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Abstract

This paper introduces a new strategy for playing the marking game on graphs.
Using this strategy, we prove that if G is a planar graph, then the game colouring
number of G, and hence the game chromatic number of G, is at most 17.

1 Introduction

Suppose G = (V,E) is a graph. The game colouring number of G is defined through
a two-person game: the marking game. Alice and Bob, with Alice playing first, take
turns in playing the game. Each play by either player consists of marking an unmarked
vertex of G. The game ends when all vertices are marked. For a vertex x of G, let b(x)
be the number of neighbours of x that are marked before x is marked. The score of
the game is

s = 1 + max
x∈V (G)

b(x).

Alice’s goal is to minimize the score, while Bob’s goal is to maximize it. The game
colouring number colg(G) of G is the least s such that Alice has a strategy that results
in a score at most s.
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The game colouring number of a graph was first formally introduced in [22] as a
tool in the study of the game chromatic number. The game chromatic number χg(G)
of a graph G is also defined through a two person game. Let G be a finite graph and
let X be a set of colours. Alice and Bob, with Alice moving first, take turns in playing
the game. Each play by either player consists of colouring an uncoloured vertex of G
with a colour from the colour set X so that no two adjacent vertices receive the same
colour. Alice wins the game if all the vertices of G are coloured. Otherwise, Bob wins
the game. The game chromatic number χg(G) of G is the least number of colours in a
colour set X for which Alice has a winning strategy.

It is easy to see that for any graph G, χg(G) ≤ colg(G). For many natural classes
of graphs, the best known upper bounds for their game chromatic number are obtained
by finding upper bounds for their game colouring number. Game colouring number of
graphs and its generalization to oriented graphs are also of independent interests, and
have been studied extensively in the literature [1, 3, 4, 7-9, 11-13, 15-23].

Suppose H is a family of graphs. We define the game chromatic number and the
game colouring number of H as

χg(H) = max{χg(G) : G ∈ H},
and

colg(H) = max{colg(G) : G ∈ H}.
We denote by F the family of forests, by Ik the family of interval graphs with clique
number k, by P the family of planar graphs, by Q the family of outer planar graphs, by
PT k the family of partial k-trees. The exact value of the game colouring numbers of
F , Ik, Q and PT k are known. It is proved by Faigle, Kern, Kierstead and Trotter [10]
that colg(F) = 4, proved by Faigle, Kern, Kierstead and Trotter [10] and Kierstead
and Yang [17] that colg(Ik) = 3k − 2, proved by Guan and Zhu [11] and Kierstead
and Yang [17] that colg(Q) = 7, and proved by Zhu [23] and Wu and Zhu [20] that
colg(PT k) = 3k + 2 for k ≥ 2.

Although there are relatively rich results concerning the game chromatic number
and game colouring number of graphs, there are very few strategies for either Alice or
Bob to play the colouring game or marking game. It is proved in [13] that there is
a single strategy, the activation strategy, such that if Alice uses this strategy to play
the marking game then she achieves the sharp upper bounds on the game colouring
numbers of F , Ik,Q,PKk as well as the best known upper bounds for many other
classes of graphs, including P .

In this paper, we introduce a new strategy, the refined activation strategy, for play-
ing the marking game (it can also be used as a strategy for playing the colouring game).
It is quite similar to the activation strategy, however, there are two new ingredients in
the recipe. The key idea in the activation strategy is to use a special linear ordering of
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V (G) as Alice’s preference in activating and marking vertices. In the refined activation
strategy, Alice still uses orderings of the vertices as her preference in activating and
marking vertices. However, there are two features that are different from the activation
strategy. (1): The ordering is a ‘dynamic rough ordering’. The vertex set is partitioned
into small blocks. Within a block, there maybe non-comparable vertices, the order re-
lation is not transitive and moreover, the order relation between vertices may change
from time to time. (2): Each vertex has a preference of its own. If Alice moves from a
vertex v to her next target, the preference of v will affect Alice’s choice as well.

We shall prove an upper bound for the game colouring number of a graph G in
terms of a dynamic rough ordering and a preference function, by applying the refined
activation strategy. Then we estimate the bound for planar graphs, which yields a
better upper bound for colg(P). The game chromatic number and game colouring
number of planar graphs are benchmark problems in the study of the colouring game
and marking game. It was conjectured by Bodlaender [2] that χg(P) < ∞. This
conjecture is confirmed by Kierstead and Trotter [14], who proved that χg(P) ≤ 33.
This bound is reduced to 30 by Dinski and Zhu [6]. Then by introducing the game
colouring number, Zhu [22] proved that χg(P) ≤ colg(P) ≤ 19, and this bound is
reduced to 18 by Kierstead [13]. Recently, Wu and Zhu [20] proved that colg(P) ≥ 11.
By using the refined activation strategy, this paper proves that colg(P) ≤ 17.

Theorem 1 If G = (V,E) is a planar graph, then χg(G) ≤ colg(G) ≤ 17.

2 A review of the activation strategy and a sketch

of the refinement

Suppose a marking game is played on a graph G. For Alice to apply the activation
strategy, we need a linear ordering v1, v2, · · · , vn of V (G). We write vi < vj if i < j. If
x ∼ y and x < y, then x is an out-neighbour of y, and y is an in-neighbour of x. In
her first move, Alice activates vertex v1 and marks it. Suppose Bob has just marked a
vertex v. Then Alice starts with activating v (provided it was not activated so far) and
jumps to its least-indexed unmarked out-neighbour x. If x is already active, then Alice
stops and marks x. Otherwise she repeats the activation step for x, that is, activates x
and jumps to its least-indexed unmarked out-neighbour y. And so on, until she stops
at some vertex u, either because u is already active, or because u has no unmarked
out-neighbour. In both cases she activates and marks u. If it happens that the vertex
v marked by Bob has no unmarked out-neighbour, then she picks the least-indexed
unmarked vertex and activates and marks it.

Assume that Alice has just finished a move. We denote by A the set of active
vertices. Note that each marked vertex is active. To obtain an upper bound for the
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score of the game, it suffices to find an upper bound for the number of active neighbours
of any unmarked vertex. Let N(u) be the set of neighbours of u. Then the score of this
game is at most 2 + max |A ∩N(u)|, where the maximum is taken over all unmarked
vertices u at the end of all Alice’s moves. This is so because it may be the case that u is
marked by Alice, and in Bob’s last move before Alice marks u, he marked a neighbour
of u. So u has at most 1 + |A∩N(u)| marked neighbours, where A is the set of active
vertices after Alice’s previous move.

