · t)(i, j) = 1.

Proof.

(1) We prove by induction on the length ℓ(w) of w. There is nothing to prove if ℓ(w) = 0.
For ℓ(w) > 0, we have w 6= 1, so that w(j) > w(j + 1) for some j ∈ [1, n − 1]. Since t

and w · t are standard, j and j + 1 cannot be lying in the same row or same column in
t, so that sj · t ∈ Std(λ). Now ℓ(wsj) = ℓ(w)− 1 [4, 1.4 Corollary], and so applying the
induction hypothesis to wsj and sj · t finishes the proof.

(2) Let at = t(i, j) and bt = t(i + 1, j). We prove by induction on bt − at, where w = 1 if
bt−at = 1. For bt−at > 1, if there exists a′ ∈ [at+1, bt−1] which does not lie in the i-th
row of t, then choose a′ to be the least such and let t′ = (at, at +1, . . . , a′) · t; otherwise
let t′ = (bt − 1, bt) · t. Then t′ ∈ Std(λ) with [at′ , bt′ ] = [t′(i, j), t′(i+ 1, j)] ( [at, bt], and
applying the induction hypothesis to t′ finishes the proof.

�

2.3. Dual Specht modules. Let λ be a partition of n. We briefly review the construction
of the signed permutation module M̃λ

Z [2, §7.4]. Let Z T (λ) be the free Z-module with basis

T (λ). Then M̃λ
Z is the quotient of Z T (λ) by the relations γ · t = sgn(γ)t for all t ∈ T (λ)

and γ ∈ Ct. Let [t] denote the image of t in M̃λ
Z . The left action of Sn on T (λ) induces a

ZSn-module structure on M̃λ
Z , with σ[t] = [σ · t] for all t ∈ T (λ) and σ ∈ Sn.

The integral dual Specht module SZ
λ is the Z-span of the polytabloids et :=

∑

ρ∈Rt
ρ[t].

This is actually a ZSn-submodule of M̃λ
Z , since σet = eσ·t for all t ∈ T (λ) and σ ∈ Sn.

These polytabloids satisfy the following:

• If t ∈ T (λ) and ρ ∈ Rt, then

et = eρ·t. (2.1)

• If X and Y are subsets of the i-th and (i + 1)-th rows of t ∈ T (λ) respectively with
|X ∪ Y | > λi and GX,Y is a left transversal of SXSY in SX∪Y , then





∑

σ∈GX,Y

σ



 et = 0. (2.2)

(A proof of this may be adapted from that of [3, Theorem 7.2].)

The following relation then follows from (2.1) and (2.2): If t ∈ T (λ) and X is a subset of
its (i+ 1)-th row, then

et = (−1)k
∑

Y

etY (2.3)

where k = |X| and the sum runs over all k-element subsets Y of the i-th row of t, and tY is
any λ-tableau obtained from t by interchanging X and Y (any such tY gives the same etY ).
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Example 2.5. Consider the (3, 2)-tableau

t =
1 4 5

2 3
.

For this example, let ei,j denote the polytabloid containing the tabloid with the numbers
i < j in the second row, so that, for example, et = e2,3. Using (2.2) with X = {4, 5} and
Y = {2, 3}, we have

0 = (1 + (2, 3, 4) + (2, 3, 5, 4) + (3, 4) + (3, 5, 4) + (2, 4)(3, 5))e2,3

= e2,3 + e3,4 + e3,5 + e2,4 + e2,5 + e4,5,

so et = e2,3 = −e3,4 − e3,5 − e2,4 − e2,5 − e4,5.

In particular, (2.1) and (2.2) imply that the set {et | t ∈ Std(λ)} of standard polytabloids
is a basis—called the standard basis—for SZ

λ . In addition, they also imply the following
‘straightening rules’ which will be used in this paper.

Proposition 2.6. Let λ ⊢ n, and let t ∈ RStd(λ) \ Std(λ), say for (i, j), (i + 1, j) ∈ [λ] we
have a := t(i, j) > t(i+ 1, j) =: b.

(1) Let X = {t(i, s) | s ∈ [j, λi]} and Y = {t(i + 1, r) | r ∈ [1, j]} (so |X ∪ Y | = λi + 1).
Pick a left transversal GX,Y of SXSY in SX∪Y so that {1, (a, b)} ⊆ GX,Y . Then

t ⊳ (a, b) · t ⊳ τ · t

for all τ ∈ GX,Y \ {1, (a, b)}, and

et = −e(a,b)·t −
∑

τ∈GX,Y \{1,(a,b)}

eτ ·t.

(2) The polytabloid et lies in the Z-span of {es | s ∈ Std(λ), s ⊲ t}.

(3) Suppose that, for some k, l ∈ Z+, we have:
(I) t↓k and the subtableau of t consisting of the first l rows are both column standard;

(II) Shape(t↓k) has either l or l + 1 rows, and its l-th row is at least as long as the
(l + 1)-th row of λ.

Then et lies in the Z-spanned of

{es | s ∈ Std(λ), s↓k = t↓k, the first l rows of s are the same as those of t}.

We provide a proof below for the assertion about the dominance order in part (1); the
remaining are direct consequences of (2.1) and (2.2).

Proof. Recall the following fact from [4, 3.7 Lemma]: if c lies in a higher row than d in t

and c > d, then (c, d) · t ⊲ t, which immediately yields (a, b) · t ⊲ t. For τ · t ⊲ (a, b) · t,
we prove by induction on the number m of elements in X that lie in the (i + 1)-th row of
τ · t (which is also the number of elements in Y that lie in the i-th row of τ · t). If m = 1,
let a′ ∈ X be in the (i + 1)-th row of τ · t and let b′ ∈ Y be in the i-th row of τ · t. Since
τ 6= (a, b), we have b′ < b or a′ > a, so that

τ · t D (a, a′) · (τ · t) D (b, b′)(a, a′) · (τ · t) = (a, b) · t

(where (a, a′) and (b, b′) are to be read as 1 if a = a′ and b = b′ respectively), with at least
one of the inequalities being strict. For m > 1, take a′ ∈ X and b′ ∈ Y in the (i + 1)-th
and i-th rows of τ · t respectively, and let τ ′ ∈ GX,Y such that τ ′ · t is row equivalent to
(a′, b′) · (τ · t) (two tableaux s and s′ are row equivalent if s′ = ρ · s for some ρ ∈ Rs). Then
there are m− 1 elements in X that lie in the (i+ 1)-th row of τ ′ · t, and so

τ · t ⊲ (a′, b′) · (τ · t) = τ ′ · t D (a, b) · t,

where the last inequality follows from induction. �
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Given a commutative ring O with 1, define SO
λ := O ⊗Z SZ

λ . All the above statements

about SZ
λ behave well under base change, so that analogous statements hold when Z is

replaced by O. In this paper, we are most concerned when O = Q, in which case the set

{SQ
λ | λ ⊢ n} is a complete set of pairwise non-isomorphic irreducible QSn-modules.

We have the following result on the coefficients of an element of SO
λ when expressed in

terms of its standard basis:

Proposition 2.7. Let u ∈ SO
λ , say u =

∑

t∈Std(λ) atet where at ∈ O for all t ∈ Std(λ). Let

I = {i ∈ [1, n − 1] | siu = u}, and let WI = 〈si | i ∈ I〉.

(1) If t, t′ ∈ Std(λ) such that σ · t = t′ for some σ ∈ WI , then at = at′.

(2) If t ∈ Std(λ) and there exists some (i, j) ∈ WI such that i and j lie in the same column
of t, then at = 0.

Proof. First, fix i ∈ I, and let

S1 = {t ∈ Std(λ) | i and i+ 1 lie in the same row of t};

S2 = {t ∈ Std(λ) | i and i+ 1 lie in the same column of t};

S3 = Std(λ) \ (S1 ∪ S2).

Then we have:

(i) siet = et for all t ∈ S1;

(ii) siet = −et +
∑

s∈Std(λ):s⊲t
cses for all t ∈ S2 by Proposition 2.6(1) and (2);

(iii) si · t ∈ S3 (and so siet = esi·t) for all t ∈ S3.

For each j ∈ [1, 3], let Vj be the O-span of the et’s with t ∈ Sj. Then SO
λ = V1 ⊕V2⊕V3.

Let u = u1 + u2 + u3, where uj ∈ Vj for all j. From the above description of siet, we have
siu1 = u1 ∈ V1 and siu3 ∈ V3. Furthermore, if u2 6= 0, let t ∈ S2 be minimal (with respect
to D) such that at 6= 0; then the coefficient of et in siu2 is −at by (ii) above, contradicting

u1 + u2 + u3 = u = siu = si(u1 + u2 + u3) = u1 + siu2 + siu3.

Thus, u2 = 0, i.e. at = 0 for all t ∈ Std(λ) with i and i+ 1 in the same column of t, and so
siu3 = u3, which yields at = asi·t for all t ∈ S3 = {s ∈ Std(λ) | si · s ∈ Std(λ)}.

Now, if t, σ · t ∈ Std(λ) where σ ∈ WI , then si1 · t, (si2si1) · t, . . . , (siℓ · · · si1) · t ∈ Std(λ) for
some reduced expression σ = siℓ · · · si1 by Lemma 2.4(1). Since WI is a parabolic subgroup,
we have ij ∈ I for all j, so that

at = asi1 ·t = a(si2 si1 )·t = · · · = a(siℓ ···si1 )·t
= aσ·t

by the paragraph above, proving part (1).

For part (2), if t ∈ Std(λ) has i and j (i < j) lying in the same column with (i, j) ∈ WI ,
then [i, j − 1] ⊆ I since (i, j) = sj−1 · · · si+1sisi+1 · · · sj−1 is a reduced expression and WI is
a parabolic subgroup. As the entry j′ in t directly below i satisfies i < j′ ≤ j, we therefore
have (i, j′) ∈ WI . Thus, by replacing j with j′ if necessary, we may assume that i and j lie
in adjacent rows. Consequently, there exists w ∈ S[i,j] ⊆ WI such that w · t ∈ Std(λ) and
w(j)−w(i) = 1 by Lemma 2.4(2), so that at = aw·t = 0 by part (1) and the first paragraph
respectively, since w(i) ∈ [i, j − 1] ⊆ I. �

2.4. Young’s seminormal basis. Young’s seminormal basis is first defined by Murphy in
[5] for the Iwahori-Hecke algebra of the symmetric group. This induces Young’s seminormal
basis for the Specht modules of this algebra (see, for example, [4, 3.33]) which satisfies a
recurrence relation (see [4, 3.36 Theorem]). As we only need this recurrence relation and
not the precise definition of Murphy (or Mathas), we define Young’s seminormal basis (at
the limit q → 1) by this characterising relation.
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Proposition 2.8. Let λ ⊢ n. For each s ∈ Std(λ), there exists a unique fs ∈ SQ
λ such that

the set {fs ∈ SQ
λ | s ∈ Std(λ)} satisfies the following:

(i) ftλ = etλ ;

(ii) fsi·s = − 1
rs,i

fs + sifs for any i ∈ [1, n − 1] and s, si · s ∈ Std(λ) with si · s ⊳ s, where

rs,i = ress(i+ 1)− ress(i).

Furthermore, {fs | s ∈ Std(λ)} is a basis for SQ
λ , called Young’s seminormal basis, and

sifs =















rs,ifs if rs,i = ±1;
1

rs,i
fs + fsi·s, if rs,i ≤ −2;

1
rs,i

fs + (1− 1
r2
s,i

)fsi·s, if rs,i ≥ 2.

