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Abstract

We derive bounds on the size of an independent set based on eigen-
values. This generalizes a result due to Delsarte and Hoffman. We
use this to obtain new bounds on the independence number of the
Erdős-Rényi graphs. We investigate further properties of our bounds,
and show how our results on the Erdős-Rényi graphs can be extended
to other polarity graphs.

1 Introduction

Let F be a finite field of order q and let V be a 3-dimensional vec-
tor space over F. The 1-dimensional subspaces of V are the points
of the projective plane PG(2, q), and the 2-dimensional subspaces are
the lines. It follows that each point can be represented by a non-zero
vector, namely any vector that spans the corresponding 1-dimensional
subspace. Two points a and b, represented by vectors x and y respec-
tively, are orthogonal if xT y = 0. The Erdős-Rényi graph ER(q) is the
graph with the points of PG(2, q) as its vertices, where two vertices
are adjacent if and only if they are orthogonal.

∗Research supported by NSERC.
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The graph ER(q) has q2+q+1 vertices and each vertex has exactly
q + 1 neighbours. There is one problem though: by standard results
in finite geometry, there are exactly q + 1 vertices that are adjacent
to themselves. Thus our graph has q + 1 loops. The Erdős-Rényi
graphs are of interest because they do not contain any 4-cycles, but
nonetheless they have a large number of edges; this is the motivation
for [4]. For further work on these graphs, see [8, 11].

Our object in this paper is to derive good bounds on the size of an
independent set. (Where an independent set is a subset of the vertices
such that no two distinct vertices are adjacent. Thus an independent
set may contains vertices with loops.) Let α(X) denote the maximum
number of vertices in an independent set in X. There is a standard
bound for α(X) in terms of the eigenvalues of X, due to Delsarte and
Hoffman (see [3, Section 3.3] or [2, Page 115]; alternatively [7] for more
recent work). However this bound only applies to regular graphs with
no loops, and consequently our first task in this paper is to derive an
extension of it. With this in hand we are able to derive new (and
better) bounds on the size of independent sets in ER(q).

We conclude the paper by describing some more general classes of
graphs to which our new bound can be applied. These are obtained
as follows. Suppose Y is a connected k-regular bipartite graph on
2v vertices, and suppose there is an automorphism θ of Y with order
two that swaps the two colour classes of Y . The quotient graph Y/θ
is a graph with the v orbits of θ as its vertices, and with bi,j arcs
from orbit i to orbit j, where bi,j is the number of edges in Y from a
vertex in orbit i to the vertices of orbit j. Any orbit of θ that contains
two adjacent vertices gives rise to a vertex in Y/θ with a loop. It
is not hard to show that bj,i = bi,j and that, if Y has no 4-cycles,
then Y/θ does not have any multiple edges. The graph ER(q) can
be constructed in this way from the incidence graph of the projective
plane PG(2, q); the vertices of the incidence graph are the points and
lines of PG(2, q) and a point is adjacent to a line in the graph if it
is incident with the line in the geometry. The map that sends the
point represented by the non-zero vector x to the line consisting of
the points represented by the non-zero vectors y such that xT y = 0
gives rise to an automorphism θ of order two that swaps points and
lines.
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2 General Framework

We concern ourselves with bounding the size of an independent set
in a graph. We will permit loops on vertices, but we will allow these
vertices to be included in an independent set; in other words, we define
an independent set to be a set of vertices of which no two distinct
members are adjacent. Allowing loops is the more general option. If
we later wish to exclude them we may delete the looped vertices.

We will need a little linear algebra. Recall that a symmetric matrix
B is positive semidefinite if all of its eigenvalues are non-negative;
equivalently, if xT Bx ≥ 0 for all vectors x. We write B � 0. If B is
positive semi-definite, then xT Bx = 0 if and only if Bx = 0.

Let X be a graph with vertex set V , |V | = n, possibly containing
loops, and let A be its adjacency matrix. Let T = diag (t1, . . . , tn) be
a diagonal matrix such that T + A � 0. Also, let di be the degree of
vertex i, with loops counted once each. Consider an independent set
S of size s, and let s1 be the number of loops on vertices in S. Let z
be the characteristic vector of S. Then we have

(

z − s

n
1
)T

(T + A)
(

z − s

n
1
)

≥ 0

Expanding this we obtain the following result.