The method used in the literature for obtaining an upper bound on the game
colouring number of a graph is to prove an upper bound for |A∩N(u)| for any unmarked
vertex u. This bound is determined by the linear ordering of the vertices of G. For
a vertex u, let V +(u) = {x : x < u}, V −(u) = {x : u < x}, N+(u) = N(u) ∩ V +(u)
and N−(u) = N(u)∩ V −(u). Note that |A∩N(u)| = |A∩N+(u)|+ |A∩N−(u)|. The
method used in [13] to bound |A ∩N(u)| for planar graphs is to find a linear ordering
of G so that the following is true:

For each vertex u, there is a set A(u) ⊆ V +(u) and a set D(u) ⊆ N−(u) such
that N+(u) ⊆ A(u) and for every vertex x ∈ N−(u) \ D(u), N(x) ∩ V +(u) ⊆ A(u).
Moreover, 3|A(u)|+ |D(u)| ≤ 16 for each vertex u.

To see that 3|A(u)|+|D(u)| is an upper bound for |A∩N(u)|, we partition A∩N(u)
into three parts:

A ∩N(u) = (A ∩N+(u)) ∪ (A ∩ (N−(u) \D(u))) ∪ (A ∩D(u)).

By our assumption, |A∩N+(u)| ≤ |A(u)|, and each marked neighbour in (A∩N−(u))\
D(u) contributes one jump to A(u). The latter implies that |N−(u) \D(u)| ≤ 2|A(u)|
as each vertex in A(u) can receive at most 2 jumps (the first jump activates it, and
the second jump marks it). Therefore |A ∩ N(u)| ≤ 3|A(u)| + |D(u)|. Thus if G has
an ordering in which 3|A(u)| + |D(u)| ≤ 16, by the argument in the third previous
paragraph, we have χg(G) ≤ 18.

In an attempt to improve this bound, we found that for general planar graphs, the
bound 3|A(u)|+ |D(u)| ≤ 16 cannot be improved. However, by modifying the strategy
at two places, one can improve the bound |A ∩ N(u)|. We use examples to explain
these two modifications.

Suppose the vertices of G are linearly ordered, except that the order relation among
three vertices x, y, z are not determined. These three vertices will be consecutive in
the linear ordering, and the set V (G) \ {x, y, z} is divided into two parts U ∪ C such
that for any u ∈ U , u < x, y, z and for any v ∈ C, x, y, z < v.

Suppose x ∼ y and y ∼ z. For w ∈ {x, y, z}, the sets A(w) ∩ U and D(w) ∩ C
have been determined. However, the sets A(w) and D(w) still depend on the order
relation among x, y, z. Assume |A(x) ∩ U | = |A(z) ∩ U | = 4 and |A(y) ∩ U | = 3 and
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|D(x)∩C| = |D(y)∩C| = |D(z)∩C| = 1. By applying the original activation strategy,
we need to fix an ordering among x, y, z. If we choose the ordering among x, y, z as
x < y < z, then x ∈ A(y), y ∈ A(z). Hence |A(z)| = 5, and hence 3|A(z)|+|D(z)| = 16.
If we order the three vertices as x < z < y, then we have x, z ∈ A(y) and hence
|A(y)| = 5, implying that 3|A(y)|+ |D(y)| = 16.

In the refined activation strategy, instead of fixing a preference all the time, we
allow the preference to change during the game. Suppose the rule is as follows: among
those common in-neighbours of x and y that jump to {x, y}, the first and the third
jump to y, the second and the fourth jump to x. (Compare to the original activation
strategy: if x < y, then the first and second jump to x, the third and the fourth jump
to y). Similarly, among those common in-neighbours of z and y that jump to {z, y},
the first and the third jump to y, the second and the fourth jump to z.

Let us analyze the set |A ∩ N(y)|. We have |A(y) ∩ U | = 3 and |D(y)| = 1. By
applying the rules described in the previous paragraph, before y is marked, at most
one of x and z can receive two jumps from N−(y)∩A, and hence x and z together can
received at most 3 jumps from N−(y)∩A. Plus x and z themselves, they contribute at
most 5 active neighbours of y. Therefore |A ∩N(y)| ≤ 3|A(y) ∩ U |+ |D(y)|+ 5 ≤ 15.
Similarly, one can show that by using the modified strategy, |A ∩ N(z)| ≤ 15 and
|A ∩N(x)| ≤ 15.

In general, the refined activation strategy works as follows: We partition the vertex
set of G into blocks B1, B2, · · · , Bm. The preference in the jumping process is that
vertices in Bi are preferred to vertices in Bj if i < j. Within a block Bi, the preference
may change during the game, as explained in the above example (of course, there are
more configurations to be considered).

Now we explain the second modification of the strategy. Suppose the blocks
B1, B2, · · · , Bm are determined. Suppose there are two vertices x, y ∈ Bi that have
a common neighbour z in Bj for some j > i. Suppose z is activated and jumps to the
set {x, y}. The vertex z makes a contribution to each of A ∩ N−(x) and A ∩ N−(y).
In the activation strategy described above, there are two different ways to count this
contribution: Either put z into D(x) and D(y) and count this vertex directly, or count
the jump from z to A(x) and A(y). In the latter case, we need to put x into A(y) or
put y into A(x), depending on whether x or y is the preferred vertex among the two.
In our second modification, we allow, for example, that z be put into D(x), but not
into D(y), and when jumping from z to {x, y}, y is the preferred vertex among the
two. Thus when we estimate A∩N−(x), the vertex z is counted directly. Hence we do
not need to put y into A(x), although y is the preferred vertex (by z) among the two
vertices x, y.

In general, each vertex z will be associated a preference set ρ(z), which determines
for each block Bi, which vertices are preferred by z. When Alice jumps from a vertex z,
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among the vertices of the same block Bi, the preference set affects the destination of the
jump. However, between vertices of different blocks, the preference is still determined
by the ordering of the blocks.

3 Refined activation strategy

In this section, we describe the refined activation strategy in detail.

Definition 1 Suppose G = (V,E) is a graph. A dynamic rough ordering of G is a
pair (L0,P) such that L0 is a digraph on V without opposite arcs, and P is a partition
of V . Each B ∈ P is called a block. The blocks are ordered as B1, B2, · · · , Bm such
that for any i < j, if x ∈ Bi and y ∈ Bj then −→yx ∈ L0, i.e., −→yx is an arc of L0.

The digraph L0 is viewed as a rough ordering. In the remaining of this paper, we
write x <L0 y if −→yx is an arc of L0. We say two vertices x, y are comparable in L0 if and
only if either x <L0 y or y <L0 x. The digraph L0 is not really an ordering, because
inside a block Bi, there may be non-comparable vertices, the relation <L0 may not
be transitive, and there may be directed cycles. However, if we ignore what happens
inside the blocks, it becomes a linear ordering.