Proof. Clearly, if there exists {fs ∈ SQ
λ | s ∈ Std(λ)} satisfying the required conditions,

then the fs’s can be easily seen to be unique by induction on s with the order D by Lemma
2.4(1), since the conditions prescribe ftλ , and fsi·s in terms of fs whenever si · s ∈ Std(λ)
with si · s ⊳ s.

For existence, note that {fs | s ∈ Std(λ)} as defined in [1, Definition 2.2(2)] is a basis

for QSnftλ [1, Theorem 2.3(6)], and that there is a QSn-isomorphism φ : QSnftλ → SQ
λ

sending ftλ to etλ . Since these fs’s satisfy fsi·s = − 1
rs,i

fs + sifs whenever s, si · s ∈ Std(λ)

with si ·s ⊳ s by [1, Theorem 2.3(4)], they are indeed the ones stipulated by the proposition
once we identify them with their images under φ.

The remaining assertion about sifs also follows from [1, Theorem 2.3(4)]. �

Definition 2.9. Let λ ⊢ n.

(1) Denote the transition matrix from the standard basis to Young’s seminormal basis of

SQ
λ by (qu,v)u,v∈Std(λ) (thus fs =

∑

v∈Std(λ) qs,vev for all s ∈ Std(λ)).

(2) Define D : Std(λ) → QSn by D(s) =
∑

v∈Std(λ) qs,vd(v) for all s ∈ Std(λ). (Recall that

d(v) is the unique element in Sn such that d(v) · tλ = v.)

(3) For each s ∈ Std(λ), the denominator ds of fs is the smallest positive integer k such

that kfs lies in the Z-span of the standard basis of SQ
λ .

Lemma 2.10. Let λ ⊢ n, and s, t ∈ Std(λ). We have:

(1) qs,s = 1, and qs,t = 0 unless t D s;

(2) fs = D(s) etλ = D(s)ftλ, and D(s) ∈ QW for any parabolic subgroup W of Sn with
d(s) ∈ W ;

(3) ds = lcm{denominator of qs,v | v ∈ Std(λ)} = min{k ∈ Z+ | kD(s) ∈ ZSn}.

Proof. Part (1) is [1, Proposition 2.5(4)], while the first assertion of part (2) is clear from
the definition of D(s). By (1), D(s) = d(s) +

∑

v⊲s
qs,vd(v). Note that v ⊲ s implies that

d(v) has a reduced expression which is a subexpression of a reduced expression of d(s) [4,
3.7 Lemma], so that d(v) ∈ W when W is a parabolic subgroup of Sn with d(s) ∈ W . Thus
D(s) ∈ QW . Part (3) follows from parts (1) and (2) immediately. �

The following result, which we require in this paper, is a generalisation of [1, Proposition
2.5(2)].

Proposition 2.11. Let I ⊆ [1, n − 1], and WI = 〈si | i ∈ I〉. Let s ∈ Std(λ) for some
λ ⊢ n, and define ΓI,s = {τ ∈ WI | τ · s ∈ Std(λ)}. Let A ∈ QWI .

(1) Then Afs lies in the Q-span of {fτ ·s | τ ∈ ΓI,s}.
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(2) If t ∈ Std(ν) (for another partition ν) and z ∈ Z satisfy i + z ∈ [1, |ν| − 1] and
ress(i+ 1)− ress(i) = rest(i+ z + 1)− rest(i+ z) for all i ∈ I, then

A+zft =
∑

τ∈ΓI,s

aτfτ+z·t

when Afs =
∑

τ∈ΓI,s
aτfτ ·s (by (1), with aτ ∈ Q for all τ ∈ ΓI,s).

Proof. We prove both parts together. It suffices to show these statements for A = σ ∈ WI ,
and for this, we prove by induction on ℓ = ℓ(σ), with ℓ = 0 being trivial. For ℓ > 0, let
σ = siρ, with ℓ(ρ) = ℓ− 1 and i ∈ I. By induction, for every τ ∈ ΓI,s, there exists a′τ ∈ Q
such that

ρfs =
∑

τ∈ΓI,s

a′τfτ ·s and ρ+zft =
∑

τ∈ΓI,s

a′τfτ+z·t.

Thus,

σfs =
∑

τ∈ΓI,s

a′τ (sifτ ·s) and σ+zft =
∑

τ∈ΓI,s

a′τ (s
+z
i fτ+z·t).

For each τ ∈ ΓI,s, we have sifτ ·s = bτfτ ·s+cτf(siτ)·s by Proposition 2.8, where bτ , cτ ∈ Q are
completely determined by rτ ·s,i = resτ ·s(i + 1) − resτ ·s(i), with cτ = 0 when rτ ·s,i ∈ {±1},
or equivalently, when (siτ) · s /∈ Std(λ). Part (1) thus follows.

For part (2), note first that for 1 ≤ a1 < a2 ≤ n with S[a1,a2] ⊆ WI , we have

ress(a2)− ress(a1) =

a2−1
∑

i=a1

ress(i+ 1)− ress(i) =

a2−1
∑

i=a1

rest(i+ z + 1)− rest(i+ z)

= rest(a2 + z)− rest(a1 + z).

In particular, for ρ ∈ WI and i ∈ I, since the largest integer interval J containing i such
that SJ ⊆ WI also contains i+ 1, and ρ(J) = J , we have

ress(ρ(i+ 1))− ress(ρ(i)) = rest(ρ(i+ 1) + z)− ress(ρ(i) + z).

Next, note also that resσ·u(j) = resu(σ
−1(j)) for all σ ∈ Sn, u ∈ T (λ) and j ∈ [1, n]. Thus,

for τ ∈ WI and i ∈ I, we have

rτ ·s,i = resτ ·s(i+ 1)− resτ ·s(i) = ress(τ
−1(i+ 1))− ress(τ

−1(i))

= rest(τ
−1(i+ 1) + z)− rest(τ

−1(i) + z)

= rest((τ
+z)−1(i+ 1 + z)) − rest((τ

+z)−1(i+ z))

= resτ+z·t(i+ z + 1)− resτ+z·t(i+ z) = rτ+z·t,i+z,

so that if sifτ ·s = bτfτ ·s + cτf(siτ)·s then

s
+z
i fτ+z·t = si+zfτ+z·t = bτfτ+z·t + cτf(si+zτ+z)·t = bτfτ+z·t + cτf(siτ)+z ·t

by Proposition 2.8. Part (2) thus follows. �

Corollary 2.12. Let λ = (λ1, . . . , λr) and ν = (ν1, . . . , νt) be partitions with [λ] ⊆ [ν].

(1) Let s, t ∈ Std(λ). If ft = Afs for some A ∈ QS|λ|, then ft↑ν = Afs↑ν .

(2) For any m ∈ [1, ν1 − λ1], we have

ftλ↑ν = D(tλ|m)f
tλ+(m)↑ν = D(tλ|m)D(tλ+(m)↑ν)etν .

(3) For m ∈ Z+ and i ∈ [2, r − 1], we have

f
tλ|m

= D(tλ
(i)|m)+(|λ|−|λ(i)|)f

tλ
6i

↑λ+(m)

= D(tλ
(i)|m)+(|λ|−|λ(i)|)D(tλ

6i|m)e
tλ+(m) ,

where λ(i) = (λ1 + i− 1, λi+1, . . . , λr) and λ6i = (λ1, . . . , λi).
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Proof. Part (1) follows from Proposition 2.11(2) with z = 0, and part (2) follows from part

(1) (with t = tλ|m, s = tλ+(m) and A = D(tλ|m); note that tλ|m↑ν = tλ↑ν).

For part (3), let s = tλ
(i)+(m), t = tλ

6i
↑λ+(m), and z = |λ| − |λ(i)|. Then ress(j) =

rest(j + z) + i− 1 for all j ∈ [λ1 + i, |λ(i)|+m]. Since

f
d(tλ

(i)|m)·s
= f

tλ
(i)|m = D(tλ

(i)|m)fs,

and d(tλ
(i)|m) ∈ S[λ1+i,|λ(i)|+m] so that D(tλ

(i)|m) ∈ QS[λ1+i,|λ(i)|+m] by Lemma 2.10(2), we

have

f
tλ|m

= f
d(tλ

(i)|m)+z ·t
= D(tλ

(i)|m)+zft

by Proposition 2.11(2). Since f
tλ

6i|m = D(tλ
6i|m)f

tλ
6i+(m) by Lemma 2.10(2), part (1)

applies to yield

ft = f
tλ

6i|m↑λ+(m) = D(tλ
6i|m)f

tλ
6i+(m)↑λ+(m)

= D(tλ
6i|m)f

tλ+(m) = D(tλ
6i|m)e

tλ+(m) .

Thus,

f
tλ|m

= D(tλ
(i)|m)+zft = D(tλ

(i)|m)+zD(tλ
6i|m)e

tλ+(m) .

�

This paper focuses on Young’s seminormal basis vectors of the form ftλ↑ν , where λ and
ν are partitions with [λ] ⊆ [ν]. We end this section by making a useful observation about
the coefficient of es in ftλ↑ν .

Definition 2.13. Fix countably infinitely many colours c1, c2, . . . , and order them accord-
ing to the natural order of their subscripts (i.e. c1 < c2 < · · · ). Let λ and ν be partitions
such that [λ] ⊆ [ν]. Write νλ for the composition obtained by concatenating λ and ν−λ, i.e.
νλ = (λ1, . . . , λr, ν1 − λ1, . . . , νr − λr, νr+1, . . . , νt) if λ = (λ1, . . . , λr) and ν = (ν1, . . . , νt).

(1) For each i ∈ [1, |ν|], define the colour of i to be cj if i lies in the j-th row of tνλ .

(2) Two ν-tableaux s and t are said to have the same νλ-colour type if s(i, j) and t(i, j) are
of the same colour for all (i, j) ∈ [ν].

(3) Given t ∈ Std(ν), we say that t is colour-semistandard of type νλ if the colours of the
integers appearing in t are strictly increasing down each column. The set of standard
ν-tableaux that are colour-semistandard of type νλ shall be denoted as SStd(λ; ν − λ).

Remark 2.14.

(1) For t ∈ Std(ν), let νλ(t) be the ν-tableau (of type νλ) obtained from t by replacing
each i appearing in t by ri when i appears in the ri-th row of tνλ . Then t is colour-
semistandard of type νλ if and only if νλ(t) is semistandard as a ν-tableau of type νλ
in the usual sense, i.e. having entries that are weakly increasing along each row, and
strictly increasing down each column.

(2) We shall often omit any mention of νλ when this is obvious from the context, and
simply say ‘colour-semistandard’ and ‘colour type’.

(3) We write SStd(λ;m) for SStd(λ; (m)) (when ν = λ+ (m)).

