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Abstract

The cocircuit graph of an oriented matroid is the 1-skeleton of the cellular decomposition induced by
the Topological Representation Theorem due to Folkman and Lawrence (1978) [J. Folkman, J. Lawrence,
Oriented matroids, J. Combin. Theory Ser. B 25 (1978) 199–236]. In this paper we exhibit a characterization
of such graphs (for the uniform case) via their natural embedding into Qk

n—the 1-skeleton of the n-cube’s
k-skeleton’s dual complex. The main theorem reads, basically, as follows: A graph G is the cocircuit graph
of a d-dimensional uniform oriented matroid on n elements if and only if its order is 2

( n
d+2

)
, and it can be

embedded antipodally and “metrically” into Qn−d−2
n .
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1. Introduction

The cocircuit graph of an oriented matroid (see [1,3]) is the 1-skeleton of the cellular de-
composition of the sphere induced by the pseudospheres that realize the oriented matroid via the
Topological Representation Theorem of Folkman and Lawrence (1978) [4]. Since the cocircuit
graph’s vertices are labelled with signed vectors, they can be identified with some faces of the
n-cube, where n is the number of elements of the oriented matroid. If the oriented matroid is
uniform, all such faces have the same dimension, say k. Then the family of those faces induces
a subcomplex of the k-skeleton of the n-cube (known as the Radon complex, see [6,7]), and the
1-skeleton of its dual complex is the cocircuit graph.
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The 1-skeleton of the n-cube’s k-skeleton’s dual complex will be denoted by Qk
n. So, if G

denotes the cocircuit graph of a uniform oriented matroid, there exists a natural embedding
G ↪→ Qk

n, for some n and k, and such an embedding is clearly antipodal (see also [5] for more
on antipodal graphs and embeddings into the n-cube). The embedding is said to be crabbed if
for all X,Y ∈ V (G) such that X �= ±Y , there exists a crab path P = (X = Z0,Z1, . . . ,Zm = Y)

in G; i.e., a path such that for all i = 1, . . . , n and for each � = 0, . . . ,m − 1, if (Z�)i = 0 then
(Z�+1)i ∈ {0,Xi, Yi}. In this paper we prove the following theorem:

Theorem 1. A graph G is the circuit graph of a d-dimensional uniform oriented matroid of order
n > d +2 if and only if the order of G is 2

(
n

d+2

)
, and there exists an antipodal crabbed embedding

G ↪→ Qn−d−2
n such that for every pair X,Y ∈ V (G), if X and Y have the same support then

X = ±Y .

This paper is organized as follows: In Section 2 some preliminary definitions are given; in
particular, the k-dual of the n-cube is formally introduced. Section 3 is devoted to Theorem 1.
Finally, in Section 4 the proof of Lemma 5, which describes the graph distance of Qk

n, is pre-
sented. This lemma allows us to prove an equivalent result to Theorem 1 (Corollary 6) whose
statement is slightly closer to a formulation by graph properties than that of Theorem 1.

2. Preliminaries

2.1. Oriented matroids

Let E be any set with n elements and denote the set of (signed) vectors with n entries in
{−,0,+} as {−,0,+}E . Given a signed vector X = (Xe)e∈E , the set X± = {e ∈ E: Xe �= 0} is
called the support of X. The zero set of X is the complement of its support, X0 = E \ X± =
{e ∈ E: Xe = 0}. Its positive and negative sets are X+ = {e ∈ E: Xe = +} and X− = {e ∈ E:
Xe = −}, respectively. The opposite −X is defined by (−X)e = −(Xe). Additionally, in the
family of signed vectors {−,0,+}E a partial order � can be defined as

X � Y ⇔ X+ ⊆ Y+ and X− ⊆ Y−.