In the definition, there is nothing which is really dynamic. What we have here are
simply a fixed rough ordering L0 and a partition P . However, we use the adjective
‘dynamic’ to suggest that the rough ordering used in the strategy will change from
time to time, and L0 is just the initial state of the ‘real’ dynamic rough ordering.

We write x ≈ y if x and y are in the same block of P , and write x 6≈ y otherwise.

Let

V +
L0

(x) = {y : y <L0 x}, V −
L0

(x) = {y : x <L0 y},
V +

L0, 6≈(x) = {y ∈ V +
L0

(x) : x 6≈ y}, V −
L0, 6≈(x) = {y ∈ V −

L0
(x) : x 6≈ y},

V +
L0,≈(x) = {y ∈ V +

L0
(x) : x ≈ y}, V −

L0,≈(x) = {y ∈ V −
L0

(x) : x ≈ y},
VL0,≈(x) = V +

L0,≈(x) ∪ V −
L0,≈(x), V ×

L0
(x) = {y : x 6<L0 y, y 6<L0 x}.

Let V +
L0

[x] = V +
L0

(x) ∪ {x} and V −
L0

[x] = V −
L0

(x) ∪ {x}. If x ≈ y, then
V +

L0, 6≈(x) = V +
L0,6≈(y) and V −

L0,6≈(x) = V −
L0, 6≈(y). We let V +

L0,6≈(Bi) = V +
L0,6≈(x) and

V −
L0, 6≈(Bi) = V −

L0, 6≈(x) for some (and hence for all) x ∈ Bi.

Given a digraph Q, we denote by Q the graph obtained from Q by omitting the
orientation of the arcs, i.e., an arc −→xy of Q becomes an edge xy of Q.
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A preference function of (L0,P) is a mapping ρ which assigns to each vertex y ∈
V (G) a subset ρ(y) of NG(y) ∩ V +

L0,6≈(y) such that the following holds:

[P1]: For any index i, if y ∈ V −
L0,6≈(Bi), then ρ(y)∩Bi contains at most one edge of

L0.

The set ρ(y) ∩ Bi (which could be empty) is called the y-preferred subset of Bi. If
ρ(y) ∩ Bi does contain an edge uv of L0, then we call the edge uv a y-affected edge of
Bi.

For any vertex x, let ρ−1(x) = {y : x ∈ ρ(y)}. Note that ρ−1(x) ⊂ NG(x)∩V −
L0,6≈(x).

Let D(x) = (NG(x) ∩ V −
L0,6≈(x)) \ ρ−1(x).

In the description of the refined activation strategy, we need to refer to a digraph
L (a rough ordering), which is the ‘real’ dynamic rough ordering obtained from L0 by
possibly reversing the orientations of some arcs. So L is a living creature, and the
letter L always stands for the current digraph L. By reversing the arc −→uv of L, we
mean let L := (L \ {−→uv}) ∪ {−→vu}. The strategy will give reversal rules that describe
how the arcs of L will be reversed. Here we just note the following properties of L,
which follow easily from the reversal rules (which will be given later):

(1): Although L and L0 may have different arcs, we always have L = L0. So two
vertices x, y are comparable in L if and only if they are comparable in L0.

(2): Arcs of L0 between vertices of different blocks will not be reversed at any time.
All the reversals of arcs take place inside the blocks only.

The sets V +
L (x), V −

L (x), etc. will be defined similarly as V +
L0

(x), V −
L0

(x), etc., except
that in place of L0 we use the digraph L.

Suppose X is a subset of V . A minimal element of X with respect to L is an
element x ∈ X such that for any y ∈ X, y 6<L x. As L may contain directed cycles, for
an arbitrary subset X of V , X may not have a minimal element. In case a minimal
element exists, it may not be unique. The following definition of minv X combines the
rough ordering and the preference function together in finding a (more or less minimal)
element minv X of X.

Definition 2 Suppose v is a vertex of V and X is a nonempty subset of V . Then
minv X is an element of X defined as follows:

Let i be the smallest index such that Bi∩X 6= ∅. If X ∩Bi∩ρ(v) 6= ∅, then minv X
is an arbitrary (but fixed) minimal element of X ∩ Bi ∩ ρ(v) with respect to L. Note
that by our definition of the preference function, ρ(v) ∩ Bi contains at most one arc
of L, and hence the minimal element exists. If X ∩ Bi ∩ ρ(v) = ∅, then minv X is an
arbitrary (but fixed) element of X ∩Bi.
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Note that if each block Bi is a singleton, then L0 is a linear order and minv X is
simply the minimum element of X. Indeed, in this case, the refined activation strategy
(which we will describe soon) is the same as the activation strategy. Also note that
minv X depends on the current rough ordering L. So at different times of the game,
minv X may refer to different vertices.

In the play of the game, Alice will maintain a subset A of active vertices. We
say a vertex v is activated to mean that v is added to A. Once a vertex is activated,
it remains active afterwards. Let U be the set of unmarked vertices. To unify the
description we consider an equivalent version of the marking game in which Bob plays
first by marking a new vertex x0, which is an isolated vertex, and x0 <L0 y for all
y ∈ V .

Initialization: A := ∅, U := V (G) and L := L0.

Suppose Bob has just marked a vertex b and now it is Alice’s turn. If all the vertices
are marked, then the game is over. Otherwise, let u be an arbitrary unmarked vertex.

• if NG(b) ∩ V +
L (b) ∩ U 6= ∅ then x := b, else x := u end if;

• while x = b or x 6∈ A do
A := A ∪ {x};
w := minx NG[x] ∩ V +

L [x] ∩ U ;
if there is an arc −→uw of L incident to w such that uw is an x-affected edge, then
reverse the arc −→uw end if;
x := w end do;

• Mark x (i.e., U := U \ {x}) end do;

This strategy is similar to the activation strategy in [13]. Starting from the vertex b
which has just been marked by Bob (or starting from any unmarked vertex, if NG(b)∩
V +

L (b) ∩ U = ∅), Alice starts to activate vertices. After Alice activated a vertex x,
she ‘jumps’ to the least unmarked ’forward’ neighbour w of x, which she will either
activate if it is not active yet, or mark if it is already active. The difference between
this strategy and the original activation strategy is that the ‘least element’ refers to
a dynamic rough ordering L. Moreover, this dynamic ordering L is ‘modified’ by the
preference of x.

If there is a jump from x to w, we say x made a contribution to w, and say w
received a contribution from x. If X, Y are subsets of V , then we say Y received a
contribution from X if a vertex y ∈ Y received a contribution from a vertex x ∈ X.
Observe that only unmarked vertex can receive contributions. If a vertex receives
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the first contribution, it becomes active. After receiving the second contribution, it
becomes marked. So each vertex can receive at most 2 contributions. At the time a
vertex x is activated, it will make a contribution to a least unmarked vertex (according
the current order with modification through ρ) in V +

L (x), unless N+
GL

(x)∩U is empty,
in which case x will make a contribution to itself, and be marked.