Example 2.15. Let λ = (3, 3, 2, 2) and ν = (4, 3, 2, 2) so that νλ = (3, 3, 2, 2, 1). The
following is a complete list of representatives s ∈ SStd(λ; 1) with distinct colour types:

s0

1 2 3 11

4 5 6

7 8

9 10

s1

1 2 3 6

4 5 11

7 8

9 10

s2

1 2 3 10

4 5 6

7 8

9 11

s3

1 2 3 8

4 5 6

7 10

9 11

s4

1 2 3 6

4 5 10

7 8

9 11

s5

1 2 3 6

4 5 8

7 10

9 11
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The following standard tableaux on the other hand are not colour-semistandard:

1 2 3 11

4 5 7

6 8

9 10

1 2 3 9

4 7 8

5 10

6 11

1 2 3 10

4 5 6

7 9

8 11

Lemma 2.16. Let λ = (λ1, . . . , λr) and ν be partitions such that [λ] ⊆ [ν], and let s ∈
Std(ν) be colour-semistandard. Then for each i ∈ [1, r], any integer in the i-th row of s has
colour cj′ with j′ ≥ i. Equivalently, all integers with colour cj for j ∈ [1, i] appear in the
first i rows of s.

Proof. This is clear since the colours of the integers appearing in s are strictly increasing
down each column. �

Theorem 2.17. Let λ and ν be partitions such that [λ] ⊆ [ν]. For s, t ∈ Std(ν), we have

(1) qtλ↑ν ,s = qtλ↑ν ,t if s and t have the same colour type;

(2) qtλ↑ν ,s = 0 if s is not colour-semistandard.

Proof. Since ftλ↑ν =
∑

s∈Std(ν) qtλ↑ν ,ses, the lemma follows from Propositions 2.7 and 2.8,

as Sνλ leaves the rows of tλ↑ν invariant, and s and t have the same colour type if and only
if σ · s = t for some σ ∈ Sνλ . �

3. Young’s seminormal basis vector f
tλ|1

In this section, we determine a closed formula of f
tλ|1

when expressed in terms of the

standard basis of SQ
λ+(1), where λ is any partition.

Throughout this section, let λ = (λ1, . . . , λr) ⊢ n. We first study the tableaux in
SStd(λ; 1). For each s ∈ SStd(λ; 1), let

Q(s) = {i ∈ [2, r] | the i-th row of s contains some integer with colour not equal to ci}.

Clearly, Q(s) = ∅ if and only if s = tλ|1.

Proposition 3.1. If s ∈ SStd(λ; 1) with Q(s) = {i1 < i2 < · · · < is} 6= ∅, then the colour
type of s is as follows:

(1) its first row consists of all integers with colour c1 together with one integer with colour
ci1 ;

(2) for i ∈ [2, r] \Q(s), its i-th row consists only of all integers with colour ci;

(3) for j ∈ [1, s − 1], its ij-th row consists of λij − 1 integers with colour cij , together with
one integer with colour cij+1 ;

(4) its is-th row consists of λis − 1 integers with colour cis , together with one integer with
colour cr+1.

Proof. By definition of Q(s), for i /∈ Q(s), the i-th row of s contains only integers with
colour ci, and hence all the integers with colour ci, since the i-th row of s has λi nodes and
there are exactly λi integers with colour ci.

By Lemma 2.16, the first row of s contains all the λ1 integers with colour c1, and another
integer with colour ca say. Since Q(s) 6= ∅, we have s 6= tλ|1, so that a 6= r+1, as otherwise

s = tλ|1 by Lemma 2.16. Thus a ∈ [2, r], and since the remaining λa−1 integers with colour
ca are insufficient to fill up the a-th row of s (which has λa nodes), we have a ∈ Q(s). Now
for i ∈ [2, a − 1], the i-th row of s contains only all the integers with colour ci by Lemma
2.16. Consequently a = min(Q(s)) = i1.

For ij ∈ Q(s), we may assume that the first ij − 1 rows of s are as described, and so
these rows contain exactly all the integers with colour cb for b ∈ [1, ij − 1], and one other
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integer with colour cij . By Lemma 2.16, the ij-th row of s contains the remaining λij − 1
integers with colour cij , and another integer with colour cb′ say, with b′ > ij , and for all
i ∈ [ij + 1, b′ − 1], the i-th row of s contains only all the integers with colour ci, and hence
i /∈ Q(s). If b′ = r + 1, then this shows that ij = max(Q(s)) = is. On the other hand, if
b′ 6= r+1, then b′ ∈ Q(s) since the remaining λb′ −1 integers with colour cb′ are insufficient
to fill up the b′-th row of s (which has λb′ nodes). Since i /∈ Q(s) for all i ∈ [ij + 1, b′ − 1],
this yields b′ = ij+1 as desired, and our proof is complete. �

Lemma 3.2. Suppose that s ∈ SStd(λ; 1). If i ∈ Q(s) and λi = λi+1, then i+ 1 ∈ Q(s).

Proof. If i ∈ Q(s) and λi = λi+1, then the i-th row of s contains some integer with colour
cj , with j > i by Proposition 3.1. If i + 1 /∈ Q(s) then the (i + 1)-th row of s contains all
the integers with colour ci+1 by Proposition 3.1, so that j 6= i+1 and hence j > i+1. But
then the integer with colour cj in the i-th row of s is now above an integer with colour ci+1

in the (i+ 1)-th row, contradicting s being standard. �

Lemma 3.2 suggests that we can reduce Q(s) to a subset P (s) from which we can re-
construct Q(s), as follows. For each a ∈ Z+, let Q(s)a = {i ∈ Q(s) | λi = a}. Then
Q(s) =

⋃

a∈Z+ Q(s)a (disjoint union). Define

P (s) := {min(Q(s)a) | a ∈ Z+, Q(s)a 6= ∅}.

Then for each i ∈ P (s), Q(s)λi
= {j ∈ [i, r] | λj = λi} by Lemma 3.2, and Q(s) =

⋃

i∈P (s)Q(s)λi
.

Example 3.3. Continuing with our running example, Example 2.15, we have the following
table for the representatives si (i ∈ [0, 5]) in SStd((3, 3, 2, 2); 1) with distinct colour types.

s

s0

1 2 3 11

4 5 6

7 8

9 10

s1

1 2 3 6

4 5 11

7 8

9 10

s2

1 2 3 10

4 5 6

7 8

9 11

s3

1 2 3 8

4 5 6

7 10

9 11

s4

1 2 3 6

4 5 10

7 8

9 11

s5

1 2 3 6

4 5 8

7 10

9 11

Q(s) ∅ {2} {4} {3, 4} {2, 4} {2, 3, 4}

P (s) ∅ {2} {4} {3} {2, 4} {2, 3}

Lemma 3.4. Let s, t ∈ SStd(λ; 1). Then s and t have the same colour type if and only if
Q(s) = Q(t), if and only if P (s) = P (t).

Proof. By Proposition 3.1, s and t have the same colour type if and only if Q(s) = Q(t).
The construction of P (s) from Q(s), and that of Q(s) from P (s), uses only information
about λ and not about s. Thus Q(s) = Q(t) if and only if P (s) = P (t). �

We can now state the main result of this section.

Theorem 3.5. Let λ = (λ1, . . . , λr) ⊢ n. For each s ∈ SStd(λ; 1), define

as = (−1)|Q(s)|−|P (s)|
∏

i∈P (s)

1

λ1 − λi +max(Q(s)λi
)
.

Then
f
tλ|1

=
∑

s∈SStd(λ;1)

ases.

In other words, q
tλ|1,s = as if s ∈ SStd(λ; 1) and 0 otherwise.

We remark that Q(s), and hence P (s) and as, clearly depends only on the colour type
of s, so that Theorem 3.5 is in agreement with Theorem 2.17.
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Example 3.6. Continuing with our running example (Examples 2.15 and 3.3), we have the
corresponding as for each of the colour types of SStd((3, 3, 2, 2); 1) as follows:

s s0 s1 s2 s3 s4 s5

as 1 1
2

1
2 −1

2
1
10 − 1

10

By Theorem 3.5, f
t(3,3,2,2)|1

=
∑

s∈Std((4,3,2,2)) qt(3,3,2,2)|1,ses where q
t(3,3,2,2)|1,s = asi if s has

the same colour type as si (i ∈ [0, 5]), and 0 otherwise.

Proof of Theorem 3.5. Note first that if r = 1, then tλ|1 = tλ+(1), SStd(λ; 1) = {tλ+(1)},
P (tλ+(1)) = ∅ = Q(tλ+(1)) and so the theorem holds trivially.

We prove by induction on n, with the base case of n = 1 already dealt with above,
since r = 1 in this case. For the inductive step, again we only need to consider the
remaining case of r > 1. Let λ̃ = (λ1, . . . , λr−1, λr − 1). Then λ̃ ⊢ (n − 1). By induction,

f
tλ̃|1

=
∑

s̃∈SStd(λ̃;1) as̃es̃, so that D(tλ̃|1) =
∑

s̃∈SStd(λ̃;1) as̃d(s̃). Thus, by Corollary 2.12(2)

(with m = 1), we have

f
tλ̃↑λ+(1) = D(tλ̃|1)e

tλ+(1) =
∑

s̃∈SStd(λ̃;1)

as̃d(s̃)etλ+(1)

=
∑

s̃∈SStd(λ̃;1)

as̃ed(s̃)·tλ+(1) =
∑

s̃∈SStd(λ̃;1)

as̃es̃↑λ+(1) .

Thus,

f
tλ|1

= f
sn·(tλ̃↑λ+(1))

= (sn + 1
λ1−λr+r

)f
tλ̃↑λ+(1) = (sn + 1

λ1−λr+r
)

∑

s̃∈SStd(λ̃;1)

as̃es̃↑λ+(1) (3.1)

by Proposition 2.8.

To continue, we split the tableaux in SStd(λ̃; 1) into three types: s̃ ∈ SStd(λ̃, 1) is of
type 1 if n lies neither in the r-th row nor in the λr-th column, type 2 if n lies in the r-th
row and type 3 if n lies in the λr-th column (in which case n lies in the (r− 1)-th row; this
is only possible when λr−1 = λr). Similarly, we split the tableaux in SStd(λ; 1) into two
types: s ∈ SStd(λ; 1) is of type 1 if n+1 lies in the r-th row, and type 2 if n+1 lies above

the r-th row. The subset of SStd(λ̃; 1) (respectively SStd(λ; 1)) consisting of tableaux of

type i shall be denoted SStd(λ̃; 1)i (respectively SStd(λ; 1)i).

We have a bijection SStd(λ̃; 1) → SStd(λ; 1)1 defined by s̃ 7→ s̃↑λ+(1), with inverse

s 7→ s↓n. We also have a bijection SStd(λ̃; 1)1 → SStd(λ; 1)2 defined by s̃ 7→ sn · (s̃↑λ+(1)),
with inverse s 7→ (sn ·s)↓n (note that n lies in the r-th row of s ∈ SStd(λ; 1)2 by Proposition

3.1). Also if s̃ ∈ SStd(λ̃; 1)2 then sn · (s̃↑λ+(1)) = s̃↑λ+(1). We defer for the moment the

discussion of sn · (s̃↑λ+(1)) for s̃ ∈ SStd(λ̃; 1)3.

The following table gives a summary of the important information obtained from Propo-
sition 3.1 pertaining to s̃↑λ+(1) and sn · (s̃↑λ+(1)) in terms of that pertaining to s̃.

type of s̃ t r ∈ Q(s̃)? Q(t) P (t) at remarks

1 s̃↑λ+(1) No Q(s̃) ∪ {r} P (s̃) ∪ {r} 1
λ1−λr+r

as̃

2 s̃↑λ+(1) Yes Q(s̃)

{

P (s̃)

P (s̃) \ {r}







λ1−λr+r+1
λ1−λr+r

as̃

−
(λ1−λr+r+1)(λ1−λr+r−1)

λ1−λr+r
as̃







if Q(s̃)λr
= ∅

if Q(s̃)λr
6= ∅

3 s̃↑λ+(1) No Q(s̃) ∪ {r} P (s̃) −λ1−λr+r−1
λ1−λr+r

as̃

1 sn · (s̃↑λ+(1)) No Q(s̃) P (s̃) as̃

Table 1. Summary Table
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We provide a sketch to justify the second row of the table, which is the most difficult,
and leave the other rows to the reader as easy exercises. Suppose that s̃ ∈ SStd(λ̃; 1)2.

