
Bipartite subgraphs of triangle-free subcubic graphs

Xuding Zhu ∗

Abstract

Suppose G is a graph with n vertices and m edges. Let n′ be the maximum number of
vertices in an induced bipartite subgraph of G and let m′ be the maximum number of edges
in a spanning bipartite subgraph of G. Then b(G) = m′/m is called the bipartite density
of G, and b∗(G) = n′/n is called the bipartite ratio of G. This paper proves that every 2-
connected triangle-free subcubic graph, apart from seven exceptions, has b(G) ≥ 17/21. Every
2-connected triangle-free subcubic graph other than the Petersen graph and the dodecahedron
has b∗(G) ≥ 5/7. The bounds that b∗(G) ≥ 5/7 and b(G) ≥ 17/21 are tight in the sense that
there are infinitely many 2-connected triangle-free cubic graphs G for which b(G) = 17/21
and b∗(G) = 5/7. On the other hand, if G is not cubic (i.e., G have vertices of degree at most
2), then the strict inequalities b∗(G) > 5/7 and b(G) > 17/21 hold, with a few exceptions.
Nevertheless, the bounds are still sharp in the sense that for any ε > 0, there are infinitely
many 2-connected subcubic graphs G with minimum degree 2 such that b∗(G) < 5/7 + ε
and b(G) < 17/21 + ε. The bound that b(G) ≥ 17/21 is a common improvement of an
earlier result of Bondy and Locke and a recent result of Xu and Yu: Bondy and Locke proved
that every triangle-free cubic graph other than the Petersen graph and the dodecahedron has
b(G) > 4/5. Xu and Yu confirmed a conjecture of Bondy and Locke and proved that every 2-
connected triangle free subcubic graph with minimum degree 2 apart from five exceptions has
b(G) > 4/5. The bound b∗(G) ≥ 5/7 is a strengthening of a well-known result (first proved by
Fajtlowicz and by Staton, and with a few new proofs found later) which says that any triangle-
free subcubic graph G has independence ratio at least 5/14. The proofs imply a linear time
algorithm that finds an induced bipartite subgraph H of G with |V (H)|/|V (G)| ≥ 5/7 and a
spanning bipartite subgraph H ′ of G with |E(H ′)|/|E(G)| ≥ 17/21.
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1 Introduction

The problem of determining the maximum number of edges contained in a spanning bipartite
subgraph of a given graph G is called the Max-Cut problem. It has applications in VLSI, and
has been studied extensively in the literature. Given a graph G and an integer m, the problem
to determine if G has a bipartite subgraph H with m edges is NP-complete even when restricted
to triangle-free cubic graphs [16]. A natural question is to find lower bounds for the number of
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edges in a maximum bipartite subgraph of G. The bipartite density b(G) of G is defined as

b(G) = max{|E(B)|/|E(G)| : B is a bipartite subgraph of G}.
Erdős [4] proved that if G is 2m-colourable then b(G) ≥ m

2m−1 . Staton [13] and Locke [11] proved
that if G is cubic and G 6= K4, then b(G) ≥ 7

9 . Hopkins and Staton [9] proved that if G is cubic
and triangle-free then b(G) ≥ 4

5 . Bondy and Locke [3] give a polynomial time algorithm that, for
a given triangle-free cubic graph G, finds a bipartite subgraph H of G with at least 4|E(G)|/5
edges. They further proved the following result.

Theorem 1.1 [3] If G is a triangle-free cubic graph, then the strict inequality b(G) > 4
5 holds,

provided that G is not the Petersen graph and not the dodecahedron.

Figure 1: The dodecahedron and the Petersen graph.

A graph G is called subcubic if the maximum degree of G is at most 3. The inequality
b(G) ≥ 4

5 applies to subcubic graphs as well. However, there are triangle-free subcubic graphs
other than the Petersen graph and the dodecahedron for which the strict inequality b(G) > 4

5
does not hold. Graphs F1, F2, F3, F4, F5 in Figure 2 were found by Bondy and Locke. They all
have bipartite density 4

5 . Bondy and Locke [3] conjectured that these five graphs are the only
exceptions. Namely, they conjectured that if G is a triangle-free subcubic graph, then b(G) > 4

5 ,
provided that G is not the Petersen graph, not the dodecahedron, and G 6= Fi for i = 1, 2, 3, 4, 5.
Since Bondy and Locke have settled the case for cubic graphs, to prove this conjecture, it suffices
to show it is true for connected triangle-free subcubic graphs with minimum degree 2. Xu and
Yu [15] have recently settled the conjecture by proving the following result.

Theorem 1.2 [15] If G is a connected triangle-free subcubic graph with minimum degree 2.
Then b(G) > 4

5 , provided that G /∈ {Fi : 1 ≤ i ≤ 5}.

A simple proof of Theorem 1.2 is given in [17].

In this paper, we present a common improvement of Theorem 1.1 and Theorem 1.2. We may
restrict ourselves to 2-connected subcubic graphs, for otherwise, G has an cut-edge e. If G1, G2

are the two components of G− e, then a maximum spanning bipartite subgraph of G is obtained
from the union of maximum spanning bipartite subgraphs of G1 and G2 by adding the edge e.

Theorem 1.3 Suppose G is a 2-connected triangle-free subcubic graph. Then b(G) ≥ 17
21 , provided

that G is not the Petersen graph, not the dodecahedron and G 6= Fi for some 1 ≤ i ≤ 5. Moreover,
if G has minimum degree 2, then b(G) is strictly larger than 17

21 , provided that G 6= Fi for i =
1, 2, 3, 4, 5, 8, where F8 is depicted in Figure 4.
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Figure 2: Triangle-free subcubic graphs with bipartite density 4/5.

For a positive integer k, let αk(G) denote the maximum number of vertices contained in an
induced k-colourable subgraph of G. The parameter α1(G) is called the independence number of
G (and is usually denoted by α(G)). The ratio i(G) = α1(G)/|V (G)| is called the independence
ratio of G. The independence ratio of triangle-free subcubic graphs G has attracted considerable
attention. By Brooks’ Theorem, G is 3-colourable, and hence i(G) ≥ 1/3. Albertson, Bollobás
and Tucker [1] proved that i(G) is strictly larger than 1/3. Fajtlowicz [5] and Staton [14] proved
that i(G) ≥ 5/14. This bound is sharp as the generalized Petersen graph P (7, 2) has 14 vertices
and independence number 5. A shorter proof of the result was found by Jones [10]. Griggs
and Murphy [6] designed a linear-time algorithm to find an independent set in G of size at least
5(|V (G)| − k)/14, where k is the number of components of G that are 3-regular. Heckman
and Thomas [8] gave an even shorter proof of the inequality i(G) ≥ 5/14 and gave a linear-
time algorithm to find an independent set in G of size 5|V (G)|/14. Heckman and Thomas [8]
conjectured that G has fractional chromatic number at most 14/5. In other words, the conjecture
says that there is a multi-set K of independent sets of G of average size at least 5|V (G)|/14 that
evenly covers the vertices of G (i.e., each vertex is contained in the same number of independent
sets in K). The conjecture is open, and the best known result in this direction is that G has
fractional chromatic number at most 3− 3

64 , which was proved by Hatami and Zhu [7].

We define the bipartite ratio b∗(G) of G as

b∗(G) = α2(G)/|V (G)|.

In this paper, we are interested in lower bounds for b∗(G) for triangle-free subcubic graphs G. It
is obvious that for any graph G, b∗(G) ≤ 2i(G). We shall prove the following result.

Theorem 1.4 If G is a 2-connected triangle-free subcubic graph, then b∗(G) ≥ 5/7, provided that
G is not the Petersen graph and not the dodecahedron. Moreover, if G has minimum degree 2,
then b∗(G) is strictly larger than 5/7, provided that G 6= F5.

The bound is sharp in the sense that there are infinitely many triangle-free 2-connected cubic
graphs G with b∗(G) = 5/7.
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The proofs in this paper imply a linear time algorithm that finds, for any triangle-free
subcubic graph G other than the few exceptions, an induced bipartite subgraph H of G with
|V (H)|/|V (G)| ≥ 5/7, and a spanning bipartite subgraph H of G with |E(H)|/|E(G)| ≥ 17/21.

2 A technical result

Both Theorem 1.3 and Theorem 1.4 are consequences of a more technical result. Suppose G is a
triangle-free subcubic graph and H is a maximum induced bipartite subgraph of G. Intuitively,
the more vertices G has, the more vertices H has. However, the contribution of each vertex of
G to the number of vertices of H is different. A vertex x of degree i is called an i-vertex. It is
obvious that each 0-vertex and each 1-vertex of G contributes 1 vertex to H (if x is a 0-vertex
or a 1-vertex of G, then we must have x ∈ V (H) and H − x is a maximum induced bipartite
subgraph of G−x). It turns out that in general, each 2-vertex of G contributes at least 6

7 vertices
to H and each 3-vertex of G contributes at least 5

7 vertices to H. Let ni(G) (abbreviated as ni

if the graph G is clear from the context) be the number of i-vertices of G. Let

σ(G) = (5n3 + 6n2 + 7n1 + 7n0)/7.

Our main result in this paper says that in general, α2(G) ≥ σ(G). However, this general rule has
a few exceptions. An error term needs to be added to the inequality α2(G) ≥ σ(G). Here is our
technical result:

Theorem 2.1 If G is a triangle-free subcubic graph and each connected component of G has a
vertex of degree at most 2, then α2(G) ≥ σ(G) + ε(G).