2.1 Lemma. Let X be a graph with vertex set V , |V | = n and
vertex degrees d1, . . . , dn. Let A be its adjacency matrix, and let
T = diag (t1, . . . , tn) be such that T + A � 0. If S is an independent
set of size s containing s1 loops, then:

s2

n2

∑

i∈V

(ti + di) − 2
s

n

∑

i∈S

(ti + di) +
∑

i∈S

ti ≥ −s1.

This gives a bound on s. However, it is difficult to apply in general,
partly because the sums depend not only on s but on S. Furthermore,
the bound obtained will depend on the choice of T . We do not know
how to choose T optimally (or even if there is a single optimal choice
for all graphs). In the present paper, we consider specific choices for
T .
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It will be useful to define the following parameters of a set S:

dS =
1

s

∑

i∈S

di,

kS = 2dS − 1

n

∑

i∈V

di.

Note that for k-regular graphs, dS = kS = k. It will be seen that
these two parameters behave, in some circumstances, as analogues to
the degree of a regular graph.

3 Bounds

We consider two particular choices for T , producing bounds which we
can regard as coming from, respectively, the adjacency matrix and the
Laplacian matrix of the graph.

3.1 Adjacency Matrix

If we let τ be the least eigenvalue of A, then we may set T = −τI
giving T + A = A − τI � 0. If X is regular and loopless, then
simplification of Lemma 2.1 gives the Delsarte-Hoffman bound.

3.1 Corollary. Let X be a k-regular graph with no loops, and τ the
least eigenvalue of its adjacency matrix. For any independent set S of
size s, we have:

s ≤ n
−τ

k − τ
.

It turns out that X need be neither regular nor loopless.

3.2 Corollary. Let X be a graph with no loops, and τ the least
eigenvalue of its adjacency matrix. For any independent set S of size
s, we have:

s ≤ n
−τ

kS − τ
.

Note that kS plays an analogous role to that of the degree in Corol-
lary 3.1. However, kS can be zero or even negative: the bound is
then useless. To be precise, one should say that Corollary 3.2 does
not bound the size of an independent set, but provides a family of
bounds, one for each value of kS (or equivalently, one bound for each
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value of dS). Any lower bound on dS (such as the minimum degree)
can be used to make Corollary 3.2 into a true bound on s.

If X has loops, then Lemma 2.1 is a nontrivial quadratic. The
bounds we get are slightly messier, but again, in the non-regular case,
kS plays a role analogous to that of the degree in the regular case.

3.3 Corollary. Let X be a k-regular graph with loops, and τ the
least eigenvalue of its adjacency matrix. For any independent set S of
size s containing s1 loops, we have:

s ≤ n
−τ +

√

τ2 + 4s1
k−τ
n

2 (k − τ)
.

3.4 Corollary. Let X be a graph with loops, and τ the least eigen-
value of its adjacency matrix. For any independent set S of size s
containing s1 loops , we have:

s ≤ n
−τ +

√

τ2 + 4s1
kS−τ

n

2 (kS − τ)
.

3.2 Laplacian Matrix

For a graph X with adjacency matrix A and diagonal matrix of degrees
D, recall that L = D − A is the Laplacian matrix of X. We always
have L � 0, and in fact 0 is an eigenvalue of multiplicity equal to
the number of components of X. The greatest eigenvalue of L is at
most twice the maximum degree; it is also bounded by the number of
vertices (see for instance [1]). If X is regular then L = kI − A and
the eigenvalues of L and A contain the same information. Accordingly
we expect to recover previous bounds for regular graphs and hope to
obtain new ones in the non-regular case. Note that graphs that differ
only by the presence or absence of loops have the same Laplacian
matrix. Thus, without loss of generality, we can assume that the
graph has no loops and set s1 = 0.

If we let µ be the greatest eigenvalue of L, then we may set T =
µI − D giving T + A = µI − L � 0. If the graph is regular, then we
recover Corollary 3.1, as expected. If it is not regular, then we obtain
the following bound.
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3.5 Corollary. Let X be a loopless graph, and µ the greatest eigen-
value of its Laplacian matrix. For any independent set S of size s, we
have:

s ≤ n
µ − dS

µ
.

Note that dS plays an analogous role to that of the degree in Corol-
lary 3.1. We could have stated Corollary 3.5 for graphs with loops,
but it is more convenient to leave them out.

