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Abstract. A property of graphs is a collection P of graphs closed
under isomorphism; we call P hereditary if it is closed under tak-
ing induced subgraphs. Given a property P , we write Pn for the
set of graphs in P with vertex set [n] = {1, . . . , n}, and Pn for
the isomorphism classes of graphs of order n that are in P . The
cardinality |Pn| is the labelled speed of P and |Pn| is the unlabelled

speed. In the last decade numerous results have been proved about
the labelled speeds of hereditary properties, with emphasis on the
striking phenomenon that only certain speeds are possible: there
are various pairs of functions (f(n), F (n)), with F (n) much larger
than f(n), such that if the labelled speed is infinitely often larger
than f(n) then it is also larger than F (n) for all sufficiently large
values of n. Putting it concisely: the speed jumps from f(n) to
F (n). Recent work on hereditary graph properties has shown that
“large” and “small” labelled speeds of hereditary graph properties
do jump.

The aim of this paper is to study the unlabelled speed of a hered-
itary property, with emphasis on jumps. Among other results, we
shall show that the unlabelled speed of a hereditary graph prop-
erty is either of polynomial order or at least S(n), the number of
ways of partitioning a set with n indistinguishable elements.

1. Introduction

For a graph property P, the nth labelled slice of P is the set Pn of
graphs in P with vertex set [n] = {1, . . . , n}. The labelled speed of a
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property P is the function n 7→ |Pn|. Similarly, the nth unlabelled slice
of P is the set Pn of isomorphism classes of graphs of order n that are
in P, and the unlabelled speed of P is the function n 7→ |Pn|. Trivially,
|Pn| ≤ |Pn| ≤ n!|Pn| for every n.

In what follows, by a “subgraph” we always mean an induced sub-
graph, so that a graph property is hereditary if it is closed under taking
subgraphs. Also, two graphs are considered to be the “same” if they
are isomorphic. Otherwise, the notation and terminology in this note
are standard. Thus, Kn is a complete graph on n vertices, and En

the “empty graph” of order n, i.e., the graph on n vertices with no
edges. Also, Gn denotes a graph on n vertices. The neighborhood of a
vertex x ∈ V (G) is Γ(x) = {y : xy ∈ E(G)}, and the degree of x is
d(x) = |Γ(x)|. For a U ⊂ V (G) write G[U ] for that graph spanned by
G on U .

Turning to less standard concepts, given a graph G, we define a
relation ∼ on V (G): for two vertices x, y ∈ V (G) we call x and y twins
and write x ∼ y if Γ(x) ∪ {x, y} = Γ(y) ∪ {x, y}. This relation ∼ is
an equivalence relation; we call its equivalence classes the homogeneous
classes of the graph. A homogeneous k-part graph is a graph with k-
partition (V1, . . . , Vk) such that each pair of vertices in the same set
Vi are twins. (Note that every graph of order n is a homogeneous
n-part graph.) Let S(n) be the number of partitions of a set with
n indistinguishable elements into nonempty subsets. Thus S(1) = 1,
S(2) = 2, S(3) = 3, S(4) = 5, S(5) = 7 and S(n) = exp(Θ(

√
n)). Also,

denote by B(n) the number of partitions of a set with n distinguishable
elements, so that B(1) = 1, B(2) = 2, B(3) = 5, B(4) = 15 and
B(n) ≈ (n/ log n)n. It is clear that B(n) and S(n) have different order
of growths.

Let S denote the property that consists of all graphs whose compo-
nents are cliques, and set S̄ = {G : Ḡ ∈ S}, i.e., let S̄ be the class of
complete k-partite graphs for k ≥ 1.

Clearly S has unlabelled speed S(n) and labelled speed B(n), and
so does S̄. Let T denote the property consisting of all star forests, i.e.,
graphs whose components are stars, and put T̄ = {G : Ḡ ∈ T }. Also,
denote by F the property consisting of all the path forests, i.e., graphs
whose components are paths, and set F = {G : Ḡ ∈ F}. Clearly,
each of T , T̄ , F and F has unlabelled speed S(n), and labelled speed
greater than B(n).

Let us start by recalling some results concerning labelled speeds of
hereditary properties. Parts (i) and (ii) are from [3], part (iii) is from
[4] and [5], and (iv) is from [9].
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Theorem A. Let P be a hereditary property of graphs. Then one of
the following assertions holds.
(i) There exist N, k ∈ N and a collection {pi(n)}k

i=0 of polynomials such

that, for all n > N , |Pn| =
∑k

i=0 pi(n)in.
(ii) For some t ∈ N, t > 1, we have |Pn| = n(1−1/t+o(1))n .

(iii) For n large enough, n(1+o(1))n = B(n) ≤ |Pn| ≤ 2o(n2).
(iv) There exists k ∈ N, k > 1, such that |Pn| = 2(1−1/k+o(1))n2/2. �

Our aim in this paper is to prove an analogue of cases (i) and (ii)
of Theorem A for unlabelled speeds. Note that these are the cases
when the number of labellings, n!, is larger than the labelled speed of
the property, so the crude bounds |Pn| ≤ |Pn| ≤ n!|Pn| hardly tell us
anything about |Pn|.
Theorem 1. For every hereditary graph property P one of the following
assertions holds.
(i) There are integers ℓ and t such that if n is large enough then every
graph G ∈ Pn is the symmetric difference of a homogeneous ℓ-part
graph and a graph in which every component has at most t vertices.
The unlabelled speed Pn is polynomially bounded; even more, there is a
positive integer k and a rational number c such that

|Pn| = c · nk + O(nk−1). (1)

(ii) If n is large enough, |Pn| ≥ S(n). Furthermore, equality holds for
n large enough if and only if P is one of the six hereditary properties
S, S̄, T , T ,F and F .