The parameter ε(G) is the error term, which we have not defined yet. To define this error
term, we need to construct a few families of graphs.

First of all, let
G1 = {Fi : 1 ≤ i ≤ 5}.

Starting from G1, we construct three other classes of graphs through some graph operations.
Figure 3 below defines eleven graph operations.

In the figures, an unfilled circle indicates a vertex of G of degree at most 2. A filled circle
indicates an arbitrary vertex of G. The filled squares are added vertices. A broken line is a
deleted edge of G. A solid line indicates an edge. A solid line with two backslashes on it indicates
that it is a non-edge (i.e., the two vertices at the end of this line are not adjacent). Those solid
lines incident to added vertices are added edges, and the other solid lines are original edges of G.
All the edges incident to added vertices are shown in the figures. However, for original vertices
of G, not all edges incident to them are shown in the figures.

For example, G ◦1 (x, y, z) is obtained from G by adding vertices a, b, c and adding edges
ax, ab, bz, bc, cy, where x, y, z have degree at most 2 in G. It is possible that there are some edges
connecting vertices x, y, z. The graph G ◦2 (u, v, x, y) is obtained from G by adding vertices a, b, c
and edges au, ab, av, bx, bc, cy and deleting the edge xy, where u, v are two nonadjacent 2-vertices
of G. It is possible that there are edges between {x, y} and {u, v}. On the other hand, xy must
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Figure 3: The graph operations ◦i for i = 1, 2, · · · , 11.

be an edge of G and it is deleted in the operation. In G ◦5 (u, v, x, y), ux, yv are edges of G. For
i = 1, 2, · · · , 11, we shall denote by G◦i any graph obtained from G by applying the operation ◦i.

For a graph G, B(G) denotes the family of all maximum induced bipartite subgraphs of G.
Let d1 = d2 = d10 = 2, d6 = d7 = 3, d3 = d4 = d8 = d9 = d11 = 4, d5 = 5.

Lemma 2.2 If G′ is a triangle-free subcubic graph and G = G′◦i for some i ∈ {1, 2, · · · , 11},
then G is a triangle-free subcubic graph and α2(G) ≥ α2(G′) + di.

Proof. It follows from the definition that the graphs G are triangle-free subcubic. If G = G′◦i

and H ∈ B(G′) then it is easy to verify that H +Ai is an induced bipartite subgraph of G, where
A1 = {a, c}, A2 = {a, c}, A3 = {b, c, d, s}, A4 = {s, a, b, c}, A5 = {a, c, d, t, w}, A6 = {a, c, d}, A7 =
{a, c, d}, A8 = {a, b, c, d}, A9 = {a, b, c, d}, A10 = {a, b}, A11 = {a, b, c, d} (refer to Figure 3). As
|Ai| = di, we conclude that α2(G) ≥ α2(G′) + di.

If G = G′◦i and α2(G) = α2(G′)+di, then we write G = G′◦∗i . For example, G = G′◦∗1 means
that G = G′ ◦1 (x, y, z) for some 2-vertices x, y, z of G′ and α2(G) = α2(G′) + 2, and G = G′◦∗5
means that G = G′ ◦5 (u, v, x, y) for some vertices u, v, x, y of G′ and α2(G) = α2(G′) + 5.

Definition 2.3 The graph class G2 is defined recursively as follows:
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• If G′ ∈ G1, i ∈ {5, 6, 7} and G = G′◦∗i , then G ∈ G2.

• If G′ ∈ G2, i ∈ {1, 2, 3, 4} and G = G′◦∗i , then G ∈ G2.

Definition 2.4 The graph class G3 is defined recursively as follows:

• If G′ ∈ G1, i ∈ {8, 9, 10, 11} and G = G′◦∗i , then G ∈ G3.

• If G′ ∈ G2, i ∈ {5, 6, 7} and G = G′◦∗i , then G ∈ G3.

• If G′ ∈ G3, i ∈ {1, 2, 3, 4} and G = G′◦∗i , then G ∈ G3.

Each of the classes G2,G3 is finite. To see this, it suffices to observe that the graph operations
◦1, ◦2, ◦3, ◦4 cannot be applied repeatedly infinitely many times. This is so because if G = G′◦i

for some i ∈ {1, 2, 3, 4}, then n2(G) ≤ n2(G′)− 1. It is easy to show that n2(G′) ≤ 5 for G′ ∈ G2

and n2(G′) ≤ 7 for G′ ∈ G3. Hence G2 and G3 are finite.

Indeed, the graphs in Gi (i = 1, 2, 3) have very nice structure. It can be verified easily that G2

contains only four graphs shown in Figure 4.

FF F F6 7 8 9

Figure 4: The graphs Fi for 6 ≤ i ≤ 9.

The class G3 is larger. It contains 61 graphs. This class of graphs can also be constructed
manually. For a plane graph G, let F (G) be the set of faces of G. For each face f ∈ F (G),
the degree d(f) of f is the number of edges on its boundary. Let P be the set of 2-connected
triangle-free subcubic plane graphs G with minimum degree 2. The computer verification shows
that the following hold (this result is not needed for the proof of the other results in this paper).

G1 = {G ∈ P : ∀f ∈ F (G), d(f) = 5},
G2 = {G ∈ P : ∀f ∈ F (G), d(f) = 5, except that one face f has d(f) = 7},
G3 ⊆ {G ∈ P : ∀f ∈ F (G), d(f) = 5, except that one face f has d(f) = 9,

or two faces f1, f2 have d(f1) = d(f2) = 7}.

Let

Q = {G ∈ P : ∀f ∈ F (G), d(f) = 5, except that one face f has d(f) = 9,
or two faces f1, f2 have d(f1) = d(f2) = 7}.

A few graphs in Q are not contained in G3. These graphs belong to the next class which we
construct now.
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Definition 2.5 Suppose G0, G1, · · · , Gk−1 ∈ G1, where k ≥ 1. For 0 ≤ i ≤ k − 1, let ai, bi be
two distinct 2-vertices of Gi. We denote by C({(Gi, ai, bi) : 0 ≤ i ≤ k − 1}) the graph obtained
from the disjoint union G0, G1, · · · , Gk−1 by adding edges biai+1 for i = 1, 2, · · · , k (summation
in indices is modulo k). The graph G = C({(Gi, ai, bi) : 0 ≤ i ≤ k− 1}) is called an F -cycle. The
graphs G1, G2, · · · , Gk are called the F -subgraphs of G, and the vertices ai, bi are called the join
vertices of G. The edges biai+1 are called the join edges of G.

Figure 5: Two F -cycles.

Let D be the graph obtained from the dodecahedron by subdividing one edge into a path of
length 3. Let F be the family of F -cycles. The family of F -cycles is an infinite family and its
members are not always planar graphs. Note that if k = 1, then the F -cycle C(G0) is obtained
from G0 by adding one edge connecting two distinct 2-vertices of G0. Figure 5 above shows two
examples of F -cycles. The second one belong to Q.

Let

G′2 = G2 ∪ {K1},
G′3 = G3 ∪ F ∪ {D}.

Suppose G is a triangle-free subcubic graph. Let G′ be obtained from G by deleting all cut-
edges of G. Each connected component of G′ is called a piece of G. So each piece of G is either
a block of G containing a cycle (and hence has at least 4 vertices) or a single vertex. If P is a
piece of G and x is a cut vertex of G contained in P , then x is called a join vertex of P .

Suppose P is a piece of G. Let

ε(P ) =





−2/7, if P ∈ G1,

−1/7, if P ∈ G′2,
0, if P ∈ G′3,
1/7, otherwise.

Let β(G) be the number of cut-edges of G. Now we are ready to define the error term ε(G):

ε(G) = (2β(G) + n0(G))/7 +
∑

ε(P ),

where the summation is taken over all the pieces P of G.
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To get an intuition of the error term, we may assume G is connected (otherwise, the error
term is just the summation of the error terms of whose connected components). If all the pieces
of G are graphs from G1, then ε(G) = −2/7, i.e., there is a deficit of 2/7. If all the pieces of G
are graphs from G1, except that one piece is a graph from G′2, then there is a deficit of 1/7. If all
the pieces of G are graphs from G1, except that one piece is a graph from G′3 or two pieces are
graphs from G′2, then there is no deficit and also no surplus. For all other graphs G, there is a
surplus of 1/7.

The reason that we need this surplus is that Theorem 2.1 applies only to those subcubic
graphs each of its connected components has a vertex of degree at most 2. It does not apply to
cubic graphs. To get the required results for cubic graphs, we shall consider subgraphs of cubic
graphs. For that purpose, we need this surplus. Indeed, a lot of efforts is made to get this surplus.
If we do not need this surplus, then we do not need to have the graph class G′3, and the proofs
will be easier. But then the conclusion applies only to connected subcubic graphs with minimum
degree at most 2.

3 Some preliminary lemmas

The proof of Theorem 2.1 is non-trivial. In this section, we list a few lemmas that will be needed
in its proof.

Suppose H is an induced subgraph of G and X is a subset of V (G). Then H + X and H −X
denote the subgraph of G induced by V (H) ∪X and V (H)−X, respectively. If H1,H2 are two
induced subgraphs of G, then H1 + H2 denotes the subgraph of G induced by V (H1) ∪ V (H2).

