
ar
X

iv
:m

at
h/

98
06

11
9v

2 
 [

m
at

h.
G

T
] 

 1
1 

M
ay

 2
00

5

Tait’s Flyping Conjecture

for 4-Regular Graphs
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Abstract

Tait’s flyping conjecture, stating that two reduced, alternating,
prime link diagrams can be connected by a finite sequence of flypes, is
extended to reduced, alternating, prime diagrams of 4-regular graphs
in S3. The proof of this version of the flyping conjecture is based on
the fact that the equivalence classes with respect to ambient isotopy
and rigid vertex isotopy of graph embeddings are identical on the class
of diagrams considered.
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Introduction

Very early in the history of knot theory attention has been paid to alternating
diagrams of knots and links. At the end of the 19th century P.G. Tait [21]
stated several famous conjectures on alternating link diagrams that could not
be verified for about a century. The conjectures concerning minimal crossing
numbers of reduced, alternating link diagrams [15, Theorems A, B] have been
proved independently by Thistlethwaite [22], Murasugi [15], and Kauffman
[6]. Tait’s flyping conjecture, claiming that two reduced, alternating, prime
diagrams of a given link can be connected by a finite sequence of so-called
flypes (see [4, page 311] for Tait’s original terminology), has been shown by
Menasco and Thistlethwaite [14], and for a special case, namely, for well-
connected diagrams, also by Schrijver [20].

1Fachbereich Mathematik, Universität Dortmund, 44221 Dortmund, Germany
E-mail: sawollek@math.uni-dortmund.de
WWW: http://www.mathematik.uni-dortmund.de/lsv/sawollek

1

http://arxiv.org/abs/math/9806119v2
http://www.mathematik.uni-dortmund.de/lsv/sawollek


The present article, as well as [19], deals with generalizations of Tait’s
conjectures to embeddings of 4-regular (topological) graphs into 3-space. In
[19] it has been shown that a reduced, alternating graph diagram D has
minimal crossing number. Furthermore, ifD is prime in addition, then a non-
alternating diagram that is equivalent to D cannot have the same crossing
number as D.

The purpose of this paper is to prove Tait’s flyping conjecture for reduced,
alternating, prime diagrams of 4-regular graphs in the 3-sphere S3. The result
depends on a suitable definition of primality, see section 3. Its proof is based
on the fact that the equivalence classes with respect to rigid vertex isotopy
and ambient isotopy of graph diagrams are identical on the class of diagrams
under consideration.

Definitions of these two equivalence relations for graph diagrams are given
in section 1. Then, in section 2, the notion of tangles is introduced to de-
rive invariants of graph diagrams and to give, via transformation tangles, a
description of a sequence of Reidemeister V moves (see Fig. 1) applied to
a graph vertex. In section 3 certain properties of graph diagrams are dis-
cussed, and two important theorems on reduced, alternating diagrams are
stated. After, in section 4, Tait’s flyping conjecture has been shown to be
an immediate consequence of the fact that the two equivalence classes men-
tioned above coincide for reduced, alternating, prime graph diagrams, the
latter statement is finally proved in section 5.

1 Diagrams of 4-Regular Graphs

Embedding graphs into S3 extends, in a natural way, the classical knot the-
oretical problem of embedding one or more disjoint copies of the 1-sphere S1

into S3 where the resulting images are called knots and links, respectively.
Classical terminology of knot theory can be found in [1] or [17], see [9], [11],
[12], [16] for more recent introductions to the field.

A topological graph is a 1-dimensional cell complex which is related to an
abstract graph in the obvious way. In the following, always 4-regular graphs,
which are allowed to have multiple edges or loops, are considered. Vertices
of degree two may occur but are neglected since they are uninteresting for a
topological treatment.