This result generalizes Corollary 3.1, but it also generalizes Corol-
lary 3.3. Let X be a k-regular graph with loops and let Y be X with
the loop-edges deleted. The Laplacian eigenvalues of X and Y are
identical, so

µ(X) = µ(Y ) = k − τ(Y ).

Also,

dS(X) = k − s1

s
.

Substituting into Corollary 3.5 yields Corollary 3.3.
We can weaken Corollary 3.5 slightly to a more usable form, by

noting that dS ≥ δ.

3.6 Corollary. Let X be any graph with minimum degree δ, and µ
the greatest eigenvalue of its Laplacian matrix. For any independent
set S of size s, we have:

s ≤ n
µ − δ

µ
.

4 Equality

If Lemma 2.1 holds with equality then it follows that

(T + A)(z − s

n
1) = 0,

and we have an eigenvector for T + A. Unpacking this equality gives
a proof of the following.

4.1 Lemma. Let X be a graph with vertex degrees d1, . . . , dn and
adjacency matrix A. Let T = diag(t1, . . . , tn) be such that T +A � 0.
If S is a set of s vertices with no two distinct vertices adjacent such
that Lemma 2.1 holds with equality, then:

(a) Each vertex i in S has degree di = ti(
n
s − 1).

(b) Each vertex i not in S has (di + ti)
s
n neighbours in S.
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4.1 Adjacency matrix

If S is an independent set in a k-regular graph such that Corollary 3.1
holds with equality, then we have an eigenvector for A.

A
(

z − s

n
1
)

= τ
(

z − s

n
1
)

.

Since the vector 1 spans the k-eigenspace, z lies in the sum of the
greatest eigenspace and the least eigenspace.

Using Lemma 4.1, we see that the bipartite subgraph induced by
the partition {S, V (X)\S} is semi-regular: vertices in S have −τ(n

s−1)
neighbours not in S, and vertices not in S have (k − τ) s

n neighbours
in S. But vertices in S have k neighbours not in S, since the graph is
k-regular. It follows that vertices not in S have −τ neighbours in S.
The partition {S, V (X) \ S} is in fact equitable.

We summarize our findings in the following, due to Delsarte and
Hoffman (unpublished).

4.2 Theorem. Let X be a k-regular graph with no loops, and τ the
least eigenvalue of its adjacency matrix. For any independent set S of
size s and characteristic vector z, we have:

s ≤ n
−τ

k − τ
.

Furthermore, the following are equivalent:

(a) Equality holds.
(b) z is a linear combination of a k-eigenvector and a τ -eigenvector.
(c) The bipartite subgraph induced by the partition {S, V (X) \ S}

is semi-regular.
(d) The partition {S, V (X) \ S} is equitable.

The k-eigenvectors of a regular graph are exactly the constant
vectors. For non-regular graphs, the bounds based on the adjacency
matrix seem less useful. Specifically, if equality holds in Corollary 3.2,
Corollary 3.3, or Corollary 3.4, then we still have an eigenvector for
A, but as 1 is no longer an eigenvector, the conditions of Lemma 4.1
are not as useful.
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4.2 Laplacian matrix

If S is an independent set in a graph such that Corollary 3.5 holds
with equality, then we have an eigenvector for L:

L
(

z − s

n
1
)

= µ
(

z − s

n
1
)

.

Since the vector 1 spans the 0-eigenspace, we have that z lies in the
sum of the least eigenspace and the greatest eigenspace. Again, from
Lemma 4.1, we see that the bipartite subgraph induced by the parti-
tion {S, V (X) \S} is semi-regular: vertices in S have µ(1− s

n) neigh-
bours outside of S and vertices outside of S have µ s

n neighbours in
S.

This does not quite say that {S, V (X) \ S} is an equitable parti-
tion: the missing condition needed is that every vertex in V (X) \ S
would have a constant number of neighbours in V (X) \ S. But if this
condition were to hold then the graph would be regular.

We summarize our findings as follows.

4.3 Theorem. Let X be a graph with no loops, and µ the greatest
eigenvalue of its Laplacian matrix. For any independent set S of size
s and characteristic vector z, we have:

s ≤ n
µ − dS

µ
.

