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Abstract

It is well known that the spectral radius of a tree whose maximum
degree is D cannot exceed 2

√
D − 1. In this paper we derive similar

bounds for arbitrary planar graphs and for graphs of bounded genus. It is
proved that a the spectral radius ρ(G) of a planar graph G of maximum
vertex degree D ≥ 4 satisfies

√
D ≤ ρ(G) ≤

√
8D − 16+ 7.75. This result

is best possible up to the additive constant—we construct an (infinite)
planar graph of maximum degree D, whose spectral radius is

√
8D − 16.

This generalizes and improves several previous results and solves an open
problem proposed by Tom Hayes. Similar bounds are derived for graphs of
bounded genus. For every k, these bounds can be improved by excluding
K2,k as a subgraph. In particular, the upper bound is strengthened for
5-connected graphs. All our results hold for finite as well as for infinite
graphs.

At the end we enhance the graph decomposition method introduced in
the first part of the paper and apply it to tessellations of the hyperbolic
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plane. We derive bounds on the spectral radius that are close to the true
value, and even in the simplest case of regular tessellations of type {p, q}
we derive an essential improvement over known results, obtaining exact
estimates in the first order term and non-trivial estimates for the second
order asymptotics.

1 Introduction

Every tree of maximum degree D is a subgraph of the infinite D-regular tree.
This observation immediately implies that the spectral radius of every such
tree is at most 2

√
D − 1. In this paper we derive similar bounds for arbitrary

planar graphs and for graphs of bounded genus. This generalizes and improves
several previous results and solves an open problem proposed by Hayes. Usually
higher connectivity of graphs allows more edges in the graph and thus gives rise
to graphs with larger spectral radius. However, an interesting outcome of our
proof is that higher connectivity has converse effect in the case of planar graphs.
The extremal examples for the largest spectral radius need many 4-separations,
and hence 5-connected graphs, in particular, allow better upper bounds on the
spectral radius.

All graphs in this paper are simple, i.e. no loops or multiple edges are allowed.
They can be finite or infinite, but we request that they are locally finite. In fact,
we shall always have a (finite) upper bound on the maximum degree.

It is well known that the edges of every planar graph G can be partitioned
into three acyclic subgraphs. By compactness, this extends to all (locally finite)
planar graphs and implies that ρ(G) ≤ 6

√
∆− 1, where ∆ is the maximum

degree of G. This bound has been improved by Hayes [10]. He use the following
theorem.

Theorem 1.1 (Hayes [10]). Any graph G that has an orientation with maximum
indegree k (hence also any k-degenerate graph) and ∆ = ∆(G) ≥ 2k satisfies
ρ(G) ≤ 2

√

k(∆− k).

Since each planar graph G has an orientation with maximum indegree 3, this
gives ρ(G) ≤

√

12(∆− 3). At the 1st CanaDAM conference (Banff, Alberta,
2007), Tom Hayes asked to what extent the constant factor in his upper bound
can be improved. We answer Hayes’ question by proving that ρ(G) ≤

√
8∆ +

O(1) (see Theorem 5.2) and by showing that this bound is essentially best
possible. Our bound cannot be improved even when G is bipartite and “tree-
like” (i.e. with lots of 2-separations). To some surprise, if the connectivity is
increased, the upper bound can be strengthened further. Actually, it suffices to
exclude K2,k subgraph, where k = o(∆). These results also apply for all graphs
of bounded genus, cf. Theorem 5.1.

In the last section we enhance the graph decomposition method used in this
paper and apply it to tessellations of the hyperbolic plane, whose graph is p-
regular. We derive lower and upper bounds on the spectral radius that are
close to each other and asymptotically coincide. Even in the simplest case of
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regular tessellations of type {p, q}, previously known bounds were not of the
right magnitude asymptotically. Our estimates are exact in the first order term
and also give a non-trivial terms for the second order asymptotics. See further
discussion about known results in the next section. It is worth pointing out that
p-regular graphs of planar tessellations are p-connected (as proved in [20]). It
turns out that with q tending to infinity, the spectral radius tends to the same
value as the spectral radius of the p-regular tree.