The only integer that changes colour when going from s̃ to s̃↑λ+(1) is n, whose colour
changes from cr+1 to cr. Thus by Proposition 3.1, r ∈ Q(s̃)λr−1 ∩ Q(s̃↑λ+(1))λr

, and ∅ =

Q(s̃↑λ+(1))λr−1 = Q(s̃)λr−1\{r} while Q(s̃↑λ+(1))λr
\{r} = Q(s̃)λr

, and Q(s̃↑λ+(1))b = Q(s̃)b
for all b 6= λr, λr − 1. This yields Q(s̃↑λ+(1)) and P (s̃↑λ+(1)). For a

s̃↑λ+(1) , we need only to

note in addition that max(Q(s̃↑λ+(1))λr
) = r, while max(Q(s̃)λr

) = r − 1 if Q(s̃)λr
6= ∅.

With Table 1, we can now proceed to finish the proof, dealing with the cases λr−1 6= λr

and λr−1 = λr separately.

Case 1. λr−1 6= λr: In this case, we have SStd(λ̃; 1) =
⋃2

i=1 SStd(λ̃; 1)i and Q(s̃)λr
= ∅

for all s̃ ∈ SStd(λ̃, 1)2. Continuing from (3.1), and using the above summary table whenever
necessary, we get

f
tλ|1

=
∑

s̃∈SStd(λ̃;1)1

(as̃esn·(s̃↑λ+(1)) +
as̃

λ1−λr+r
e
s̃↑λ+(1)) +

∑

s̃∈SStd(λ̃;1)2

(1 + 1
λ1−λr+r

)as̃es̃↑λ+(1)

=
∑

s̃∈SStd(λ̃;1)1

(a
sn·(s̃↑λ+(1))esn·(s̃↑λ+(1)) + a

s̃↑λ+(1)es̃↑λ+(1)) +
∑

s̃∈SStd(λ̃;1)2

a
s̃↑λ+(1)es̃↑λ+(1)

=
∑

s̃∈SStd(λ̃;1)1

a
sn·(s̃↑λ+(1))esn·(s̃↑λ+(1)) +

∑

s̃SStd(λ̃;1)

a
s̃↑λ+(1)es̃↑λ+(1)

=
∑

s∈SStd(λ;1)2

ases +
∑

s∈SStd(λ;1)1

ases =
∑

s∈SStd(λ;1)

ases.

Case 2. λr = λr−1: We look at Si :=
∑

s̃∈SStd(λ̃;1)i
(sn + 1

λ1−λr+r
)as̃es̃↑λ+(1) for i ∈ [1, 3]

separately. We have, just as in Case 1,

S1 =
∑

s̃∈SStd(λ̃;1)1

(a
sn·(s̃↑λ+(1))esn·(s̃↑λ+(1)) + a

s̃↑λ+(1)es̃↑λ+(1)).

Furthermore, with the help of Table 1, we have

S2 =
∑

s̃∈SStd(λ̃;1)2

(1 + 1
λ1−λr+r

)as̃es̃↑λ+(1)

=











∑

s̃∈SStd(λ̃;1)2
Q(s̃)λr=∅

+
∑

s̃∈SStd(λ̃;1)2
Q(s̃)λr 6=∅











λ1−λr+r+1
λ1−λr+r

as̃es̃↑λ+(1)

=
∑

s̃∈SStd(λ̃;1)2
Q(s̃)λr=∅

a
s̃↑λ+(1)es̃↑λ+(1) +

∑

s̃∈SStd(λ̃;1)2
Q(s̃)λr 6=∅

− 1
λ1−λr+r−1 as̃↑λ+(1)es̃↑λ+(1) .

For S3, observe first that for each s̃ ∈ SStd(λ̃; 1)3, we have s̃(r− 1, λr) = n, and so the r-th
row of s̃ contains [n− λr + 1, n− 1] by Proposition 3.1. For each i ∈ [n− λr + 1, n− 1], let

us̃,i ∈ RStd(λ+ (1)) be the tableau obtained from s̃↑λ+(1) by swapping n in its (r − 1, λr)-
node with i in its r-th row (and rearranging the r-th row so that it is increasing). Then
us̃,i ∈ SStd(λ; 1) with the same colour type as s̃↑λ+(1), so that aus̃,i = a

s̃↑λ+(1) by Lemma
3.4. Furthermore,

{us̃,i | i ∈ [n− λ1 + 1, n− 1], s̃ ∈ SStd(λ̃; 1)3} = {s̃↑λ+(1) | s̃ ∈ SStd(λ̃; 1)2, Q(s̃)λr
6= ∅}.

Now, by Proposition 2.6(1),

e
sn·(s̃↑λ+(1)) = −e

s̃↑λ+(1) −
n−1
∑

i=n−λr+1

eus̃,i .
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Thus,

S3 =
∑

s̃∈SStd(λ̃;1)3

(as̃esn·(s̃↑λ+(1)) +
1

λ1−λr+r
as̃es̃↑λ+(1))

=
∑

s̃∈SStd(λ̃;1)3

(as̃(−1 + 1
λ1−λr+r

)e
s̃↑λ+(1) −

n−1
∑

i=n−λr+1

as̃eus̃,i)

=
∑

s̃∈SStd(λ̃;1)3

(a
s̃↑λ+(1)es̃↑λ+(1) +

n−1
∑

i=n−λr+1

λ1+λr+r
λ1+λr+r−1as̃↑λ+(1)eus̃,i)

=
∑

s̃∈SStd(λ̃;1)3

(a
s̃↑λ+(1)es̃↑λ+(1) +

n−1
∑

i=n−λr+1

λ1+λr+r
λ1+λr+r−1aus̃,ieus̃,i)

=
∑

s̃∈SStd(λ̃;1)3

a
s̃↑λ+(1)es̃↑λ+(1) +

∑

s̃∈SStd(λ̃;1)2
Q(s̃)λr 6=∅

λ1+λr+r
λ1+λr+r−1as̃↑λ+(1)es̃↑λ+(1) .

Hence f
tλ|1

= S1 + S2 + S3 =
∑

s∈SStd(λ;1) ases just like in Case 1, as desired.

�

Corollary 3.7. Let A0, . . . , At be all the removable nodes of [λ+ (1)], labelled from top to
bottom (thus A0 lies in the top row). Then

d
tλ|1

=
t
∏

i=1

(res(A0)− res(Ai)).

Proof. Firstly, [λ + (1)] has a removable node on its top row, so A0 = (1, λ1 + 1). Let
s ∈ SStd(λ; 1). For each i ∈ P (s), we have max(Q(s)λi

) = max{j ∈ [1, r] | λj = λi}, so
that the node (max(Q(s)λi

), λi) = Ani
for some ni ∈ [1, t]. Furthermore,

λ1 − λi +max(Q(s)λi
) = res(A0)− res(Ani

).

Thus |as| =
∏

i∈P (s)
1

res(A0)−res(Ani
) . This shows dtλ|1 |

∏t
i=1(res(A0)− res(Ai)). To see that

we indeed have equality, let s be the tableau obtained from tλ|1 by moving only its entries at
the removable nodes, so that the entry at Ai appears at Ai−1 for all i ∈ [1, t], and the entry

at A0 (namely n + 1) appears at At. Then s ∈ SStd(λ; 1) with as =
∏t

i=1
1

res(A0)−res(Ai)
,

and we are done. �

Example 3.8. The removable nodes of (4, 3, 2, 2) are A0 = (1, 4), A1 = (2, 3) and A2 = (4, 2).
By Corollary 3.7,

d
t(3,3,2,2)|1

= (res(A0)− res(A1))(res(A0)− res(A2)) = (3− 1)(3 − (−2)) = 10,

agreeing of course with the expression of f
t(3,3,2,2)|1

obtained in Example 3.6.

Remark 3.9. We note that, with Corollary 3.7 and [1, Theorem 3.13], we can determine
θλ,(1) and the explicit condition on p for the splitting of the canonical morphism ιλ,(1) :
∆(λ+ (1)) → ∆(λ)⊗∆(1) over Z(p).

4. Young’s seminormal basis vector f
t(k,ℓ

s)|m

Throughout this section, let k, ℓ,m, s ∈ Z+ with k ≥ ℓ, and let

λ = (k, ℓs).

We study Young’s seminormal basis vector f
t(k,ℓ

s)|m = f
tλ|m

. By Theorem 2.17(2), we have

f
tλ|m

=
∑

s∈SStd(λ;m)

q
tλ|m,ses.
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We shall obtain closed formulae for q
t(k,1

s)|m,s and q
t(k,ℓ)|m,s, and some reduction results for

the general case.

Lemma 4.1. Let s ∈ SStd(λ;m). Then, for all i ∈ [2, s + 1], only the integers with colour
ci and ci+1 may appear in the i-th row of s.

In particular, all integers in [1, k] appear in the first row of s.

Proof. This is clear since s has s + 1 rows while the integers appearing in s have s + 2
colours which are strictly increasing down each column. �

Corollary 4.2. Let s ∈ SStd(λ;m), and for each i ∈ [1, s], let ni(s) be the number of
integers having colour ci+1 in the first row of s. Then:

(1)
∑s

i=1 ni(s) ≤ min(ℓ,m);

(2) for each i ∈ [2, s + 1], the i-th row of s contains exactly ℓ −
∑i−1

r=1 nr(s) integers with

colour ci and exactly
∑i−1

r=1 nr(s) integers with colour ci+1.

Proof.

(1) The first row of s, which has length k +m, contains exactly k integers with colour c1
by Lemma 4.1. Thus m =

∑s+1
i=1 ni(s) ≥

∑s
i=1 ni(s). On the other hand, the second

to s-th rows of s are filled with integers with colour c2, . . . , cs+1 only by Lemma 4.1,
so that there are exactly ℓ(s − 1) such integers in these rows. This leaves at most ℓ
integers with these colours in the first row of s. Hence

∑s
i=1 ni(s) ≤ ℓ.

(2) We prove by induction on i. By Lemma 4.1, the ℓ integers with colour c2 lie in the first
two rows of s. Since the first row of s contains exactly n1(s) integers with colour c2,
the second row of s contains exactly ℓ−n1(s) integers with colour c2, and consequently
also contains exactly n1(s) integers with colour c3 by Lemma 4.1. Thus, the statement
holds for i = 2.

Assume that i < s and that the i-th row of s contains exactly
∑i−1

r=1 nr(s) integers

with colour ci+1 and exactly ℓ−
∑i−1

r=1 nr(s) integers with colour ci. Since the ℓ integers
with colour ci+1 may only appear in the first, i-th and (i+1)-th row of s by Lemma 4.1,
and there are exactly ni(s) integers with colour ci+1 in the first row, the (i+1)-th row

of s must contain exactly ℓ −
∑i

r=1 nr(s) integers with colour ci+1, and hence exactly
∑i

r=1 nr(s) integers with colour ci+2, again by Lemma 4.1.