The structure of the paper is as follows. In Section 2 we show that
any hereditary property satisfying condition (i) or condition (ii) of The-
orem A, satisfies condition (i) of Theorem 1. In Section 3 we show that
for any hereditary property for which neither conditions (i) or (ii) of
Theorem A hold, condition (ii) of Theorem 1 holds. In the final section
we make some remarks about properties with higher speeds.

2. Case (i) of Theorem 1

In this section we show that any hereditary property satisfying con-
dition (i) or condition (ii) of Theorem A also satisfies condition (i) of
Theorem 1.

To do this, we will need results from [3] that provide more detailed
information about hereditary graph properties that satisfy conditions
(i) or (ii) of Theorem A. We start with some more terminology and
notation. We write G(A, B) for a template, a graph whose vertex set is
partitioned into two classes, A and B: the anchor and the body of the
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graph. A template is allowed to contain loops, but only at the vertices
of B. (Our notation also suggests the fact that the vertices in B will
be ‘blown up’ into many vertices, while those in A will just ‘anchor’
the new structure.)

Let x1, . . . , xb be an enumeration of the vertices in B, so that |B| = b.
Given non-negative integers m1, . . . , mb, let G(A; B·(mi)

b
1) be the graph

obtained from the template G(A, B) by replacing each xi by mi vertices,
and joining two vertices if the original vertices were joined by an edge
or loop. Thus, H = G(A; B ·(mi)

b
1) has |A|+∑b

i=1 mi vertices and, e.g.,
two of the mi vertices replacing xi are joined by an edge if and only if
G(A, B) has a loop at xi. We say that H is obtained from G(A, B) by
blowing up the vertices of B, or multiplying each vertex xi by mi.

For a template G(A, B), let P(G(A, B)) be the following set of
graphs:

P(G(A, B)) = P(G(A, B)) = {G : G ∼= G(A; B·(mi)
b
1), mi ≥ 1 for every i},

and write Pn(G(A, B)) for the set of graphs in P(G(A, B)) with n
vertices, and Pn(G(A, B)) for the set of their isomorphism classes.

We shall examine the cases (i) and (ii) in Theorem 1. Considerably
more is known about these cases than what we stated in Theorem A; in
the arguments below we shall make use of this additional information
as well; much of what we shall need will be given in Theorem B.

(i) We have here three subcases. The first was described by Schein-
erman and Zito [11]: for large n, the property contains only some of
En and Kn, and so the speed is 0, 1 or 2. It is trivial that in this case
the unlabelled speed equals the labelled speed.

In the second subcase, the labelled speed is polynomial (see [3],
Theorem 10). As shown there, the structures of the graphs in these
properties are as follows. There is a finite set of templates G(Ai, Bi),
i = 1, . . . , ℓ, with each Bi a single vertex or a vertex with a loop, such
that for n large enough, Pn = ∪ℓ

i=1Pn(Ai, Bi). It is easy to see that,
for n sufficiently large, the unlabelled speed is constant.

The remaining type of hereditary graph property to be studied here
is the exponential. As the terminology indicates, these types are distin-
guished by the labelled speeds of the properties: a hereditary property
P is exponential if |Pn|/nk → ∞ for every k and |Pn| = no(n); in this
case by Theorem A (i) we have |Pn| = (c + o(1))n for some constant
c > 1.

Recall that two vertices in a graph are said to be twins if their neigh-
bourhoods coincide. Call a template irreducible if no vertex of its body
has a twin (in either the body or anchor). Note that if b ∈ B has
a twin in a ∈ A then for G′ = G − a and A′ = A \ {a} we have
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P(G(A, B)) ⊂ P(G′(A′, B)). Similarly, if b ∈ B has a twin in B then
P(G(A, B)) ⊂ P(G′(A, B′)) for G′ = G − b and B′ = B \ {b}. Thus
if P = ∪ℓ

i=1P(G(Ai, Bi)) is a hereditary property then we may assume
that G(Ai, Bi) is irreducible.

Given a natural number D, let us define the following subset of
P(G(A, B)):

PD(G(A, B)) = {G(A; B·(mi)
b
1) : mi ≥ D and |mi−mj | ≥ D for i 6= j}.

Thus G ∈ P(G(A, B)) belongs to PD(G(A, B)) if all the multipliers of
G differ from 0 and each other by at least D. We shall use the self-
explanatory notation Pn

D(G(A, B)) = PD(G(A, B))n and PD,n(G(A, B))
= PD(G(A, B))n.

Let us recall the following structural theorem, Theorem 18 of [3].