We use standard terminology and notation. For a graph G and v ∈ V (G),
e ∈ E(G), we denote by G−v and G−e the subgraph of G obtained by deleting
v and the subgraph obtained by removing e, respectively. If e = uv is not an
edge of G, then we denote by G + e the graph obtained from G by adding the
edge e. We denote by ∆(G) and δ(G) the maximum and the minimum degree
of G, respectively. A graph is said to be d-degenerate if every subgraph H of G
has δ(H) ≤ d. This condition is equivalent to the requirement that G can be
reduced to the empty graph by successively removing vertices whose degree is
at most d. If H is a subgraph of G, we write H ⊆ G.

2 Motivation and overview of known results

Our motivation for the study of the spectral radius of planar graphs comes from
various directions.

(1) Harmonic analysis. The spectral radius of infinite planar graphs, in
particular for tesselations of the hyperbolic plane, is of great interest in harmonic
analysis. We refer to [21] and to [24, 25] for an overview.

Tessellations, whose graphs are regular of degree d, may have the spectral
radius as large as d. However, this happens precisely when the graph is amenable
(cf., e.g., [18, 25]). This is also equivalent to the condition that the random walk
on the graph is recurrent. This case is well understood. However, in the case
of the tessellations of the hyperbolic plane (or more general Cantor spheres ,
see [20]) the random walk is transient (Dodziuk [7]), the isoperimetric number
(or the Cheeger constant) is positive [19], and the spectral radius is strictly
smaller than d. It can be as small as 2

√
d− 1 (in the case of the d-regular

tree). Quantitative relationship between these notions is provided via Cheeger
inequality (see, e.g., [2] or [25]). It is thus surprising that the exact values for the
spectral radius of regular tessellations of the hyperbolic plane are not known.
Earlier best results are by Žuk [27] and Higuchi and Shirai [12]. They will be
reviewed in the last section, where we present improved bounds.

(2) Mixing times of Markov chains. Bounds on the spectral radius of planar
graphs can be used in the design and analysis of certain Monte Carlo algorithms
and have applications not only in the theory of algorithms but also in theoretical
physics. In particular, Hayes [10] and Hayes, Vera, and Vigoda [11] used these
to prove O(n logn) mixing time for the Glauber dynamics for the spin systems
on planar graphs. These applications include the Ising model, hard-core lattice
gas model, and graph colorings that are important in theoretical physics.
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(3) An application in geography. Boots and Royle [3] investigated the spec-
tral radius of planar graphs motivated by an application in geography networks.
They conjectured that for every planar graph, ρ(G) ≤ O(

√
n), where n = |G|,

and their computational experiments suggested that the complete join of K2

and the path Pn−2 gives the extremal case. Cao and Vince [4] made similar
conjecture and proved that ρ(G) ≤ 4 +

√

3(n− 3). Yuan [26] and Ellingham
and Zha [8] found extensions to graphs of a fixed genus g. It is interesting that
all these results are close to best bounds when there is a vertex whose degree is
close to n. The setting in this paper provides the same type of the results but
the bounds depend on the maximum degree and not the number of vertices.

(4) Structural graph theory. In the study of graph minors, three basic
structures appear when one excludes a fixed graph H as a minor. The first
one is topological—one gets graphs embeddable in surfaces in which the ex-
cluded graph H cannot be embedded. The second structure are extensions of
other structures by adding a bounded number of new vertices or adding so-
called “vortices” to the surface structure. This is somewhat technical and we
will not consider it at this point. The last structure is related to “tree-like de-
compositions” and, in particular, gives rise to the family of graphs of bounded
tree-width. These graphs are degenerate in the sense that they can be reduced
to the empty graph by successively removing vertices of small degree. One can
prove similar bounds on the spectral radius as presented in this paper, but the
detailed analysis requires additional work and we leave details for future work.
We refer to [16] for references concerning graph minors theory, and to [5] for
some important relations between spectral theory and graph minors.