If G is a topological graph, then a graph G in S3 is the image of an
embedding of G into S3. Two graphs G1, G2 in S3 are called equivalent with
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respect to ambient isotopy or ambient isotopic if there exists an orientation
preserving autohomeomorphism of S3 which maps G1 onto G2. Embeddings
of topological graphs in S3 can be examined via regular graph diagrams, i.e.,
images under regular projections to an appropriate sphere equipped with
over-under information at double points. Two graph diagrams D and D′ are
called equivalent with respect to ambient isotopy or ambient isotopic if one
can be transformed into the other by a finite sequence of Reidemeister moves
I–V (see Fig. 1) combined with orientation preserving homeomorphisms of
the sphere to itself. Two graphs in S3 are ambient isotopic if and only if they

I) a ←→ b ←→ 

II) d ←→ e f

III) g ←→ h , i ←→ j

IV) k ←→ l , m ←→ n

V) o ←→ p ←→q

VI)r ←→ p

Figure 1: Reidemeister moves

have diagrams that are ambient isotopic (see [7] or [24]).
Soon after the discovery of polynomial link invariants which fulfil certain

recurrence formulas, such as the Jones polynomial and its generalizations, it
had been tried to extend these invariants to graphs in 3-space. Only quite
recently such an invariant for arbitrary topological graphs has been found by
Yokota [25] (see [19] for a different approach in the case of 4-regular graphs).
Yokota’s invariant manages the difficulty to be invariant under Reidemeister
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move V which before had been the main obstacle for a full generalization of
combinatorial link invariants to knotted graphs.

Besides ambient isotopy there is a further equivalence relation for graph
diagrams which avoids Reidemeister move V and which will be important for
the purposes of this paper: two graph diagrams D and D′ are called equiva-
lent with respect to rigid vertex isotopy or rigid vertex isotopic if one can be
transformed into the other by a finite sequence of Reidemeister moves I–IV
and VI (see Fig. 1) combined with orientation preserving homeomorphisms
of the sphere to itself. Rigid vertex isotopy corresponds to an equivalence
relation on graphs in S3 where a small neighbourhood of each graph vertex
is contained inside a disk, and only those orientation preserving autohome-
omorphisms of S3 are considered that respect these disks (see [5], [7], [23]).
Observe that Reidemeister moves I–V imply Reidemeister move VI, thus
rigid vertex isotopic graph diagrams are ambient isotopic. See Fig. 8 for two
ambient isotopic diagrams which are not rigid vertex isotopic.

For the sake of shortness, the phrase graph diagram will always mean
(regular) diagram of a 4-regular graph in S3 in the subsequent text, and
throughout the article a link will be considered as 4-regular graph in S3 with-
out vertices of degree four. Of course, the equivalence classes with respect
to rigid vertex isotopy and ambient isotopy coincide for links.

2 Tangles, and Invariants of Graph Diagrams

In this section, the notion rational tangle is introduced for two purposes: to
define invariants of graph diagrams with respect to ambient isotopy, and to
describe the effect of a sequence of Reidemeister moves applied to a graph
vertex. The definitions and notations used here are due to Conway [2].

A tangle is a part of a link diagram in form of a disk with four arcs
emerging from it, see Fig. 2 (left), where the tangle’s position is indicated by

S

a b

cd
T

s t

s+ t

T

s t

s · t = st

Figure 2: A tangle, and tangle operations
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an L-shaped symbol and its emerging arcs are labeled with letters a, b, c, d in
a clockwise ordering (or simply one of them with ”a”). Two tangles are said
to be equivalent (with respect to ambient isotopy) if one can be transformed
into the other by a finite sequence of Reidemeister moves of type I–III and
autohomeomorphisms of the disk which keep the boundary fixed. In the
following, a notational difference between a tangle and the corresponding
equivalence class will be avoided. Some basic tangles are 0 = V, ∞ = W,
1 = J, 1 = −1 = U.

For tangles s and t, the operations + and · are defined as depicted in
Fig. 2. The tangles 0, n = 1 + . . . + 1, and n = 1 + . . . + 1 are called
integer tangles. If a tangle t is of the form t = a1 . . . an with integer tangles
a1, . . . , an or if t = ∞, then t is called rational tangle. Let K denote the set
of all (equivalence classes of) rational tangles.

For a rational tangle a1 . . . an the evaluation of the continued fraction

an +
1

an−1 + . . .+ 1
a2 +

1
a1

gives a number in Q∪{∞} where the obvious rules for handling ”∞”, such as
1

∞
= 0, are applied, if necessary, during the calculation. It is known that two

rational tangles are equivalent if and only if the values of the corresponding
continued fractions are identical (see [2], [1] for classical proofs, and [3] for
an elementary combinatorial proof). Therefore, a rational tangle r can be
identified with this number, thus let r denote an element of K as well as
the corresponding value in Q ∪ {∞}, and let |r| denote the tangle’s crossing
number, i.e., the minimal number of crossings in any diagram belonging to the
equivalence class represented by r. Furthermore, a rational tangle contained
in K \ {0,∞, 1, 1} can be expressed in a uniquely determined normal form
a1 . . . an such that |a1| ≥ 2, a2 6= 0, . . . , an−1 6= 0, and all ai ≥ 0 or all
ai ≤ 0. The normal forms of the remaining four tangles are the obvious ones.
Tangles in normal form have minimal number of crossings.