�

Definition 4.3. Keeping the notation introduced in Corollary 4.2, we call the sequence
wt(s) := (n1(s), . . . , ns(s)) the weight of s ∈ SStd(λ;m).

Example 4.4. For

s =
1 2 3 4 7 10

5 6 8

9 11 12

∈ SStd((4, 32); 2),

its weight wt(s) = (1, 1).

Let

W = Wmin(ℓ,m)
s = {(w1, . . . , ws) ∈ (Z≥0)

s |
s
∑

i=1

wi ≤ min(ℓ,m)}.

For each w = (w1, . . . , ws) ∈ W, let sw = s
k,ℓ,m
w be the (λ + (m))-tableau obtained as

follows: starting from tλ|m, working from j = s down to j = 1, swap the rightmost
∑j

i=1wi

integers having colour cj+1 in the (j + 1)-th row with the leftmost
∑j

i=1wi integers in
the first row having colour cj+2. A moment’s thought, together with the worked example
below, should convince the reader that sw ∈ SStd(λ;m) with weight w, and is in fact the
smallest such (with respect to D).
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Example 4.5. Let k = ℓ = m = 3, s = 2 and w = (2, 1). Then

t
λ|m =

1 2 3 10 11 12

4 5 6

7 8 9

j=2
−−→

1 2 3 7 8 9

4 5 6

10 11 12

j=1
−−→ s(2,1) =

1 2 3 5 6 9

4 7 8

10 11 12

.

By Corollary 4.2, we have:

Corollary 4.6. For s, t ∈ SStd(λ;m), we have wt(s) = wt(t) if and only if s and t have
the same colour type.

We next deal with the case s = 1.

Theorem 4.7. We have

f
t(k,ℓ)|m

=
∑

s∈SStd((k,ℓ);m)

1
(k−ℓ+1+wt(s)

wt(s)

)
es.

Here we identify W
min(ℓ,m)
1 with [0,min(ℓ,m)], so that wt(s) ∈ Z≥0 for all s ∈ SStd((k, ℓ);m).

Proof. First, for x, y ∈ Z+ with x ≥ y, and i ∈ [0, y], let u
x,y
i be the standard (x + 1, y)-

tableau whose first row contains [1, x] and x+1+i. Then SStd((x, y); 1) = {ux,yi | i ∈ [0, y]}
and

wt(ux,yi ) =

{

0, if i = y;

1, if i ∈ [0, y − 1].

We prove by induction on m. For m = 1, we have

f
t(k,ℓ)|1

= e
u
k,ℓ
ℓ

+ 1
k−ℓ+2

ℓ−1
∑

i=0

e
u
k,ℓ
i

,

by Theorem 3.5, agreeing with the theorem here.

For m > 1, we have

f
t(k,ℓ)|m

= D(t(k,ℓ)|m−1)D(t(k+m−1,ℓ)|1)e
t(k+m,ℓ)

by Corollary 2.12(2). By induction,

D(t(k,ℓ)|m−1) =
∑

s̃∈SStd((k,ℓ);m−1)

1

(k−ℓ+1+wt(s̃)
wt(s̃) )

d(s̃),

D(t(k+m−1,ℓ)|1) =
∑

u∈SStd((k+m−1,ℓ);1)

1

(k+m−ℓ+wt(u)
wt(u) )

d(u)

=
ℓ−1
∑

i=0

1
k+m−ℓ+1d(u

k+m−1,ℓ
i ) + d(uk+m−1,ℓ

ℓ ).

Thus,

f
t(k,ℓ)|m

=
∑

s̃∈SStd((k,ℓ);m−1)

1

(k−ℓ+1+wt(s̃)
wt(s̃) )

(

ℓ−1
∑

i=0

1
k+m−ℓ+1ed(s̃)·uk+m−1,ℓ

i

+ e
d(s̃)·uk+m−1,ℓ

ℓ

)

.

Note that for each s̃ ∈ SStd((k, ℓ);m − 1) and i ∈ [0, ℓ], d(s̃) · uk+m−1,ℓ
i ∈ Std((k + m, ℓ))

and its first row contains the first row of s̃, and that k + ℓ+m appears in the same node

as in both u
k+m−1,ℓ
i and d(s̃) · uk+m−1,ℓ

i . Thus, for w ∈ [0,min(ℓ,m)] with w < m, we have

e
d(s̃)·uk+m−1,ℓ

i

= e
s
k,ℓ,m
w

if and only if s̃ = s
k,ℓ,m−1
w and i = ℓ, so that the coefficient of e

s
k,ℓ,m
w

appearing in f
t(k,ℓ)|m

is 1

(k−ℓ+1+wt(s̃)
wt(s̃) )

= 1

(k−ℓ+1+w
w )

. On the other hand, ifm ∈ [0,min(ℓ,m)] (so

ℓ ≥ m), then t(k+m,ℓ) ∈ SStd((k, ℓ);m) with wt(t(k+m,ℓ)) = m, and e
d(s̃)·uk+m−1,ℓ

i

= e
t(k+m,ℓ)

if and only if

[1, k +m] = d(s̃)d(uk+m−1,ℓ
i )([1, k +m]) = d(s̃)([1, k +m− 1] ∪ {k +m+ i}).
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Since t(k+m−1,ℓ)(1, j) = j for all j ∈ [1, k +m− 1] and t(k+m−1,ℓ)(2, i + 1) = k +m+ i, we
have

d(s̃)([1, k +m− 1] ∪ {k +m+ i})

= d(s̃)({t(k+m−1,ℓ)(1, j) | j ∈ [1, k +m− 1]} ∪ {t(k+m−1,ℓ)(2, i + 1)})

= {s̃(1, j) | j ∈ [1, k +m− 1]} ∪ {s̃(2, i + 1)}.

Thus, [1, k+m] = d(s̃)([1, k+m−1]∪{k+m+i}) only if i = 0 (otherwise s̃(2, 1) /∈ [1, k+m]
while s̃(2, i+ 1) ∈ [1, k +m], contradicting the (row) standardness of s̃), in which case, we
can choose any s̃ ∈ SStd((k, ℓ);m− 1) whose first row contains both [1, k] and an (m− 1)-
element subset of [k+1, k+m]; all of such tableaux have weight m−1. Hence, the coefficient
of e

t(k+m,ℓ) appearing in f
t(k,ℓ)|m

is m

(k−ℓ+m
m−1 )(k+m−ℓ+1)

= 1

(k−ℓ+1+m
m )

. By Theorem 2.17(1) and

Corollary 4.6, we conclude that

f
t(k,ℓ)|m

=
∑

s∈SStd((k,ℓ);m)

1

(k−ℓ+1+wt(s)
wt(s) )

es

as desired. �

To obtain a closed formula for d
t(k,ℓ)|m

, we need the following:

Lemma 4.8. Let a ∈ Z+ and b ∈ Z≥0. Then

lcm

{(

a+ r

a

)

| r ∈ [0, b]

}

=
lcm [a, a+ b]

a
.

Proof. Multiplying the required equality by a throughout, we get the equivalent statement
lcm {a

(

a+r
a

)

| r ∈ [0, b]} = lcm [a, a+ b], which we shall prove by induction on b, with b = 0

being trivial. Assume thus b > 0, and that lcm {a
(

a+r
a

)

| r ∈ [0, b − 1]} = lcm [a, a+ b− 1].

Then lcm {a
(

a+r
a

)

| r ∈ [0, b]} = lcm {lcm [a, a+ b− 1], a
(

a+b
a

)

}. By [1, Lemma 4.12(1)], we

have a
(

a+b
a

)

| lcm [a, a+ b], so that

lcm {lcm [a, a+ b− 1], a
(

a+b
a

)

} | lcm [a, a+ b].

On the other hand, (a+ b) | (a+ b)
(

a+b−1
b

)

= a
(

a+b
a

)

, so that

lcm [a, a+ b] = lcm {lcm [a, a+ b− 1], a+ b} | lcm {lcm [a, a+ b− 1], a
(

a+b
a

)

}.

Thus

lcm {a
(

a+r
a

)

| r ∈ [0, b]} = lcm {lcm [a, a+ b− 1], a
(

a+b
a

)

} = lcm [a, a+ b],

as desired. �

Corollary 4.9. We have

d
t(k,ℓ)|m

=
lcm [k − ℓ+ 1, k − ℓ+ 1 +min(ℓ,m)]

k − ℓ+ 1
.

Proof. This follows from Theorem 4.7 and Lemma 4.8 immediately. �

Example 4.10. Let k = 3, ℓ = m = 2. The following is a complete list of sw ∈ SStd((3, 2); 2)

for each w ∈ W
min{ℓ,m}
1 = [0, 2]:

w 0 1 2

sw
1 2 3 6 7

4 5

1 2 3 5 7

4 6

1 2 3 4 5

6 7

By Theorem 4.7, f
t(3,2)|2

=
∑

s∈SStd((5,2))
2

(wt(s)+2)(wt(s)+1)es. Hence

d
t(3,3)|3

= lcm { (w+2)(w+1)
2 | w ∈ [0, 2]} = lcm {1, 3, 6} = 6 = lcm [2,4]

2 ,

agreeing with Corollary 4.9.
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Remark 4.11. By [1, Theorem 3.13], Corollary 4.9 can be used to provide a simpler proof
to [1, Theorem 4.13].

For the remainder of this section, write bk,ℓm,w for q
t(k,ℓ

s)|m,sw
for each w ∈ W

min(ℓ,m)
s , so

that

f
t(k,ℓ

s)|m =
∑

w∈W
min(ℓ,m)
s

bk,ℓm,wEw,

where Ew =
∑

s∈SStd(λ;m)
wt(s)=w

es, by Theorem 2.17 and Corollary 4.6. Equivalently,

D(t(k,ℓ
s)|m) =

∑

s∈SStd((k,ℓs);m)

bk,ℓ
m,wt(s)d(s).

We shall provide four reduction results, relating bk,ℓm,w to others with different parameters.

To state the first result, note that we have a natural left action of Ss on W
min(ℓ,m)
s via

place permutations: σ · (w1, w2, . . . , ws) = (wσ−1(1), wσ−1(2), . . . , wσ−1(s)) for all σ ∈ Ss and

(w1, w2, . . . , ws) ∈ W
min(ℓ,m)
s .

Theorem 4.12. Let w ∈ W
min(ℓ,m)
s . We have:

(1) |bk,ℓm,w| = |bk,ℓm,σ·w| for all σ ∈ Ss;

(2) bk,ℓ
m,(0,w) = bk+1,ℓ

m,w if s ≥ min(ℓ,m);

(3) bk,ℓm,w = bk,ℓm−1,w if m > ℓ;

(4) bk,ℓm,w = bk−1,ℓ−1
m,w if ℓ > m.

Proof. For each part we fix some of the parameters k, ℓ,m, s, and will omit them in the
notations to make the latter less cumbersome.

(1) We fix k, ℓ,m, s and prove |bw| = |bσ·w| for all σ ∈ Ss and w ∈ W. In fact, it suffices
to prove this for σ = si ∈ Ss. Let

θi =
ℓ
∏

j=1

(k + (i− 1)ℓ+ j, k + iℓ+ j) ∈ S[k+(i−1)ℓ+1, k+(i+1)ℓ].