3 Spectral radius of finite and infinite graphs

If V is a set, we define ℓ2(V ) as the set of all functions f : V → R such that
||f ||2 =

∑

v∈V f(v)2 < ∞. For a graph G with vertex set V and edge set E,
we define the adjacency operator A = A(G) as the linear operator that acts on
ℓ2(V ) in the same way as the adjacency matrix by the rule of the matrix-vector
multiplication:

(Af)(v) =
∑

{u,v}∈E

f(u) .

If the degrees of all vertices in G are bounded above by a finite constant D, then
this defines a bounded self-adjoint linear operator, whose spectrum is contained
in the interval [−D,D]. The supremum of the spectrum is called the spectral
radius of G and is denoted by ρ(G). We refer to [21] for more details about the
spectrum of infinite graphs, and refer to [1, 6, 9] for results about the spectra
of finite graphs.

The following basic result [17] enables us to restrict our attention to finite
graphs if desired.

Theorem 3.1. If G is an infinite (locally finite) graph, then its spectral radius
ρ(G) is the supremum of spectral radii ρ(H) taken over all finite subgraphs H
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of G, and it is equal to sup{ρ(Hi) | i = 1, 2, . . . }, where H1 ⊆ H2 ⊆ · · · is any
seqence of subgraphs of G such that

⋃

i≥1 Hi = G.

The spectral radius is monotone and subadditive. Formally this is stated in
the following lemma.

Lemma 3.2. (a) If H ⊆ G, then ρ(H) ≤ ρ(G).
(b) If G = K ∪ L, then ρ(G) ≤ ρ(K) + ρ(L).

Application of Lemma 3.2(a) to the subgraph of G consisting of a vertex
of degree ∆(G) together with all its incident edges gives a lower bound on the
spectral radius in terms of the maximum degree. Also, the spectral radius is
bounded from above by the maximum degree, so we have the following result:

Lemma 3.3.
√

∆(G) ≤ ρ(G) ≤ ∆(G).

4 Partitioning the edges of an embedded graph

The weight w(e) of an edge e = uv is deg(u)+deg(v). We shall use the following
results regarding existence of edges of small weight (also called light edges) in
graphs on surfaces. If Σ is a surface with Euler characteristic of χ(Σ), then the
non-negative integer g = 2− χ(Σ) is called the Euler genus of Σ.

Theorem 4.1 (Ivančo [14]). Let G be a finite graph with minimum degree at
least three, embedded in an orientable surface of Euler genus g. Then G contains
an edge e with

w(e) ≤
{

g + 13 if g < 6

2g + 7 if g ≥ 6.

Theorem 4.2 (Jendrol’ and Tuhársky [15]). Let G be a finite graph with mini-
mum degree at least three, embedded in a non-orientable surface of Euler genus g.
Then G contains an edge e with

w(e) ≤











2g + 11 if 1 ≤ g ≤ 2

2g + 9 if 3 ≤ g ≤ 5

2g + 7 if g ≥ 6.

Let us define

d(g) =



















10 if g ≤ 1

12 if 2 ≤ g ≤ 3

2g + 6 if 4 ≤ g ≤ 5

2g + 4 if g ≥ 6.

We conclude the following:

Corollary 4.3. Let G be a finite graph with minimum degree at least three,
embedded in a surface of Euler genus g. Then G contains an edge uv such that
deg(u) + deg(v) ≤ d(g) + 3, and hence both u and v have degree at most d(g).
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We show the following decomposition result for the graphs embedded in a
fixed surface:

Theorem 4.4. Let G be a finite graph embedded in a surface of Euler genus g.
Let s = d(g) and for each vertex v ∈ V (G), let δ̂(v) = min{deg(v), s}. Then G
can be decomposed as follows:

(a) G = T ∪L, where T is a 2-degenerate graph and δ̂(v)−2 ≤ degL(v) ≤ δ̂(v)
for each vertex v ∈ V (G).