From a given graph diagram D there can be obtained link diagrams by
substituting rational tangles for the graph vertices (see [18]). To do this in
a well-defined way, it is necessary to give an ordering to the k ≥ 0 graph
vertices, i.e., a bijection from the set {1, . . . , k} to the set of graph vertices
contained in D called vertex-enumeration, and an orientation to each vertex,
i.e., labeling an edge incident to the vertex with the letter a. In the following,
mainly the rational tangles 0, ∞, and 1 will be needed. Substituting 0 or ∞
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for graph vertices is done as depicted in Fig. 3, that is to say, vertices are cut

D

X

a
2

a

1

✲

Y

D0,∞

Figure 3: Cutting open vertices

open in one of the two possible ways determined by the vertex-orientation.
Substituting the tangle 1 corresponds to replacing a graph vertex with a
crossing J with respect to the vertex-orientation given.

Replacing vertices of a graph diagram with all rational tangles, or, to be
precise, with a representative of each equivalence class (e.g., all rational tan-
gles in normal form), gives an invariant of diagrams with respect to ambient
isotopy that consists of infinitely many link diagrams (see [18]).

Getting invariants with respect to rigid vertex isotopy is much easier: just
substiute one or more arbitrary (but fixed) tangles for each vertex and get
rid of the ambiguity arising from different vertex-orientations by considering
all choices of such orientations. It is readily checked that this gives well-
defined invariants of graph diagrams under Reidemeister moves I–IV and VI.
For example, the unordered tuple (D0,0, D0,∞, D∞,0, D∞,∞) defines a rigid
vertex invariant of the graph belonging to the diagram D depicted in Fig. 3.
Observe that the invariant C(G) defined in [7] and denoted by C(G) in [10]
is a special version of this type of invariants, induced by the tangles 0 and 1,
where sets are used instead of – more informative – unordered tuples.

Another point of view in considering ambient isotopic graph diagrams is
to observe that the Reidemeister moves of type V, applied to a vertex during
a transformation of one graph diagram into another, can be collected to a
rational tangle. For example, the transformation depicted in Fig. 4 can be
described by the tangle t = 2 1 0 ∈ K.

Definition Let D, D′ be ambient isotopic graph diagrams with k ≥ 1
vertices and given vertex-enumerations and -orientations. If D0,...,0 = D′

t1,...,tk
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p

a

✲

a

F

Figure 4: Applying a sequence of Reidemeister V moves

with tangles t1, . . . , tk then tj , for j ∈ {1, . . . , k}, is called j–th transformation
tangle of the transformation from D into D′. If r1, . . . , rk are rational tangles
then let rj ∗ tj denote the tangle into which rj is transformed when replacing
the j–th vertex of D with rj , that is to say, Dr1,...,rk = D′

r1∗t1,...,rk∗tk
.

Considering Reidemeister move VI, it may be assumed, without loss of
generality, that only the admissible Reidemeister moves of type V depicted in
Fig. 5 have to be applied during a transformation. Furthermore, if the orien-

o ←→ p ←→q

Q ←→ p ←→ R

aa a

aa a

Figure 5: Admissible Reidemeister moves of type V

tation of a vertex is chosen appropriately, the corresponding transformation
tangle t can be written as t = b1 . . . bs 6=∞ with integer tangles b1, . . . , bs such
that b1 . . . bs is in normal form. A rational tangle r = a1 . . . al is transformed
by the transformation tangle t into the tangle r∗t = a1 . . . al−1(al+b1)b2 . . . bs.
Especially, the tangles 0 and ∞ are transformed into t and into a tangle
equivalent to b2 . . . bs, respectively, see Fig. 6.

Remark It is not difficult to see that the inverse of a transformation de-
scribed by a tangle t = b1 . . . bs is given by t′ = bs . . . b1, i.e., if D0 = D′

t
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C

✲K
B

✲L

Figure 6: Replacing a graph vertex with 0 and ∞

then D′

0 = Dt′ for ambient isotopic graph diagrams D and D′ in which cor-
responding vertices have been replaced.