Similarly as in the activation strategy, we shall find an upper bound for the number
of active neighbours of an unmarked vertex. Assume Alice has just finished a move and
x is an unmarked vertex. Let X be the set of active neighbours of x, i.e., X = A∩NG(x).
We shall determine the maximum possible value of |X|.

Assume x ∈ Bi. We partition the set X into three parts.

X1 = X ∩ (V +
L0

(x) ∪Bi),

X2 = X ∩ ρ−1(x),

X3 = X ∩ (V −
L0,6≈(x) \ ρ−1(x)) = X ∩D(x).

Then |X1| ≤ |NG(x) ∩ (V +
L0

(x) ∪ Bi)| and |X3| ≤ |D(x)|. The difficult part is to find
an upper bound for |X2|. For the purpose of finding an upper bound for |X2|, we
introduce the concept of a bound graph for (G,L0,P , ρ).

Suppose (L0,P) is a dynamic rough ordering of G and ρ is a preference function of
(L0,P). Let H be a graph with vertex set V (H) = V (G). We say H is a bound graph
for (G,L0,P , ρ) if the following hold:

[B1 ] G is a subgraph of H.

[B2 ] If x ≈ y and ρ−1(x) ∩ ρ−1(y) 6= ∅, then x ∼H y.

[B3 ] If x ∈ V −
L0,6≈(y) and there is a vertex z ∈ ρ−1(x) such that y ∼G z, then x ∼H y.

Suppose H is a bound graph for (G,L0,P , ρ). Suppose x ∈ Bi. Let

A(x) = {y ∈ V +
L0,6≈(Bi) ∪ V ×

L0
(x) : x ∼H y},

B(x) = {y ∈ V +
L0,≈(x) : x ∼H y}.

C(x) = {y ∈ V −
L0,≈(x) : x ∼H y}.

Let

τ(x) =
{

0, if B(x) = C(x) = ∅
1, otherwise

.

Recall that D(x) = (NG(x) ∩ V −
L0, 6≈(x)) \ ρ−1(x).
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Lemma 1 Suppose (L0,P) is a dynamic rough ordering of G, ρ is a preference function
of (L0,P), and H is a bound graph for (G,L0,P , ρ). Let x ∈ Bi and let X2 be the set
defined as above. Then

|X2| ≤ 2|A(x)|+ |B(x)|+ τ(x).

Proof. Since x is unmarked, it follows from the refined activation strategy that each
vertex z ∈ X2 makes a contribution to a vertex in A(x) ∪ B(x) ∪ C(x) or makes a
contribution to x. However, if z makes a contribution to x, then x is activated and it
makes a contribution to A(x) ∪B(x) ∪ C(x).

Each vertex in A(x) can receive at most 2 contributions from X2. In case B(x) ∪
C(x) = ∅, we have |X2| ≤ 2|A(x)|. Assume B(x) ∪ C(x) 6= ∅. If a vertex y in
B(x) receives one contribution from z ∈ X2, then since the edge xy is z-affected, the
arc −→xy is changed to −→yx. Hence y cannot receive the second contribution from X2

before x itself receives one contribution from X2 and becomes activated. Also for a
vertex y ∈ C(x), we have −→yx ∈ L0. Before y receives a contribution from X2, x must
receives a contribution from X2 and becomes active. Since x has received at most
one contribution (as x is unmarked yet), the total number of contributions received
by vertices in B(x) ∪ C(x) from X2 is at most |B(x)| + 1. Thus we conclude that
|X2| ≤ 2|A(x)|+ |B(x)|+ τ(x).

By the definition of bound graph H and the sets A(x), B(x), C(x), we have |X1| ≤
|A(x)|+ |B(x)|+ |C(x)|. For a bound graph H for (G,L0,P , ρ), for x ∈ V (G), let

φH(x) = 3|A(x)|+ 2|B(x)|+ |C(x)|+ |D(x)|+ τ(x).

Then we have the following theorem.

Theorem 2 Suppose (L0,P) is a dynamic rough ordering of a graph G and ρ is a
preference function of (L0,P). Suppose H is a bound graph for (G, L0,P , ρ). Let
φH(x) be defined as above. Then

colg(G) ≤ max
x∈V (G)

φH(x) + 2.

Proof. By the argument above, if Alice uses the refined activation strategy, at any
time after Alice finished a move, an unmarked vertex x has at most φH(x) marked
neighbours. In Bob’s next move, he may mark one more neighbour of x. So before x
is marked, it has at most φH(x) + 1 marked neighbours.
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4 Proof of Theorem 1

We shall prove Theorem 1, by finding, for any planar graph G, a dynamic rough order-
ing (L0,P), a preference function ρ of (L0,P), and a bound graph H for (G,L0,P , ρ),
such that for each vertex x ∈ V , φH(x) ≤ 15. For this purpose, we need a lemma
about the structure of plane triangulations.

Suppose R is a plane triangulation and V (R) is partitioned into two sets C ∪ U ,
where C (could be an empty) is an independent set of R, and each vertex of C has
degree 4 or 5. A candidate for (R,C, U) is a triple (B, ρ,Q) such that B is a non-empty
subset of U , Q is a digraph with vertex set B, and ρ is a mapping which assigns to
each vertex y ∈ C a subset ρ(y) of B. Moreover, the following hold:

[C1 ] If {v1, v2, v3} ⊂ B is a face of R, then {v1, v2, v3} contains at most one arc of Q.

[C2 ] For any y ∈ C, |ρ(y) ∩B| ≤ 2.

[C3 ] If x, x′ ∈ ρ(y) for some y ∈ C, then x ∼R x′.

[C4 ] If there is a y ∈ C such that x ∈ ρ(y) and x′ ∈ NR(y) ∩ (U \B), then x ∼R x′.

Suppose (B, ρ,Q) is a candidate for (R,C, U) and x ∈ B. Let

A(x) = (NR(x) ∩ U) \NQ(x), B(x) = N+
Q (x), C(x) = N−

Q (x).

Let D(x) = (NR(x) ∩ C) \ ρ−1(x).

Let

τ(x) =
{

0, if C(x) = B(x) = ∅
1, otherwise.

Let
φ(x) = 3|A(x)|+ 2|B(x)|+ |C(x)|+ |D(x)|+ τ(x).

We call the candidate (B, ρ, Q) a valid candidate if the following holds:

[C5] For all x ∈ B, φ(x) ≤ 15.