(b) G = T ∪ L, where T is a 2-degenerate graph and degL(v) ≤ δ̂(v) − 2 for
each vertex v ∈ V (G) with deg(v) ≥ 2, and degL(v) = 0 if deg(v) ≤ 1.

(c) If G does not contain K2,k (k ≥ 2) as a subgraph, then G = T ∪ T1 ∪ L,

such that T and T1 are forests, ∆(T1) ≤ (k−1)(s−1)+2, and δ̂(v)−2 ≤
degL(v) ≤ δ̂(v) for each vertex v ∈ V (G).

Proof. Let G be a counterexample with the smallest number of edges. We may
assume that G has no isolated vertices. Then G is connected. Let us call a
vertex v small if deg(v) ≤ s. Let S be the set of all small vertices of G, and
S2 ⊆ S the set of all vertices of G of degree at most two. No two vertices in
S \ S2 are adjacent, as otherwise we can express G− e as T ∪L′ or T ∪ T1 ∪L′

and set L = L′ + e, obtaining a decomposition of G. In the cases (a) and (c),
the same reduction works for any small vertices, i.e., no two vertices in S are
adjacent to each other.

Next, we claim that δ(G) ≥ 2. Otherwise, let v be a vertex of degree one,
and let w be its neighbor. As G is the smallest counterexample, there exists a
decomposition G− v = T ′ ∪L or G− v = T ′ ∪ T1 ∪L. In the cases (a) and (c),
w 6∈ S, hence degL(w) ≥ s− 2. We let T = T ′ + vw and obtain a contradiction,
as G is supposed to be a counterexample.

In the cases (a) and (b), we similarly conclude that G has minimum degree
at least three (by adding both edges incident with a vertex of degree 2 into
T ). Since G does not contain two adjacent small vertices, this contradicts
Corollary 4.3.

It remains to consider the case (c). Suppose that G contains an edge uv with
deg(u) ≤ k(s − 1) + 1 and deg(v) = 2, and let w be the neighbor of v distinct
from u. By the minimality of G, there exists a decomposition G−v = T ′∪T ′

1∪L.
We set T = T ′ + vw and T1 = T ′

1 + uv. As G does not contain two adjacent
small vertices, deg(u) > s and degL(u) ≥ s − 2. It follows that degT1

(u) ≤
k(s − 1) + 1 − (s − 2) = (k − 1)(s − 1) + 2, hence ∆(T1) ≤ (k − 1)(s − 1) + 2.
This is a contradiction, thus each neigbor of a degree-2 vertex has degree at
least k(s− 1) + 2.

Let H be the simple graph obtained from G by suppressing the degree-2
vertices and eliminating the arising parallel edges (note that the multiplicity of
each such edge is at most k, as otherwise G would contain K2,k as a subgraph).
If v ∈ V (H) is not adjacent to a 2-vertex in G (in particular, if v ∈ S \ S2),
then degH(v) = degG(v) ≥ 3. On the other hand, if v is adjacent to a 2-vertex,
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then we conclude that degH(v) ≥ degG(v)
k ≥ k(s−1)+2

k ≥ 3. It follows that the
minimum degree of H is at least three, and by Corollary 4.3, H contains an edge
uv with degH(u) + degH(v) ≤ s+3. We may assume that degH(u) ≤ degH(v),
and thus degG(u) ≤ k degH(u) ≤ k s+3

2 ≤ k(s − 1) + 1. We conclude that u is
not adjacent to a degree-2 vertex in G, and hence degG(u) = degH(u) ≤ s and u
is small. It follows that uv ∈ E(G) and v is not small, thus degG(v) > degH(v)
and v is adjacent to a degree-2 vertex in G, and degG(v) ≥ k(s−1)+2. However,
using the fact that u and v do not have a common neighbor of degree 2, we get
degH(v) ≥ 1 + ⌈(degG(v) − 1)/k⌉ ≥ 1 + ⌈(k(s − 1) + 1)/k⌉ = s + 1, which is a
contradiction.