3 Properties of Graph Diagrams

A link diagram is said to be alternating if over- and undercrossings are al-
ternating with each other while walking along any link component in the
diagram. A link diagram D is called reduced if it contains no isthmus, i.e.,
a crossing p such that D \ {p} has more components than D. A connected
link diagram is said to be prime if it cannot be written as connected sum of
two link diagrams both of which having at least one crossing.

Definition A graph diagram D is said to be alternating/reduced/prime if,
corresponding to an arbitrarily chosen vertex-enumeration and -orientation,
the link diagrams Di1,...,ik are alternating/reduced/prime for every choice of
i1, . . . , ik ∈ {0,∞}.

An example of a graph diagram that is alternating, reduced, and prime
is depicted in Fig. 3.

Remark

1. The definition of primality for graph diagrams does not seem to be
the natural one, but it is the one that fits into the context (see the
counterexample contained in the remark at the end of this section).

2. In contrast to the case of link diagrams, a graph diagram that is not
reduced may be irreducible, i.e., the number of the diagram’s crossings
is minimal. See [19] for examples.

3. A prime graph diagram which has more than one crossing is reduced.
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4. The definition of ”alternating” for graph diagrams has been adapted to
the definitions of ”prime” and ”reduced”. Of course, a graph diagram
D is alternating if and only if there is a choice of vertex-orientations
such that D1,...,1 is alternating.

It is remarkable that, after introducing an appropriate definition of pri-
mality (see [19]), for a 4-regular graph in S3 which possesses a reduced,
alternating diagram the property to be prime can be deduced from the cor-
responding property of its diagram. A proof of this fact for link diagrams is
due to Menasco [13], and it can easily be extended to 4-regular graphs in S3,
see [19, Theorem 8]. The following statement is an immediate consequence.

Theorem 1 Let D and D′ be ambient isotopic graph diagrams that are al-
ternating and reduced. Then:

a) D is connected if and only if D′ is connected.

b) D is prime if and only if D′ is prime.
�

To prove Tait’s flyping conjecture for graph diagrams, a generalization of
a Tait conjecture concerning minimal crossing numbers, cited in the intro-
duction, will be needed. A proof can be found in [19, Theorem 9].

Theorem 2 Let G be a 4-regular graph in S3, and let D be a reduced, alter-
nating, prime diagram of G with n crossings. Then there is no diagram of G
having less than n crossings, and any non-alternating diagram of G has more
than n crossings.

�

4 Tait’s Flyping Conjecture

The definition of a tangle as part of a link diagram can be extended to graph
diagrams in the obvious way, and appropriate equivalence relations can be
introduced likewise. In the following, always those generalized tangles are
considered.

Definition A flype is a local change in a graph diagram as depicted in Fig.
7. Using Conway’s notation [2], this corresponds to a transformation of the
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O

t

←→
P

th

Figure 7: A flype

form 1 + t↔ th + 1 or 1 + t↔ th + 1.

In [14] Tait’s flyping conjecture is proved for diagrams of 4-regular rigid
vertex graphs to obtain the validity of Tait’s original conjecture. This result
is stated in the following theorem where, as well as in the subsequent text,
the phrase sequence of flypes is an abbreviation for sequence of flypes plus
orientation preserving autohomeomorphisms of the sphere. It should be men-
tioned that the notion of primality for graph diagrams used in [14] is different
from the one used in the present text. Indeed, a graph diagram that is prime
with respect to the definition given above is prime in the sense of [14], too,
and thus the result from [14] can be adopted here.

Theorem 3 Let D and D′ be rigid vertex isotopic graph diagrams that are
reduced, alternating, and prime. Then there exists a finite sequence of flypes
which transforms D into D′.

�

Considering ambient isotopy of graph diagrams, the desired extension of
Tait’s flyping conjecture to 4-regular graphs can be deduced immediately
from the next theorem. The proof of the theorem will be given in section 5.

Theorem 4 Let D and D′ be graph diagrams that are reduced, alternating,
and prime. Then D and D′ are equivalent with respect to ambient isotopy if
and only if they are equivalent with respect to rigid vertex isotopy.

Corollary 5 Let D and D′ be ambient isotopic graph diagrams that are re-
duced, alternating, and prime. Then there exists a finite sequence of flypes
which transforms D into D′.