Observe that the effect of θi on t(k,ℓ
s) is to swap its (i+1)-th and (i+2)-th rows. Thus,

θift(k,ℓs) = θiet(k,ℓs) = eθi·t(k,ℓs) = (−1)ℓe
t(k,ℓ

s) = (−1)ℓf
t(k,ℓ

s) ,

where the third equality follows from (2.3). This yields

θift(k,ℓs)|m = (−1)ℓf
t(k,ℓ

s)|m

by Corollary 2.12(1).
On the other hand, θift(k,ℓs)|m =

∑

w∈W bwθiEw. For each w = (w1, . . . , ws) ∈

W, let SQ
(k+m,ℓs)(w) be the Q-span of the polytabloids es which are labelled by s ∈

Std((k +m, ℓs)) whose first row contains all the k integers with colour c1, and exactly

wi integers with colour ci+1 for all i ∈ [1, s]. Then since eθi·s ∈ SQ
(k+m,ℓs)(si · w) for

any s ∈ SStd((k, ℓs);m) with wt(s) = w by Proposition 2.6(3) (with l = 1), we have

θiEw = θi
∑

es =
∑

eθi·s ∈ SQ
(k+m,ℓs)(si · w). Thus, comparing the SQ

(k+m,ℓs)(si · w)-

components on both sides of

(−1)ℓ
∑

w∈W

bwEw = (−1)ℓf
t(k,ℓ

s)|m = θift(k,ℓs)|m =
∑

w∈W

bwθiEw,

we have (−1)ℓbsi·wEsi·w = bwθiEw. In particular, bsi·w 6= 0 if and only if bw 6= 0.

Suppose that bw 6= 0, and let bi,w = (−1)ℓ
bsi·w
bw

. Then bi,w ∈ Q \ {0}, and θiEw =
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bi,wEsi·w. Since θ2i = 1, we also have θiEsi·w = 1
bi,w

Ew. But θiEw, θiEsi·w ∈ SZ
(k+m,ℓs),

so this forces bi,w,
1

bi,w
∈ Z, i.e. bi,w = ±1. Hence, |bw| = |bsi·w| as required.

(2) We fix ℓ,m and prove bk(0,w) = bk+1
w for all w ∈ Ws when s ≥ min(ℓ,m); here (0,w) =

(0, w1, . . . , ws) ∈ Ws+1 when w = (w1, . . . , ws). Let

t = t
(k,ℓ)↑(k+m,ℓs+1), t

′ = t
(k+1+m,ℓs),

s = t
(k,ℓs+1)|m, s

′ = t
(k+1,ℓs)|m.

By Corollary 2.12(3) (with i = 2), we have fs = D(s′)+(ℓ−1)ft. By Lemma 2.10(1), we
have ft = et +

∑

r⊲t
qt,rer. Thus,

fs = D(s′)+(ℓ−1)ft = D(s′)+(ℓ−1)et +
∑

r⊲t

qt,rD(s′)+(ℓ−1)er. (4.1)

By Lemma 2.3, for each r ⊲ t, we have Shape(r↓k+ℓ) ⊲ (k, ℓ), so that r contains
[1, k] and some integer ir ∈ [k + 1, k + ℓ] in its first row. Consequently, since for all
τ ∈ S[k+ℓ+1,k+m+(s+1)ℓ], eτ ·r is spanned by polytabloids indexed by standard tableaux
having the same first row as τ · r, which contains the integer ir with colour c2, by
Proposition 2.6(3) (with l = 1), the same holds for D(s′)+(ℓ−1)er as D(s′)+(ℓ−1) ∈
QS[k+ℓ+1,k+m+(s+1)ℓ] by Lemma 2.10(2). The upshot is that, in (4.1), onlyD(s′)+(ℓ−1)et
contributes to the coefficient bk(0,w) of esk(0,w)

in fs. Now,

D(s′)+(ℓ−1)et =
∑

u∈SStd((k+1,ℓs);m)

bk+1
wt(u)ed(u)+(ℓ−1) ·t.

As d(u)+(ℓ−1) ·t is standard for all u ∈ SStd((k+1, ℓs);m) and the map u 7→ d(u)+(ℓ−1) ·t
is injective, the coefficient of e

sk
(0,w)

in D(s′)+(ℓ−1)et is b
k+1
wt(u) where d(u)

+(ℓ−1) ·t = sk(0,w),

which is precisely where u = sk+1
w . Thus bk(0,w) = bk+1

w as desired.

(3) We fix k, ℓ, s and prove bm,w = bm−1,w for all w ∈ Wℓ
s when m > ℓ. By Lemma

2.10(1,2) and Corollary 2.12(2), D(t(k,ℓ
s)|m−1) ∈ QS[k+1,k+m−1+sℓ] and

f
t(k,ℓ

s)|m = D(t(k,ℓ
s)|m−1)f

t(k+m−1,ℓs)|1

= D(t(k,ℓ
s)|m−1)(e

t(k+m−1,ℓs)|1 +
∑

r⊲t(k+m−1,ℓs)|1

q
t(k+m−1,ℓs)|1,rer).

If r ⊲ t(k+m−1,ℓs)|1, then Shape(r↓k+m−1+sℓ) ⊲ (k +m − 1, ℓs) by Lemma 2.3, so that
Shape(r↓k+m−1+sℓ) = (k + m, ℓs−1, ℓ − 1). Thus, for any τ ∈ Sk+m−1+sℓ, we have
Shape((τ · r)↓k+m−1+sℓ) = (k + m, ℓs−1, ℓ − 1) so that eτ ·r is spanned by standard
(k + m, ℓs)-polytabloids eu such that Shape(u↓k+m−1+sℓ) = (k + m, ℓs−1, ℓ − 1) by

Proposition 2.6(2). Consequently, since D(t(k,ℓ
s)|m−1) ∈ QSk+m−1+sℓ, D(t(k,ℓ

s)|m−1)er
lies in the span of polytabloids indexed by standard tableaux in which k +m + sℓ lie
in their respective last row. Since for all w ∈ Wℓ

s, s
m
w contains k +m + sℓ in its first

row for all w ∈ Wℓ
s, we see that D(t(k,ℓ

s)|m−1)er does not contribute to the coefficient
bm,w of esm

w

in f
t(k,ℓ

s)|m . On the other hand,

D(t(k,ℓ
s)|m−1) e

t(k+m−1,ℓs)|1 =
∑

s̃∈SStd((k,ℓs),m−1)

bm−1,wt(s̃)ed(s̃)·t(k+m,ℓs)

=
∑

s̃∈SStd((k,ℓs),m−1)

bm−1,wt(s̃)es̃↑(k+m,ℓs) .

Clearly, s̃↑(k+m,ℓs) is standard for all s̃ ∈ SStd((k, ℓs);m−1), and the map s̃ 7→ s̃↑(k+m,ℓs)

is injective. Furthermore, sm−1
w ↑(k+m,ℓs) = smw. Thus bm−1,w = bm,w just as in part (2).

(4) We fix m and prove that bk,ℓws = bk−1,ℓ−1
ws for all ws ∈ Wm

s when ℓ > m.

We prove by induction on s. For s = 1 we have bk,ℓ(w) = 1

(k−ℓ+w+1
w )

= bk−1,ℓ−1
(w) by

Theorem 4.7, as desired. Assume thus s > 1.
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By Corollary 2.12(3) (with i = 2),

f
t(k,ℓ

s)|m = D(t(k+1,ℓs−1)|m)+(ℓ−1)D(t(k,ℓ)|m) e
t(k+m,ℓs)

=
∑

u∈SStd((k+1,ℓs−1);m)
s∈SStd((k,ℓ);m)

bk+1,ℓ
wt(u) b

k,ℓ
wt(s) d(u)

+(ℓ−1)d(s) e
t(k+m,ℓs)

=
∑

u∈SStd((k+1,ℓs−1);m)
s∈SStd((k,ℓ);m)

bk+1,ℓ
wt(u) b

k,ℓ

wt(s) es↑u (4.2)

where s↑u = (d(u)+(ℓ−1)d(s)) · t(k+m,ℓs). (Note that (4.2) holds for all k, ℓ,m, s ∈ Z+

with k ≥ ℓ.) Since d(s) · t(k+m,ℓs) = s↑(k+m,ℓs), s↑u has the following properties:

• its first row contains [1, k] and exactly wt(s) integers in [k + 1, k + ℓ];

• its third and subsequent rows are exactly those of the second and subsequent rows
of u translated by (ℓ− 1).

Let Tk,ℓ,s = {t ∈ RStd((k +m, ℓs)) | t(i+ 1, 1) = k + (i− 1)ℓ+ 1 ∀i ∈ [1, s]}, and let

TStd
k,ℓ,s = Tk,ℓ,s ∩ Std((k +m, ℓs)) and TSStd

k,ℓ,s = Tk,ℓ,s ∩ SStd((k, ℓs);m). Since ℓ > m, we

have s
k,ℓ
ws ∈ TSStd

k,ℓ,s for all ws ∈ Wm
s .

Let

ξk,ℓ,s : [2, k + sℓ+m] \ {k + (i− 1)ℓ+ 1 | i ∈ [1, s]} → [1, k − 1 + s(ℓ− 1) +m]

denote the order-preserving bijection between these two subsets of Z+ with the same
cardinality. We have an injection Ξk,ℓ,s : Tk,ℓ,s → RStd((k − 1 +m, (ℓ − 1)s)) defined
by Ξk,ℓ,s(s)(i, j) = ξk,ℓ,s(s(i, j + 1)) for all (i, j) ∈ [(k − 1 +m, (ℓ− 1)s)], that preserves
standardness, colour-semistandardness and weight (where [k + (i − 1)ℓ + 1, k + iℓ] for
the tableaux in Tk,ℓ,s and [k + (i − 1)(ℓ − 1), k − 1 + i(ℓ − 1)] for the tableaux in
RStd((k − 1 + m, (ℓ − 1)s)) are coloured ci+1). Note that for ws ∈ Wm

s , we have

Ξk,ℓ,s(s
k,ℓ
ws) = s

k−1,ℓ−1
ws .

Let π
TStd
k,ℓ,s

: SQ
(k+m,ℓs) → SQ

(k−1+m,(ℓ−1)s) be the Q-linear map defined by

es 7→

{

eΞk,ℓ,s(s), if s ∈ TStd
k,ℓ,s;

0, otherwise

for all t ∈ Std((k + m, ℓs)). We claim that π
TStd
k,ℓ,s

(et) = eΞk,ℓ,s(t) for all t ∈ Tk,ℓ,s,

which is of course the definition of π
TStd
k,ℓ,s

if t is standard. When t ∈ Tk,ℓ,s is not

standard, then there exist (i, j), (i + 1, j) ∈ [(k +m, ℓs)] such that t(i, j) > t(i + 1, j).
Let X = {t(i, a) | a ∈ [j, ℓ]} and Y = {t(i + 1, b) | b ∈ [1, j]}. Then by Proposition
2.6(1), we have

et = −
∑

σ∈GX,Y \{1}

eσ·t.