Furthermore, the following are equivalent:

(a) Equality holds.
(b) z is a linear combination of a 0-eigenvector and a µ-eigenvector.
(c) The bipartite subgraph induced by the partition {S, V (X) \ S}

is semi-regular.

The 0-eigenvectors of the Laplacian are exactly the constant vec-
tors; compare this to Theorem 4.2, where the k-eigenvectors were the
constant vectors, but only because the graph was regular. Note fur-
thermore that in both cases, when equality holds, z is a linear combi-
nation of eigenvectors belonging to the greatest and least eigenvalues.
Based partly on the analogy between Theorem 4.2 and Theorem 4.3,
and the fact that Theorem 4.2 is actually a special case of Theo-
rem 4.3, it seems that the Laplacian matrix formulation is the natural
generalization to non-regular graphs.
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Assume that equality holds in Theorem 4.3 and gcd(s, n) = 1. The
number of vertices in S adjacent to a vertex not in S, µ s

n , must be
an integer, and so n | µ. As 0 < µ ≤ n, it follows that n = µ and the
bipartite subgraph induced by the partition {S, V (X)\S} is complete
bipartite. Of course the same conclusion follows if equality holds in
Theorem 4.2, since it is a special case of Theorem 4.3.

5 Comparing Bounds

The bounds of Corollary 3.2 and Corollary 3.5 are not directly com-
parable: we show this using examples. We start with a simple family
of graphs where Corollary 3.5 is better, then a family where neither
bound is uniformly better.

Consider the graphs Ka,b, where a < b. Clearly the only maximum
independent set is the set of vertices of degree a. So we have

dS = a, kS =
2a2

a + b
.

Also, the least eigenvalue of the adjacency matrix is −
√

ab and the
greatest eigenvalue of the Laplacian matrix is a + b. Applying Corol-
lary 3.2 we get

s ≤ (a + b)2
√

ab

(a + b)
√

ab + 2a2
. (1)

However applying Corollary 3.5 we get exactly the size of the maxi-
mum independent set.

s ≤ b.

Thus we conclude that the bounds based on the adjacency and Lapla-
cian matrices are not equal (for instance, for K4,23 (1) gives s ≤ 24).
Furthermore, not only is Corollary 3.5 tight, but so is Corollary 3.6.
The latter bound is in terms of the graph only, whereas the former
depends on dS and so retains an implicit dependence on the structure
of S.

Now consider the graphs Xm, m > 1, constructed as follows. Let
Gm be a copy of Km, and Hm be a copy of C2m+1. Then Xm consists
of the disjoint union of Gm and Hm, together with edges from every
vertex of Gm to every vertex of Hm.

Clearly, the maximum independent sets are of size s = m and
there are two types: the vertices of Gm and an maximum independent
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set in Hm. The first type has dS = 2m + 1 and the second has
dS = m + 2. Owing to the block structure of the adjacency and
Laplacian matrices, the eigenvectors can be determined. We find that
τ = 1 −

√
2m2 + m + 1 and µ = 3m + 1.

Using this information we can compute the two bounds. For con-
venience, let αA and αL be the values of the bounds in Corollary 3.2
and Corollary 3.5, respectively. If S is the vertex set of Gm; we deter-
mine that the Laplacian bound is tight while the adjacency bound is
not.

|S| = m = αL < αA.

|S| = n
µ − dS

µ
< n

−τ

kS − τ
.

Now let S be a maximum independent set in Hm. We find that for
small m, the adjacency bound is better, and for large m the Laplacian
bound is better. Neither bound is ever tight, except that the adjacency
bound for m = 2 is correct when rounded.

|S| = m < αA < αL = 2m−1
3m+1 for 2 ≤ m ≤ 24

|S| = m < αL = 2m−1
3m+1 < αA for 25 ≤ m

5.1 Another Eigenvalue Bound

We now compare the Delsarte-Hoffman bound of Corollary 3.1 with
another eigenvalue bound of Sarnak.

Let λ be the maximum of the second largest eigenvalue and the
absolute value of the least eigenvalue of the adjacency matrix. Sarnak
[10] has shown the following bound for an independent set S in a
k-regular graph.

