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Let G = (V,E) be a complete n-vertex graph with distinct positive edge
weights. We prove that for k ∈ {1, 2, . . . , n − 1}, the set consisting of the
edges of all minimum spanning trees (MSTs) over induced subgraphs of G
with n − k + 1 vertices has at most nk −

(
k+1
2

)
elements. This proves a

conjecture of Goemans and Vondrak [1]. We also show that the result is a
generalization of Mader’s Theorem, which bounds the number of edges in
any edge-minimal k-connected graph.

1 Introduction

Let G = (V,E) be a complete n-vertex graph with distinct positive edge weights. For
any set X ⊆ V , denote by G[V \X] the subgraph of G induced by V \X. We will also
sometimes write this graph as (V \X,E), ignoring edges in E incident on vertices in X.
MST(G[V \X]) denotes the set of edges in the graph’s minimum spanning tree. (The
MST is unique due to the assumption that the edge weights are distinct.)

For k ∈ {1, 2, . . . , n− 1}, define

Mk(G) =
⋃

X⊆V, |X|=k−1

MST(G[V \X]) .

Note that for k = 1 we haveM1(G) = MST(G). In [1], Goemans and Vondrak considered
the problem of finding a sparse set of edges which, with high probability, contain the
MST of a random subgraph of G. In this context they proved an upper bound on
Mk(G), namely that |Mk(G)| < (1+ e

2)kn, and they conjectured that one should be able

to improve the bound to |Mk(G)| ≤ nk −
(
k+1
2

)
. In this paper we prove this conjecture.
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Theorem 1

For any complete graph G on n vertices with distinct positive edge weights,

|Mk(G)| ≤ nk −
(
k+1
2

)
. (1)

As Goemans and Vondrak recognized, the bound is tight: for any n and k it is easy to
produce edge weights giving equality in (1). One way is to fix an arbitrary set V ′ ⊆ V
with cardinality k, and partition the edges E into three sets E0, E1 and E2 where, for
i ∈ {0, 1, 2}, Ei contains all edges of E having exactly i endpoints in V ′. Assign arbitrary
distinct positive weights to the edges in E such that all weights on E2 are smaller than
those on E1, which in turn are smaller than those on E0. It can easily be verified that
Mk(G) = E2 ∪ E1 and thus |Mk(G)| = nk −

(
k+1
2

)
.

Theorem 1’s assumption that G is complete is not meaningfully restrictive. If G is such
that deletion of some k − 1 vertices leaves it disconnected, then the notion of Mk(G)
does not make sense; otherwise, it does not matter if other edges of G are simply very
costly or are absent.

The bound of Theorem 1 applies equally if we consider the edge set of MSTs of induced
subgraphs of size at most n − k + 1 (rather than exactly that number). This is an
immediate consequence of the following remark.

Remark 2

For any complete graph G on n vertices with distinct positive edge weights, and
k ∈ {1, 2, . . . , n− 2}, Mk+1(G) ⊇ Mk(G).

Proof. We will show that any edge e in Mk(G) is also in Mk+1(G). By definition,
e ∈ Mk(G) means that there is some vertex set X of cardinality |X| = k − 1 for which
e ∈ MST(Gk), where Gk = G[V \X].

Consider any leaf vertex v of MST(Gk), with neighbor u. We claim that deleting v from
Gk (call the resulting graph Gk+1) results in the same MST less the edge {u, v}, i.e.,
that MST(Gk+1) = MST(Gk) \ {{u, v}}. This follows from considering the progress of
Kruskal’s algorithm on the two graphs. Before edge {u, v} is added to MST(Gk), the
two processes progress identically: every edge added to MST(Gk) is also a cheapest edge
for the smaller graph Gk+1. The edge e, added to MST(Gk), of course has no parallel
in Gk+1. As further edges are considered in order of increasing cost, again, every edge
added to MST(Gk) will also be added to MST(Gk+1), using the fact that none of these
edges is incident on v.