Consider a decomposition of the graph K3,n into a 2-degenerate graph T
and a graph L of maximum degree s. Let a1, a2 and a3 be the three vertices
of degree n and let B be the set of n vertices of degree three. Let B′ ⊆ B be
the set of vertices that are not incident with an edge of L. Since the maximum
degree of L is s, we obtain |B′| ≥ n− 3s. As K3,3 is not 2-degenerate, |B′| ≤ 2.
Therefore, n−3s ≤ 2, and n ≤ 3s+2. As K3,2g+2 can be embedded in a surface
of Euler genus g (Ringel [23]), it is not possible to improve the bound on the
maximum degree of L in such a decomposition below 2

3g, i.e., ∆(L) = Ω(g).

5 Spectral radius of embedded graphs

We now use the decomposition theorem to obtain a bound on the spectral radius
of graphs of bounded genus. In all proofs we assume that the graph G is finite.
However, the proof given for the finite case extends to infinite graphs by applying
Theorem 3.1 and taking the limit over larger and larger finite subgraphs.

Theorem 5.1. Let G be a graph embedded in a surface of Euler genus g.

(a) If ∆(G) ≥ d(g) + 2, then ρ(G) ≤
√

8(∆(G) − d(g)) + d(g).

(b) If G does not contain K2,k (k ≥ 2) as a subgraph and ∆(G) ≥ d(g), then

ρ(G) ≤ 2
√

∆(G) − d(g) + 1 + 2
√

(k − 1)(d(g)− 1) + 1 + d(g).

Proof. Let G = T ∪ L be a decomposition as guaranteed by Theorem 4.4(a).
Note that every vertex of degree ≥ d(g) satisfies degT (v) = degG(v)−degL(v) ≤
degG(v)−d(g)+2 and every vertex of degree < d(g) in G satisfies degT (v) ≤ 2.
Thus ∆(T ) − 2 ≤ ∆(G) − d(g). By Theorem 1.1, ρ(T ) ≤ 2

√

2∆(T )− 4 ≤
2
√

2(∆(G) − d(g)). Furthermore, ρ(L) ≤ ∆(L) ≤ d(g). The bound on ρ(G)
in (a) follows therefrom by the subadditivity of the spectral radius (Lemma
3.2(b)). Part (b) follows similarly from Theorem 4.4(c).

The bound of Theorem 5.1(a) can be improved when ∆(G) is large by using
the decomposition of Theorem 4.4(b) instead of (a). We present this improve-
ment only in the special case of planar graphs, where another slight improvement
is possible.
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Theorem 5.2. A planar graph G of maximum degree ∆ = ∆(G) ≥ 10 has

ρ(G) ≤
√
8∆− 80 + 2

√
21 <

√
8∆− 80 + 9.17

and
ρ(G) ≤

√
8∆− 16 + 2

√
15 <

√
8∆− 16 + 7.75

Furthermore, if G does not contain a separating 4-cycle, then

ρ(G) ≤ 2
√
∆− 9 + 2

√
19 + 2

√
21 < 2

√
∆− 9 + 17.883.

Proof. We proceed as in the proof of Theorem 5.1, considering the decompo-
sition G = T ∪ L. We may assume that ∆ ≥ 12 since the bounds follow
easily for ∆ ≤ 11 by using Theorem 1.1. We estimate the contribution of T
in the same way. However, we use Theorem 1.1 to bound the spectral radius
of L. Every planar graph has an orientation with maximum indegree 3, hence
ρ(L) ≤ 2

√

3(∆(L)− 3) ≤ 2
√
21 < 9.17. For the second inequality we apply

Theorem 4.4(b) instead of (a).
Consider now the case that G does not contain separating 4-cycles. If G does

not contain K2,3 as a subgraph, then the bound follows as in Theorem 5.1, using
the fact that ρ(L) ≤ 2

√
21. So suppose that K2,3 ⊆ G. As G has no separating

4-cycles, it is easy to see that V (G) = V (K2,3), and thus ∆(G) ≤ 4.