The following observation is trivial.

Observation 3.1 If G1, G2, · · · , Gk are the pieces of G and Hj ∈ B(Gj), then H1+H2+· · ·+Hk ∈
B(G). Moreover, every H ∈ B(G) is of this form. Assume G is an F -cycle, and G1, G2, · · · , Gk

are the F -subgraphs of G, and Hi ∈ B(Gi) for i = 1, 2, · · · , k. Let H = H1 + H2 + · · · + Hk. If
some join vertex of G is not contained in H, then H ∈ B(G).

Lemma 3.2 Suppose G ∈ G1 ∪ G2 ∪ G3 and e is an edge of G. Then α2(G− e) = α2(G) + 1. As
a consequence, for any G ∈ G1 ∪ G2 ∪ G3 ∪ F , for any vertex w of G, there is an H ∈ B(G) such
that w /∈ V (H).

Proof. If G ∈ G1, this can be verified directly. Suppose the lemma is true for G′ and G = G′◦∗i for
some 1 ≤ i ≤ 11. Let e be an edge of G. We shall show that α2(G− e) = α2(G)+1. It is obvious
that α2(G− e) ≤ α2(G) + 1. In the following, we shall show that α2(G− e) ≥ α2(G) + 1. If e is
an edge of G′, then α2(G′− e) = α2(G′)+1. Let H ∈ B(G′− e). Then H +Ai induces a bipartite
subgraph of G− e. Hence α2(G− e) ≥ α2(G′ − e) + di = α2(G) + 1. It remains to consider the
case that e is one of the added edges. We need to check separately for each i ∈ {1, 2, · · · , 11}
and for each of the added edges. There are many cases to check, but each of the checks is easy.
We shall consider two cases to show how the induction hypothesis is used in the proof. Consider
the case that i = 1. Without loss of generality, we may assume that e ∈ {ax, ab}. By induction

8



hypothesis, there exists H ∈ B(G′) be a such that y /∈ V (H). Then H + {a, b, c} induces a
bipartite subgraph of G. Hence α2(G − e) = α2(G′) + 3 = α2(G) + 1. As another example,
consider the case that i = 5. Let e′ = xy. By induction hypothesis, α2(G′− e′) = α2(G′)+1. Let
H ∈ B(G′−e′). If e = wd, then H +{w, d, c, t, a} induces a bipartite subgraph of G−e. If e = dc,
then H + {b, c, d, t, s} induces a bipartite subgraph of G − e. If e = ct, then H + {w, s, t, c, b}
induces a bipartite subgraph of G − e. If e = ab, then H + {a, b, s, t, d} induces a bipartite
subgraph of G− e. In any case, α2(G− e) ≥ α2(G′ − e) + 5 = α2(G′) + 6 = α2(G) + 1.

The conclusion for graphs in F follows from Observation 3.1 and the fact that the conclusion
holds for its F -subgraphs.

An end-piece of G is a piece incident to at most one cut-edge. A pseudo end-piece is either an
end-piece or the union of an end piece P with a neighbouring piece P ′ (i.e., P ′ is connected to P
by a cut-edge of G) so that P ∪ P ′ is incident to at most one other cut-edge. If P is a pseudo
end-piece and G has a cut edge e which has exactly one end vertex in P , then that end vertex is
referred to as the join vertex of P .

Lemma 3.3 Suppose G is a 2-connected triangle-free subcubic graph G and G′ = (G−X) + xy,
where X ⊆ V (G) and x, y ∈ V (G) − X. If NG(X) − X ⊆ {u, v, x, y} (NG(X) is the set of
neighbours of X), then at least one of the following holds:

1. Each of u, v is contained in a distinct end-piece of G′.

2. At least one of u, v is contained in an end-piece, and x, y are contained in the same pseudo
end-piece of G′.

Proof. If G′ is 2-connected, then there is only one piece, so x, y are in the same pseudo end-piece
of G′. Otherwise, G′ has at least two distinct end pieces. As G is 2-connected, each end-piece of
G′ contains at least one vertex from the set {u, v, x, y}. If each of u, v is contained in a distinct
end-piece of G′, then we are done. Assume u, v do not belong to distinct end-pieces. Then at
least one of x, y is in an end-piece. If x, y are in the same end-piece, we are done. Otherwise, say
y is in an end-piece P and x is not, then e = xy is the only cut-edge of G′ incident to P . Let P ′

be the piece containing x. If the union P ∪ P ′ is incident to more than one cut-edge of G′, then
G′ has at least two more end-pieces. This is a contradiction, as each other end-piece of G′ must
contain u or v. Therefore P ∪ P ′ is incident to at most one cut-edge of G′, and hence P ∪ P ′ is
a pseudo end-piece. If P ∪ P ′ = G′, then u, v are contained in end-pieces. Otherwise, there is
another end-piece, which contains at least one of u, v.

Suppose H is a bipartite subgraph of G. For two subsets X, Y of G, we write X ./H Y if
X ∩ V (H) is a subset of one partite set of H and Y ∩ V (H) is a subset of another partite set of
H. Note that even if X, Y are non-empty sets, it is possible that one or both of X ∩ V (H) and
Y ∩V (H) are empty sets. If X = {x} and Y = {y}, then we write x ./H y instead of {x} ./H {y}.
If Y = ∅, then X ./H Y simply means that X ∩ V (H) is contained in the same partite set of H.
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4 Proof of Theorem 2.1

Assume Theorem 2.1 is not true and G is a minimum counterexample. We shall derive a sequence
of properties of G that finally leads to a contradiction.

Lemma 4.1 The graph G is 2-connected.

Proof. If G is not connected and G1, G2, · · · , Gk (k = c(G) ≥ 2) are the connected components
of G, then α2(G) =

∑k
j=1 α2(Gj) and σ(G) =

∑k
j=1 σ(Gj) and ε(G) =

∑k
j=1 ε(Gj).

If G is connected but not 2-connected, then since G is subcubic, G has a cut-edge e = xy.
Let G′ = G − e. It is obvious that α2(G) = α2(G′). Also G and G′ have the same set of pieces.
If x is a 1-vertex of G, then compared to G′, G has one more cut-edge, one less 0-vertex, and
dG(y) = dG′(y) + 1 ≥ 2. Therefore σ(G) = σ(G′) − 1/7, ε(G) = ε(G′) + 1/7. If none of x, y is a
1-vertex, then dG(x) = dG′(x) + 1 ≥ 2 and dG(y) = dG′(y) + 1 ≥ 2. Thus σ(G) = σ(G′) − 2/7
and ε(G) = ε(G′) + 2/7. In any case, σ(G) + ε(G) = σ(G′) + ε(G′). By our choice of G, we have
α2(G′) ≥ σ(G′) + ε(G′). Therefore α2(G) ≥ σ(G) + ε(G).

Lemma 4.2 No two 2-vertices of G are adjacent.

Proof. Assume to the contrary that u, v are two adjacent 2-vertices. Let x, y be the other
neighbour of u and v, respectively. If x and y have no common neighbour and xy is not an edge
of G, then let e = xy and let G′ = (G − {u, v}) + e. Then G = G′ ◦10 (x, y). Straightforward
counting shows that σ(G) = σ(G′) + 12/7. By Lemma 2.2, α2(G) ≥ α2(G′) + 2. Hence

α2(G) ≥ σ(G′) + ε(G′) + 2 = σ(G) + ε(G′) + 2/7.

Since G is 2-connected, it follows that G′ is 2-connected. If G′ is the dodecahedron, then ε(G) = 0
and it can be verified directly that α2(G) = σ(G) = σ(G) + ε(G). If G′ is cubic but not the
dodecahedron, then by checking each of the graphs in Gi for i = 1, 2, 3, it can be verified that
there is a vertex w ∈ G′ such that G′ − w /∈ Gi for i = 1, 2, 3 and G′ − w is not an F -cycle.
Therefore α2(G′−w) ≥ σ(G′−w)+ ε(G′−w) = σ(G′−w)+1/7. Since σ(G′) = σ(G′−w)+2/7,
we conclude that α2(G′) ≥ α2(G′−w) ≥ σ(G′)−1/7. Therefore α2(G) = α2(G′)+2 ≥ σ(G)+1/7.
Assume G′ has minimum degree 2. If G′ ∈ G1, then G ∈ G3. Hence ε(G) = ε(G′)+2/7. If G′ /∈ G1

then ε(G′) ≥ −1/7 and ε(G) ≤ 1/7. In any case, we have α2(G) ≥ σ(G) + ε(G). If e is already
an edge of G, then let G′ = G − {u, v}. As σ(G) = σ(G′) + 10/7 and α2(G) = α2(G′) + 2, we
have α2(G) ≥ σ(G) + ε(G).

If x and y have a common neighbour w, but one of {x, y, w}, say w, is a 2-vertex, then let
G′ = G − {x, u, v, y, w}. Since G 6= F1, G′ is not empty. Then σ(G) = σ(G′) + 26/7. For
H ∈ B(G′), H + {x, u, v, w} induces a bipartite subgraph of G. So

α2(G) ≥ α2(G′) + 4 ≥ σ(G′) + ε(G′) + 4 = σ(G) + ε(G′) + 2/7.