Thus, if v is not a vertex of e, then e ∈ MST(Gk+1). Since MST(Gk) has at least two
leaves, it has at least one leaf v not in e, unless MST(Gk) = e, which is impossible since
Gk has at least 3 vertices.
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Outline of the paper

In Section 2 we define a “k-constructible” graph, and show that every graph (V,Mk(G)) is
k-constructible, and every k-constructible graph is a subgraph of some graph (V,Mk(G)).
This allows a simpler reformulation of Theorem 1 as Theorem 6, which also generalizes
a theorem of Mader [3]. We prove Theorem 6 in Section 3.

2 k-constructible graphs

We begin by recalling Menger’s theorem for undirected graphs, which motivates our
definition of k-constructible graphs. Two vertices in an undirected graph are called
k-connected if there are k (internally) vertex-disjoint paths connecting them.

Theorem 3 (Menger’s theorem)
Let s, t be two vertices in an undirected graph G = (V,E) such that {s, t} 6∈ E. Then s
and t are k-connected in G if and only if after deleting any k− 1 vertices (distinct from
s and t), s and t are still connected.

Definition 4 (k-constructible graph)
A graph G = (V,E) is called k-constructible if there exists an ordering
O = 〈e1, e2, . . . , em〉 of the edges in E such that for all i ∈ {1, 2, . . . ,m} the graph
(V, {e1, e2, . . . , ei−1}) contains at most k − 1 vertex-disjoint paths between the two
endpoints of ei. We say that O is a k-construction order for the graph G.

Note that 1-constructible graphs are forests, and edge-maximal 1-constructible graphs
are spanning trees. We therefore have in particular that graphs of the form M1(G) (i.e.,
MSTs, recalling the G is complete) are edge-maximal 1-constructible graphs. A slightly
weaker statement is true for all k: every graph Mk(G) is k-constructible (Theorem 5.i),
and every k-constructible graph is a subgraph of some graph Mk(G) (Theorem 5.ii).

Note that a stronger statement, that the graphs of the form Mk(G) are exactly the edge-
maximal k-constructible graphs, is not true. To see this consider a cycle C4 of length
four. Assign weights 1, . . . , 4 to these four edges (in arbitrary order) and weights 5, 6
to the remaining edges of the complete graph on four vertices. It is easily checked that
M2(G) = C4. But M2(G) is not edge-maximal, as a diagonal to the cycle C4 can be
added without destroying 2-constructibility.

Theorem 5

i) For every complete graph G = (V,E) with distinct positive edge weights,
(V,Mk(G)) is k-constructible.

ii) Let G = (V,E) be k-constructible. Then there exist distinct positive edge weights
for the complete graph G̃ = (V, Ẽ) such that E ⊆ Mk(G̃).
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Proof. Part (i): Let G = (V,E) be a complete graph on n vertices with distinct positive
edge weights. Let 〈e1, e2, . . . , e(n

2

)〉 be the ordering of the edges in E by increasing

edge weights and O = 〈er1 , er2 , . . . , er|Mk(G)|
〉 be the ordering of the edges in Mk(G)

by increasing edge weights. We will now show that O is a k-construction order for
(V,Mk(G)). Let i ∈ {1, 2, . . . , |Mk(G)|}. As eri ∈ Mk(G) there exists a set X ⊆ V
with |X| = k − 1 and eri ∈ MST(G \ X), implying that the two endpoints of eri
are not connected in the graph (V \X, {e1, e2, . . . , eri−1}). By Menger’s theorem, this
implies that there are at most k − 1 vertex-disjoint paths between the two endpoints
of eri in (V, {e1, e2, . . . , eri−1}). This statement remains thus true for the subgraph
(V, {er1 , er2 , . . . , eri−1}). The ordering O is thus a k-construction order for (V,Mk(G)).