Actually, this poset is the face lattice of the n-crosspolytope and dual of the n-cube.
Given two signed vectors X and Y , the separator of X and Y is the set

S(X,Y ) = {e ∈ E: Xe = −Ye �= 0}.
Two signed vectors X, Y with the same support size (|X±| = |Y±| < n) will be said to be

adjacent if there exist i, j ∈ E such that Xk = Yk for all k /∈ {i, j}, Xi = 0 �= Yi and Yj = 0 �= Xj .
This notion of adjacency defines a graph Gn whose vertex set is the family of all signed

vectors. It naturally leads to the notion of moving a zero from one place to another (nonzero
place) which is a step of a walk in the graph. Therefore, the distance in Gn from one vector to
another is the minimum number of moves of zeros needed to reach the destination vector. This
motivates the following definition: the traversen of two signed vectors X, Y is

T (X,Y ) = {e ∈ E: Xe = 0 �= Ye or Ye = 0 �= Xe}.

Remark 2. X and Y are adjacent in Gn if and only if S(X,Y ) = ∅ and |T (X,Y )| = 2.
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An oriented matroid M = (E,C) of order n = |E| is a set of signed vectors,

C ⊆ {−,0,+}E,

with the following properties (cf. [2, p. 103]):

(C1) 0 /∈ C,
(C2) X ∈ C ⇒ −X ∈ C,
(C3) X,Y ∈ C and X± ⊆ Y± ⇒ X = ±Y ,
(C4) X,Y ∈ C, X �= ±Y and Xe = −Ye �= 0 ⇒ there exists Z ∈ C such that Z+ ⊆ X+ ∪ Y+,

Z− ⊆ X− ∪ Y− and Ze = 0.

The elements of C are known as the circuits of the oriented matroid. We say that the oriented
matroid is d-dimensional if the maximum size of a subset X ⊆ E not containing the support of
a circuit (the size of a maximum independent set) is d + 1. The oriented matroid is said to be
uniform if all its circuits have support size d + 2.

Given an oriented matroid M = (E,C), its set of vectors, V = V(M), is the minimal superset
of C closed under composition (X,Y ∈ V ⇒ X ◦ Y ∈ V), where composition is defined as

(X ◦ Y)e =
{

Xe, if Xe �= 0,

Ye, otherwise.

Finally, in the proof of Theorem 1, we will also use the following (cf. [2, Lemma 4.1.8]). If V
denotes the set of vectors of an oriented matroid M on E and A ⊂ E, then the set of vectors of
the deletion M \ A equals

V \ A = {XE\A: X ∈ V}
and the set of vectors of the contraction M/A equals

V/A = {
XE\A: X ∈ V and A ⊂ X0},

where XE\A ∈ {−,0,+}E\A denotes the restriction of X to the ground set E \ A.

2.2. The k-dual of the n-cube and the circuit graph of a uniform oriented matroid

Associated with every oriented matroid M = (E,C) is a graph G = G(M) whose vertices are
the circuits of the matroid. Two of those vertices X,Y ∈ C are adjacent if X ◦ Y = Y ◦ X, and
Z ∈ {X,Y } for every circuit Z with Z � X ◦ Y . This graph is what we call the circuit graph of
the oriented matroid—in the literature [1,3] this graph is studied via the dual oriented matroid so
it is better known as the cocircuit graph. It is well known that the cocircuit graph of an oriented
matroid is the 1-skeleton of the cell decomposition of the sphere induced by the pseudospheres
that realize the oriented matroid via the Topological Representation Theorem of Folkman and
Lawrence [4]. Therefore, if M = (E,C) is a uniform oriented matroid, then two (co)circuits
X,Y are adjacent in G = G(M) if and only if |S(X,Y )| = 0 and |T (X,Y )| = 2. That is to say,
in the topological representation, a vertex is the intersection of a fixed number of pseudospheres,
say d , and each line is the intersection of d − 1 pseudospheres. So, while moving from vertex X

to vertex Y , we traverse an edge (representing the vector X ◦ Y ) “losing” one zero, and when we
reach the destination vertex Y , we “gain” another zero—recall the notion of “moving a zero.”