Theorem B. Let P be an exponential hereditary graph property. Then
there are finitely many (non-isomorphic) templates, G1(A1, B1),. . . ,
Gs(As, Bs), each irreducible, such that if n is large enough then

Pn =

s
⋃

i=1

Pn(Gi(Ai, Bi)).

For exponential properties, Theorem B implies the structural part
of Theorem A (i).

Needless to say, in the union above the sets Pn (Gi(Ai, Bi)) need not
be disjoint; however as the next result shows, we can make these sets
disjoint if we make them slightly smaller.

Lemma 2. Let G1(A1, B1), . . . , Gs(As, Bs) be non-isomorphic templates,
each irreducible. Then for D = maxi (|Ai|+|Bi|+1) the sets PD,n(G1(A1, B1)),
. . . , PD,n(Gs(As, Bs)) are pairwise disjoint.

Proof. Let G ∈ PD,n(Gi(Ai, Bi)). Then, since Gi(Ai, Bi) is irre-
ducible each vertex of Bi gives rise to a distinct homogenous class.
Thus G has |Bi| large homogeneous classes, i.e., classes with at least
D vertices each. These are precisely the classes obtained from blowing
up the vertices of Bi. In addition to these large homogeneous classes,
G has |Ai| more vertices. Hence, if G is also in PD,n(Gj(Aj , Bj)), then
since the homogeneous classes have different sizes we get one-to-one
maps between the homogeneous classes of Bi and Bj , and between Ai

and Aj. These maps induce an isomorphism between Gi(Ai, Bi) and
Gj(Aj , Bj), mapping Ai into Aj and Bi into Bj , showing that Gi(Ai, Bi)
and Gj(Aj, Bj) are isomorphic templates. �

Now we are ready to prove that there are constants k and c such that
|Pn| satisfies (1).
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By Theorem B and Lemma 2, we can find a constant D and templates
G1(A1, B1), . . . , Gs(As, Bs), such that

s
⋃

i=1

PD,n (Gi(Ai, Bi)) ⊂ Pn =

s
⋃

i=1

Pn (Gi(Ai, Bi)),

and the classes PD,n(Gi(Ai, Bi)) are pairwise disjoint. Now, for every i,

|Pn (Gi(Ai, Bi)) − PD,n (Gi(Ai, Bi))| = O(nki−1), (2)

and
|PD,n (Gi(Ai, Bi))| = cin

ki + O(nki−1) (3)

for some natural numbers ki and strictly positive rationals ci. Indeed,
as we shall see shortly, ki = bi −1 = |Bi|−1. Clearly, relations (2) and
(3) imply (1) with k = max ki and c =

∑{ci : ki = k}.

It remains to prove (2) and (3). Note that the left-hand side of (2) is

at most the number of multipliers (m1, . . . , mbi
) such that

∑bi

j=1 mj =
n − ai and either

min{mj : 1 ≤ j ≤ i} < D

or
min{|mj1 − mj2 | : j1 6= j2} < D.

This is clearly no more than

(bi − 1)

(

n − ai

bi − 2

)

D,

proving (2).

Also, if
∑bi

j=1 mj = n − ai,

min{mj : 1 ≤ j ≤ i} ≥ D

and
min{|mj1 − mj2 | : j1 6= j2} ≥ D

then the number of ways to choose the multipliers is (1+O(n−1))
(

n
bi−1

)

.
Two different multipliers may give isomorphic graphs. For example, if
Λ is the set (group) of permutations of B that can be extended to an
automorphism of G, then for any vector of multipliers, the |Λ| vectors
obtained by permuting m by the permutation of Λ all generate isomor-
phic copies of the same graph. Using the irreducibility of the template
Gi(Ai, Bi) and an argument similar to that used to prove Lemma 2, one
can show that this is the only way to generate isomorphic graphs by
different multipliers. Thus the number of isomorphism types of graphs
generated from these multipliers is 1

|Λ|(1 + O(n−1))
(

n
bi−1

)

. This proves
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(3) and so completes the proof of Theorem 1 for the exponential case.

Note that the smallest unbounded speed, ⌈(n+1)/2⌉, can be achieved
by two properties of exponential type: the homogeneous bipartite graphs
and their complements.

Now we turn to the proof of Theorem 1 (i) in the factorial range.
This range is studied in both [3] and [6]; in particular the proof of
Theorem A (ii) is in [3]. The results of [3] and [6] imply the structural
part of Theorem 1 (i), so our task is only to justify relation (1). To
this end, we shall imitate the proof in the exponential range; however,
in order to count as there, we shall introduce a rather technical system
of notation. It is in this form that we shall recall the results we shall
need (see Theorem C).

For the rest of this section we shall assume that P is a hereditary
property with |Pn| = n(1−1/t+o(1))n for some t > 1.

Let us define a unit to be a graph in which every vertex has a label
i, 0 ≤ i ≤ r, and the vertices with label 0 are linearly ordered. Note
that the same label may be used for many vertices. The vertices with
label 0 span the server, and the remaining vertices the terminal. For
a unit Ui, we write Si for its server and Ti for its terminal. Also, we
write ui, si and ti for the orders of these graphs, so that ui = si + ti.

Two units are compatible if their servers are isomorphic, and there
is an order-preserving isomorphism. Loosely speaking, two units are
compatible if their servers coincide.