Part (ii): Conversely let G = (V,E) be a k-constructible graph with k-construction order
O = 〈e1, e2, . . . , e|E|〉. Let (V, Ẽ) be the complete graph on V . We assign the following

edge weights w̃ to the edges in Ẽ. We assign the weight 1 to e1, 2 to e2 and so on. The
remaining edges Ẽ \E get arbitrary distinct weights greater than |E|. In order to show
that the graph G̃ = (V, Ẽ, w̃) satisfies E ⊆ Mk(G̃) consider an arbitrary edge ei ∈ E
and let C ⊆ V with |C| = k − 1 be a vertex set separating the two endpoints of ei in
the graph Gi−1 = (V, {e1, e2, . . . , ei−1}). Applying Kruskal’s algorithm to G̃[V \ C], the
set of all edges considered before ei is contained in E(Gi−1), leaving the endpoints of ei
separated, so ei will be accepted: ei ∈ MST(G̃[V \ C]) ⊆ Mk(G̃).

We remark that the first part of the foregoing proof shows an efficient construction
of Mk(G): follow a generalization of Kruskal’s algorithm, considering edges in order of
increasing weight, adding an edge if (prior to addition) its endpoints are at most (k−1)-
connected. Connectivity can be tested as a flow condition, so that the algorithm runs in
polynomial time — far more efficient than the naive Ω

((
n
k

))
protocol suggested by the

definition of Mk(G). This again was already observed in [1].

By Theorem 5, the following theorem is equivalent to Theorem 1.

Theorem 6

For k ≥ 1, every k-constructible graph G = (V,E) with n ≥ k + 1 vertices satisfies

|E| ≤ nk −
(
k+1
2

)
. (2)

Theorem 6 generalizes a result of Mader [3], based on results in [2], concerning “k-
minimal” graphs (edge-minimal k-connected graphs). Every k-minimal graph is k-
constructible, since every order of its edges is a k-construction order. The following
theorem is thus a corollary of Theorem 6.

Theorem 7 (Mader’s theorem)
Every k-minimal graph with n vertices has at most nk −

(
k+1
2

)
edges.

Note that Mader’s theorem (Theorem 7) is weaker than Theorem 6, because while every
k-minimal graph is k-constructible, the converse is false: not every k-constructible graph
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is k-minimal. An example with k = 2 is a cycle C4 with length four with an additional
diagonal e. The vertex set remains 2-connected even upon deletion of the edge e, so the
graph is not 2-minimal, but it is 2-constructible (by any order where e is not last).

3 Proof of the main theorem

In this section we prove Theorem 6. We fix k and prove the theorem by induction on n.
The theorem is trivially true for n = k+1, so assume that n ≥ k+2 and that the theorem
is true for all smaller values of n. We prove (2) for a k-constructible graph G = (V,E) on
n vertices and m edges which, without loss of generality, we may assume is edge-maximal
(no edges may be added to G leaving it k-constructible). Fix a k-construction order

O = 〈e1, e2, . . . , em〉

of G and (for any i ≤ m) let Gi = (V, {e1, e2, . . . , ei}). Also fix a set C ⊆ V of size
|C| = k−1 such that the two endpoints of em lie in two different components Q1, Q2 ⊆ V
of Gm−1[V \C] (the set C exists by k-constructibility of G and Menger’s theorem). The
edge maximality of G implies that Q1, Q2, C form a partition of V . Let V 1 = Q1 ∪ C
and V 2 = Q2 ∪C. (If there were a third component Q3 then, even after adding em, any
v1 ∈ Q1 and v3 ∈ Q3 are at most (k − 1)-connected and so the edge {v1, v3} could be
added, contradicting maximality.)

Our goal is to define two graphs G1 = (V 1, E1) and G2 = (V 2, E2) that satisfy the
following property.

Property 8

• G1 and G2 are both k-constructible.
• E1 contains all edges of G[V 1].
• E2 contains all edges of G[V 2].
• For every pair of vertices c1, c2 ∈ C not connected by an edge in G, there is an
edge {c1, c2} in either E1 or in E2 (but not both).