Let Qk
n denote the k-dual of Qn defined as follows (k > 0): the vertices of Qk

n are the k-
subcubes of Qn, two of which are adjacent if their respective subcubes intersect in a (k − 1)-
subcube. Observe that Qk

n is a graph of order 2n−k
(
n
)

whose vertex set V (Qk
n) can be identified
k
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Fig. 1. The three k-duals of Q3.

with the set of signed vectors {X ∈ {−,0,+}n: |X0| = k} such that a pair {X,Y } represents an
edge of Qk

n if and only if |S(X,Y )| = 0 and |T (X,Y )| = 2.
A graph embedding G ↪→ H is an injective function f :V (G) → V (H) of its vertices that

sends edges to edges. In such a case we will identify the vertices of the domain with those of its
image, and we will refer to the vertices of the domain with the name of their respective images.
In particular, if a graph is embedded in Qk

n, each vertex of the graph will be denoted by the signed
vector of its image. As usual, an embedding is said to be isometric if the graph distance of the
domain is preserved by its image. An embedding G ↪→ Qk

n is said to be antipodal if it is closed
by the antipodal automorphism of Qk

n; that is, if X ∈ V (G) then −X ∈ V (G).
From the definitions, it follows that Gn = ⋃n

k=1 Qk
n, i.e., each Qk

n is a connected component
of Gn (Fig. 1). Clearly there is a natural embedding of the circuit graph of a uniform oriented
matroid into Qk

n for some n and k. Therefore, Gn is the universal graph for the circuit graphs
that arise from uniform oriented matroids of order n.

3. Main theorem

In order to isolate the problem, let us summarise some basic observations in the following

Lemma 3.

(I) If G is the circuit graph of a d-dimensional uniform oriented matroid of order n > d + 2
then there exists an antipodal embedding G ↪→Qn−d−2

n such that

X,Y ∈ V (G) and X± = Y± ⇒ X = ±Y. (∗)

(II) If G ↪→ Qk
n is an antipodal embedding that satisfies (∗), then V (G) fulfils the axioms (C1),

(C2) and (C3) of an oriented matroid.

Proof. (I) The existence of the embedding is clear. The embedding must by antipodal because
of axiom (C2), and axiom (C3) implies (∗).

(II) The embedding and the antipodality of the embedding implies that the vertices of G fulfil
(C1) and (C2). Since all vertices have the same support size, it follows from condition (∗) that
axiom (C3) holds. �

Considering Lemma 3, we can see that, in order to find a characterization of the circuit graphs
of uniform oriented matroids in terms of an embedding in Qn−d−2

n , we need to focus our attention
on translating the weak elimination axiom (C4) into some additional properties of the embedding
different from antipodality and condition (∗). As we will see, Theorem 1 implies that a sufficient
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Fig. 2. A non-isometric embedding.

condition for a graph to be a circuit graph of a uniform oriented matroid is that the embedding is
isometric (cf. [5]). However, it is not a necessary condition, as Fig. 2 illustrates. In it, the vertices
X and Y are non-antipodal (in fact we are depicting only the projective half of the oriented
matroid); dQn−d−2

n
(X,Y ) = |S(X,Y )| + 1

2 |T (X,Y )| = 2 but dG(X,Y ) = 3.
The problem with isometric embeddings is that they require for every pair X �= ±Y ∈ V (G)

that there is an XY -path P ⊂ G, such that for every Z ∈ V (P ) it follows that dQk
n
(Z,Y ) <

dQk
n
(X,Y ), and therefore (see Lemma 5 below)∣∣S(Z,Y )

∣∣ <
∣∣S(X,Y )

∣∣ or
∣∣T (Z,Y )

∣∣ <
∣∣T (X,Y )

∣∣.
Furthermore, if P = (X = Z0,Z1, . . . ,Zm = Y) is a geodesic path, then for every � < m,

dQn−d−2
n

(
X,Z�

)
< dQn−d−2

n

(
X,Z�+1) and dQn−d−2

n

(
Y,Z�+1) < dQn−d−2

n

(
Y,Z�

)
.