Let us fix r, s and t; in what follows, we suppress the dependence
of our objects on these parameters. Let U1, . . . , Uℓ be all the units
with si = |Si| ≤ s and ti = |Ti| ≤ t, and labels 0, 1, . . . , r. Let J ⊂
L = {1, . . . , ℓ} = [ℓ] be such that the units Uj , j ∈ J are compatible.
Given natural numbers mj , j ∈ J , let H = H((mj)j∈J) be the graph
obtained as follows. For j ∈ J , take mj copies of unit Uj such that
all

∑

j∈J mj of these units are pairwise disjoint. We call m = (mj)j∈J

the sequence of multipliers of H . The graph H is obtained from these
units by identifying their (isomorphic) servers. Note that

|H| = s +
∑

j∈J

mjtj ,

where s = sj for every j ∈ J . Clearly, V (H) = ∪r
i=0Vi, where Vi =

Vi(H) is the set of vertices of the constituent units that are labelled
i. Thus |V0| = s and, for i ≥ 1, |Vi| =

∑

j∈J mjti,j, where ti,j is the
number of vertices of Uj that are labelled i.
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The sequences m = (mj)j∈J we shall be interested in are such that
the non-empty classes Vi of H(m) form an initial segment 0, 1, 2, . . . , h;
we call such sequences permissible.
Given a permissible sequence m, let V0, V1, . . . , Vh be the classes of
H = H(m). Call a graph K compatible with H = H(m) if its vertex
sets is [h]. Given H and a graph K compatible with H , define a graph
G on V = ∪h

i=0Vi as follows. Let x ∈ Vi and y ∈ Vi′ , x 6= y. If
ii′ is not an edge (or loop) of K, then xy ∈ E(G) iff xy ∈ E(H);
otherwise, xy ∈ E(G) iff xy 6∈ E(H). We write H∆K for this graph
G. Thus H∆K is obtained from H by toggling the edges according to
the instructions coded by K.

Let J ⊂ L be such that if m = (mj)j∈J , with mj ≥ 1 for every j, then
H(m) has classes V0, V1, . . . , Vh, and let K be compatible with H . Let
P(J, K) be the set of isomorphism classes of graphs G(H, K) = H∆K
with H = H(m), m = (mj)j∈J , and K compatible with H . Note that
P(J, K) need not be a hereditary property of graphs.
Finally, for D ≥ 0, let PD(J, K) be the set of members of P(J, K) in
which each multiplier mj is at least D, and |mj − mj′| ≥ D whenever
j, j′ ∈ J, j 6= j′.

After all this preparation, we are ready to state a (structural) re-
sult about factorial hereditary properties that will enable us to deduce
relation (1) in Theorem 1 (i). This result is hardly more than a refor-
mulation of Theorem 28 [3], including a statement analogous to Lemma
2.

Theorem C. Let P be a hereditary property of graphs with factorial
labelled speed. Then we have

• integers ℓ, s, t, N and D,
• subsets Ji of L = [ℓ], i = 1, . . . , N ,
• sets of units {U1, . . . , UN}, with |Si| ≤ s and |Ti| ≤ t for each i,
• a graph Ki on [hi] for each i,

such that
N
⋃

i=1

Pn
D(Ji, Ki) ⊆ Pn ⊆

N
⋃

i=1

Pn(Ji, Ki), (4)

and Pn
D(Ji, Ki) ∩ Pn

D(Ji′, Ki′) = ∅ whenever i 6= i′.

�

The rest of the proof of (1) in the factorial range goes as in the
exponential range. All we have to do is to justify that PD,n(Ji, Ki)
approximates Pn(Ji, Ki) in the sense that, for some positive integer ki

and a rational ci, we have

|PD,n(Ji, Ki) − PD,n(Ji, Ki)| = O(nki−1) (5)
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and

|PD,n(Ji, Ki)| = cin
ki + O(nki−1). (6)

These relations can be proved as (2) and (3); we leave the details to
the reader.

Note that the structural part of Theorem 1 was mainly proved in
[3]. It is easy to see that in the polynomial case we have ℓ = 1, and
in the exponential case t = 1. The factorial case is more technical,
relation (4) implies that there are integers ℓ, t and C such that if n is
large enough then every graph G ∈ Pn is such that for some set V0 of
at most C vertices, the graph G − V0 is the symmetric difference of a
homogeneous ℓ-part graph and a graph in which every component has
at most t vertices. Observing that each vertex of V0 can be a class in
a homogeneous partition of a graph yields the result.

3. Case (ii) of Theorem 1

In this section we show that any hereditary property satisfying nei-
ther condition (i) nor condition (ii) of Theorem A satisfies condition
(ii) of Theorem 1.

Here we have the following strategy: by making use of a result in
[3] we shall show that, given n, there is an N = N(n) such that PN

contains a graph with at least S(n) many different subgraphs of order
n.

Let us recall from [6] a detailed description of the properties which
are not in classes (i) and (ii) of Theorem A. In this description we
have two main cases (A and B), and several subcases. Let then P be
a hereditary property not in classes (i) an (ii) of Theorem A. In [6] it
was proved that P satisfies one of the cases below.