If we can find graphs G1 and G2 satisfying Property 8, then the proof can be finished as
follows. Note that we have the following equality:

|E1|+ |E2| = (m− 1) + |G[C]|+
((

k−1
2

)
− |G[C]|

)
.

The term m− 1 comes from the fact that E1 ∪ E2 covers all edges of G except em, the
term |G[C]| represents the double counting of edges contained in C, and the last term
counts the edges which are covered by E1 and E2 but not in G.

We therefore have

m = 1 + |E1|+ |E2| −
(
k−1
2

)
.

5



Applying the inductive hypothesis onG1 andG2 (which by Property 8 are k-constructible)
we get the desired result:

m ≤ 1 +
(
|V 1|k −

(
k+1
2

))
+

(
|V 2|k −

(
k+1
2

))
−

(
k−1
2

)

≤ 1 + (n+ k − 1)k − 2
(
k+1
2

)
−

(
k−1
2

)

= nk −
(
k+1
2

)
,

where in the second inequality we have used |V1|+ |V2| = n+ |C| = n+ k − 1.

We will finally concentrate on finding G1 = (V 1, E1) and G2 = (V 2, E2) satisfying
Property 8.

Let B =
(
C
2

)
\ E be the set of all anti-edges in G[C]. (

(
C
2

)
denotes the set of unordered

pairs of elements of C.) For {c1, c2} ∈ B, let ℓ(c1, c2) be the smallest value of i such
that c1 and c2 are k-connected in Gi. (Considering k vertex-disjoint paths between c1
and c2 in Gi, and noting that deletion of the single edge ei leaves them at least k − 1
connected, it follows that c1 and c2 are precisely (k − 1)-connected in Gi−1.) Define
Bi = {{c1, c2} : ℓ(c1, c2) = i}. Since by edge maximality of G every pair {c1, c2} is
k-connected in Gm = G, it follows that B1, B2, . . . , Bm form a partition of B.

Our basic strategy to define the graphs G1 and G2 (and appropriate orderings of their
edges which prove that they are k-constructible) is as follows. In a particular way, we
will partition each Bi as B

1
i ∪B2

i , and determine orders O1
i and O2

i on their respective
edges. Let G1 be the graph constructed by the order

O1 = 〈e1, O
1
1 , e2, O

1
2 , . . . , em, O1

m〉, (3)

where (recalling that G1 has vertex set V 1) we ignore any edge ei /∈
(
V 1

2

)
. (There is

no issue with edges from O1
i , as these belong to

(
C
2

)
⊆

(
V 1

2

)
.) Define G2 symmetrically.

We need to show that the graphs G1 and G2 satisfy Property 8; the central point will
be to ensure that O1 is a k-construction order for G1, and O2 for G2. (By definition of
the edges Bi, note that every edge e ∈ O1

i when added after ei in the order O violates
k-constructibility, but in the following we show how O1

i , O
2
i can be chosen such that it

will not violate k-constructibility in G1; likewise for edges e ∈ O2
i and G2.)

To show that O1 and O2 are k-construction orders we need to check that, just before an
edge is added, its endpoints are at most (k−1)-connected. To prove this, we distinguish
between edges ei ∈ E and edges e ∈ B. We first dispense with the easier case of an
edge ei ∈ E. Proposition 9 shows that (for any orders Oi of Bi) in the edge sequence
〈e1, O1, . . . , em, Om〉, every edge ei has endpoints which are at most (k − 1)-connected
upon its addition to the graph (V, {e1, O1, . . . , ei−1, Oi−1}). It follows that the endpoints
are also at most (k − 1)-connected upon the edge’s addition to G1 (respectively, G2),
i.e., in the graph (V 1,

{
e1, O

1
1 , . . . , ei−1, O

1
i−1

}
), where as usual we disregard edges not

in
(
V1
2

)
.
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Proposition 9

Let i ∈ {1, 2, . . . ,m} and v1, v2 ∈ V such that {v1, v2} is not an edge in Gi−1. If the
maximum number of vertex-disjoint paths between v1 and v2 in Gi−1 is r ≤ k − 1, then
the maximum number of vertex-disjoint paths between v1 and v2 in the graph
(V, {e1, e2, . . . , ei−1} ∪

⋃i−1
l=1 Bl) is r, too.