In other words, from the point of view of Qn−d−2
n , at every step along P , its elements move away

from X and get closer to Y . But oriented matroids are more flexible than this.
Let us introduce a weaker (hence more general) concept of “metric” embeddings. An em-

bedding G ↪→ Qk
n is said to be a crabbed embedding if for every i = 1, . . . , n and every pair of

vertices X �= ±Y ∈ V (G) there exists an XY -path P = (X = Z0,Z1, . . . ,Zm = Y) in G such
that for every pair of successive vertices Z�,Z�+1 of P , it happens that (Z�+1)i ∈ {Xi,Yi} if
(Z�)i = (Z�+1)j = 0 �= (Z�)j (i.e., if we are moving a zero from i to j ). In a certain way, every
step takes “the right direction” in Qk

n. Then, for every Z ∈ V (P ) we have that

S(Z,Y ) ⊆ S(X,Y ) and
∣∣T (Z,Y )

∣∣ �
∣∣T (X,Y )

∣∣,
and, as a consequence, dQk

n
(Z,Y ) � dQk

n
(X,Y ). The XY -path P will be called a crab path.

Clearly, an isometric embedding is crabbed.

Lemma 4. Let G ↪→ Qk
n be an embedding. If P ⊂ G is a crab path from X to Y then for every

e ∈ S(X,Y ) there exists a Z ∈ V (P ) such that Ze = 0, Z− ⊆ X− ∪ Y− and Z+ ⊆ X+ ∪ Y+.

Proof. Changing an element of the separator S(X,Y ) from one sign to the other, while walking
in an XY -path into Qk

n, requires to move the sign to zero and, after that, to the other sign.
Thus in every XY -path and for every element in the separator, there exists a vertex Z with a
zero in that position. To see that such a vertex satisfies the extra sign conditions, let P = (X =
Z0,Z1, . . . ,Zm−1,Zm = Y) be a crab XY -path. Now, let us suppose that there exists s < m
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such that (Zs)+ �⊆ X+ ∪ Y+. Let i ∈ (Zs)+ \ (X+ ∪ Y+) and � = min{r: (Zr)i = (Zs)i = +}.
Since Xi �= (Z�)i , we have � > 0. By Remark 2, it follows that (Z�−1)i = 0. But then, the step
(Z�−1,Z�) is not allowed in a crab XY -path, and this is a contradiction. �
Proof of Theorem 1. The sufficiency of Theorem 1 follows from the order of G and Lemmas 3
and 4. That is to say, given a graph G with the properties stated in Theorem 1, it follows that G is
the circuit graph of a d-dimensional uniform oriented matroid of order n > d + 2.

For the necessity of Theorem 1, let G ↪→ Qn−d−2
n be the natural embedding of the circuit

graph G of an uniform oriented matroid M = (E,C). By Lemma 3, it remains to show that this
embedding is crabbed. To do this, we will consider three cases. For X �= ±Y ∈ V (G):

Case 1: S(X,Y ) = ∅ = X0 ∩ Y 0. In this case the composition τ = X ◦ Y is a tope of the
dual oriented matroid. In the topological representation this tope is the ball that results from
intersecting a number of closed semispaces (cf. [2, Proposition 4.3.6]). We may suppose (via
reorientation)—and with a little abuse of notation—that

τ =
⋂

H+
i = + + · · ·+,

where H+
i = {V ∈ V(M): Vi ∈ {0,+}}. Since the boundary of such a ball ∂τ is connected and

contains both X and Y , it contains a geodesic XY -path P ⊂ ∂τ . As we walk along this path from
X to Y , the signs of the elements of the path are those of the tope. As a consequence, it follows
that P is a crab path.

For the remaining two cases, we will proceed by induction. Clearly if |E| = 3 then the em-
bedding is crabbed. Now, let us suppose that for every oriented matroid of order less than n such
an embedding is crabbed, and let |E| = n.

Case 2: X0 ∩ Y 0 �= ∅. Let j ∈ X0 ∩ Y 0. Consider the matroid M′ = M/j and denote by
G′ its circuit graph. Also let X′, Y ′ denote the contraction of the circuits X and Y . Clearly X′
and Y ′ are two non-antipodal vertices. By the induction hypothesis, there exists a crab path
P ′ = (X′ = Z0,Z1, . . . ,Zm = Y ′) in Qn−d−3

n . Now, if we restore the j th coordinate to each
vector Z�—i.e., if we consider the vectors Ẑ� ∈ C for which (Ẑ�)k = (Z�)k (for all k �= j )—
each vector receives a zero in that coordinate. Therefore, if Z� and Z�+1 are adjacent in G′ then
Ẑ� and Ẑ�+1 are adjacent in G. So, the path P = (X = Ẑ0, Ẑ1, . . . , Ẑm = Y) is an XY -path in
Qn−d−2

n and since P ′ is a crab path, it is not difficult to see that P is also a crab path.