If ε(G′) = −2/7, then by definition, each piece of G′ is a graph in G1. Since G is 2-connected,
it follows that G is an F -cycle, and hence ε(G) = 0. Therefore α2(G) ≥ σ(G) + ε(G). If
ε(G′) ≥ −1/7, then since ε(G) ≤ 1/7, we also have α2(G) ≥ σ(G) + ε(G).
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In the following, we assume that x and y have a common neighbour w and x, y, w are 3-vertices.
We divide the argument into two cases.

Case 1 x, y have another common neighbour a, as shown in Figure 6.

a

x u v y

w

s

t

Figure 6: Two adjacent 2-vertices.

Let s, t be the other neighbour of w, a, respectively. If st is not an edge, then let G′ =
(G − {w, x, u, v, y}) + sa. Then G = G′ ◦9 (a, s). Since G is 2-connected, it follows that G′ is
2-connected. Straightforward counting shows that σ(G)− σ(G′) = 26/7. By Lemma 2.2,

α2(G) = α2(G′) + 4 ≥ σ(G′) + ε(G′) + 4 = σ(G) + ε(G′) + 2/7.

If ε(G′) ≥ −1/7, then since ε(G) ≤ 1/7, we have α2(G) ≥ σ(G) + ε(G). Assume ε(G′) = −2/7,
then G′ ∈ G1 (as G′ is 2-connected). Hence G ∈ G3. So ε(G) = 0 and hence α2(G) ≥ σ(G)+ ε(G).

If st is an edge, then since G 6= F2, G has other vertices. Let G′ = G−{s, t, w, a, x, u, v, y}. Let
s′, t′ be the neighbour of s, t, respectively in G′. Then G′ is connected and σ(G) = σ(G′) + 40/7.
For H ∈ B(G′), H + {s, w, x, u, v, a} induces a bipartite subgraph of G. So α2(G) ≥ α2(G′) + 6.
If ε(G′) ≥ −1/7, then since ε(G) ≤ 1/7, we have α2(G) ≥ σ(G) + ε(G). If ε(G′) = −2/7, then
by definition, each piece of G′ is in G1. Since G is 2-connected, we conclude that G is an F -cycle
and ε(G) = 0 and hence α2(G) ≥ σ(G) + ε(G).

Case 2 x, y have no other common neighbour. Let a, b, s be the other neighbour of x, y, w,
respectively (as shown in Figure 7).

Case 2(a) Two of the vertices a, b, s have no common neighbour.

Assume a, b have no common neighbour (the cases a, s have no common neighbour or b, s
have no common neighbour are proved similarly). Then let G′ = (G− {x, u, v, y, w}) + ab. Then
G = G′ ◦11 (a, b, s).

b

x u v y

w

s

a

Figure 7: The graph G′ = (G− {x, u, v, y, w}) + ab.

We have σ(G)−σ(G′) = 26/7. By Lemma 2.2, α2(G) ≥ α2(G′)+4. If ε(G′) ≥ −1/7, then since
ε(G) ≤ 1/7, we have α2(G) ≥ σ(G)+ ε(G). Assume ε(G′) = −2/7. By definition, each piece of G′

is a graph in G1. If G′ is 2-connected, then G′ ∈ G1. So either α2(G) = α2(G′)+5 ≥ σ(G)+ ε(G),
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or G ∈ G3, ε(G) = 0 and hence α2(G) ≥ σ(G)+ε(G). Thus we assume that G′ is not 2-connected.
Since G is 2-connected, we conclude that a, b, s do not belong to the same piece of G′. If ab is a
cut-edge of G′, then a or b is a cut vertex of G, in contrary to the assumption that G is 2-connected.
So a, b belong to the same piece of G′. Let Q be the piece of G′ containing a, b and let e = ab.
By Lemma 3.2, α2(Q− e) = α2(Q) + 1. This implies that α2(G′ − e) = α2(G′) + 1. Since s is in
another piece of G′, by Lemma 3.2, there is an H ∈ B(G′−e) not containing s. So H +{w, x, u, v}
induces a bipartite subgraph of G. Hence α2(G) = α2(G′ − e) + 4 = α2(G′) + 5 ≥ σ(G) + ε(G).

Case 2(b) Every two vertices of a, b, s have a common neighbour.

If s is a 3-vertex, then let s′, s′′ be the other two neighbours of s and let G′ = G−{s, w, x, u, v, y}.
Then G = G′◦4 (a, s′, b, s′′), and σ(G) = σ(G′)+28/7, α2(G) ≥ α2(G′)+4. If α2(G) = α2(G′)+4,
then ε(G) = ε(G′) and hence α2(G) = α2(G′) + 4 ≥ σ(G′) + ε(G′) + 4 = σ(G) + ε(G). Otherwise,
α2(G) = α2(G′) + 5 ≥ σ(G) + ε(G).

Assume s is a 2-vertex. Then a, b, s has a common neighbour z, as depicted in Figure 8.

z

x u v y

w

s

a b

Figure 8: The case that a, b, s have a common neighbour.

If G has no other vertices, then G ∈ G2 and ε(G) = −1/7, and α2(G) = σ(G) + ε(G). Assume
G has other vertices. Since G is 2-connected and s is a 2-vertex, we conclude that a, b are 3-
vertices. Let G′ = G − {z, a, s, b, w, x, u, v, y}. Then σ(G) − σ(G′) = 46/7. For H ∈ B(G′),
H + {a, z, s, w, y, v, u} induces a bipartite subgraph of G. So

α2(G) ≥ α2(G′) + 7 ≥ σ(G′) + ε(G′) + 7 = σ(G) + ε(G′) + 3/7.

As G is 2-connected, it follows that G′ is connected. By definition, ε(G′) ≥ −2/7. As ε(G) ≤ 1/7,
we have α2(G) ≥ σ(G) + ε(G).

Lemma 4.3 No 3-vertex is adjacent to three 2-vertices.

Proof. Assume a 3-vertex x is adjacent to three 2-vertices a, b, c. Let a′, b′, c′ be the other
neighbour of a, b, c, respectively. Let G′ = G − {a, b, c, x}. Then G = G′ ◦6 (a′, b′, x′) and
σ(G) = σ(G′)+20/7. By Lemma 2.2, α2(G) ≥ α2(G′)+3. If ε(G′) ≥ 0, then α2(G) ≥ σ(G)+ε(G).

Assume ε(G′) ≤ −1/7. Then each piece of G′ is a graph in G1 ∪ G2. If G′ is 2-connected,
then G′ ∈ Gi for some 1 ≤ i ≤ 2. By definition, either α2(G) = α2(G′) + 4 ≥ σ(G) + ε(G) or
G ∈ Gi+1 and ε(G) = ε(G′)+1/7 and hence α2(G) ≥ σ(G)+ ε(G). Assume G′ is not 2-connected.
Then G′ has at least two pieces, and hence at least two of the vertices a′, b′, c′ belong to distinct
pieces. By Lemma 3.2, there is an H ∈ B(G′) which contains at most one of a′, b′, c′. Therefore
H + {x, a, b, c} induces a bipartite subgraph of G and hence α2(G) = α2(G′) + 4 ≥ σ(G) + ε(G).
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Lemma 4.4 No 3-vertex is adjacent to two 2-vertices.

Proof. Assume a 3-vertex x is adjacent to two 2-vertices a, b. Let a′, b′, x′ be the other neighbour of
a, b, x, respectively. By Lemma 4.2 and Lemma 4.3, a′, b′, x′ are 3-vertices. Let G′ = G−{a, b, x}.
Then G = G′ ◦1 (a′, b′, x′) and σ(G) = σ(G′) + 2. By Lemma 2.2, α2(G) ≥ α2(G′) + 2 ≥
σ(G′) + ε(G′) + 2 = σ(G) + ε(G′).

x’

x ba’ a b’

Figure 9: A 3-vertex adjacent to two 2-vertices.

If ε(G′) ≥ 1/7 then ε(G) ≤ ε(G′) and hence α2(G) ≥ σ(G) + ε(G). Assume ε(G′) ≤ 0. Then
each piece of G′ is a graph in G1, except that at most one piece which is in G′3, or at most two
pieces that are in G′2.

If G′ has more than one piece, then since G is 2-connected, at least two of a′, b′, x′ belong
to two distinct end-pieces. Since a′, b′, x′ are 3-vertices, the end-pieces of G′ are not singletons.
Therefore, the end-pieces are graphs in G1 ∪ G2 ∪ G3 or is an F -cycle. By applying Lemma 3.2 to
the end-pieces, we conclude that there is an H ∈ B(G′) which contains at most one of a′, b′, x′.
Hence H + {a, b, x} ∈ B(G) and α2(G) = α2(G′) + 3 ≥ σ(G) + ε(G).

Assume G′ has only one piece, i.e., G′ is 2-connected. Then G′ ∈ Gi for some 1 ≤ i ≤ 3, or
G′ is an F -cycle. If G′ ∈ Gi for some 1 ≤ i ≤ 3, then either α2(G) = α2(G′) + 3 ≥ σ(G) + ε(G)
or G ∈ Gi, ε(G) = ε(G′) and hence α2(G) ≥ σ(G) + ε(G). Assume G′ is an F -cycle. If a′, b′, x′

do not belong to the same F -subgraph of G′, then by Lemma 3.2 and Observation 3.1, there
is an H ∈ B(G′) which contains at most one of a′, b′, x′. Hence H + {a, b, x} ∈ B(G) and
α2(G) = α2(G′) + 3 ≥ σ(G) + ε(G). If a′, b′, x′ belong to the same F -subgraph of G′, then apply
the argument in the previous paragraph to this F -subgraph, we conclude that G is an F -cycle.
Hence ε(G) = ε(G′) and α2(G) ≥ σ(G) + ε(G).