Case A: The property P contains at least one of the 24 types of
graph from a list (see [6], Section 5 and Theorem 20). The graphs are
as follows.

Fix positive integers m and t. Let V (G) = U∪V1∪. . .∪Vt be a vertex
partition of G with U = {u1, . . . , ut} and |Vi| = m for i = 1, . . . , t.
Furthermore, we have the following structural restrictions:

• the set U is either independent or spans a complete graph (2
possibilities),

• either every Vi is an independent set, or every Vi spans a com-
plete graph (2 possibilities),

• either every vertex of every Vi is joined to every vertex of Vj 6=
Vi, or there is no edge vw with v ∈ Vi and w ∈ Vj 6= Vi (2
possibilities),
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(i) (ii) (iii) (iv)

(v) (vi) (vii) (viii)

Figure 1. The eight possibilities for case A.1. The grey
ovals indicate sets which induce a clique, while an empty
oval within a grey oval represents an induced indepen-
dent set within an otherwise fully connected group of
vertices (i.e., a Turán graph). In each figure, the top
vertices form U = {u1, . . . , ut} and the bottom vertices
make up V1 ∪ V2 ∪ . . . ∪ Vt.

• there are 3 possibilities for the edges between a vertex ui ∈ U
and a set Vj , (1 ≤ i, j ≤ t), namely

A.1. ui is adjacent to vj iff i = j,
A.2. ui is adjacent to vj iff i 6= j,
A.3. ui is adjacent to vj iff i ≤ j.

We can greatly reduce the number of cases to be analyzed. First, ob-
serve that if we have a property P then the “complementary” property
P = {G : G ∈ P} has the same (labelled or unlabelled) speed.

Since a graph occurring in case A.2. is the complement of a graph
in case A.1, there is no need to consider the graphs occurring in case
A.2. (See Figure 1 for the eight types of case A.1.) We can reduce the
number of graphs to be studied in case A.3. if we delete u1 and then
pair four-four graphs with each other (see Figure 2): simply relabel
u2, . . . , ut as ut, . . . , u2. (In the proof we use only the graphs obtained
after deletion of u1.) We can easily take care of additional six cases,
since if a subgraph of the graph spanned by V1 ∪ . . .∪Vt is not a clique
or an independent set, then the property contains all members of S or
S, and has unlabelled speed at least S(n).

Thus, altogether there are six types of graph to consider, namely
those shown in (i)-(iv) of Figure 1, and in Figure 3 (i) and (ii). First,
let us consider the case A.1.

Before going into the details we sketch our general strategy. Consider
a graph in PN whose existence is guaranteed, and the aim is to find
many different subgraphs of it with n vertices. To prove that there are
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(i)

(ii)
(iv)

(iii)

Figure 2. These are four possibilities (out of eight)
from case A.3. The horizontal pairings indicate comple-
mentary pairs of graphs. The grey ovals indicate sets
which induce a clique, while an empty oval within a
grey oval represents an induced independent set within
an otherwise fully connected group of vertices (i.e., a
Turán graph). In each figure, the top vertices are U =
{u2, . . . , ut} and the bottom vertices are V1∪V2∪ . . .∪Vt.

at least S(n) = |Sn| subgraphs, we would like to find a surjective map
from Pn to Sn.

In our proof we shall always assume that n > 100 and N is large
(to be specified later) compared to n. Consider a graph GN ∈ PN ,
where GN is any one of the 6 graphs. The goal is to find at least
S(n) different n-subgraphs of GN . From now on, by a vector a we
mean a vector a = (ai)

r
1 = 〈a1, . . . , ar〉 with positive integer coordi-

nates whose sum is n. Let a = (ai)
r
1 be a decreasing vector, i.e., such

that a1 ≥ a2 ≥ · · · ≥ ar; the number of these vectors is S(n). We
shall map these vectors into different n-subgraphs of GN . Given GN

and an r-vector a = {a1, . . . , ar}, let A(a) denote the graph spanned
by the vertices {u1, . . . , ur} ∪ V ′

1 ∪ . . . ∪ V ′
r in GN , where V ′

i ⊂ Vi and
|V ′

i | = ai − 1 for every 1 ≤ i ≤ r. Our case analysis consists of two
steps: first we prove that in this way we generate at least S(n)−O(n)
different n-graphs, and then we find some additional graphs. Unfortu-
nately, no global argument seems to be available, so we have to check
the six cases separately.

(i) This case is shown in Figure 1 (i). It is clear that in this case P
contains T .

(ii) This case is shown in Figure 1 (ii). Let a be an r-vector. We claim
that every vector a can be reconstructed from the graph A = A(a). As
the largest independent set of A contains r vertices, A determines r.
Furthermore, there is a unique clique cover of A consisting of r cliques,
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with order sequence a, which determines uniquely a.
To obtain one more n-subgraph of GN in order to show that |Pn| >
S(n), consider the graph spanned by {u1}∪V ′

1∪V ′
2 , where V ′

1 ⊂ V1, V
′
2 ⊂

V2 with |V ′
1 | = 10, |V ′

2 | = n − 11.