Case 3: X0 ∩ Y 0 = ∅ and S(X,Y ) �= ∅. Let k ∈ S(X,Y ). Consider the matroid M′ = M \ k

and denote by G′ its circuit graph. Also let X′, Y ′ denote the restriction of the circuits X and Y .
Once again, X′ and Y ′ are two non-antipodal vertices. By the induction hypothesis, there exists
a crab path P ′ = (X′ = Z0,Z1, . . . ,Zm = Y ′). Restore the kth coordinate to each vector Z�, and
consider the succession (X = Ẑ0, Ẑ1, . . . , Ẑm = Y) in G. If Ẑ� and Ẑ�+1 are not adjacent in G,
since Z� and Z�+1 are adjacent in G′ (i.e., S(Z�,Z�+1) = ∅ and |T (Z�,Z�+1)| = 2), we must
have that

S
(
Ẑ�, Ẑ�+1) = {k} and

∣∣T (
Ẑ�, Ẑ�+1)∣∣ = 2.

Let T (Ẑ�, Ẑ�+1) = {r, s}. Now, due to the weak elimination axiom (C4), there exists a circuit
W ∈ C such that k ∈ W 0, W+ ⊆ (Ẑ�)+ ∪ (Ẑ�+1)+ and W− ⊆ (Ẑ�)− ∪ (Ẑ�+1)−. Observe that for
every i /∈ {r, s, k}, Wi = (Ẑ�)i = (Ẑ�+1)i and so, without loss of generality, suppose 0 = (Ẑ�)r �=
Wr = (Ẑ�+1)r and 0 = (Ẑ�+1)s �= Ws = (Ẑ�)s .
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From here it is not difficult to see the following three facts:

(i) W is adjacent to both Ẑ� and Ẑ�+1, and therefore (Ẑ�,W, Ẑ�+1) is a path in G.
(ii) If (Ẑ�)i = Wj = 0 �= (Ẑ�)j , then j = k, i �= s and as a result Wi = (Z�+1)i ∈ {Xi,Yi}.

(iii) If Wi = (Z�+1)j = 0 �= Wj , then j = s and i �= r . Since k ∈ S(X,Y ), if i = k then
(Z�+1)i ∈ {Xi,Yi}; otherwise Wi = (Z�)i and Wj = (Z�)j . Accordingly, we have that
(Z�)i = (Z�+1)j = 0 �= (Z�)j which, on its turn, implies that (Z�+1)i ∈ {Xi,Yi} since P ′
is a crab path.

In this way we can construct an XY -path in G from the succession (X = Ẑ0, Ẑ1, . . . , Ẑm = Y)

which is a crab path since P ′ is a crab path. �
Let us present the following

Lemma 5. The graph distance in Qk
n (k > 0) is, for X �= Y

dQk
n
(X,Y ) =

{ |S(X,Y )| + 1, if X± = Y±,

|S(X,Y )| + 1
2 |T (X,Y )|, otherwise.

The proof of this lemma is postponed to Section 4. From Lemma 5 it is not difficult to see:

Corollary 6. A graph G is the circuit graph of a d-dimensional uniform oriented matroid of order
n > d + 2 if and only if its order is 2

(
n

d+2

)
and there exists an antipodal crabbed embedding

G ↪→Qn−d−2
n such that for every pair X �= ±Y ∈ V (G),

dQn−d−2
n

(X,Y ) = ∣∣S(X,Y )
∣∣ + 1

2

∣∣T (X,Y )
∣∣.