Lemma 4.5 No 4-cycle contains a 2-vertex.

Proof. Assume (a, b, c, d) is a 4-cycle and a is a 2-vertex. By Lemmas 4.2 and 4.4, b, c, d are 3-
vertices. Let G′ = G−{a, b, c, d}. Then σ(G) = σ(G′)+18/7. Let b′, c′, d′ be the other neighbour
of b, c, d, respectively. Suppose H ∈ B(G′). If one of b′, c′, d′ /∈ V (H), say b′ /∈ V (H), then
H + {a, b, c} induces a bipartite subgraph of G. Assume b′, c′, d′ ∈ V (H). If b′, d′ are in the same
partite set of H, then H + {d, a, b} induces a bipartite subgraph of G. Otherwise without loss
of generality, we may assume c′ and d′ are in different partite sets. Then H + {a, c, d} induces a
bipartite subgraph of G. In any case α2(G) ≥ α2(G′)+3 ≥ σ(G′)+ε(G′)+3 ≥ σ(G)+ε(G′)+3/7 ≥
σ(G) + ε(G).

In Lemmas 4.6, 4.7, 4.8, we assume x is a 2-vertex and u, v are the neighbours of x. By
Lemma 4.2, both u, v are 3-vertices. Let a, b be the other two neighbours of u, and c, d be the
other two neighbours of v. By Lemma 4.5, a, b, c, d are distinct vertices.

Lemma 4.6 Each of a, b is adjacent to at least one vertex of c, d.
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Proof. Assume b is not adjacent to any of c, d. Let a′, a′′ be the other two neighbours of a. By
Lemma 4.4, a is a 3-vertex and a′, a′′ cannot be both 2-vertices.

Case 1 One of a′, a′′, say a′, is a 2-vertex.

Let w be the other neighbour of a′. By Lemma 4.4 and Lemma 4.5, w is distinct from
v, b and of course w 6= a′′. Let G′ = (G − {a, a′, u, x}) + bv. Then G = G′ ◦7 (w, a′′, b, v)
andσ(G) = σ(G′) + 20/7.

wa

b

u v
x

a’

a’’

Figure 10: G′ = (G− {a, a′, u, x}) + bv

By Lemma 2.2,

α2(G) ≥ α2(G′) + 3 ≥ σ(G′) + ε(G′) + 3 = σ(G) + ε(G′) + 1/7.

If ε(G′) ≥ 0, then since ε(G) ≤ 1/7, we have

α2(G) ≥ σ(G) + ε(G).

Otherwise, each piece of G′ is in G1, except at most one piece which is in G2 or is a singleton.

If G′ is 2-connected, then G′ ∈ Gi for some i = 1, 2. By definition, either α2(G) = α2(G′) + 4
or G ∈ Gi+1 and ε(G) = ε(G′) + 1/7. In any case, α2(G) ≥ σ(G) + ε(G).

Assume G′ has at least two pieces. If a′′, w are in different end-pieces, then since a′′, w are
3-vertices, these end-pieces are not singletons. By applying Lemma 3.2 to the end-pieces, there
is an H ∈ B(G′) which does not contain w, a′′. Therefore H + {a, a′, u, x} induces a bipartite
subgraph of G. In any case, α2(G) = α2(G′) + 4 ≥ σ(G) + ε(G). Assume w, a′′ do not belong to
distinct end-pieces. By Lemma 3.3, bv is contained in a pseudo end-piece of G′, and w and/or
a′′ is contained in another end-piece. By applying Lemma 3.2, one can find an H ∈ B(G′) such
that H contains at most one of w, a′′ and H ∩ {w, a′′} is disconnected to b and v. Therefore
H + {a′, a, u, x} induces a bipartite subgraph of G and hence α2(G) ≥ σ(G) + ε(G).

Case 2 a′, a′′ are 3-vertices of G.

Let G′ = (G− {a, u, x}) + bv. Then G = G′ ◦2 (a′, a′′, b, v) and σ(G) = σ(G′) + 14/7.

a’’

a

b

u v
x

a’

Figure 11: G′ = (G− {a, u, x}) + bv

By Lemma 2.2,

α2(G) ≥ α2(G′) + 2 ≥ σ(G′) + ε(G′) + 2 = σ(G) + ε(G′).
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If ε(G′) ≥ 1/7, then ε(G) ≤ ε(G′) and hence α2(G) ≥ σ(G) + ε(G). Thus we may assume that
ε(G′) ≤ 0.

Since G is 2-connected, so G′ is connected. If G′ is 2-connected, then G′ ∈ Gi for some
1 ≤ i ≤ 3. By definition, either α2(G) = α2(G′) + 3 ≥ σ(G) + ε(G) or G ∈ Gi and ε(G) = ε(G′).
In any case, α2(G) ≥ σ(G) + ε(G).

Assume G′ has at least two pieces. As ε(G′) ≤ 0, each piece of G′ is either a singleton or a
graph in G1 ∪ G2 ∪ G3. If the piece P containing a′ is a singleton, then since a′ has degree 2 in
G′, it follows that P is not an end piece. By Lemma 3.3, the piece containing a′′ is an end piece
(and not a singleton, as a′′ has degree 2 in G′), and b, v is contained in a pseudo end-piece. By
applying Lemma 3.2, one can find an H ∈ B(G′) which does not contain the join vertex of the
pseudo end-piece containing bv, and does not contain the join vertex of the end piece containing
a′′. So a′′, a′ and b, v are contained in three components of H. Therefore H + {a, u, x} induces
a bipartite subgraph of G and α2(G) = α2(G′) + 3 ≥ σ(G) + ε(G). Assume none of a′, a′′ is
contained in a singleton piece. If a′, a′′ belong to distinct pieces of G′, then by Lemma 3.2, there
is an H ∈ B(G′) which does not contain a′, a′′. Then H + {a, u, x} induces a bipartite subgraph
of G and hence α2(G) = α2(G′)+3 ≥ σ(G)+ ε(G). Assume a′, a′′ are contained in the same piece
P of G′. By Lemma 3.3, P is an end piece and b, v are contained in another pseudo end-piece. By
applying Lemma 3.2, one can find an H ∈ B(G′) which does not contain a′ and does not contain
the join vertex of the pseudo end-piece containing b, v. Hence H + {a, u, x} induces a bipartite
subgraph of G and α2(G) = α2(G′) + 3 ≥ σ(G) + ε(G).

Assume ac is an edge of G.

Lemma 4.7 Vertices b and c are not adjacent.

Proof. Assume bc is an edge. Let N(v) = {x, c, d}. If none of ad, bd is an edge, then let
G′ = (G− {a, c, u, x, v, b}).

d

a

b

u v
x

c

Figure 12: None of ad, bd is an edge.

Then σ(G) = σ(G′) + 28/7 (note that by Lemma 4.4, a, b are 3-vertices). For H ∈ B(G′),
H + {a, c, u, x} induces a bipartite subgraph of G. So α2(G) ≥ α2(G′) + 4 ≥ σ(G′) + ε(G′) + 4 ≥
σ(G) + ε(G′). If ε(G′) ≥ 1/7, then α2(G) ≥ σ(G) + ε(G). Otherwise each piece of G′ is in
G1 ∪ G2 ∪ G3. Let a′, b′ be the other neighbour of a, b, respectively. By Lemma 3.2, there is an
H ∈ B(G′) which does not contain b′. Then H + {a, c, u, x, b} induces a bipartite subgraph of G.
Hence α2(G) = aa(G′) + 5 ≥ σ(G) + ε(G).

If ad is an edge, then let G′ = (G− {a, c, u, x, v, b, d}).
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d

a

b

u v
x

c

Figure 13: ad is an edge.

Then σ(G) = σ(G′) + 34/7. If ε(G′) ≥ 0, then for H ∈ B(G′), H + {a, c, u, x, b} induces a
bipartite subgraph of G, hence

α2(G) ≥ α2(G′) + 5 ≥ σ(G′) + ε(G′) + 5 = σ(G) + ε(G′) + 1/7 ≥ σ(G) + ε(G).

If γ(G′) ≤ −1/7, then each piece of G′ is in G1, except that at most one piece which is in G2 or
is a singleton. We may assume the piece containing b′ is in G1. Then by Lemma 3.2, there is an
H ∈ B(G′) which does not contain b′. Then H + {b, u, a, x, c, d} induces a bipartite subgraph of
G. Hence α2(G) = α2(G′) + 6 ≥ σ(G) + ε(G).

Since bc is not an edge, and b, v have a common neighbour, we may assume that ac, bd are
edges of G, and ad, bc are not edges of G. The graph induced by {a, b, u, x, v, c, d} is depicted in
Figure 14 (i).

a’

(i) (ii)

x
u v

a c

d

x
u v

b

a

b’
b

d d’

c’c

Figure 14: The graphs induced by {a, b, u, x, v, c, d} and by {a, b, u, x, v, c, d, a′, b′, c′, d′}.

Let a′, b′, c′, d′ be the other neighbour of a, b, c, d, respectively.