(iii) This case is shown in Figure 1 (iii). Now we claim that for r ≥ 2
every vector a = (ai)

r
1 is determined by the graph A = A(a). If A

contains a maximal complete subgraph of order at least 3, then this
order is r, the complete subgraph spanned by {u1, . . . , ur}, and so a is
determined. If r = 2, a vertex of maximal degree could be chosen as
u1 (unique up to isomorphism), and if there is another vertex of degree
at least 2, then that is u2. If there is no such vertex, then A is a star,
and a = (n − 1, 1) or (n).
In this way we already have S(n) − 1 different n-subgraphs of GN ; we
shall find at least two more (in fact, ⌈n/3⌉ − 10) graphs.
For 10 ≤ i ≤ n/3 let V ′

1 ⊂ V1, V
′
2 ⊂ V2, V

′
3 ⊂ V3, with |V ′

1 | =
i, |V ′

2 | = n − i − 12, and |V ′
3 | = 10. Consider the graph Hi spanned by

{u1, u2} ∪ V ′
1 ∪ V ′

2 ∪ V ′
3 . These graphs Hi are different from any graph

A(a) for any a as they contain 10 isolated vertices (and A(a) has none).
Furthermore the graphs Hi are clearly different from each other.

(iv) This case is shown in Figure 1 (iv). Call a vector a = 〈ai〉r1 good,
if r ≥ 3, the second largest coordinate is at least 2 and the largest
coordinate is at least 3. We claim that the graphs A(a), where a is
a good vector, are all different. To prove this, from a graph A(a) we
shall reconstruct the good vector a that defines it. First, observe that if
x ∈ V ′

1 and y ∈ V ′
2 then the set {u1, u2, x, y} spans a 4-cycle in A. This

implies that A has a unique covering by two cliques, which determines
r, and so the vector a is determined, proving the claim.
The number of good vectors is at least S(n)−3n; hence, it is sufficient
to find 3n more n-subgraphs of GN .
For 10 ≤ i ≤ n/6+11 < j ≤ n/3+12, select sets V ′

1 ⊂ V1, V
′
2 ⊂ V2, V

′
3 ⊂

V3, V
′
4 ⊂ V4 with |V ′

1 | = i, |V ′
2 | = j, |V ′

3 | = n − i − j − 13 and |V ′
4 | = 10.

Consider the graphs Hi,j spanned by {u1, u2, u3} ∪ V ′
1 ∪ V ′

2 ∪ V ′
3 ∪ V ′

4 .
As for every i, j, the graph Hi,j has a unique covering with two cliques,
where the smallest clique of order 3 consists of {u1, u2, u3}, and the
largest clique contains vertices not joined to the smaller cliques, the
graphs Hi,j are different from A(a). It is clear that the graphs Hi,j’s
are different from each other, giving at least n2/36 new n-subgraphs of
GN .
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. . . . . . . . .. . . .... . .

(i) (ii)

. . . . . .

Figure 3. The two Cases of A.3

A.3. Here we have two possibilities, case (i) in Figure 3 when both
U = {u2, . . . , ut} and V2 ∪ . . . ∪ Vt span independent sets, and case
(ii) in Figure 3 when U = {u2, . . . , ut} spans a complete graph, and
V2 ∪ . . . ∪ Vt spans an independent set.

Our strategy is similar to the ones we applied in cases of A.1., but
there are significant differences in the details. One is that u1 is not in-
cluded (in order to use the “complementary pairs”), and V1 is omitted
for technical reasons. Another difference is that we shall use a different
set of vectors. Here we consider vectors a = 〈a2, . . . , ar〉 with integer
coordinates, such that r ≥ 3, a2 + . . . + ar = n, a2 ≥ 2 and ar ≥ 3.
The number of these vectors is larger than S(n) (for n > 100), as here
the coordinates are ordered.
Let A denote the graph spanned by {u2, . . . , ur} ∪ V ′

2 ∪ . . . ∪ V ′
r where

V ′
i ⊂ Vi for every 2 ≤ i ≤ r.

Again, we claim that a graph A = A(a) determines the vector a. We
shall check this in both cases.

Case (i) of Figure 3. As |V ′
r | ≥ 2, for every i, 2 ≤ i ≤ r, the vertex

ui has degree at least 2 in the graph A. Every vertex v ∈ V ′
3 ∪ . . .∪ V ′

r

is joined to u2 and u3, hence V ′
2 is the non-empty set of vertices of

degree 1. The vertices in V ′
2 have one common neighbor, u2. Clearly,

u2 is joined to all vertices, but those in {u3, . . . , ur}, so we can find this
set. Knowing the set {u3, . . . , ur}, the labelling of the vertices can be
determined up to isomorphism, since d(ui) < d(uj) implies i < j, and
d(ui) = d(uj) implies that Γ(ui) = Γ(uj). We can obtain the partition
of the rest the vertices from the fact that the set of vertices of degree
i − 1 is V ′

i . This proves the claim.

Case (ii) of Figure 3. As r ≥ 3 and |V ′
r | ≥ 2, the non-empty set of

vertices of degree 1 is V ′
2 . The vertices in V ′

2 have one common neigh-
bor, u2. In the graph A−{u2}−V ′

2 , one of the vertices which are joined
to every other is u3, and as these vertices are interchangeable, it does
not matter which one is chosen as u3. The set of vertices joined only
to u3 is V ′

3 (note that if we had more than one choice for u3 then this
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set would be empty). Proceeding in this way, we can find all ui and V ′
i

(up to isomorphism). Hence the vector a is indeed determined by the
graph A.
This proves Theorem 1 (ii) provided case A holds for P.