5.1 Lemma.

|S| ≤ n
λ

k

It turns out that this is strictly weaker than Corollary 3.1, as we now
show. For reference, we give an outline of the proof in [10].
Proof. If x ⊥ 1 then ‖Ax‖2 ≤ ‖λx‖2. We choose

xi =

{

n − s, i ∈ S

−s, i /∈ S

10



and compute the norms as follows:

‖λx‖2 = λ2
(

s(n − s)2 + (n − s)s2
)

= λ2ns(n − s),

‖Ax‖2 =
∑

i∈S

((Ax)i)
2 +

∑

i/∈S

((Ax)i)
2

≥
∑

i∈S

((Ax)i)
2

= s3k2. (2)

Substituting into ‖Ax‖2 ≤ ‖λx‖2, we find that

s ≤
√

n(n − s)
λ

k

which implies

s ≤ n
λ

k
. (3)

Note that at (2) we are neglecting some positive terms, and at (3),
we are using n − s ≤ n. Assuming that 0 < s < n, either of these
is sufficient to guarantee that the inequality in Lemma 5.1 is in fact
strict. Based on these observations, we can improve this proof. If we
write the adjacency matrix in the form

A =

(

0 B
BT C

)

,

then we can compute the missing contributions as follows:

∑

i/∈S

((Ax)i)
2 =

∑

i

(

(n − s)(BT1)i + (−s)(C1)i
)2

≥ 1

n − s

(

∑

i

(

(n − s)(BT1)i + (−s)(C1)i
)

)2

(4)

=
1

n − s
((n − s)(sk) + (−s)((n − 2s)k))2

=
s4k2

n − s
.

This gives that

‖Ax‖ ≥ s3k2n

n − s
,
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and then using ‖Ax‖2 ≤ ‖λx‖2 and rearranging gives exactly

s ≤ n

1 + k
λ

. (5)

This bound is strictly better than Lemma 5.1, but, as λ ≥ −τ , it is no
stronger than Corollary 3.1. In the context of the present paper, this
strengthening is not a surprise: the vector x in the proof of Lemma 5.1
is just a multiple of z − s

n1. Note also that if (5) holds with equality
then so does (4): in the extremal case we haven’t neglected any terms.

6 A Generalization

In developing the bounds of Section 3, we were motivated by a need
to have tools we could apply to the graphs ER(q). It seems that our
approach to the Delsarte-Hoffman bound can be pushed further. As
one example consider the following.

6.1 Theorem. Let X be any graph on n vertices, and S and inde-
pendent set of size s. Let B be a symmetric square matrix indexed by
the vertices of X such that

(a) B � 0

(b) Bij ≤ 0 whenever i 6= j and i 6∼ j

(c) B has constant row sum r

(d) B has constant diagonal t

Then

s ≤ n
t

r
.

This is relevant for the following reason. Let A = {A0, . . . , Ad}
be an association scheme and let R ⊆ {1, . . . , d} (see [5, Chapter 12]
for background and notation). An R-coclique is a set of vertices such
that no two of them are i-related for i ∈ R. In other words, it is an
independent set in the graph formed by the union of the classes of R.

We denote the trace of a matrix N by tr(N), and the sum of all of
its entries by sum(N). The following result is shown in [6].

6.2 Theorem. Let A be an association scheme with d classes, let
R ⊆ {1, . . . , d} and let S be an R-coclique in A. Then

|S| ≤ min

{

v
tr(N)

sum(N)
| N � 0, N ◦ Ai ≤ 0 for i /∈ R ∪ {0}

}

12



Let X be the graph formed by the union of the classes of R. Then
the matrix N satisfies the criteria of Theorem 6.1 with tv = tr(N) and
rv = sum(N). So Theorem 6.1 is a generalization of Theorem 6.2.

On the other hand, we may write N in terms of the matrix idem-
potents and Schur idempotents as

N =
∑

i

aiAi =
∑

j

bjEj .

Thus tr(N) = va0 and sum(N) = vb0. Then Theorem 6.2 says that
|S| is bounded above by the following linear program.

min {va0 | bj ≥ 0, b0 = 1, ai ≤ 0 for i /∈ R ∪ {0}} .

This is equal to Delsarte’s LP bound on an R-coclique [3]. In other
words, Theorem 6.1 is a generalization of Delsarte’s LP bound to
general graphs.

7 Erdős-Rényi

We now turn our attention to the motivation of our present work:
applying the tools of Section 3 to derive new bounds on the indepen-
dence number of the Erdős-Rényi graphs. This technique can in fact
be applied to more general polarity graphs.