Lemma 4.8 Vertices a′, b′ are distinct and adjacent, and vertices c′, d′ are distinct and adjacent.

Proof. If a′ = b′ or a′ 6= b′ and a′b′ is not an edge, then let G′ = (G−{u, v, x, b, c, d}) + ab′. Then
G = G′ ◦3 (d′, c′, b′, a) and σ(G) = σ(G′) + 28/7. By Lemma 2.2,

α2(G) ≥ α2(G′) + 4 ≥ σ(G′) + ε(G′) + 4 ≥ σ(G) + ε(G′).

If ε(G′) ≥ 1/7, then α2(G) ≥ σ(G) + ε(G). Assume ε(G′) ≤ 0. Then each piece of G′ is in G1,
except that there may be one piece in G3, or there at most two pieces that are either in G2 or are
singletons.

If G′ is 2-connected, then G′ ∈ Gi for some i ≤ 3. By definition, either α2(G) = α2(G′) + 5 ≥
σ(G) + ε(G) or G ∈ Gi and hence ε(G) = ε(G′) and α2(G) ≥ σ(G) + ε(G).

Assume G′ has at least two pieces. If c′, d′ are in different pieces of G′. By Lemma 3.2, there is
an H ∈ B(G′) which does not contain c′, d′. Then H + {c, v, d, x, b} induces a bipartite subgraph
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of G. Hence α2(G) = α2(G′) + 5 ≥ σ(G) + ε(G). Assume c′, d′ are in the same piece of G′. Then
ab′ is not a cut-edge of G′, for otherwise either a or b′ is a cut-vertex of G, which is in contrary
to our assumption. As G is 2-connected, the piece of G′ containing c′, d′ and the piece containing
a, b′ are the two end pieces of G′. By Lemma 3.2, there is an H ∈ B(G) such that H contains
at most one of c′, d′ and does not contain the join vertex of the piece containing a, b′. So there
is no path between H ∩ {c′, d′} and H ∩ {a, b′}. Therefore H + {c, v, d, x, b} induces a bipartite
subgraph of G. Hence α2(G) = α2(G′) + 5 ≥ σ(G) + ε(G).

Let X = {a′, b′, c′, d′, a, b, c, d, u, x, v}. The subgraph of G induced by X is depicted in Figure
14 (ii), possibly with edges between vertices a′, b′ and c′, d′.

Lemma 4.9 There is no edge connecting a′ and d′, and no edge connecting b′ and c′. Moreover,
a′, c′ have a common neighbour s and b′, d′ have a common neighbour t, and s, t are 3-vertices
and have no common neighbour.

Proof. If a′d′ is an edge, then since G 6= F4, we have either b′c′ is an edge or G−X is nonempty. In
the former case, G is an F -cycle, and α2(G) = σ(G)+ε(G). In the latter case, let G′ = G−X. We
have σ(G) = σ(G′)+54/7. For H ∈ B(G′), H +{a′, a, c, v, x, b, d, d′} induces a bipartite subgraph
of G. Hence α2(G) ≥ α2(G′) + 8 ≥ σ(G′) + ε(G′) + 8 = σ(G) + ε(G′) + 2/7. If ε(G′) ≥ −1/7,
then we have α2(G) ≥ σ(G) + ε(G). Otherwise, each piece of G′ is a graph in G1. Since G is
2-connected, we conclude that G is an F -cycle, and hence ε(G) = 0 and α2(G) ≥ σ(G) + ε(G).
Thus we assume that there is no edge connecting a′ and d′. By symmetry, we also assume that
there is no edge connecting b′ and c′.

If a′, c′ have no common neighbour, then let G′ = (G − {a, c, u, x, v, b, d}) + a′c′. Then
G = G′ ◦5 (b′, d′, a′, c′) and σ(G) = σ(G′) + 34/7.

If ε(G′) ≥ 0, then for H ∈ B(G′), H + {a, c, x, v, b} induces a bipartite subgraph of G, hence

α2(G) ≥ α2(G′) + 5 ≥ σ(G′) + ε(G′) + 5 = σ(G) + ε(G′) + 1/7 ≥ σ(G) + ε(G).

Thus we may assume ε(G′) ≤ −1/7. Then each piece is a graph in G1, except that one piece
which is either in G2 or a singleton.

Case 1 b′, d′ are in different pieces of G′.

Since G is 2-connected, none of the pieces containing b′ and d′ is a singleton. By Lemma 3.2,
there is an H ∈ B(G′) which does not contain b′, d′. Then H + {a, c, u, v, b, d} induces a bipartite
subgraph of G. Hence α2(G) = α2(G′) + 6 ≥ σ(G) + ε(G).

Case 2 b′, d′ are in the same piece of G′.

Then a′, c′, b′, d′ are in the same piece. Since G is 2-connected, G′ has only one piece, i.e., G′

is 2-connected. Hence G′ ∈ Gi for some 1 ≤ i ≤ 2. By definition, either α2(G) ≥ α2(G′) + 6 ≥
σ(G) + ε(G), or G ∈ Gi+1, and ε(G) = ε(G′) + 1/7. Hence α2(G) ≥ σ(G) + ε(G).

Let s be the common neighbour of a′, c′ and let t be the common neighbour of b′, d′. The
conclusion that s, t are 3-vertices and have no common neighbour follows from the fact that G is
2-connected and G 6= F5.

Now we are ready to derive the final contradiction.
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Let w, r be the other neighbour of s and t, respectively.

Lemma 4.10 The vertices w, r have a common neighbour z.

Proof. If w, r have no common neighbour, then let G′ = (G − (X ∪ {s, t})) + wr. Then σ(G) =
σ(G′)+66/7. For H ∈ B(G′), H + {s, c′, c, a, v, x, d, b, b′, t} induces a bipartite subgraph of G. So

α2(G) ≥ α2(G′) + 10 ≥ σ(G′) + ε(G′) + 10 = σ(G) + ε(G′) + 4/7 ≥ σ(G) + ε(G).

Let Y = X ∪ {s, t, w, z, r}. The subgraph of G induced by Y is depicted in Figure 15.

w

x
u v

b

a

b’ d d’

c’ca’

t

s

r

z

Figure 15: The subgraph induced by Y .

This subgraph contains two adjacent 2-vertices. By Lemma 4.2, G has other vertices. If one
of w, z, r is a 2-vertex, say w is a 2-vertex, then let G′ = G− Y . We have σ(G) = σ(G′) + 80/7.
For H ∈ B(G′), H + {z, w, s, a′, a, c, u, v, b, d, d′, t} induces a bipartite subgraph of G. So

α2(G) ≥ α2(G′) + 12 ≥ σ(G′) + ε(G′) + 12 = σ(G) + ε(G′) + 4/7 ≥ σ(G) + ε(G).

Thus we may assume that w, z, r are 3-vertices. Let w′, z′, r′ be the other neighbour of w, z, r,
respectively.

Case 1 Two of the vertices w′, z′, r′ have no common neighbour, say w′, r′ have no common
neighbour.

Let G′ = (G−Y )+w′r′. Then σ(G) = σ(G′)+80/7. For H ∈ B(G′), H+{w, z, s, a′, a, c, u, v, b, d, d′, t}
induces a bipartite subgraph of G. So

α2(G) ≥ α2(G′) + 12 ≥ σ(G) + ε(G′) + 4/7 ≥ σ(G) + ε(G).

Case 2 Any two of the vertices w′, z′, r′ have a common neighbour, but one of w′, z′, r′ is a
2-vertex.

Let G′ = G− Y . Then the same calculation as above shows that α2(G) ≥ σ(G) + ε(G).

Case 3 Any two of the vertices w′, z′, r′ have a common neighbour, and w′, z′, r′ are 3-vertices.

Let f be the common neighbour of w′, r′, g be the common neighbour of w′, z′ and h be the
common neighbour of z′, r′. Let Z = Y ∪ {w′, z′, r′, f, g, h}. The subgraph of G induced by Z is
depicted in Figure 16 (we allow the possibility that f = g = h).
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Figure 16: The subgraph induced by Z.

If G has no other vertices, then α2(G) = 17 and σ(G) = 114/7 and hence α2(G) ≥ σ(G)+ε(G).
If f = g = h, then α2(G) = 15 and σ(G) = 103/7 and hence α2(G) ≥ σ(G) + ε(G).

Assume G has other vertices. Then f, g, h are distinct. Let G′ = G − Z. Then σ(G) =
σ(G′) + 108/7. For H ∈ B(G′), H + {r′, f, w′, w, z, z′, s, a′, a, c, u, v, b, d, d′, t} induces a bipartite
subgraph of G. So α2(G) ≥ α2(G′) + 16 ≥ σ(G) + ε(G). This completes the proof of Theorem
2.1.

5 Proof of Theorem 1.3 and Theorem 1.4

Before proving Theorem 1.3 and Theorem 1.4, we need one more lemma that takes care of subcubic
graphs of odd girth at least 7.

Lemma 5.1 Suppose G is a triangle-free subcubic n-vertex graph, each connected component has
at least two vertices and has a vertex of degree at most 2. If G has no 5-cycle and has at most
n/2− 1 components, then α2(G) ≥ σ(G) + 2/7.