Proof. For any i, v1, v2 as above, let S ⊆ V , |S| = r, be a set separating v1 and v2
in Gi−1. As |S| = r < k, S cannot separate two k-connected vertices in Gi. This
implies that any two vertices in V \ S that are k-connected in Gi−1 lie in the same
connected component of Gi−1[V \ S]. As every edge in

⋃i−1
l=1 Bl connects two vertices

that are k-connected in Gi−1, adding the edges
⋃i−1

l=1 Bl to Gi−1[V \ S] does not change
the component structure of Gi−1[V \ S]. The set S thus remains a separating set for v1
and v2 in the graph (V, {e1, e2, . . . , ei−1} ∪

⋃i−1
l=1 Bl), proving that v1 and v2 are at most

r-connected in this graph.

Proposition 9

With Proposition 9 addressing edges ei ∈ E, to ensure k-constructibility of O1 and O2,
it suffices to choose for j ∈ {1, 2} and i ∈ {1, 2, . . . ,m} the orders Oj

i in such a way that

successively adding any edge e ∈ Oj
i to the graph Gi[V

j ] connects two vertices which
were at most (k − 1)-connected.

Let Ci ⊆ V with |Ci| = k− 1 a set separating the endpoints of ei in the graph Gi−1. Let
U,W ⊆ V be the two components of Gi−1[V \ Ci] containing the two endpoints of the
edge ei. We define CU = C ∩ U , CW = C ∩W . Figure 1 illustrates these sets.

CU

CW

V 1 V 2

C = V 1
∩ V 2

Ci

U

W

Figure 1: Sets defined to prove Propositions 10–12.

The following proposition shows that the edges Bi form a bipartite graph.

Proposition 10

Bi ⊆ CU × CW

7



Proof. Suppose by way of contradiction that ∃e ∈ Bi \ (C
U × CW ). Let

O′ = 〈e1, . . . , ei−1, e, ei, . . . , em〉,

the edge order obtained by inserting e immediately before ei in the original order O =
〈e1, e2, . . . , em〉. We will show that O′ is a k-construction order, thus contradicting the
edge maximality of G. For edges up to ei−1 this is immediate from the fact that O is
a k-construction order. Proposition 9 shows that edges ei+1 and later do not violate k-
constructibility. (Literally, Proposition 9 applies to the order 〈e1, . . . , ei, e, ei+1, . . . , em〉
rather than to O′, but for edges ei+1 and later the swap of ei and e is irrelevant.) The
edge e itself does not violate k-constructibility, since by the definition of Bi its two
endpoints are at most k − 1 connected in Gi−1. This leaves only edge ei to check, but
since e /∈ U×W , Ci remains a separating set with cardinality k−1 for the two endpoints
of ei in the graph (V, {e1, e2, . . . , ei−1, e}). Thus O

′ is a k-construction order, giving the
desired contradiction.

We will now describe a method for constructing the orders O1
i , O

2
i . Our approach is

to define an order L = 〈v1, v2, . . . , vr〉 on (a subset of) the vertices of CU ∪ CW and to
assign to every vertex v ∈ CU ∪ CW a label α(v) ∈ {1, 2}. The two orders O1

i , O
2
i are

then defined as follows. We begin with O1
i , O

2
i = ∅ and add all edges in Bi which are

incident to v1 at the end of O
α(v1)
i in any order. In the next step all edges of Bi which

are incident to v2 and not already assigned to one of the orders O1
i , O

2
i are added at the

end of O
α(v2)
i in any order. This is repeated until all edges are assigned.