7.1 Quotients

Let Y be a k-regular graph, and let σ be an automorphism of Y or
order 2. The orbits of σ partition the vertices of Y . It can be seen by
elementary means that this partition is equitable, that is, given any
orbit Cj and any vertex u, the number of edges from u to a vertex of
Cj depends only on the orbit Ci containing x. Define wij to be the
number of edges between a vertex of Ci and the vertices of Cj. We
define the quotient graph X = Y/σ to have vertex set equal to the set
of orbits of σ with wij arcs from Ci to Cj.

Note that in general X will be a weighted digraph, possibly with
loops. It will be a graph (i.e., wij = wji) if and only if there is no
edge between an orbit of size one and an orbit of size two. It will have
no multiple edges if and only if the edges joining two cells of size two

13



never form a complete bipartite graph. It will have no loops if and
only if σ never interchanges adjacent vertices.

The eigenvectors of X correspond to the eigenvectors of Y that are
constant on each orbit of σ. In particular, the eigenvalues of X are
exactly the eigenvalues of Y corresponding to eigenvectors that are
constant on each cell (see [5, Chapter 5] for details). Thus if we know
the eigenvectors of A(Y ), we know the least eigenvalue of A = A(X),
and we may apply Corollary 3.3.

7.2 Erdős-Rényi Graphs

As a specific example, let Y be the incidence graph of PG(2, q). This
is a bipartite graph, with points and lines forming the two colour
classes. Let σ be the map that sends a point to the line with the
same coordinates, and vice versa. Then every orbit of σ has size
two and Y/σ is an undirected graph with no multiple edges. It does
however have q + 1 vertices with loops. The graph that results from
removing the loops is known as the Erdős-Rényi graph of order q.
For convenience, we will leave the loops in. The graph X has q2 +
q + 1 vertices, degree q + 1, and eigenvalues q + 1,±√

q. Let S be an
independent set of size s containing s1 loops in X. We use our results
from Section 3 to bound s.

We can apply Corollary 3.1 directly; this will bound the size of
an independent set containing no loops (i.e., an independent set that
contains no absolute vertices). Our set S could be at most q+1 greater
than this, yielding the following bound.

s ≤ n
−τ

k − τ
+ q + 1 =

(

q2 + q + 1
)√

q

q +
√

q + 1
+ q + 1 (6)

We can of course use Lemma 5.1 instead of Corollary 3.1; this gives a
manifestly weaker bound on s.

A better approach is to use Corollary 3.3. In order to obtain a
bound independent of s1, we set s1 = q + 1, to get the following.

s ≤
√

q +
√

q + 4(q + 1)
q+

√
q+1

q2+q+1

2
q+

√
q+1

q2+q+1

(7)

As noted in Section 3.2, this is equivalent to using Corollary 3.5 (or
more precisely, Corollary 3.6). Some tedious algebra shows that (7) is
strictly better than (6).
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Another approach would be to consider the graph X0, obtained
by deleting the absolute vertices from X. Godsil and Royle have
computed the characteristic polynomial of the graph X0 to be

(λ − q)λ(λ + 1)q(λ2 − q)(q
2−q−2)/2.

So the least eigenvalue of X0 is −√
q. Let S0 be an independent set

of average degree dS0
in X0. Trivially, we see that

dS0
≥ q − 1,

and so we can apply Corollary 3.2 to X0 and add q + 1 to obtain the
following bound.

s ≤ q2√q

q − 2 + 1
q +

√
q

+ q + 1 (8)

On the other hand, we may assume that in fact S0 in contained in
an independent set S of X. Thus S consists of S0 together with, say,
s1 absolute vertices. Each absolute vertex in X is adjacent with at
most q vertices of S0, so there are at most q(q +1− s1) edges between
S0 and the set of absolute vertices of X. It follows that

dS0
≥ q + 1 − q(q + 1 − s1)

s − s1
.

Substituting this into Corollary 3.2 and adding q + 1, we get a bound
in terms of s1. For q ≥ 5, this is a decreasing function of s1, so we set
s1 = 0 to obtain the following.

s ≤ q2√q + 2q(q + 1)

q + 2 + 1
q +

√
q

(9)

For 5 ≤ q ≤ 23, (9) is better than (8), but for q ≥ 25, the reverse is
true. Neither bound is as good as (7).