Theorem 3 Suppose R is a plane triangulation, C∪U is a partition of V (R), C is an
independent set of R and each vertex of C has degree 4 or 5. If U 6= ∅, then (R, C, U)
has a valid candidate.

11



We shall leave the proof of Theorem 3 to the next section. Now we use Theorem 3
to prove Theorem 1. It suffices to prove Theorem 1 for plane triangulations.

Suppose G is a plane triangulation. We shall construct a dynamic rough ordering
(L0,P), a preference function ρ of (L0,P), and a bound graph H for (G,L0,P , ρ) as
follows.

The blocks of P are constructed one by one. First we construct Bm, then Bm−1, and
so on. At the time we construct Bi, we shall construct simultaneously the restriction
of the digraph L0 to Bi, the intersection ρ(y)∩Bi for each y ∈ V −

L0,6≈(Bi), and the edges
of H \ (Bm ∪ Bm−1 ∪ · · · ∪ Bi+1) incident to vertices of Bi. Initially, Bm consists of a
single vertex of degree at most 5 in G. The edges of H incident to the vertex of Bm

are exactly the edges of G incident to it.

Suppose we have constructed Bm, Bm−1, · · · , Bi+1. Let C ′ = ∪m
j=i+1Bj, and let

U = V \ C ′. By our construction of Bm, Bm−1, · · · , Bi+1, each vertex of C ′ is adjacent
to at most 5 vertices of U . First we delete all edges of G joining two vertices of C ′. If
z ∈ C ′ is adjacent to at most three vertices of U , then delete z, and add edges between
each pair of non-adjacent neighbours of z in U . Let C = C ′ \ {z : |NG(z) ∩ U | ≤ 3}.
If z is adjacent to 4 or 5 vertices of G, then add edges between each pair of non-
adjacent ‘consecutive’ neighbours of z in U . Here consecutive refers to the particular
plane embedding of G \ E(C ′). Now the resulting graph is a plane triangulation R.
Obviously C ∪ U is a partition of V (R), and C is an independent set of R.

By Theorem 3, (R, C, U) has a valid candidate (B, ρ′, Q). Let Bi = B. Let the
restriction of L0 to Bi be Q. For each vertex y ∈ C ′, if y ∈ C ′ \C, then let ρ(y)∩Bi =
NG(y) ∩ Bi; if y ∈ C, then let ρ(y) ∩ Bi = ρ′(y). Let the edges of H \ (Bm ∪ Bm−1 ∪
· · · ∪Bi+1) incident to vertices of Bi be exactly the edges of R \C incident to vertices
of Bi. Note that by definition of valid candidate, φ(x) ≤ 15 for each x ∈ Bi, which
implies that x is adjacent to at most 5 vertices of U \Bi.

We claim that this process constructs a dynamic rough ordering (L0,P), a prefer-
ence function ρ of (L0,P), and a bound graph H for (G,L0,P , ρ), such that for each
vertex x ∈ V , φH(x) ≤ 15. By Theorem 2, we have colg(G) ≤ 17.

It follows from the definition that (L0,P) is a dynamic rough ordering of G. To
prove that ρ is a preference function of (L0,P), we need to show that for any index i,
if y ∈ V −

L0,6≈(Bi), then Bi ∩ ρ(y) contains at most one edge of L0.

Let C ′, C, U,B and R be the sets and graph defined as above at the time Bi is
constructed. Then y ∈ C ′. If y ∈ C ′ \ C then |ρ(y)| = |NG(y) ∩ B| ≤ |NR(y) ∩ U | ≤
3. If |NR(y) ∩ U | ≤ 2, then of course ρ(y) ∩ B contains at most one arc of L0. If
|NR(y) ∩ U | = 3, then NR(y) ∩ U is a facial triangle of R. By [C1], the facial triangle
contains at most one arc of Q. Hence Bi ∩ ρ(y) contains at most one arc of L0.

Assume y ∈ C. Then it follows from [C2] that |Bi∩ρ(y)| ≤ 2, and Bi∩ρ(y) contains
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at most one arc of L0. So ρ is a preference function of (L0,P).

Now we prove that H is a bound graph for (G,L0,P , ρ). It is obvious that G is a
subgraph of H, i.e., [B1] is satisfied. Assume x, y ∈ Bi and ρ−1(x) ∩ ρ−1(y) 6= ∅. Let
C ′, C, U,B and R be the sets and graph defined as above at the time Bi is constructed.
Let z ∈ ρ−1(x) ∩ ρ−1(y). Then z ∈ C ′. If z ∈ C ′ \ C, then by definition of R, we have
x ∼R y, hence x ∼H y. Assume z ∈ C. Since x, y ∈ ρ(z), By [C3], we have x ∼R y and
hence x ∼H y, i.e., [B2] is satisfied. Assume x ∈ Bi and y ∈ V +

L0,6≈(Bi) and there is a
vertex z ∈ ρ−1(x) such that y ∼G z. If z ∈ C ′ \ C, then by definition of R, we have
x ∼R y and hence x ∼H y. If z ∈ C, then by [C4], we have x ∼R y and hence x ∼H y.
Thus [B3] is satisfied, and hence H is indeed a bound graph for (G,L0,P , ρ).

It remains to show that for each x, we have φH(x) ≤ 15. This follows from the
construction, because if x ∈ Bi and Bi = B, where (B,Q, ρ) is the corresponding valid
candidate, then φH(x) = φ(x) ≤ 15.

5 Proof of Theorem 3

The definition of a valid candidate is a little bit technical, and the proof of Theorem
3 is quite long. To help the readers to have a rough idea of this concept before we
get to the proof, we first prove a weaker result: under the assumption of Theorem 3,
(R, C, U) has a candidate (B, ρ, Q) such that for all x ∈ B, φ(x) ≤ 16. Indeed, we
shall find such a candidate with B being a single element set and ρ(y) = ∅ for all
y ∈ C. (So there is no need to introduce ρ and Q for this result). The proof is from
[13]: For x ∈ C, let c(x) = 3

2
dR(x), and for x ∈ U , let c(x) = dR(x) − 1

2
|NR(x) ∩ C|.

Then each edge of R contributes 2 to the summation
∑

x∈C∪U c(x). By Euler’s formula∑
x∈C∪U c(x) < 6|C ∪ U |. So there is a vertex x∗ with c(x∗) ≤ 5.5. For x ∈ C, we

have dR(x) ≥ 4 implying that c(x) = 3
2
dR(x) ≥ 6. So x∗ ∈ U . Let B = {x∗}.

Then A(x∗) = NR(x∗) ∩ U and D(x∗) = NR(x∗) ∩ C, and B(x∗) = C(x∗) = ∅. As
|A(x∗)| + 1

2
|D(x∗)| ≤ 5.5, it easily follows that φ(x∗) = 3|A(x∗)| + |D(x∗)| ≤ 16. The

complicated notion introduced in this paper is to reduce φ(x) ≤ 16 to φ(x) ≤ 15 for
all x ∈ B, which then reduces the upper bound for colg(P) from 18 to 17.