In what follows we show how to choose a vertex order L and labels α so that O1 and O2

are k-construction orders. Just as O1 and O2 are built iteratively, so is L, starting with
L = ∅.

For any X ⊆ CU ∪CW , we define Bi(X) to be the set of edges in Bi incident on vertices
in X, i.e., Bi(X) = {e ∈ Bi | e ∩X 6= ∅}.

Proposition 11

Let j ∈ {1, 2} and X ⊆ CU ∪ CW . We then have that ∀e ∈ Bi \Bi(X) there are at
most |Ci ∩ V j |+ |X| vertex-disjoint paths between the two endpoints of e in the graph
(V, {e1, e2, . . . , ei} ∪Bi(X))[V j ].

Proof. Observe that the set (Ci ∩ V j) ∪X separates the two endpoints of the edge e in
the graph (V, {e1, e2, . . . , ei} ∪ Bi(X))[V j]. As this set has cardinality |Ci ∩ V j | + |X|
the result follows by Menger’s theorem.

Let X1 be the set of vertices labeled 1 contained in the partially constructed L, and X2

those labeled 2. If we can find a vertex v ∈ (CU ∪ CW ) \ (X1 ∪X2) where the number
of “new” edges incident on v satisfies

|Bi(v) \ (Bi(X
1 ∪X2))| ≤ k − 1−min{|Ci ∩ V 1|+ |X1|, |Ci ∩ V 2|+ |X2|} (4)

8



then by Proposition 11, adding v at the end of the current order L and labeling it
argminj∈{1,2}{|Ci ∩ V j| + |Xj |} does not violate k-constructibility of the orders O1

and O2.

The following proposition shows that, until the process is complete (until Bi(X
1∪X2) =

Bi), such a vertex v can always be found.

Proposition 12

Let X1,X2 ⊂ CU ∪ CW be two disjoint sets. If Bi(X
1 ∪X2) ( Bi, then there exists a

vertex v ∈ (CU ∪ CW ) \ (X1 ∪X2) that satisfies (4).

Proof. Note that CU , CW , and C ∩ Ci are disjoint and contained in C, so

|CU |+ |CW |+ |C ∩ Ci| ≤ |C| = k − 1 , (5)

where |C| = k − 1 by definition. Also,

|V 1 ∩ Ci|+ |V 2 ∩ Ci| − |C ∩ Ci| = |Ci| = k − 1 . (6)

¿From the fact that the right side of (5) is equal to 2(k − 1) minus that of (6), we get

|CU |+ |CW | ≤ (k − 1− |V 1 ∩ Ci|) + (k − 1− |V 2 ∩ Ci|) . (7)

By disjointness of CU and CW ,

|CU\(X1 ∪X2)|+ |CW \ (X1 ∪X2)| (8)

= |CU |+ |CW | − |X1| − |X2|

≤ (k − 1− |V 1 ∩ Ci| − |X1|) + (k − 1− |V 2 ∩ Ci| − |X2|) , (9)

using (7) in the last inequality. Thus, the smaller summand in (8) is at most the larger
summand in (9), and without loss of generality we suppose that

|CU \ (X1 ∪X2)| ≤ k − 1− |V 1 ∩Ci| − |X1| . (10)

By the hypothesis Bi(X
1 ∪ X2) ( Bi, there is an edge e ∈ Bi \ Bi(X

1 ∪ X2); by
Proposition 10, e = {u,w} with u ∈ CU and w ∈ CW ; and by definition of Bi(X

1∪X2),
u,w /∈ X1 ∪X2, i.e., u ∈ CU \ (X1 ∪X2) and w ∈ CW \ (X1 ∪X2). Then v = w satisfies
(4) because the new edges on w must go to so-far-unused vertices in CU :

|Bi(w) \Bi(X
1 ∪X2)| ≤ |CU \ (X1 ∪X2)| ,

whence (10) closes the argument.

Therefore there always exist two k-construction orders O1, O2 as desired, which com-
pletes the proof of Theorem 6.
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