Proof. Assume the lemma is not true, and G is a minimum counterexample. It is easy to verify
that G is 2-connected and non-bipartite. If G has a 4-cycle C = (v0, v1, v2, v3) which contains
a 2-vertex v0, then let G′ = G − C. As G is 2-connected and non-bipartite and has no 5-cycle,
G′ is connected and has more than four vertices. Since C has at least two 3-vertices, we have
σ(G) ≤ σ(G′) + 20/7. On the other hand, it is easy to verify that α2(G) ≥ α2(G′) + 3. By
the minimality of G, we know that α2(G′) ≥ σ(G′) + 2/7. Hence α2(G) ≥ σ(G) + 2/7. In the
following, we assume that no 4-cycle of G contains a 2-vertex. We divide the discussion into two
cases.

Case 1 There is a 7-cycle C = (v0, v1, · · · , v6) which contains a 2-vertex v0.

Assume among all 7-cycles, C contains the maximum number of 2-vertices. As G is 2-
connected, C contains at most five 2-vertices. If vi is a 3-vertex, then let ui be the other neighbour
of vi.
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Case 1(i) The vertex v0 is the only 2-vertex contained in C.

Let e1 = u1u2, e2 = u4u5, and let G′ = (G − C) + {e1, e2}. We have σ(G) = σ(G′) + 34/7.
By Theorem 2.1, α2(G′) ≥ σ(G′) + ε(G′). For any H ∈ B(G′), H + {v0, v1, v2, v4, v5} induces a
bipartite subgraph of G. Hence α2(G) ≥ α2(G′) + 5 ≥ σ(G) + ε(G′) + 1/7. It remains to show
that ε(G′) ≥ 1/7. For this purpose, it suffices to prove that each component Q of G′ has ε(Q) ≥ 0
and one component Q of G′ has ε(Q′) ≥ 1/7. By noting that the component of G′ containing the
edge e1 contains at least four vertices (as each of u1, u2 has degree at least 2 in G′), we only need
to prove the following claim.

Claim Suppose Q is a connected component of G′. Then

ε(Q′)

{
= 0, if Q = K2,

≥ 1/7, otherwise.

Let Q be a connected component of G′. If Q contains a single vertex u, then u is adjacent to
at least two vertices of C (as G is 2-connected). As G has no 5-cycle, it follows that u is adjacent
to exactly two vertices of C that are distance two apart. Thus u is a 2-vertex contained in a
4-cycle, in contrary to the previous conclusion. So Q contains at least two vertices.

If Q contains two pieces P1, P2 such that each Pi is a 5-cycle, then each Pi contains exactly
one of the edge e1, e2 (because G itself has no 5-cycles). Assume ei is an edge of Pi for i = 1, 2.
Then C ′ = (P1−e1)+{v1, v2} and C ′′ = (P2−e2)+{v4, v5} are 7-cycles. By the choice of C, each
of C ′, C ′′ has at most one 2-vertex. Therefore each of P1, P2 is incident to at least 4 cut-edges of
Q, which implies that Q contains at least 6 end-pieces. As G is 2-connected, each end-piece of Q
is connected to C by an edge. This is impossible, because there are only 6 edges between C and
G′, and 4 of these edges connect C and P1 ∪ P2.

If Q contains one piece P which is a 5-cycle, then (P +{v1, v2, v3, v4, v5})−{e1, e2} contains a
7-cycle C ′. Indeed, if P contains one of e1, e2, say e1 ∈ P and e2 /∈ P , then (P −e1)+{v1, v2} is a
7-cycle. If P contains both e1, e2, then P −{e1, e2} consists of two paths, one has length 1 and the
other has length 2. So (P − {e1, e2}) + {viui : i = 1, 2, 4, 5} consists of two paths, one has length
3, the other has length 4. Add the path (v1, v2, v3, v4, v5) to each of the two paths, each of the
resulting graph contains a cycle, one of length 7, the other of length 6 (here we used the fact that
G has no 5-cycle). By our choice of C, the 7-cycle C ′ has at most one 2-vertex. This implies that
P is incident to at least 2 cut-edges of Q. So Q has at least 3 pieces. By the previous paragraph,
no other piece of Q is a 5-cycle. Moreover, each other piece P ′ contains at most one 5-cycle. This
implies that P ′ is not an F -cycle, and not a graph in G1 ∪ G2 ∪ G3. Thus P ′ is either a singleton,
or has ε(P ′) = 1/7. If Q has more than three pieces or at least one of the other piece is not a
singleton, then we have ε(Q) ≥ 1/7. Assume Q has exactly three pieces and each of the other two
pieces is a singleton. If G′ = Q, then it is easy to verify that α2(G) ≥ σ(G) + 2/7. Otherwise, let
G′′ = G′−Q = G− (C +Q). Then σ(G) = σ(G′′)+73/7 and α2(G) ≥ α2(G′′)+10 ≥ σ(G)+2/7,
in contrary to the assumption that G is a counterexample.

Assume each piece of Q is not a 5-cycle. If Q has a piece P which is a copy of F2 or F3, then
P contains both edges e1, e2 (as deleting one edge from F2, F3, the resulting graph still contains
a 5-cycle). By using the fact that each 7-cycle of G contains at most one 2-vertex, and using
the fact that (P − {e1, e2}) + {v1, v2, v4, v5} contains two 7-cycles, it is easy to verify that P is
incident to at least 2 cut-edges of Q. Hence Q has at least three pieces. If Q has more than three
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pieces, or one of the other piece is not a singleton, then ε(Q) ≥ 1/7. If Q has exactly three pieces
and each of the other two pieces is a singleton, then G′ = Q and in this case it is easy to verify
that α2(G) ≥ σ(G) + 2/7.

Assume each piece P of Q is not a 5-cycle and not F2, F3. Then ε(P ) ≥ −1/7 and equality
holds only if P is a singleton. If Q has only one piece, then this piece P is not a singleton, not a
graph in G1 ∪ G2 ∪ G3, hence ε(Q) = 1/7. If Q has at least two pieces, and Q 6= K2, then at least
one of the piece P has ε(P ) ≥ 0, hence ε(Q) ≥ 1/7. This completes the proof of the claim, and
the proof of Case 1(i).

Case 1(ii) C has two 2-vertices v0, vi.

By symmetry, we may assume that 1 ≤ i ≤ 3. Let

e =





u2u3, if i = 1,

u3u4, if i = 2,

u1u2, if i = 3.

Let G′ = (G − C) + e. Then σ(G) = σ(G′) + 34/7. If i = 1, then for any H ∈ B(G′),
H + {v0, v1, v2, v3, v5} induces a bipartite subgraph of G. If i = 2, then for any H ∈ B(G′),
H + {v6, v0, v2, v3, v4} induces a bipartite subgraph of G. If i = 3, then for any H ∈ B(G′),
H + {v0, v1, v2, v3, v5} induces a bipartite subgraph of G. In any case, α2(G) ≥ α2(G′) + 5. By
Theorem 2.1, α2(G′) ≥ σ(G′) + ε(G′). So α2(G) ≥ σ(G) + ε(G′) + 1/7. It remains to show
that ε(G′) ≥ 1/7. Similarly as in the previous case, it suffices to show that for each connected
component Q of G, either Q = K2 or ε(Q) ≥ 1/7. Let Q be a connected component of G′. The
same argument shows that Q has at least 2 vertices. If no piece of Q is a 5-cycle, then every
piece P of Q is not a graph in G1 ∪ G2 ∪ G3 and hence has ε(P ) ≥ 1/7 or is a singleton. So either
Q = K2 or ε(Q) ≥ 1/7. Assume Q has piece P which is a 5-cycle. Then (P − e) + {v0, vi} is a
7-cycle. By the choice of C, P is incident to at least 3 cut edges of Q. Hence Q has at least 3 end
pieces. Each end piece P ′ is either a singleton, or has ε(P ′) ≥ 1/7. If Q has only four pieces and
each piece other than P is a singleton, then since each end piece of Q contains one of uj ’s, we
conclude that G′ = Q. In this case, it is easy to verify that α2(G) ≥ σ(G) + 2/7. Assume either
Q has more than four pieces or Q has one piece other than P which is not a singleton. Then it
follows from definition that ε(Q) ≥ 1/7.

Case 1(iii) C contains three 2-vertices.

Let G′ = G − C. We have σ(G) ≤ σ(G′) + 34/7. No matter how the three 2-vertices are
distributed on the cycle C, for any H ∈ B(G′), it is easy to find a set X of five vertices of C such
that H +X induces a bipartite subgraph of G. As G is 2-connected, G′ has at most two connected
components. If G′ has two components and has at most 5 vertices, then it is straightforward to
verify that α2(G) ≥ σ(G) + 2/7. Otherwise, by the choice of G, we have α2(G′) ≥ σ(G′) + 2/7.
Hence α2(G) ≥ σ(G) + 2/7.

Case 1(iv) C contains four 2-vertices.

Then there is an index i such that either vi, vi+1 are 3-vertices, or vi, vi+3 are 3-vertices. Let
uiui+1 or e = uiui+3, respectively. Let G′ = (G − C) + e, and let vk be the other 3-vertex
contained in C. Then for any H ∈ B(G′), H + C − vk induces a bipartite subgraph of G. Hence
α2(G) = α2(G′) + 6 ≥ σ(G) + 2/7.
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Case 1(v) C contains five 2-vertices.