In the estimates of Theorem 5.1, we can improve the dependency on the
genus using the following lemma:

Lemma 5.3. Let ε > 0 be a real number and let G be a finite graph embedded

in a surface of Euler genus g, with ∆(G) = O(g). Then ρ(G) = O(ε−1g
1+ε

2 ).

Proof. Let k =
⌈

ε−1
⌉

. We construct a decomposition G = G1 ∪ · · · ∪ Gk, such

that for i = 1, . . . , k, ∆(Gi) = O(g1−ε(i−1)) and Gi is O(gεi)-degenerate. By
Theorem 1.1, ρ(Gi) = O(g(1+ε)/2), and by the subadditivity of the spectral
radius, ρ(G) = O(ε−1g(1+ε)/2).

Suppose that we have already constructed graphs G1, G2, . . . , Gi. If i = 0,
then let H0 = G, otherwise let Hi be the complement of G1 ∪ · · · ∪Gi in G, i.e.,
the subgraph of G consisting of the edges that do not belong to G1∪· · ·∪Gi and
the vertices incident with these edges. Let Si+1 be the set of vertices obtained
in the following way: we take a vertex of degree less than gε(i+1) + 6 in Hi,
add it to Si+1, and remove it from Hi. We repeat this process as long as the
graph contains vertices of degree less than gε(i+1) + 6. We let Gi+1 consist of
the edges incident with at least one vertex of Si+1. This ensures that Gi+1 is
(gε(i+1) + 6)-degenerate. Note that Hi+1 = Hi − Si+1.

The construction also ensures that for i ≥ 1, the minimum degree of Hi

is at least gεi + 6 (if Hi 6= ∅, which we may assume), hence 2|E(Hi)| ≥ (6 +
gεi)|V (Hi)|. On the other hand, as Hi is embedded in a surface of Euler genus
g, 2|E(Hi)| ≤ 6|V (Hi)| − 12 + 6g, hence ∆(Hi) ≤ |V (Hi)| = O(g1−εi). Since
Gi+1 ⊆ Hi, this implies the claimed upper bound on the maximum degree of
Gi+1 and completes the proof.

8



The exponent in the bound of Lemma 5.3 cannot be improved below 1/2, as
the complete graph on Ω(

√
g) vertices can be embedded in a surface of Euler

genus g. Together with the decompositions given by Theorem 4.4, Lemma 5.3
gives:

Theorem 5.4. If a graph G has Euler genus g, then

ρ(G) ≤
√

8∆(G) +O(g
1
2 log g).

If k is a positive integer and G does not contain K2,k as a subgraph, then

ρ(G) ≤ 2
√

∆(G) +O(g
1
2 log g).

Proof. We apply the decompositions given by Theorem 4.4. For the small degree
subgraph L we use Lemma 5.3 with ε = (log g)−1 to conclude that ρ(L) =

O(ε−1g
1+ε

2 ) = O(g
1
2 log g).

6 Lower bounds

In this section we show that the bounds given by Theorem 5.1 are tight up to
the additive term. As the spectral radius of an infinite d-regular tree is 2

√
d− 1,

for any ε > 0 there exists a finite tree T with ρ(T ) > 2
√

∆(T )− 1−ε, matching

the upper bound 2
√

∆(G) + O(1) for planar graphs excluding K2,k.
Let k and d, k < d, be integers such that d is divisible by k. Consider now

the following sequence of graphs Hk,d
i . Let Hk,d

0 = Kk,d−k. The graph Hk,d
i

contains k
(

d−k
k

)i+1
vertices of degree k, let Si+1 be the set of these vertices.

The graph Hk,d
i+1 is obtained from Hk,d

i by partitioning Si+1 into k-tuples in
some canonical way, then for each such k-tuple C adding d − k new vertices
adjacent to each vertex of C (the newly added vertices form the set Si+2). The

infinite graph Hk,d is the limit of the sequence of the graphs Hk,d
i . See Figure 1

for an example with k = 2 and d = 8. The following properties are easy to
prove:

• ∆(Hk,d) = d.