Corollary 6 leads to a new axiomatization of uniform oriented matroids. However, the hypoth-
esis of uniformity cannot be dropped without adding a new ingredient, because otherwise, the
circuit graph of a non-uniform oriented matroid may not be embeddable in Qk

n. We believe that
there should be a notion of distance related to the first barycentric subdivision of the n-cube that
leads to a similar theorem for the general (non-uniform) case.

4. The distance lemma

Proof of Lemma 5. Let X,Y ∈ V (Qk
n). First of all, we exhibit an XY -path with the desired

length—this will show that the distance in Qk
n is at most that in the statement of the lemma.

There are four cases:

Case 1: S(X,Y ) = ∅ and T (X,Y ) = ∅. This condition is equivalent to X = Y .

Case 2: S(X,Y ) = ∅ and T (X,Y ) �= ∅. Let T0(X,Y ) = {i ∈ E: Xi = 0 �= Yi} (analogously
T0(Y,X) = {i ∈ E: Yi = 0 �= Xi}). Clearly T (X,Y ) = T0(X,Y ) ∪ T0(Y,X) and, since they
have the same support size, |T0(X,Y )| = |T0(Y,X)|. Let us assign an arbitrary (but fixed)
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linear order to both previously defined sets: T0(X,Y ) = (τ1, . . . , τ|T0(X,Y )|) and T0(Y,X) =
(π1, . . . , π|T0(Y,X)|). Now, let {Z1,Z2, . . . ,Z

1
2 |T (X,Y )|} be defined as follows:

(
Zm

)
i
=

{
Yi, if i ∈ {τ1, . . . , τm,π1, . . . , πm},
Xi, otherwise.

Observe that

S
(
X,Z1) = S

(
Z1,Z2) = · · · = S

(
Z(1/2)|T (X,Y )|−1, Y

) = ∅,∣∣T (
X,Z1)∣∣ = ∣∣T (

Z1,Z2)∣∣ = · · · = ∣∣T (
Z(1/2)|T (X,Y )|−1, Y

)∣∣ = 2,

and Z(1/2)|T (X,Y )| = Y . Therefore, by Remark 2, (X,Z1,Z2, . . . ,Z(1/2)|T (X,Y )| = Y) is an XY -
path and its length is 1

2 |T (X,Y )|.

Case 3: S(X,Y ) �= ∅ and T (X,Y ) �= ∅. Let τ ∈ {i ∈ E: Xi = 0 �= Yi}. Assign an arbitrary (but
fixed) linear order to the separator S(X,Y ) = (σ1, . . . , σ|S(X,Y )|). Let {Z1,Z2, . . . ,Z|S(X,Y )|} be
defined as follows:

(
Zm

)
i
=

{
Yi, if i ∈ {τ, σ1, . . . , σm−1},
0, if i = σm,

Xi, otherwise.

Observe that,

S
(
X,Z1) = S

(
Z1,Z2) = · · · = S

(
Z|S(X,Y )|−1,Z|S(X,Y )|) = ∅ and∣∣T (

X,Z1)∣∣ = ∣∣T (
Z1,Z2)∣∣ = · · · = ∣∣T (

Z|S(X,Y )|−1,Z|S(X,Y )|)∣∣ = 2.

Furthermore, S(Z|S(X,Y )|, Y ) = ∅ and∣∣T (
Z|S(X,Y )|, Y

)∣∣ = ∣∣T (X,Y ) \ {τ } ∪ {σS(X,Y )}
∣∣ = ∣∣T (X,Y )

∣∣.
Now, let us construct a Z|S(X,Y )|Y -path as in the previous case. Both paths combined become an
XY -path of the desired length.

Case 4: S(X,Y ) �= ∅ and T (X,Y ) = ∅. Let σ ∈ S(X,Y ) and i0 ∈ X0 = Y 0 be arbitrary (but
fixed). Let Z1 be defined as follows

(
Z1)

i
=

{0, if i = σ,

+, if i = i0,

Xi, otherwise.

Observe that S(Z1, Y ) = S(X,Y ) \ {σ } and T (Z1, Y ) = {σ, i0}. Therefore the previous cases
apply.

To finish the proof, we have to show that the distance in Qk
n is at least as stated in the lemma.