Case B. To complete our proof, by Section 5 and Theorem 19 of [6],
we may assume that P has the following property: there is an integer
k (depending only on P) such that for every integer N > 50k2, there
is a graph GN ∈ PN whose edge set is the symmetric difference of a
Hamiltonian path PN and a homogeneous t-part graph H t with t ≤ k,
and each class of H t is of order of at least 50k.

In what follows, when we talk about a homogeneous t-part graph, we
always assume that t is minimal, i.e., the graph is not a homogeneous
(t − 1)-part graph.

The strategy that we shall use is the same as in Case A. Let n ≥
100k2 be an integer. We shall show that for N large enough, the graph
GN has at least S(n) different n-subgraphs.

First, observe that if t = 1 then GN is either a path PN or its
complement. In the first case Pn contains all the path forests of order of
n, in the second case every graph of order of n which is the complement
of a path forest. In both cases, |Pn| ≥ S(n).

Hence, we may assume that t ≥ 2. Let PN be a Hamiltonian path
and H t

N a homogeneous t-part graph with vertex classes V1, . . . , Vt such
that E(GN) = E(PN)∆E(H t

N ).
Let Gn be a subgraph of GN . We say that a path forest Fn and a

homogeneous s-part graph Dn (each of order n) cover Gn if E(Gn) =
E(Fn)∆E(Dn). For every n-subgraph Gn of GN there is a pair (Fn, Dn)
covering it, as V (Gn) spans a path forest in PN and a homogeneous
s-part graph in H t (with some s ≤ t).

Lemma 3. Let GN , PN , H t and V1, . . . , Vt be as above. Let Gn be a
subgraph of GN such that, for each i, 1 ≤ i ≤ k, |V (Gn) ∩ Vi| is
either 0 or at least 12. Then there is exactly one choice for a pair
(Fn, Dn) covering Gn, with Dn satisfying U1, . . . , Us are the maximal
homogeneous classes of Dn then |Ui| ≥ 12 for every i.

Proof. Let (Fn, Dn) be a cover of Gn so that E(Gn) = E(Fn)∆E(Dn),
and let U1, . . . , Us be the maximal homogeneous classes of Dn.
If u, v ∈ V (Gn)∩Ui for some 1 ≤ i ≤ s then |ΓGn

(u)∆ΓGn
(v)| ≤ 3 + 3.

If u ∈ V (Gn) ∩ Ui and v ∈ V (Gn) ∩ Uj for some 1 ≤ i < j ≤ s then
|ΓGn

(u)∆ΓGn
(v)| ≥ 12 − 2 − 3 = 7.

This implies the uniqueness of Dn and for a given Gn and Dn, the
path forest Fn is unique as well. �
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Let Gn be an n-subgraph with a unique cover (Fn, Dn). Let Sn

be the set of decreasing vectors with at least 12k coordinates. Thus
a = 〈ai〉r1 ∈ Sn if r ≥ 12k and a1 ≥ a2 ≥ . . . ≥ ar ≥ 1 (and a1 +
. . . + ar = n). Clearly, |Sn| > S(n) − n12k. We claim that for each
a ∈ Sn there is an n-subgraph Gn of GN such that |V (Gn) ∩ Vi| ≥ 12
for every i, 1 ≤ i ≤ t ≤ k, and the component order sequence of
the path forest spanned by V (Gn) in PN is the vector a. This is an
immediate consequence of Lemma 9 of [6] and is also easily shown
directly (the starting point of each of the ≥ 12k components can be
chosen arbitrarily). Consequently, by Lemma 3, the sequences in Sn

give us |Sn| > S(n)−n12k non-isomorphic induced n-subgraphs of GN .
To complete the proof of Theorem 1 in case B, we need to find n12k

more n-subgraphs.
We shall construct many n-subgraphs Gn of GN such that |V (Gn)∩

Vi| ≥ 12 for every 1 ≤ i ≤ t, and in the unique (Fn, Dn)-covering of
Gn the order sequence of the components of Fn is the vector a, given
below. First observe that if there is a class Vi of GN which contains a
2n-subpath of PN then T n ⊂ Pn or T n ⊂ Pn. Hence we may assume
that there is a class, say V1, where PN enters at least N/(2nk) times.

Now we can start to build a graph Gn. To this end, set r = ⌊
√

n
2
⌋

and a = 〈1, 20, 21, . . . , r + 17, n − (r + 17) − (r + 16) − . . . − 20 − 1〉
(thus a has r coordinates). The component orders 20, 21, . . . , 19 + 12k
are used to make sure that |V (Gn) ∩ Vi| ≥ 12 for every 1 ≤ i ≤ t, just
as earlier. This will guarantee the uniqueness of the (Fn, Dn)-covering
of Gn. Choose a vertex from V1 as a component of order 1 of Fn: this
makes the class V1 to be distinguishable from the others. The following
observation helps us to construct many different n-subgraphs.