• ρ(Hk,d) = supi ρ(H
k,d
i ).

• The graphs H2,d
i are planar (assuming the natural partitionings of the sets

Si).

• The graphs Hk,d
i are k-degenerate.

Lemma 6.1. The spectral radius of Hk,d is 2
√

k(d− k).

Proof. Due to Theorem 1.1 and the second observation in the previous para-
graph, it suffices to show that ρ(Hk,d) ≥ 2

√

k(d− k). Let A be the adjacency
operator associated with H = Hk,d. In addition to the sets Si defined during

9



Figure 1: The graph H2,8

the construction of H , let S0 be the set of k vertices of H of degree d− k. Let

us recall that |Si| = k
(

d−k
k

)i
. Furthermore, all the edges of H are between

the vertices of Si and Si+1, for i = 0, 1, 2, . . . . Observe that there are exactly
k|Si+1| = (d− k)|Si| edges between Si and Si+1.

Let f be the function defined by f(v) = qi for any v ∈ Si, where 0 < q <
√

k
d−k . Note that

||f ||2 =
∑

v∈V (H)

f2(v) =
∞
∑

i=0

|Si|q2i =
∞
∑

i=0

k

(

q2
d− k

k

)i

< ∞.

Also,

〈f |Af〉 = 2
∑

uv∈E(H)

f(u)f(v)

= 2
∞
∑

i=0

(d− k)|Si|q2i+1

= 2q(d− k)

∞
∑

i=0

|Si|q2i.

It follows from the above calculations that 〈f |Af〉
||f ||2 = 2q(d− k) can be arbitrarily

close to 2(d− k)
√

k
d−k = 2

√

k(d− k). Therefore, ρ(Hk,d) ≥ 2
√

k(d− k).

We conclude that

• the upper bound in Theorem 1.1 is best possible for graphs that have
an orientation with maximum indegree k (i.e., the graphs with maximum
average density at most k) and for k-degenerate graphs, and

• as the graph H2,d is planar, the bound
√
8∆+O(1) for the spectral radius

of a planar graph as given in Theorem 5.1 is best possible up to the additive
term.
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7 Hyperbolic tessellations

In this section, we show how to apply a refined decomposition technique to
bound the spectral radius of a special kind of infinite planar graphs. For two
integers p, q ≥ 3, where 1

p + 1
q ≤ 1

2 , we call a connected infinite simple plane

graph G a (p,≥ q)-tessellation if it is p-regular and each of its faces has size at
least q, and every compact subset of the plane contains only a finite number of
its vertices. If all faces have finite size, then this condition implies that G is
a one-ended graph, but in the presence of faces of infinite length, G may have
more than one end. We will assume that p ≥ 4 and q ≥ 4. The cases p = 3 and
q = 3 could be dealt with (assuming that 1

p + 1
q ≤ 1

2 ), but the decomposition
results would require slight modificiations.

Lemma 7.1. Let C be a cycle in a (p,≥ q)-tessellation G, and let H be the sub-
graph of G contained in the closed disk bounded by C. Let d =

∑

u∈V (C) degH(u)

and k = |V (C)|. Then d < 2(k − 1) q−1
q−2 .

Proof. By the definition of (p,≥ q)-tessellations, H is finite. Let n = |V (H)|,
e = |E(H)| and let s be the number of faces of H . By Euler’s formula, n+ s =
e+2. Furthermore, observe that 2e = pn−pk+d and 2e ≥ qs−q+k. Combining
them, we obtain the following inequality:

d

p
+ 2e

(

1

2
− 1

p
− 1

q

)

≤ k − k

q
− 1.

As 1
2 − 1

p − 1
q ≥ 0 and 2e ≥ d, we get

d
q − 2

2q
≤ k − k

q
− 1,

and hence

d ≤ 2k
q − 1

q − 2
− 2q

q − 2
< (2k − 2)

q − 1

q − 2
.