We do it by induction.
Let d :V (Qk

n) × V (Qk
n) → N be the function

d(X,Y ) =
{ |S(X,Y )| + 1, if X± = Y± and X �= Y,

|S(X,Y )| + 1
2 |T (X,Y )|, otherwise.

(∗∗)

By Remark 2, it follows that d(X,Y ) = 1 if and only if dQk
n
(X,Y ) = 1. Let us suppose that

for every X,Y and for every m < m0 (m0 � 2), we have that d(X,Y ) = m if and only if
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dQk
n
(X,Y ) = m. Let (X,Z1, . . . ,Zm0 = Y) be a geodesic XY -path (of length dQk

n
(X,Y )). Since

we want to prove that d(X,Y ) � m0, suppose that d(X,Y ) > m0.
Since the path is geodesic, it follows that dQk

n
(X,Y ) = dQk

n
(X,Z1) + dQk

n
(Z1, Y ), which by

hypothesis implies that m0 = 1 + d(Z1, Y ). Hence d(X,Y ) > 1 + d(Z1, Y ).
Let

δXY =
{

1, if X± = Y± and X �= Y,

0, otherwise.

Then we can denote d(X,Y ) = |S(X,Y )|+ 1
2 |T (X,Y )|+ δXY including in one equation both

cases of (∗∗). Recall that X± = Y± if and only if T (X,Y ) = ∅.
With this notation we have that∣∣S(X,Y )

∣∣ + 1

2

∣∣T (X,Y )
∣∣ + δXY > 1 + ∣∣S(

Z1, Y
)∣∣ + 1

2

∣∣T (
Z1, Y

)∣∣ + δZ1Y .

Since X is adjacent to Z1, there exist i, j ∈ E such that for every � /∈ {i, j}; X� = (Z1)�,
Xi = 0 �= (Z1)i and Xj �= 0 = (Z1)j . Then S(X,Y ) and S(Z1, Y ), and respectively T (X,Y )

and T (Z1, Y ), differ only in the ith and j th coordinates. This motivates the following notation:
Given i, j ∈ E, let Sij (X,Y ) = {i, j} ∩ S(X,Y ) and Tij (X,Y ) = {i, j} ∩ T (X,Y ). Thus,

∣∣Sij (X,Y )
∣∣ + 1

2

∣∣Tij (X,Y )
∣∣ + δXY > 1 + ∣∣Sij

(
Z1, Y

)∣∣ + 1

2

∣∣Tij

(
Z1, Y

)∣∣ + δZ1Y .

We consider two cases:

Case 1: Tij (X,Y ) = ∅. Since Xi = 0 �= (Z1)i and Xj �= 0 = (Z1)j , we have Yi = 0 and Yj �= 0.
Therefore, {i, j} ⊂ Tij (Z

1, Y ) and i /∈ Sij (X,Y ). But

2 �
∣∣Sij (X,Y )

∣∣ + 1

2

∣∣Tij (X,Y )
∣∣ + δXY > 1 + ∣∣Sij

(
Z1, Y

)∣∣ + 1

2

∣∣Tij

(
Z1, Y

)∣∣ + δZ1Y � 2,

an obvious contradiction.

Case 2: Tij (X,Y ) �= ∅. Clearly, in this case, δXY = 0. Then

∣∣Sij (X,Y )
∣∣ + 1

2

∣∣Tij (X,Y )
∣∣ > 1 + ∣∣Sij

(
Z1, Y

)∣∣ + 1

2

∣∣Tij

(
Z1, Y

)∣∣.
Since Xi = 0 we have i /∈ Sij (X,Y ), which implies j ∈ Sij (X,Y ). Therefore j ∈ Tij (Z

1, Y ),
which implies that

1 + 1

2
�

∣∣Sij (X,Y )
∣∣ + 1

2

∣∣Tij (X,Y )
∣∣ > 1 + ∣∣Sij

(
Z1, Y

)∣∣ + 1

2

∣∣Tij

(
Z1, Y

)∣∣ � 1 + 1

2
,

a new contradiction.

This concludes the proof. �
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