The remaining of this section is devoted to the proof of Theorem 3. For each vertex
x ∈ V (R), let

p(x) = |NR(x) ∩ U |
q(x) = |NR(x) ∩ C|.

As C is an independent set, if x ∈ C, then q(x) = 0, if x ∈ U , then p(x) ≥ q(x).

Assume u ∈ U . If p(u) ≤ 3 or p(u) = 4 and q(u) ≤ 3 or p(u) = 5 and q(u) = 0,
then 3p(u) + q(u) ≤ 15. Let B = {u}, Q is the trivial digraph containing only one
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vertex, and ρ(y) = ∅ for all y ∈ C. Then it is straightforward to verify that (B, ρ,Q)
is a valid candidate for (R,C, U).

In the following, we assume the following

Assumption A For every u ∈ U , p(u) ≥ 4. Moreover, if p(u) = 4, then q(u) = 4; if
p(u) = 5, then q(u) ≥ 1.

Definition 3 Suppose x ∈ U and z ∈ C and x ∼R z. We say x and z are minor
neighbours of each other if p(x) = 5 and q(x) = 1.

Definition 4 Suppose x ∈ U , z ∈ C, x ∼R z and p(z) = 4. Let the other three
neighbours of z be u1, u2, u3. We say x and z are major neighbours of each other if
one of the following holds:

1. p(x) ≥ 6.

2. p(x) = 5, 3 ≤ q(x) ≤ 5 and two of the ui’s are minor neighbours of z.

3. p(x) = 5, 4 ≤ q(x) ≤ 5, one of the ui’s, say u1, is a minor neighbour of z and
moreover, p(u2), p(u3) ≤ 5 and q(u2), q(u3) ≤ q(x).

We denote by nminor(x) and nmajor(x) the number of minor neighbours of x and the
number of major neighbours of x, respectively.

Lemma 2 Let (R,U,C) be a plane triangulation as in Theorem 3. Then one of the
following holds:

1. There is a vertex x ∈ U with p(x) = 5, q(x) ≥ 3 and nmajor(x) ≥ q(x)− 1.

2. There is a vertex x ∈ C with p(x) = 4, and nminor(x) > nmajor(x).

3. There is a vertex x ∈ C with p(x) = 5 and nminor(x) ≥ 4.

Proof. Charge each vertex v ∈ V (R) with a charge c0(v) = dR(v). We redistribute
the charges according to the following rules:

Suppose x ∈ U and z ∈ C and x ∼R z. If x, z are major neighbours of each other,
then move a charge of 1 from x to z. If x, z are neither major neighbours nor minor
neighbours of each other, then move a charge of 1/2 from x to z. If x is a minor
neighbour of z, then no charge is moved from x to z.
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Denote by c∗ the new charge assignment. Since
∑

x∈V (R) c∗(x) =
∑

x∈V (R) c0(x) =
6|V (R)| − 12, there is a vertex x∗ with c∗(x∗) < 6.

It follows easily from the discharging rule that if x ∈ U , then

c∗(x) = p(x) +
1

2
(q(x) + nminor(x)− nmajor(x)).

If x ∈ C, then

c∗(x) =
3

2
p(x) +

1

2
(nmajor(x)− nminor(x)).

First we consider the case that x∗ ∈ U . Since c∗(x∗) ≥ p(x∗), we have p(x∗) ≤ 5. If
p(x∗) = 4, then by Assumption A, q(x) = 4 and hence c0(x) = 8. Each neighbour of x
in C receives a charge of 1/2 from x. So the total charge sent out from x is 2. Hence
c∗(x) = 6, contrary to our assumption.

Thus we have p(x∗) = 5. By Assumption A, q(x∗) ≥ 1. If q(x∗) = 1, then x∗ has
only one minor neighbour in C, and hence c∗(x∗) = 6, contrary to our assumption. If
q(x) = 2, then x has no major neighbour in C, and hence c∗(x∗) = 7− 1 = 6, contrary
to our assumption. Thus we assume q(x∗) ≥ 3. Then we have

6 > c∗(x∗) = p(x∗) +
1

2
(q(x∗) + nminor(x

∗)− nmajor(x
∗)) ≥ 5 +

1

2
(q(x∗)− nmajor(x

∗))

which implies that nmajor(x
∗) ≥ q(x∗)− 1. So (1) holds.

Next we consider the case that x∗ ∈ C. If p(x∗) = 4, then

6 > c∗(x∗) = 6 +
1

2
(nmajor(x

∗)− nminor(x
∗)).

Hence nminor(x
∗) > nmajor(x

∗), and (2) holds.

If p(x∗) = 5, then

6 > c∗(x∗) ≥ 3

2
p(x∗)− 1

2
nminor(x

∗).

Hence nminor(x
∗) ≥ 4, and (3) holds.

In the remainder of the paper, we shall explicitly construct a valid candidate in
each of the cases stated in Lemma 2. As the argument is still long, we divide it into a
few lemmas.

Lemma 3 If there is a vertex z ∈ C with p(z) = 4 and with nminor(z) > nmajor(z),
then there exists a valid candidate.
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Proof. Case 1 nminor(z) = 2 and nmajor(z) ≤ 1.

Assume y1, y2 are two minor neighbours of z. Let u1, u2 be the other two neighbours
of z and assume u1 is not a major neighbour of z. Then p(u1) ≤ 5. Depending on
whether y1 and y2 are adjacent or not, we have two cases as depicted in Figure 1. Since
y1 is a minor neighbour of z, all the other neighbours of y1 are in U . In y1 and u1

have a common neighour in U . Hence q(u1) ≤ p(u1) − 1. By Assumption A and the
definition of major neighbour, we conclude that p(u1) = 5 and q(u1) ≤ 2.

z

y1

y

(a)

2

u1

u2

(b)

z

y1

y2

u1

u2

Figure 1: A vertex z ∈ C with two minor neighbours

(In all the figures of this paper, a filled circle is a vertex of C, and an unfilled circle
is a vertex of U .)

First we consider the case that y1 6∼R y2, as depicted in Figure 1 (a). Let B =
{u1, y1, y2}, let Q be the digraph which consists of arcs −−→y2u1,−−→u1y1, and let ρ(z) = {y2}
and ρ(y) = ∅ for y ∈ C \ {z}. The digraph Q and the mapping ρ are as depicted in
Figure 2 (a). Note that z is not a vertex of Q. We put a dotted line from z to y2 to
indicate that ρ(z) = {y2}. We claim that (B, ρ, Q) is a valid candidate.