Let y = t(i+1, 1), and let Y ′ = Y \{y}. We may choose GX,Y so that it contains GX,Y ′ .
If σ ∈ GX,Y and σ−1(y) /∈ X, then y′ := σ−1(y) ∈ Y , and so σ(y, y′) ∈ SX∪Y ′ . Thus
σ(y, y′) = σ′τ for some σ′ ∈ GX,Y ′ and τ ∈ SXSY ′ ; in particular σSXSY = σ′SXSY

and hence σ = σ′ ∈ GX,Y ′ . Therefore, if σ ∈ GX,Y \ GX,Y ′ , we have σ−1(y) ∈ X
and so σ · t contains y = t(i + 1, 1) = k + (i − 1)ℓ + 1 in its i-th row. Consequently,
π
TStd
k,ℓ,s

(eσ·t) = 0 by Proposition 2.6(2), since s 4 σ · t for all s ∈ TStd
k,ℓ,s. Thus,

π
TStd
k,ℓ,s

(et) = −
∑

σ∈GX,Y ′\{1}

π
TStd
k,ℓ,s

(eσ·t),

and since t ⊳ σ · t ∈ Tk,ℓ,s for all σ ∈ GX,Y ′ \{1} by Proposition 2.6(1), we conclude by
induction that

π
TStd
k,ℓ,s

(et) = −
∑

σ∈GX′,Y \{1}

eΞk,ℓ,s(σ·t)
.

Now note that:
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• Ξk,ℓ,s(σ · t) = ξσξ−1 · Ξk,ℓ,s(t);

• σ ∈ GX,Y ′ if and only if ξσξ−1 ∈ ξGX,Y ′ξ−1 and we may choose Gξ(X),ξ(Y ′) to be

ξGX,Y ′ξ−1;

• ξ(Y ′) = {ξ(t(i + 1, b)) | b ∈ [2, j]} = {Ξk,ℓ,s(t)(i + 1, b) | b ∈ [1, j − 1]}, and similarly,
ξ(X) = {Ξk,ℓ,s(t)(i, a) | a ∈ [j − 1, ℓ− 1]}.

Thus,

π
TStd
k,ℓ,s

(et) = −
∑

τ∈Gξ(X′),ξ(Y )\{1}

eτ ·Ξk,ℓ,s(t) = eΞk,ℓ,s(t)

by Proposition 2.6(1), establishing our claim.
We now investigate πTStd

(es↑u) where s ∈ SStd((k, ℓ);m) and u ∈ SStd((k+1, ℓs−1);m).

From the properties of s↑u listed above, we see that if s↑u /∈ Tk,ℓ,s, then k+ (i− 1)ℓ+1
lies above its (i + 1)-th row for some i ∈ [1, s] (by Lemma 2.16 applied to u), and
hence t 4 s↑u for all t ∈ TStd

k,ℓ,s, so that π
TStd
k,ℓ,s

(es↑u) = 0 by Proposition 2.6(2). On

the other hand, if s↑u ∈ Tk,ℓ,s, we have, by the claim in the last paragraph, that
π
TStd
k,ℓ,s

(es↑u) = eΞk,ℓ,s(s↑u)
. Now note that:

• for s ∈ SStd((k, ℓ);m) and u ∈ SStd((k+1, ℓs−1);m), we have s↑u ∈ Tk,ℓ,s if and only

if s ∈ Tk,ℓ,1 and u ∈ Tk+1,ℓ,s−1, in which case Ξk,ℓ,s(s↑u) = Ξk,ℓ,1(s)↑Ξk+1,ℓ,s−1(u);

• Ξk,ℓ,1 maps TSStd
k,ℓ,1 bijectively onto SStd((k − 1, ℓ− 1);m), and is weight-preserving;

• Ξk+1,ℓ,s−1 maps TSStd
k+1,ℓ,s−1 bijectively onto SStd((k, (ℓ − 1)s−1);m), and is weight-

preserving.

Thus,

π
TStd
k,ℓ,s

(f
t(k,ℓ

s)|m) =
∑

u∈SStd((k+1,ℓs−1);m)
s∈SStd((k,ℓ);m)

bk+1,ℓ
wt(u)

bk,ℓ
wt(s)

π
TStd
k,ℓ,s

(es↑u)

=
∑

u∈TSStd
k+1,ℓ,s−1

s∈TSStd
k,ℓ,1

bk+1,ℓ
wt(u) b

k,ℓ
wt(s) eΞk,ℓ,1(s)↑

Ξk+1,ℓ,s−1(u)

=
∑

u′∈SStd((k,(ℓ−1)s−1);m)
s′∈SStd((k−1,ℓ−1);m)

bk+1,ℓ
wt(u′)b

k,ℓ

wt(s′) es′↑u′

=
∑

u′∈SStd((k,(ℓ−1)s−1);m)
s′∈SStd((k−1,ℓ−1);m)

bk,ℓ−1
wt(u′)b

k−1,ℓ−1
wt(s′) e

s′↑u′

= f
t(k−1,(ℓ−1)s)|m =

∑

v∈SStd((k−1,(ℓ−1)s);m)

bk−1,ℓ−1
wt(v) ev,

where the fourth and fifth equalities follow from induction hypothesis and (4.2) respec-

tively. But we also have f
t(k,ℓ

s)|m =
∑

t∈SStd((k,ℓs);m) b
k,ℓ
wt(t) et, so that

π
TStd
k,ℓ,s

(f
t(k,ℓ

s)|m) =
∑

t∈TSStd
k,ℓ,s

bk,ℓwt(t) eΞk,ℓ,s(t).

Comparing the coefficient of e
s
k−1,ℓ−1
ws

in π
TStd
k,ℓ,s

(f
t(k,ℓ

s)|m) for each ws ∈ Ws, we get

bk,ℓws = bk−1,ℓ−1
ws as desired, and our proof is complete.

�

In the next result, ej, for j ∈ [1, s], denotes the j-th standard basis vector for Zs. Note
also that W1

s = {0} ∪ {ej | j ∈ [1, s]}.



YOUNG’S SEMINORMAL BASIS VECTORS AND THEIR DENOMINATORS 23

Corollary 4.13. We have

f
t(k,1

s)|m = e
t(k,1

s)|m +
1

k + s

∑

s∈SStd((k,1s);m)\{t(k,1
s)|m}

(−1)s−|wt(s)|es,

where |wt(s)| = j if wt(s) = ej .

In particular, d
t(k,1

s)|m = k + s.

Proof. By Theorem 4.12(3), bk,1m,ws = bk,11,ws
. By Theorem 3.5, bk,11,ej

= (−1)s−j 1
k+s

for all

i ∈ [1, s] (since Q(sk,1,1ej ) = [j + 1, s + 1]) and bk,11,0 = 1. The corollary thus follows. �

Example 4.14. Let k = s = 3, m = 2. The following is a complete list of sw ∈ SStd((3, 13); 2)
for each w ∈ W1

3 = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)}:

w (0, 0, 0) (1, 0, 0) (0, 1, 0) (0, 0, 1)

sw

1 2 3 7 8

4

5

6

s0

1 2 3 4 8

5

6

7

s1

1 2 3 5 8

4

6

7

s2

1 2 3 6 8

4

5

7

s3

For each i ∈ [1, 3], let s′i = (7, 8) · si, so that s′i is the only other standard (5, 13)-tableau
having the same weight (or colour type) as si. By Corollary 4.13,

fs0 = es0 +
1
6es1 +

1
6es′1 −

1
6es2 −

1
6es′2 +

1
6es3 +

1
6es′3 and ds0 = 6.

Remark 4.15.

(1) Using Corollary 4.13 and [1, Theorem 3.13], we get θ(k,1s),(m) = (k−1)!m!s!, generalising
θ(1n),(m) = (n− 1)!m! as obtained in [1, Proposition 4.1].

(2) Corollary 4.13 shows that it is possible for bk,ℓm,w = −bk,ℓm,σ·w (cf. Theorem 4.12(1)).

Corollary 4.16. Let

k̃ = k − ℓ+max(s,min(ℓ,m)), ℓ̃ = min(ℓ,m), s̃ = min(ℓ,m, s),

W
ℓ̃
s = {(w1, . . . , ws) ∈ Wℓ̃

s | w1 ≤ · · · ≤ ws}.

Then k̃ ≥ ℓ̃ ≥ s̃, and

d
t(k,ℓ

s)|m = min{κ ∈ Z+ | κ bk,ℓm,w ∈ Z, ∀w ∈ W
ℓ̃
s} = d

t(k̃,ℓ̃
s̃)|ℓ̃ .

Proof. Clearly, k̃ ≥ max(s,min(ℓ,m)) ≥ min(ℓ,m) = ℓ̃ ≥ min(ℓ,m, s) = s̃.

Next, W
ℓ̃
s is a set of orbit representatives of Wℓ̃

s under the action of Ss. Thus,

d
t(k,ℓ

s)|m = min{κ ∈ Z+ | κ bk,ℓm,w ∈ Z, ∀w ∈ Wℓ̃
s}

= min{κ ∈ Z+ | κ bk,ℓm,σ·w ∈ Z, ∀w ∈ W
ℓ̃
s ∀σ ∈ Ss}

= min{κ ∈ Z+ | κ bk,ℓm,w ∈ Z, ∀w ∈ W
ℓ̃
s}

by Theorem 4.12(1), proving the first equality.

Now, when s > ℓ̃, there is a bijection W
ℓ̃
s−1 → W

ℓ̃
s defined by w 7→ (0,w). Thus,

d
t(k+1,ℓs−1)|m = min{κ ∈ Z+ | κ bk+1,ℓ

m,w ∈ Z, ∀w ∈ W
ℓ̃
s−1}

= min{κ ∈ Z+ | κ bk,ℓ
m,(0,w) ∈ Z, ∀w ∈ W

ℓ̃
s−1}

= min{κ ∈ Z+ | κ bk,ℓm,w′ ∈ Z, ∀w′ ∈ W
ℓ̃
s}

= d
t(k,ℓ

s)|m ,
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where the second equality follows from Theorem 4.12(2). Iterating this, we get

d
t(k,ℓ

s)|m = d
t(k+1,ℓs−1)|m = · · · = d

t(k+s−ℓ̃,ℓℓ̃)|m
.

Thus, in general, when s may not be larger than ℓ̃, we have

d
t(k,ℓ

s)|m = d
t(k

′,ℓs̃)|m ,

where k′ = k +max(s− ℓ̃, 0) = k − ℓ̃+max(s, ℓ̃). Theorem 4.12(3,4) now shows that

d
t(k

′,ℓs̃)|m =

{

d
t(k

′,ℓs̃)|m−1 , if m > ℓ,

d
t(k

′−1,(ℓ−1)s̃)|m , if m < ℓ;

=

{

d
t(k

′,ℓs̃)|ℓ , if m > ℓ,

d
t(k

′−ℓ+m,ms̃)|m , if m < ℓ;

= d
t(k

′−ℓ+ℓ̃,ℓ̃s̃)|ℓ̃ = d
t(k̃,ℓ̃

s̃)|ℓ̃ ,

since k′ − ℓ+ ℓ̃ = k − ℓ+max(s, ℓ̃) = k̃. �

5. Some general reduction results

In this concluding section, we relate ftλ↑ν and dtλ↑ν to those labelled by smaller partitions.
Together with the results of the last two sections, we will be able to obtain closed formulae
for dtλ↑ν in a slightly more general setting than what we have seen earlier. We are also able
to use these results to obtain upper bounds for dtλ↑ν in general.

Our first result relates D(tλ↑ν) to another labelled by smaller partitions.

Proposition 5.1. Let λ = (λ1, . . . , λr) and ν = (ν1, . . . , νt) be partitions with [λ] ⊆ [ν].