�
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Remark Theorem 4 does not hold in general without assuming primality.
A counterexample is depicted in Fig. 8: the two (alternating and reduced)
graph diagrams obviously are equivalent with respect to ambient isotopy,
but they are not rigid vertex isotopic because cutting open vertices in the
two possible ways gives diagrams of 2- and 3-component links, respectively,
where the diagrams belonging to the 3-component link are equivalent, and the
diagrams belonging to the 2-component link correspond to different mirror
images of a chiral link.

H

←→

I

Figure 8: Ambient isotopic diagrams that are not rigid vertex isotopic

5 Proof of Theorem 4

Theorem 4 is proved by induction on the number of graph vertices. The main
ingredient for the induction step comes from the fact that transformation
tangles which describe a transformation between reduced, alternating, prime
diagrams always are trivial, and thus replacing a vertex in both diagrams with
the same tangle, for corresponding vertices and with respect to appropriately
chosen vertex-orientations, gives ambient isotopic graph diagrams with one
vertex less. As a main tool for showing this claim, properties of the Kauffman
polynomial [8] of link diagrams and its relations to a diagram’s crossing
number are used.

Definition The Kauffman polynomial ΓD(a, z) ∈ Z[a±1, z±1] of a link dia-
gram D is defined by the following properties.

(i) ΓD(a, z) = 1 if D is a simple closed curve

(ii) ΓD
sv

= aΓD
u

and ΓD
tv

= a−1ΓD
u
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(iii) ΓD
s

+ ΓD
t

= z(ΓD
w

+ ΓD
x

)

The highest exponent in the variable z is called z-degree of ΓD.

In the following, an n-bridge b in a link diagram D is an arc of D that
contains only overcrossings or only undercrossings, and the number of these
crossings is n, the length of b.

The z-degree of the Kauffman polynomial heavily depends on the length
of the longest bridge contained in a diagram. A precise formulation of this
fact is given in the next theorem, for a proof see [22, Theorems 4, 5].

Theorem 6 Let D be a link diagram with n ≥ 1 crossings, and let b ≥ 1 be
the length of an arbitrary bridge contained in D. Then:

a) z-degree(ΓD) ≤ n− b ≤ n− 1

b) z-degree(ΓD) = n− 1 if and only if D is reduced, alternating, prime
�

Now two technical lemmas on Kauffman polynomials are stated which
are needed to deduce the crucial Lemma 10. For a proof of the first lemma
see [18, Lemmas 8, 10].

Lemma 7 Let D be a reduced, alternating, prime graph diagram with k ≥ 1
vertices and n crossings, and let r be a rational tangle in normal form. Fur-
thermore, let i1, . . . , ik−1 ∈ {0,∞}. Then, corresponding to an arbitrarily
chosen vertex-enumeration and -orientation, the following holds for the link
diagram D′ = Di1,...,ij ,r,ij+1,...,ik−1

with j ∈ {1, . . . , k}.

z-degree(ΓD′) =

{

n + |r| − 1 if D′ is alternating

n + |r| − 2 if D′ is not alternating and |r| 6= 1
�

Definition Let D be an alternating graph diagram with k ≥ 1 vertices and
n crossings, supplied with an arbitrarily chosen vertex-enumeration and a
vertex-orientation such that D1,...,1 is alternating. Then D is called degree-
reducing if z-degree(ΓDε1,...,εk

) ≤ n−2 for every choice of ε1, . . . , εk ∈ {0,∞, 1}
with εj = 1 for at least one index j ∈ {1, . . . , k}.

12



Lemma 8 Let D be a reduced, alternating, prime, degree-reducing graph di-
agram with k ≥ 1 vertices and n crossings, supplied with an arbitrarily chosen
vertex-enumeration and a vertex-orientation such that D1,...,1 is alternating.
If r1, . . . rk are rational tangles in normal form having at least two crossings
each, then

z-degree(ΓDr1,...,rk
) = n+ |r1|+ . . .+ |rk| − t+ − 1

holds, where t+ denotes the number of indices j with rj > 0.