[C1]: We need to show that no two arcs of Q are contained in a facial triangle of
R. Assume −−→y2u1,−−→u1y1 is contained in a facial triangle. Then NR(u1) ∩ U = {y1, y2},
i.e., p(u1) = 2, contrary to Assumption A.

For [C2], [C3], [C4], it suffices to consider z ∈ C and its neighbours (as ρ(y) = ∅
for y ∈ C \ {z}). The verification is straightforward (by referring to Figure 2 (a)) and
is left to the readers. The following table verifies [C5] for each vertex v of B.

v 3|A(v)| 2|B(v)| |C(v)| |D(v)| τ(v) φ(v)
y1 12 0 1 1 1 15
y2 12 2 0 0 1 15
u1 9 2 1 2 1 15

The numbers in the table are upper bounds for the corresponding parameters. For
example, the number 1 at row y1 and column |D(v)| means that |D(y1)| ≤ 1.

We verify this table for u1 and y2. We have |A(u1)| = p(u1)−|NQ(u1)| = 5−2 = 3,
so 3|A(u1)| = 9. As N+

Q (u1) = B(u1) = {y1}, we have 2|B(u1)| = 2. As N−
Q (u1) =

C(u1) = {y2}, we have |C(u1)| = 1. By definition, as ρ−1(u1) = ∅, |D(u1)| = q(u1) ≤ 2.
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As C(u1) 6= ∅ we have τ(u1) = 1. Therefore φ(u1) ≤ 9 + 2 + 1 + 2 + 1 = 15. Now
we consider y2. Similarly |A(y2)| = p(y2) − |NQ(y2)| = 5 − 1 = 4. From Figure 2
(a), we see that B(y2) = N+

Q (y2) = {u1} and C(y2) = N−
Q (y2) = ∅. So 2|B(y2)| = 2

and |C(y2)| = 0. Since ρ−1(y2) = {z} = NR(y2) ∩ C, we have D(y2) = ∅. Therefore
|D(y2)| = 0. As B(y2) 6= ∅, we have τ(y2) = 1. Therefore φ(y2) = 12+2+0+0+1 = 15.

z

y1

y2

u1

2

(b)(a)

z

y1 u1

y

Figure 2: Digraphs in the proof of Case 1 of Lemma 3

Next assume that y1 and y2 are adjacent, as depicted in Figure 1 (b). Let B =
{u1, y1, y2}, let Q be the digraph which consists of arcs −−→y1u1,−−→y1y2, and let ρ(z) = {u1}
and ρ(y) = ∅ for y ∈ C \ {z}. The digraph Q and the mapping ρ are as depicted in
Figure 2 (b). We claim that (B, ρ,Q) is a valid candidate.

[C1] [C2], [C3], [C4] are easily verified as in the previous case. The following table
verifies [C5].

v 3|A(v)| 2|B(v)| |C(v)| |D(v)| τ(v) φ(v)
y1 9 4 0 1 1 15
y2 12 0 1 1 1 15
u1 12 0 1 1 1 15

Case 2 nminor(z) = 1 and nmajor(z) = 0.

Assume z has one minor neighbour u1. Let the other neighbours of z be u2, u3, u4

so that (u1, u2, u3, u4) is a 4-cycle in R. For each i ∈ {2, 3, 4}, as ui is not a major
neighbour, we have p(ui) ≤ 5, and if p(ui) = 5 then q(ui) ≤ 3. Let B = {u1, u2, u3, u4},
let Q be the digraph with arcs −−→u1u2,−−→u1u4,−−→u2u3,−−→u3u4. Let ρ(z) = {u2, u3} and ρ(y) = ∅
for y ∈ C \ {z}. The digraph Q and the mapping ρ are as depicted in Figure 3.

3

z

1

2

uu

u u

4

Figure 3: Digraph in the proof of Case 2 of Lemma 3

We claim that (B, ρ, Q) is a valid candidate. Similarly, [C1]-[C4] are easily verified
by referring to Figure 3. The following table verifies [C5].
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v 3|A(v)| 2|B(v)| |C(v)| |D(v)| τ(v) φ(v)
u1 9 4 0 1 1 15
u2 9 2 1 2 1 15
u3 9 2 1 2 1 15
u4 9 0 2 3 1 15

Lemma 4 If there is a vertex z ∈ C with p(z) = 5 and with nminor(z) ≥ 4, then there
exists a valid candidate.

Proof. The four minor neighbours of z form a path, say P = (u1, u2, u3, u4), of R. Let
B = {u1, u2, u3}, let Q be the digraph with arcs −−→u2u1,−−→u2u3. Let ρ(y) = ∅ for y ∈ C.
We claim that (B, ρ,Q) is a valid candidate. Similarly, we just list a table to verify
[C5].

v 3|A(v)| 2|B(v)| |C(v)| |D(v)| τ(v) φ(v)
u1 12 0 1 1 1 15
u2 9 4 0 1 1 15
u3 12 0 1 1 1 15

Lemma 5 If there is a vertex x ∈ U with p(x) = 5, q(x) ≥ 3 and nmajor(x) ≥ q(x)−1,
then then there exists a valid candidate.

Proof. Case 1 q(x) = 5.

Assume z1, z2, z3, z4 are four major neighbours of x, and the neighbours of x and zi’s
be as depicted in Figure 4. Since zi is a major neighbour of x, by definition, p(zi) = 4
and zi has a minor neighbour.

4
z1

z2 z3

z4x

u1

u2

u3

u4

u5

w1

w2 w3

w

Figure 4: A vertex x ∈ U with four major neighbours

As q(ui) ≥ 2, for i = 1, 2, 3, 4, wi is the only minor neighbour of zi. Therefore
x, zi is a pair of vertices satisfying Condition 3 of Definition 4, implying that p(ui) ≤ 5
for i = 1, 2, · · · , 5. Also because wi is a minor neighbour of zi, we have q(wi) = 1 for
i = 1, 2, 3, 4. This implies that for j = 2, 3, 4, uj and wj have a common neighbour in U ,
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and uj and wj+1 have a common neighour in U . As a consequence, q(uj) ≤ p(uj)−2 ≤ 3
for j = 2, 3, 4. By Assumption A, p(uj) = 5 for j = 2, 3, 4.