Fix an even integer i where 20+12k ≤ i ≤ r/2. We claim that there
are at least 2 different ways to choose subpaths of orders i and 2i− 1.
Let us start a subpath of PN from V1. If the ith vertex of a subpath
is in V1 then there are (at least) two different ways to construct the
subpath of order i, because if we started the path outside of V1, then we
obtain an i-path with different type. Otherwise, we may assume that
every i-subpath of PN has exactly one endvertex in V1. In that case
the (2i−1)st vertex must be in V1, and then there is a (2i−1)-subpath
with both ends in V1. As there is a (2i − 1)-subpath with (at least)
one endvertex outside V1, there are two different ways to choose the
subpath of order 2i − 1.

As we have (at least) two choices for the pair of paths (Pi, P2i−1), for
every even i between 20+12k and r/2, the number of ways of choosing
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Gn is at least 2r/4−(20+6k) which is much larger than n12k for n large
enough.

This proves that either T n ⊂ Pn or T n ⊂ Pn or S(n) < |Pn|.
If for infinitely many integers n we have T n ⊂ Pn then, as P is

a hereditary property, this is true for every n. Furthermore, if for
infinitely many integers n we have S(n) < |Pn|, then this holds for
every (large) n. This implies that if S(n) = |Pn| infinitely often, then
for every n large enough S(n) = |Pn|. Otherwise, we have S(n) < |Pn|
for every large n. This completes the proof of part B. �

4. Remarks

4.1. Lower order behavior. In the first possibility given by Theorem
1, we have that |Pn| = cnk + O(nk−1) for some nonnegative integer k
and positive c. With a more careful counting, it is possible to describe
the lower order behavior more precisely. A function f defined on the set
of natural numbers is a periodic polynomial of degree at most d provided
that there is a positive integer t and polynomials p0, p1, . . . , pt−1, each
of degree at most d, such that for each j ∈ {0, . . . , t− 1}, f(n) = pj(n)
for all n ≡ j mod t. Then the first part of Theorem 1 can be refined to
say that |Pn| = cnk + f(n) + g(n) where f(n) is a periodic polynomial
of degree at most k − 1 and g(n) 6= 0 for only finitely many n.

The proof of this result is rather involved. One needs a refinement of
Theorem C which allows one to write P as a disjoint union of a finite
number of structured classes of graphs. For each of these classes, each
graph in the set is describable by a multiset on a particular ground set
associated to the class. A multiset is admissible (for this class) if it
corresponds to a graph in the class. The properties of each class ensure
that (1) the set of admissible multisets is order convex, i.e. if a, b, c are
multisets on the ground set and a ≤ b ≤ c (where ≤ is the product
order) and a, c are admissible then so is b and (2) there is a group action
on the ground set, such that two admissible multisets correspond to
isomorphic graphs if and only if they are equivalent under the group
action. It follows that counting the number of distinct isomorphism
types of graphs in the class is equivalent to counting the number of
equivalence classes of multisets under a given group action, in a given
order convex subset of multisets. Using standard counting arguments
(generating functions, Pólya counting, and inclusion-exclusion) one can
show that the number of such equivalence classes of multisets is given by
a periodic polynomial for all sufficiently large n. The desired result then
follows by summing over all of the structured classes in the partition
of P.
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4.2. Oscillation. There are hereditary properties of graphs whose la-
belled speeds oscillate: such oscillation was studied in [4] and [5]. This
phenomenon can arise in other combinatorial structures as well. A
fundamental example of a hereditary graph property whose unlabelled
speed oscillates is the following.
Fix a positive integer t > 3. Let us build a monotone property P si-
multaneously with a sequence n1 = 1 < n2 < . . . as follows. Having
constructed ni−1, i ≥ 1, if n is large enough, there is a graph of order
n, girth at least ni−1 + 1, and size e = ⌊n1+1/(2ni−1)⌋ [7, pp 233]. Fur-
thermore, this n can be chosen to satisfy 2e/(n!) > ntn; choose such
an n for ni. For n = ni, let Pn consist of all graphs of girth at least
ni−1 + 1. Our choice of ni implies that |Pni

| ≥ 2e/(n!) ≥ ntni

i . For
ni < n < ni+1, let Pn consist of all subgraphs of Pni+1

. Note that
P = ∪∞

n=1Pn is a monotone property. Also, Pni+1 consists of all forests
and the cycle Cni+1, so |Pni+1| < 3ni if ni is large enough. (Otter [10]
proved that the number of unlabelled trees of order n is approximately
0.4399237(2.95576)n/n3/2.) Consequently |Pn| is less than 3n infinitely
often, and greater than ntn infinitely often.

4.3. High Range. Trivially, the maximum labelled speed of a graph

property is 2(n

2); accordingly, we say that the labelled speed of a graph
property is in the high range if it is at least 2cn2

for some c > 0. Defining

cn by |Pn| = 2cn(n

2), it is shown in [1] and [8], that c = limn→∞ cn exists.

This result says very little about a property with |Pn| = 2o(n2). In [9] it
is proved that the set of limit points c = limn→∞ cn is {0, 1/2} ∪ {(1−
1/t)/2 : t ∈ N}. Since |Pn| = 2(cn+o(1))(n

2), we have the same results for
the unlabelled speed.
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