For G′ = G− C, α2(G) = α2(G′) + 6, and σ(G) = σ(G′) + 38/7. By Theorem 2.1, α2(G′) ≥
σ(G′) (as G′ has no 5-cycles, so G′ /∈ G1 ∪ G2), and hence α2(G) ≥ σ(G) + 2/7.

This completes the proof of Case 1.

Case 2 No 7-cycle of G contains a 2-vertex.

If G has two adjacent 2-vertices, x, y, then let u, v be the other neighbour of x, y, respectively.
Without loss of generality, we may assume that u is a 3-vertex. Let G′ = (G − {x, y, u}). Then
σ(G) = σ(G′)+2 and α2(G) = α2(G′)+2. As α2(G′) ≥ σ(G′)+2/7, we have α2(G) ≥ σ(G)+2/7.
Thus we assume that G contains no adjacent 2-vertices. Let x be a 2-vertex of G, and let u, v be
its neighbours. Let a, b be the other two neighbours of u, c, d be the other two neighbours of v. If
a is a 2-vertex, then let G′ = G− {x, u, a}. We have σ(G) = σ(G′) + 2 and α2(G) = α2(G′) + 2.
By the minimality of G, we have α2(G′) ≥ σ(G′) + 2/7, hence α2(G) ≥ σ(G) + 2/7. Assume a is
a 3-vertex. Let G′ = (G−{u, x, a}) + bv. Then σ(G) = σ(G′) + 2 and α2(G) ≥ α2(G′) + 2. Since
x is not contained in a 7-cycle, we conclude that G′ has no 5-cycle. Hence α2(G′) ≥ σ(G′) + 2/7.
So α2(G) ≥ σ(G) + 2/7. This completes the proof of Lemma 5.1

Proof of Theorem 1.4: Assume G is an n-vertex 2-connected triangle-free subcubic graph. If G
has a vertex of degree at most 2, then by Theorem 2.1, α2(G) ≥ σ(G)+ε(G) = (5n+n2)/7+ε(G) ≥
5n/7 (because n2/7 + ε(G) ≥ 0) and equality holds only if G = F5.

Assume G is cubic. If G has no 5-cycle, then let v be a vertex of G, and let G′ = G − v.
By Lemma 5.1, α2(G′) ≥ σ(G′) + 2/7 = 5n/7. Hence α2(G) ≥ 5n/7. Assume G has a 5-cycle
C = (v0, v1, v2, v3, v4). For 0 ≤ i ≤ 4, let ui be the other neighbour of vi.

First we consider the case that G−C is disconnected. Let G′ = G−C. Since G is 2-connected,
we conclude that G′ has two components say G1, G2. We may assume that G1 contains three of
the ui’s, G2 contains two of the ui’s. Then σ(G) = σ(G′) + 20/7 and α2(G) ≥ α2(G′) + 3. As
each component of G′ contains 2-vertices, we have α2(G′) ≥ σ(G′)+ ε(G′). If ε(G′) ≥ −1/7, then
it follows that α2(G) ≥ σ(G). Assume ε(G′) ≤ −2/7. If ε(Gi) = −2/7 for some i ∈ {1, 2}, then
each piece of Gi is a graph in G1. By Lemma 3.2 (if Gi has more than one piece) and by checking
the graphs in G1 (if Gi ∈ G1), we conclude that there is an H ∈ B(Gi) such that two of the ui’s
contained in Gi are not contained in H. As ε(G3−i) ≤ 0, it follows that G3−i ∈ G1 ∪ G2 ∪ G3 or is
an F -cycle. By Lemma 3.2, there is an H ′ ∈ B(G3−i) such that one of the ui’s contained in G3−i

is not contained in H ′. Now H + H ′ ∈ B(G′) and three of ui’s are not contained in H + H ′. This
implies that α2(G) ≥ α2(G′) + 4. As ε(G′) ≥ −4/7, we conclude that α2(G) ≥ σ(G).

Now we assume that G−C is connected. If G−C has at least three end-pieces, and at least
one of the pieces, say P , is in G1∪G2∪G3 or is an F -cycle, then let G′ = G−C. Similarly as above,
σ(G) = σ(G′)+20/7 and α2(G) ≥ α2(G′)+3. If ε(G′) ≥ −1/7, then since α2(G′) ≥ σ(G′)+ε(G′),
we have α2(G) ≥ σ(G). If ε(G′) = −2/7, then all the pieces are in G1. By Lemma 3.2, there
is an H ∈ B(G′) such that three of the ui’s are not contained in H (each end pieces has an ui

not contained in H). Therefore α2(G) = α2(G′) + 4 ≥ σ(G). If G − C has two end-pieces, then
let ui be contained in one end-piece, and uj be contained in the other end-piece. If G − C is
2-connected, then choose ui, uj such that they have no common neighbour (as G is cubic, such
ui, uj exist). Let G′ = (G − C) + uiuj (uiuj could be an edge of G). In any case case G′ is

22



2-connected. Now

σ(G) =

{
σ(G′) + 22/7, if uiuj is not an edge of G,

σ(G′) + 20/7, if uiuj is an edge of G.

For any H ∈ B(G′), since ui ./H uj , it follows that there is an index t such that ut ./H ut+1.
Hence H + {vt, vt+1, vt+3} induces a bipartite subgraph of G (summation in the indices modulo
5). So α2(G) ≥ α2(G′) + 3. If α2(G′) ≥ σ(G′) + 1/7, then α2(G) ≥ σ(G) = 5n/7. Otherwise,
G′ ∈ G1∪G2∪G3 or is an F -cycle. If uiuj is an edge of G, then G′ has exactly five 2-vertices. Thus
G′ = C5 or G′ ∈ G′3. In the former case, unless G is the Petersen graph, we have α2(G) = 8 ≥ 5n/7.
In the latter case, α2(G) ≥ α2(G′) + 3 = σ(G′) + 3 ≥ σ(G) = 5n/7. Assume uiuj is not an edge
of G. Then G′ has three 2-vertices. This implies that G′ = F4 or G′ = F8 or G′ ∈ G′3. If G′ = F4,
then there is an H ∈ B(G′) which does not contain any 2-vertices of G′, and hence α2(G) =
α2(G′) + 4 ≥ 5n/7. If G′ = F8, then case by case check shows that α2(G) = α2(G′) + 4 ≥ 5n/7,
unless G is the dodecahedron. Assume G′ ∈ G3. By checking Figure 17, there are 13 graphs in
G3 each of which contains three 2-vertices. A computer check shows that if G′ is any of these
13 graphs, no matter how the ui’s are distributed, α2(G) = α2(G′) + 4 ≥ 5n/7. Assume G′ is
an F -cycle, and G1, G2, · · · , Gk are the F -subgraphs of G′. If e = uiuj is not a join edge of the
F -cycle G′, then α2(G′− e) = α2(G′) + 1 and it is easy to verify that α2(G) ≥ α2(G′− e) + 3. So
α2(G) = α2(G′) + 4 ≥ 5n/7. Assume e is a join edge of G′. If none of the F -subgraphs of G′ is
F1, then it is not difficult to verify that there is an H ∈ B(G′) such that at least three of the ut’s
are not contained in H, and hence α2(G) = α2(G′) + 4 ≥ 5n/7. Assume one of the F -subgraphs,
say G1, of G′ is F1. Observe that G′ − e has exactly five 2-vertices. A case by case check shows
that the subgraph of G induced by C ∪G1 (which is the disjoint union of two 5-cycles plus four
edges between vertices of these two 5-cycles) contains an induced bipartite subgraph on 8 vertices.
So there is an H ∈ B(G′) such that H can be extended to an induced bipartite subgraph G by
adding four vertices. I.e., α2(G) = α2(G′) + 4 ≥ 5n/7.

Proof of Theorem 1.3: Assume G is an n-vertex 2-connected triangle-free subcubic graph.
Let τ(G) = |V (G)| − α2(G) be the minimum number of vertices to be deleted from G so that
the resulting induced subgraph is bipartite. It is well-known that τ(G) is equal to the minimum
number of edges to be deleted so that the resulting subgraph is bipartite. Indeed, if H is an
induced bipartite subgraph of G with |V (H)| = |V (G)| − τ(G), and H ′ is a spanning bipartite
subgraph of G which contains H as a subgraph and which has maximum number of edges, then
|E(G)| − |E(H ′)| = τ(G). This is so because each vertex x ∈ V (G) − V (H) is adjacent to at
most one vertex (in G) that is in the same partite set of H ′ as x (if there are two or more such
vertices, then by moving x to the other partite set we obtain a spanning bipartite subgraph with
more edges than H ′).

Observe that |E(G)| = (3n3 + 2n2)/2. If G is cubic and is not the Petersen graph and not
the dodecahedron, then by Theorem 1.4, τ(G) ≤ 2n/7 = 4|E(G)|/21. So b(G) ≥ 17/21. If G has
a vertex of degree 2 and G /∈ G1 ∪ G2, then by Theorem 2.1, τ(G) ≤ (2n3 + n2)/7 < 4|E(G)|/21.
Hence b(G) > 17/21. If G ∈ G2, then it is easy to check that b(G) > 17/21, except that if G = F8

then b(G) = 17/21. For G ∈ G1 we have b(G) = 4/5.

If G is an F -cycle in which each F -subgraph is a copy of F5, then b(G) = 17/21 and b∗(G) =
5/7. So the bounds in Theorem 1.3 and Theorem 1.4 are tight.
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Figure 17: The graphs in G3
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