Let B = {w1, u2, w2, u3, w3, x}, let Q be the digraph with arcs
−−→u2w1,−−→w2u2,−−→w2u3,−−→u3w3,−→u2x,−→u3x. Let ρ(z1) = ρ(z2) = ρ(z3) = {x} and ρ(y) = ∅
for y ∈ C \ {z1, z2, z3}. The digraph Q and the mapping ρ are as depicted in Figure
5. We claim that (B, ρ, Q) is a valid candidate. Similarly, we just list a table to verify

3

z1

z2 z3

x

u2

u3

w1

w2 w

Figure 5: Digraph in the proof of Case 1 of Lemma 5

[C5].

v 3|A(v)| 2|B(v)| |C(v)| |D(v)| τ(v) φ(v)
w1 12 0 1 1 1 15
u2 6 4 1 3 1 15
w2 9 4 0 1 1 15
u3 6 4 1 3 1 15
w3 12 0 1 1 1 15
x 9 0 2 2 1 14

Case 2 q(x) = 4.

As nmajor(x) ≥ 3, two of the major neighbours, say z1, z2, are as depicted in Figure
6. By definition, each of z1, z2 has at least one minor neighbour. Since q(u2) ≥ 2, u2

is not a minor neighbour of z1 or z2. Since q(x) = 4, for some j ∈ {1, 3}, the common
neighbour of uj and x not shown in Figure 6 is a vertex in C. Without loss of generality,
assume the common neighbour of u3 and x not shown in Figure 6 is a vertex in C.
Hence q(u3) ≥ 2 and u3 is not a minor neighbour of z2. Thus z2 has a unique minor
neighbour w2. By Definition 4, this implies that p(u2) ≤ 5 and q(u2) ≤ q(x) = 4.

Assume first that w1 is a minor neighbour of z1.

By Definition 4, p(ui) ≤ 5 and q(ui) ≤ q(x) = 4 for i = 1, 3.

Let B = {u1, w1, u2, w2, u3, x}, let Q be the digraphs with arcs
−−→w1u1,−−→w1u2,−→xu1,−−→w2u2,−−→w2u3,−→xu3,−→xu2. Let ρ(z1) = {x, u1}, ρ(z2) = {x, u3} and
ρ(y) = ∅ for y ∈ C \ {z1, z2}. The digraph Q and the mapping ρ are as depicted in
Figure 7 (a). We claim that (B, ρ,Q) is a valid candidate. [C1]-[C4] can be verified
easily, by referring to Figure 7 (a). The following table verifies [C5].
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2

z1

z2

x

u1

u2

u3

w1

w

Figure 6: A vertex x ∈ U with major neighbours z1, z2

z2

x

u1

u2

u3

w1

w2

z1

(b)

1

(a)

z2

x

u1

u2

u3

w1

w2

z

Figure 7: Digraph in the proof of Case 2 of Lemma 5

v 3|A(v)| 2|B(v)| |C(v)| |D(v)| τ(v) φ(v)
u1 9 0 2 3 1 15
w1 9 4 0 1 1 15
u2 6 0 3 4 1 14
w2 9 4 0 1 1 15
u3 9 0 2 3 1 15
x 6 6 0 2 1 15

Assume w1 is not a minor neighbour of z1. Then u1 is a minor neighbour of z1. By
Definition 4, p(u2), p(u3), p(w1) ≤ 5, q(u2), q(u3), q(w1) ≤ 4.

Let B = {u1, w1, u2, w2, u3, x}, let Q be the digraphs with arcs
−−→u1w1,−−→u2w1,−→u1x,−−→w2u2,−−→w2u3,−→xu3,−→u2x. Let ρ(z1) = {w1, u2}, ρ(z2) = {u3} and
ρ(y) = ∅ for y ∈ C \ {z1, z2}. The digraph Q and the mapping ρ are as depicted in
Figure 7 (b).

We claim that (B, ρ, Q) is a valid candidate. [C1]-[C4] can be verified easily, by
referring to Figure 7 (b). The following table verifies [C5].
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v 3|A(v)| 2|B(v)| |C(v)| |D(v)| τ(v) φ(v)
u1 9 4 0 1 1 15
w1 9 0 2 3 1 15
u2 6 4 1 3 1 15
w2 9 4 0 1 1 15
u3 9 0 2 3 1 15
x 6 2 2 4 1 15

Case 3 q(x) = 3.

Assume z1, z2 are two major neighbours of x. By Definition 4, each zi has
p(zi) = 4 and has two minor neighbours. If z1 and z2 are as depicted in Figure 6,
then u1, w1 are minor neighbours of z1 and w2, u3 are minor neighbours of z2. Let
B = {w1, u1, x, u3, w2}, let Q be the digraphs with arcs −−→u1w1,−→u1x,−−→u3w2,−→u3x, and let
ρ(y) = ∅ for all y ∈ C. It is easy to verify that (B, ρ,Q) is a valid candidate.

Otherwise, let z3 be the other neighbour of x in C. The relative position of z1, z2, z3

are as depicted in Figure 8 (a) or (b).

z1

(b)

z2
x

u1

u2

u3

u4

u5

w1

w2

z1

z2
x

u1

u2

u3

u4

u5

w1

w2
z3

z3

(a)

Figure 8: A vertex x ∈ U with major neighbours z1, z2

Subcase 1 This case is as depicted in Figure 8 (a). As q(u2) ≥ 2 and q(u3) ≥ 2, we
conclude that u1, w1 are minor neighbours of z1 and w2, u4 are minor neighbours of z2.
Let B = {u1, w1, w2, u4, x}, let Q be the digraph with arcs −−→u1w1,−→u1x,−−→u4w2,−→u4x. Let
ρ(y) = ∅ for y ∈ C. The digraph Q and the mapping ρ are as depicted in Figure 9 (a).
We claim that (B, ρ,Q) is a valid candidate. Below is a table to verify [C5].

v 3|A(v)| 2|B(v)| |C(v)| |D(v)| τ(v) φ(v)
w1 12 0 1 1 1 15
u1 9 4 0 1 1 15
w2 12 0 1 1 1 15
u4 9 4 0 1 1 15
x 9 0 2 3 1 15
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Figure 9: Digraph in the proof of Case 3 of Lemma 5

Subcase 2 This case is as depicted in Figure 8 (b). As q(u4) ≥ 2, we conclude
that u3, w2 are minor neighbours of z2. If u2 is a minor neighbour of z1, then let
B = {u2, u3, w2}, let Q be the digraph with arcs −−→u3u2,−−→u3w2. Let ρ(y) = ∅ for y ∈ C.
Then (B, ρ,Q) is a valid candidate. Otherwise, w1, u1 are minor neighbours of z1.
Let B = {u1, w1, u3, w2, x}, let Q be the digraph with arcs −−→u1w1,−→u1x,−−→u3w2,−→u3x. Let
ρ(y) = ∅ for y ∈ C. The digraph Q and the mapping ρ are as depicted in Figure 9 (b).
Then (B, ρ,Q) is a valid candidate. The verifications are similar as above and omitted.

Theorem 3 follows from Lemmas 2, 3, 4 and 5.
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