Proof: As a consequence of Lemma 7, replacing a vertex of D with a
negative tangle r yields a graph diagram D′ with k − 1 vertices and n + |r|
crossings that is reduced, alternating, prime (z-degree(ΓD′

ε1,...,εk−1
) = n+|r|−1

with εi ∈ {0,∞} can only be fulfilled if D′ possesses all three properties).
Thus it may be assumed that t+ = k. In the following, it is shown that

z-degree(ΓDr1,...,rk
)

{

= n+ |r1|+ . . .+ |rk| − k − 1 if rj 6= 1 for all j

≤ n+ |r1|+ . . .+ |rk| − k − 2 otherwise

holds for positive rational tangles r1, . . . , rk having at least one crossing each.
Since Lemma 7 and Theorem 6 (if rk = 1) immediately give the result for
the case k = 1, let k ≥ 2 for the rest of the proof.

Let l denote the number of indices j with rj = 1. The proof is done
by induction on k − l ≥ 0. If k − l = 0 then r1 = . . . = rk = 1, and
therefore z-degree(ΓDr1,...,rk

) ≤ n − 2 since D is degree-reducing. Thus let
k − l ≥ 1. Then rj 6= 1 for at least one index j ∈ {1, . . . , k}, and without
loss of generality let rk = a1 . . . as 6= 1.

At first consider the case that rk = 2. Then the recurrence formula for
the Kauffman polynomial gives:

ΓDr1,...,rk−1,2
= ΓDr1,...,rk−1,0

+ z(aΓDr1,...,rk−1,∞
+ ΓDr1,...,rk−1,1

)

Applying the induction hypothesis immediately yields the desired inequality
if l ≥ 1 and the desired equality if l = 0.

If rk = a1 is integral then the claimed result can be verified inductively
by considering the corresponding recurrence formula, and a further induction
on s completes the proof.

�
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An important class of degree-reducing diagrams is defined next.

Definition An alternating graph diagram D with k ≥ 1 vertices is called
vertex-separating if there exist disjoint tangles t1, . . . , tk in D such that each
tangle ti contains exactly one graph vertex and replacing this vertex with
a crossing J, corresponding to an appropriately chosen vertex-orientation,
yields a 3-bridge inside ti.

An example of an alternating graph diagram that is vertex-separating is
depicted in Fig. 9.

MN

Figure 9: A reduced, alternating, prime, vertex-separating graph diagram

Lemma 9 A vertex-separating graph diagram is degree-reducing.

14



Proof: Considering the numerator formula for the Kauffman polynomial
that has been deduced in [18], p. 733, it can easily be shown via induction
on l that

z-degree(ΓDε1,...,εk
) ≤ n− l − 1 ≤ n− 2

holds for a vertex-separating graph diagramD with k vertices and n crossings
where ε1, . . . , εk ∈ {0,∞, 1} have been replaced for the vertices and l ≥ 1
denotes the number of indices j with εj = 1.

�

Lemma 10 Let D and D′ be ambient isotopic graph diagrams with k ≥ 1
vertices, and let t1, . . . , tk denote the transformation tangles belonging to a
sequence of Reidemeister moves which realizes the equivalence between D

and D′, corresponding to chosen vertex-enumerations and -orientations of
the diagrams. If D and D′ both are reduced, alternating, and prime then
|t1| = . . . = |tk| = 0.

Proof: Obviously, a prime, reduced graph diagram with k ≥ 1 vertices has
at least two crossings, and, applying Theorem 2, it is clear that D and D′

have identical crossing number n ≥ 2. Without loss of generality, let vertex-
enumerations be chosen such that the j-th vertex of D is mapped to the j-th
vertex of D′ when the sequence of Reidemeister moves which transforms D
into D′ is applied. For the sake of notational convenience, assume that D1,...,1

and D′

1,...,1
are alternating.

Suppose that some of the transformation tangles, which may assumed to
be in normal form, have more than one crossing. Define εi :=∞ if |ti| = 1 and
εi := 0 if |ti| 6= 1. Then on the one hand, z-degree(ΓDε1,...,εk

) = n−1 since D is
reduced, alternating, prime. On the other hand, z-degree(ΓD′

ε1∗t1,...,εk∗tk
) ≥ n,

by Lemma 8, since εi ∗ ti = ∞ if |ti| = 1 (perform a Reidemeister move
I) and D′

ε1∗t1,...,εk∗tk
can be thought to arise from a vertex-separating graph

diagram, namely, the diagram in which the vertices vi with |ti| 6= 1 not have
been replaced (if there is no 3-bridge after replacing one of these vertices
by a crossing then perform a flype as depicted in Fig. 10). This gives a
contradiction because Dε1,...,εk = D′

ε1∗t1,...,εk∗tk
. Thus |ti| ≤ 1 for all indices i.