Yet another approach is to delete the loop-edges from X and apply
Corollary 3.2. (This is the more usual Erdős-Rényi graph.) Godsil and
Royle have computed its characteristic polynomial to be

(λ3 − qλ2 − 2qλ + q2 + q)(λ2 + λ + 1 − q)q(λ2 − q)(q
2−q−2)/2.

The least eigenvalue is a root of the cubic factor. We can approximate
it using Newton’s method. It is less than −√

q, it is the only eigenvalue
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that is less than −√
q, and the cubic factor is concave down for λ ≤

−√
q. So iterating Newton’s method starting with −√

q will always
give a lower bound on the least eigenvalue, which means we will be
overestimating our upper bound on the size of an independent set. In
fact, since we only care about the integer part of the final answer, it
seems that two iterations is sufficient.

Let S be an independent set of size s containing s1 absolute vertices
(here these no longer have loops). It is straightforward to compute
dS :

dS = q + 1 − s1

s
.

Letting w be an approximation to the least eigenvalue and applying
Corollary 3.2 we get

s ≤ (q2 + q + 1)(−w) + q + 1

q + 1 − w + q+1
q2+q+1

. (10)

We close this section with a brief table summarizing the numerical
values of the bounds we have derived. We also include exact values for
the size of a maximum independent set; these are from Williford [11,
Section 4.3]. In fact, it is partly the difference between his values and
the bound of (6) that motivated our work. The best bound we know
of is (7).

q α(ER(q)) (7) (10) (6) (8) (9)

3 5 5.56 5.63 7.92 9.09 6.21
5 10 10.56 10.82 14.42 16.28 12.28
7 15 16.73 17.27 22.16 24.65 20.50
9 22 23.93 24.87 31 34.03 29.98
11 29 32.05 33.40 40.79 44.34 40.55
13 38 41.03 42.88 51.48 55.49 52.08

7.3 Polarity Graphs

Much of the work in the previous section can in fact be applied more
generally.

Let Y be the incidence graph of PG(2, q), let σ be an automor-
phism of Y of order two that swaps points and lines of PG(2, q), and
let X = Y/σ. The vertices in X with loops are the absolute vertices;
denote their number by a. Let N be the adjacency matrix of X. Then
N is an incidence matrix of PG(2, q) (the image under σ of the point
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corresponding to the i-th row of N is the line corresponding to the
i-th column of N), and the adjacency matrix of Y is

(

0 N
N 0

)

.

In PG(2, q) any point lies on q + 1 lines and any two points lie on
exactly one common line. It follows that

N2 = (q + 1)I + (J − I).

Thus the eigenvalues of N2 are (q + 1)2 and q with multiplicities 1
and q2 + q, and the eigenvalues of N are q + 1,

√
q and −√

q with
multiplicities 1, m1 and m2. The values of m1 and m2 depend on
a, but they are both non-zero. Thus we can apply Corollary 3.3 to
bound the size of an independent set S in X.

|S| ≤
√

q +
√

q + 4a
q+

√
q+1

q2+q+1

2
q+

√
q+1

q2+q+1

A similar approach yields bounds on the size of an independent set
in polarities of the generalized quadrangles W (q). This consists of a
set of points, a set of lines, and an incidence relation between them
such that

(a) Each point is incident with q + 1 lines and two distinct points
are incident with at most one common line.

(b) Each line is incident with q + 1 points and two distinct lines are
incident with at most one common point.

(c) Given a point p and a line l not incident with p, there exists a
unique point q and a unique line m such that m is incident with
p and q and q is incident with m and l.

The reader is directed to [9] for more details. The number of points
in W (q) is q3 + q2 + q + 1, which is also the number of lines. Thus a
polarity graph of W (q) has q3 + q2 + q + 1 vertices and degree q + 1
(leaving the loops in). Computing the eigenvalues of a polarity graph
of W (q) is a little more work than for a polarity graph of PG(2, q),
but the argument is similar (see [9, Section 1.8.2] for details). The
least eigenvalue is −√

2q. Furthermore, the number of absolute points
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is always q2 + 1. Thus Corollary 3.3 gives the following bound on the
size of an independent set S in any polarity graph of W (q).

|S| ≤
√

2q +
√

2q + 4(q2 + 1) q+
√

2q+1
q3+q2+q+1

2 q+
√

2q+1
q3+q2+q+1

.
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