(1) Let ν̃ = (ν1, . . . , νr−1, λr). Then D(tλ↑ν) = D(tλ↑ν̃).

(2) (Row removal) Suppose that λ1 = ν1 and r ≥ 2. Let λ̌ = (λ2, . . . , λr) and ν̌ =

(ν2, . . . , νt). Then D(tλ↑ν) = D(tλ̌↑ν̌)+λ1 .

Proof.

(1) Since ftλ↑ν̃ = D(tλ↑ν̃)ftν̃ , we have by Corollary 2.12(1)

ftλ↑ν = f(tλ↑ν̃)↑ν = D(tλ↑ν̃)ftν̃↑ν = D(tλ↑ν̃)ftν = D(tλ↑ν̃)etν =
∑

s̃∈Std(ν̃)

qtλ↑ν̃ ,s̃ ed(s̃)·tν .

Since d(s̃) · tν = s̃↑ν ∈ Std(ν) for all s̃ ∈ Std(ν̃), and the map s̃ 7→ s̃↑ν is injective, the
desired result follows.

(2) Since f
d(tλ̌↑ν̌)·tν̌ = f

tλ̌↑ν̌ = D(tλ̌↑ν̌)ftν̌ , and λ1+tλ̌↑ν̌(i, j) = tλ↑ν(i+1, j) for all (i, j) ∈ [ν̌]

so that res
tλ̌↑ν̌ (i) = 1+ restλ↑ν (i+λ1) for all i ∈ [1, |ν̌|], we have by Proposition 2.11(2)

(with z = λ1)

ftλ↑ν = fd(λ̌↑ν̌)+λ1 ·tν = D(λ̌↑ν̌)+λ1ftν =
∑

š∈Std(ν̌)

q
tλ̌↑ν̌ ,š ed(š)+λ1 ·tν .

Since d(š)+λ1 · tν ∈ Std(ν) for all š ∈ Std(ν̃), and the map š 7→ d(š)+λ1 · tν is injective,
the desired result follows.

�

Corollary 5.2 (cf. [7, Theorem 1]). Let ν be a partition and let λ be the partition obtained
from ν by removing a removable node, say on its i-th row. Then

D(tλ↑ν) = D(t(λi,...,λr)|1)+(
∑i−1

j=1 λj) =
∑

s∈SStd((λi,...,λr);1)

asd(s)
+(

∑i−1
j=1 λj).

(See Theorem 3.5 for the definition of as.)
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Proof. This follows by iterating Proposition 5.1(2) and Theorem 3.5. �

We next relate dtλ↑ν to another labelled by smaller partitions.

Theorem 5.3. Let λ = (λ1, . . . , λr) and ν = (ν1, . . . , νt) be partitions with [λ] ⊆ [ν].

(1) We have dtλ↑ν = d
tλ↑(ν1,...,νr−1,λr) .

(2) If λ1 = ν1 and r ≥ 2, then dtλ↑ν = d
t(λ2,...,λr)↑(ν2,...,νt).

(3) For m ∈ [1, ν1 − λ1], we have

dtλ↑ν | d
tλ|m

d
tλ+(m)↑ν .

(4) For i ∈ [2, r − 1] and m ∈ Z+, we have

d
tλ|m

| d
t
(λ1+i−1,λi+1,...,λr)|mdt(λ1,...,λi)|m .

Proof. Parts (1) and (2) follow from Proposition 5.1.

For part (3) we have ftλ↑ν = D(tλ|m)D(tλ+(m)↑ν) etν for any m ∈ [1, ν1−λ1] by Corollary
2.12(2). Thus,

d
tλ|m

d
tλ+(m)↑νftλ↑ν = (d

tλ|m
D(tλ|m))(d

tλ+(m)↑νD(tλ+(m)↑ν)) etν ∈ (ZS|ν|)S
Z
ν = SZ

ν ,

so that dtλ↑ν | d
tλ|m

d(tλ+(m))↑ν as desired.

Part (4) uses Corollary 2.12(3) and an argument similar to part (3). �

By iterating Theorem 5.3 together with Corollaries 3.7, 4.9 and 4.16, we can obtain
(possibly many) upper bounds for any dtλ↑ν . For example, when combining part (3) with
part (2) in Theorem 5.3, we get

dtλ↑ν | d
tλ|ν1−λ1dt(λ2,...,λr)↑(ν2,...,νt) | dtλ|ν1−λ1dt(λ2,...,λr)|ν2−λ2dt(λ3,...,λr)↑(ν3,...,νt) | · · · .

We may obtain upper bounds for d
tλ|ν1−λ1 , dt(λ2,...,λr)|ν2−λ2 , . . . further by using part (3) or

(4) of Theorem 5.3.

We demonstrate this process of obtaining upper bounds below with the example of
d
t(k,ℓ

s)|ℓ where k ≥ ℓ ≥ s. Recall that in the last section, we showed that all denominators
of the form d

t(k,ℓ
s)|m can be reduced to this form (Corollary 4.16).

Proposition 5.4. Let k, ℓ, s ∈ Z+ with k ≥ ℓ ≥ s. Then

d
t(k,ℓ

s)|ℓ | gcd





ℓ
∏

i=1

(k − ℓ+ s+ i),

s
∏

j=1

lcm [k − ℓ+ j, k + j]

k − ℓ+ j



 .

Proof. Iterating Theorem 5.3(3), we get

d
t(k,ℓ

s)|ℓ | dt(k,ℓs)|1dt(k+1,ℓs)|ℓ−1 | · · · | d
t(k,ℓ

s)|1dt(k+1,ℓs)|1 · · · dt(k+ℓ−1,ℓs)|1

=

ℓ
∏

i=1

(k − ℓ+ s+ i)

by Corollary 3.7. We may also iterate Theorem 5.3(4) with i = 2 and get

d
t(k,ℓ

s)|ℓ | dt(k,ℓ)|ℓdt(k+1,ℓs−1)|ℓ | · · · | dt(k,ℓ)|ℓdt(k+1,ℓ)|ℓ · · · dt(k+s−1,ℓ)|ℓ

=

s
∏

j=1

lcm [k−ℓ+j, k+j]
k−ℓ+j

by Corollary 4.9. The proposition thus follows. �
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Example 5.5. In this example, we illustrate how Proposition 5.4 may be used to show that
d
t(k,2

2)|2 = (k + 1)(k + 2) for all k ≥ 2. By Corollary 4.16, this also gives

d
t(k+ℓ−s,ℓs)|m = (k + 1)(k + 2)

whenever k ≥ s ≥ 2 and min(ℓ,m) = 2.

By Corollary 2.12(2) and Theorem 3.5, we have

f
t(k,2

2)|2 = D(t(k,2
2)|1)D(t(k+1,22)|1)e

t(k+2,22)

=
∑

u∈SStd((k,22);1)
v∈SStd((k+1,22);1)

auaved(u)·v.

For each v ∈ SStd((k + 1, 22); 1), let bv ∈ [k + 2, k + 6] such that v contains [1, k + 1] and
bv in its first row. Let

s = s
k,2,2
(1,1) =

1 2 · · · · · · k k+2 k+4

k+1 k+3

k+5 k+6

.

By Proposition 2.6(3) (with l = 1), ed(u)·v does not contribute to the coefficient of es
in f

t(k,2
2)|2 unless d(u) · v contains [1, k] ∪ {k + 2, k + 4} in its first row, or equivalently,

d(u)({k + 1, bv}) = {k + 2, k + 4}. Assume thus d(u)({k + 1, bv}) = {k + 2, k + 4}.

Case 1a. d(u)(k + 1) = k + 2, d(u)(bv) = k + 4: There are exactly two such u ∈ SStd((k, 22); 1),
namely

u1 =

1 2 · · · · · · k k+2

k+1 k+3

k+4 k+5

, u2 =

1 2 · · · · · · k k+2

k+1 k+4

k+3 k+5

.

We have d(u1) = (k+ 1, k + 2), d(u2) = (k + 1, k + 2)(k + 3, k + 4), au1 = − 1
k+1 = au2 ,

and bv =

{

k + 4, if u = u1;

k + 3, if u = u2.

Case 1b. d(u)(k + 1) = k + 4, d(u)(bv) = k + 2: There is only one such u ∈ SStd((k, 22); 1),
namely

u3 =

1 2 · · · · · · k k+4

k+1 k+2

k+3 k+5

.

We have d(u3) = (k + 1, k + 4, k + 3, k + 2), au3 = 1
k+1 and bv = k + 3.

Thus bv ∈ {k + 3, k + 4}. We now look at these v ∈ SStd((k + 1, 22); 1).

Case 2a. bv = k + 4: There is only one such v ∈ SStd((k + 1, 22); 1), namely

v1 =

1 2 · · · · · · k k+1 k+4

k+2 k+3

k+5 k+6

.

We have av1 = 1
k+2 .
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Case 2b. bv = k + 3: There are exactly two such v ∈ SStd((k + 1, 22); 1), namely

v2 =

1 2 · · · · · · k k+1 k+3

k+2 k+4

k+5 k+6

, v3 =

1 2 · · · · · · k k+1 k+3

k+2 k+5

k+4 k+6

.

We have av2 = − 1
k+2 = av3 .

Now, d(u1) · v1 = d(u2) · v2 = d(u3) · v2 = s for all i ∈ [1, 3], while

d(u2) · v3 = d(u3) · v3 =

1 2 · · · · · · k k+2 k+4

k+1 k+5

k+3 k+6

∈ Std((k + 2, 22)) \ {s}.

Thus the coefficient of es in f
t(k,2

2)|2 equals

au1av1 + au2av2 + au3av2 = (− 1
k+1)(

1
k+2) + (− 1

k+1)(−
1

k+2) + ( 1
k+1)(−

1
k+2) = − 1

(k+1)(k+2) .

This yields

(k + 1)(k + 2) | d
t(k,2

2)|2 | gcd(
2
∏

i=1

(k + i),
2
∏

j=1

lcm [k−2+j,k+j]
k−2+j

) |
2
∏

i=1

(k + i) = (k + 1)(k + 2)

by Proposition 5.4, forcing equality throughout.

We now give an indication how Theorem 1.1 comes about:

Proof of Theorem 1.1. Part (1) follows from Corollary 3.7 and Theorem 5.3(2). Part (2)
follows from Corollary 4.9 and Theorem 5.3(1). Part (3) follows from Corollary 4.16 and
Theorem 5.3(1), while parts (4)–(6) follow from Theorem 5.3. �

We end the paper with the following concluding remark.

Remark 5.6. Let λ ⊢ n. Following [7], we can provide an estimate for D(s) and an upper
bound for ds for a general s ∈ Std(λ) as follows. For each i ∈ [1, n], let si = s↓i, and

let λi = Shape(si). Then si↑
λi+1

= si+1 for all i ∈ [1, n − 1]. By iterating Corollary

2.12(1), we get fs = D(tλ
1
↑λ

2
) · · ·D(tλ

n−1
↑λ

n
) etλ . Thus, D(tλ

1
↑λ

2
) · · ·D(tλ

n−1
↑λ

n
) equals

D(s) modulo the annihilator of etλ , so that the former is an estimate of the latter, and

ds |
∏n−1

i=1 d
tλ

i↑λi+1 . Note that Corollary 5.2 and Theorem 1.1(1) give closed formulae for

D(tλ
i
↑λ

i+1
) and d

tλ
i↑λi+1 respectively for each i ∈ [1, n− 1].
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