Now suppose there is an index j with |tj| = 1. Define εj := 0 and
εi := ∞ for i 6= j. Then z-degree(ΓDε1,...,εk

) = n − 1 as in the previous case,

15



1 −→ 2

Figure 10: Flyping a vertex

but it is εi ∗ ti = ∞ for i 6= j and therefore either z-degree(ΓD′

ε1∗t1,...,εk∗tk
) ≤

n − 2 if tj = 1 because the diagram contains a 3-bridge (otherwise there
would be a contradiction to reducedness and primality of the diagram), or
z-degree(ΓD′

ε1∗t1,...,εk∗tk
) = n if tj = 1 because the diagram is reduced, alter-

nating, and prime. Again a contradiction in both cases, thus |ti| = 0 for all
indices i.

�

Lemma 10 shows that transformation tangles belonging to two ambient
isotopic graph diagrams always are trivial if both diagrams are reduced,
alternating, and prime. Thus replacing vertices of such diagrams with tangles
gives an ambient isotopy invariant of graph diagrams up to a choice of vertex-
orientations. Especially:

Corollary 11 Let D and D′ be ambient isotopic graph diagrams with k ≥ 1
vertices that are reduced, alternating, and prime. Let D1, D

′

1 denote diagrams
that arise from substituting the tangle 1 for corresponding vertices of D and
D′, respectively, and let vertex-orientations be chosen such that D1 and D′

1

both are alternating. Then D1 and D′

1 are equivalent with respect to ambient
isotopy.

�

Remark Observe that it is not clear, at this stage, that the diagramsD1 and
D′

1 of Corollary 11 are rigid vertex isotopic since the sequence of Reidemeister
moves of type V applied to a vertex leads to a transformation tangle which
is equivalent to a trivial tangle but not necessarily equal to it.

Lemma 12 The graph diagrams that are depicted in Fig. 11 are rigid vertex
isotopic.

16



G

←→
G

Figure 11: Rigid vertex isotopic diagrams

Proof: Perform the transformations depicted in Fig. 12, where ”R.” is an
abbreviation for ”Reidemeister”, and observe that move 4 consists of pushing
the diagram’s upper arc upwards beyond ”∞”.

�

G

−→1

y

−→2

A

−→3

z

✻

r∞

−→4 Z

−→5

G

	 −→
G

Figure 12: 1 = R. II; 2 = flype; 3 = R. VI; 4 = planar isotopy; 5 = R. II

Now let D and D′ be ambient isotopic diagrams which fulfil the assump-
tions of Theorem 4. Of course, if the corresponding graph has no vertices
then the statement follows from Theorem 3.

17



For the induction step, an arbitrary graph vertex ofD and the correspond-
ing vertex of D′ are replaced with a crossing each such that the diagrams
arising, which shall be denoted by D1 and D′

1 respectively, are alternating.
Then it follows from Corollary 11 and the induction hypothesis that D1 and
D′

1 are rigid vertex isotopic and thus can be connected by a finite sequence
of flypes, by Theorem 3.

Considering the defining Fig. 7, there are three different types of flype
that can be applied to D1: either the substituted crossing lies outside the
depicted part of the diagram, or it lies inside the tangle t, or it is identi-
cal to the crossing next to t. Call the latter one essential flype. Because
of the obvious one-to-one correspondence between the crossings before and
after applying a flype it is possible to keep track of the substituted crossing
during the whole sequence of flypes connecting D1 and D′

1. Obviously, if the
sequence contains no essential flypes then it gives rise to a sequence of flypes
that can be applied to the diagram D and has D′ as final diagram, and the
induction step is done.

Now assume that the flyping sequence contains an essential flype. Since
D is prime, cutting open the substituted crossing in either way must yield a
prime graph diagram, and therefore an essential flype can, essentially, only be
applied to D1 as depicted in the first two pictures of Fig. 13, i.e., the whole

E

−→1

D

	

−→2

E

Figure 13: 1 = flype; 2 = rotation around dashed axis

diagram is involved in the flyping move. Applying Lemma 12 twice shows
that there arise rigid vertex isotopic diagrams from re-inserting vertices for
crossings in first and last diagram of Fig. 13. Therefore an essential flype
applied to D1 is related to a rigid vertex isotopy of the diagram D, and an
induction on the number of essential flypes in the flyping sequence completes
the proof of Theorem 4.
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