Note that Lemma 7.1 implies that G is triangle-free if q ≥ 4. Let v be a
vertex of a (p,≥ q)-tessellation G. We define a partition V0 ∪ V1 ∪ V2 ∪ · · · of
vertices of G and a partition F0 ∪ F1 ∪ F2 ∪ · · · of faces of G in the following
way: let V0 = {v} and let F0 consist of faces incident with v. For each i > 0,
let Vi consist of the vertices incident with the faces in Fi−1, excluding those in
Vi−1, and let Fi consist of all faces incident with the vertices of Vi, excluding
those in Fi−1. Let Gi be the subgraph of G induced by Vi. We call the graphs
G1, G2, . . . the layers of G with respect to v.

Lemma 7.2. For every (p,≥ q)-tessellation G with p ≥ 4 and q ≥ 4 and a
vertex v ∈ V (G), the partition V0 ∪ V1 ∪ V2 ∪ · · · has the following properties,
for each i > 0 :

11



(a) The subgraph Gi is either a union of infinite paths, or a cycle. The face
of Gi that contains v is equal to F0∪F1∪· · ·∪Fi−1; the boundary of every
other face of Gi is bounded by a connected component of Gi.

(b) Each vertex of Vi has at most one neighbor in Vi−1.

(c) A face belonging to Fi−1 is incident with at most two vertices in Vi−1, and
if it is incident with two such vertices, then they are adjacent in Gi−1.

Proof. For a contradiction, assume that i is the smallest positive integer such
that one of the conditions (a), (b) or (c) is violated. Let us first consider the
possibility that condition (b) is false, and let u ∈ Vi be a vertex with at least two
neighbors w1, w2 ∈ Vi−1. Obviously, i ≥ 2, and thus Gi−1 satisfies condition
(a). It follows that w1 and w2 belong to the same component of Gi−1. Let
C be the unique cycle in Gi−1 + uw1 + uw2 such that the disk bounded by C
does not contain v, and let H be the subgraph of G drawn in the closed disk
bounded by C. By the conditions (a) and (b) applied for i − 1, we conclude
that degH(w) ≥ p− 1 ≥ 3 for each vertex w ∈ V (C), except for u, w1 and w2.
Let k = |V (C)| and d =

∑

w∈V (C) degH(w). By the above,

d ≥ 3(k − 3) + degH(u) + degH(w1) + degH(w2) ≥ 3(k − 1).

However, since q ≥ 4, Lemma 7.1 implies that

d < 2(k − 1)
q − 1

q − 2
≤ 3(k − 1),

a contradiction.
Now, consider the possibility that condition (b) holds, but condition (c) fails.

As G is triangle-free, we conclude that there exists a face f ∈ Fi−1 incident with
two non-adjacent vertices w1 and w2 in Vi−1. Note that i ≥ 2. We consider a
cycle C contained in the union of Gi−1 and the boundary of f , such that the
disk bounded by C contains neither v nor f , and let H be the subgraph of G
contained in the closed disk bounded by C. Note that degH(w) = p for any
vertex w ∈ V (C) \ Vi−1, and degH(w) ≥ p − 1 for w ∈ V (C) \ V (f), i.e., all
but at most two vertices w ∈ V (C) satisfy degH(w) ≥ 3. This again contradicts
Lemma 7.1.

Finally, suppose that (b) and (c) hold. Consider a vertex u ∈ Vi. Similarly
as in the case (b), we conclude that u is incident with at most two faces in Fi−1

and that if it is incident with two such faces, then they share an edge uw with
w ∈ Vi−1. Also, any edge of Gi is incident with a face in Fi−1. It follows that Gi

is 2-regular, and thus it is a union of cycles and infinite paths. By Lemma 7.1
and the property (b) of Gi, each disk bounded by a cycle in Gi contains v. The
claim (a) follows, as F0 ∪F1 ∪ · · · ∪Fi−1 is a connected subset of the plane.

We also need the following fractional version of Lemma 3.2:

Lemma 7.3. Let G1, G2, . . . , Gm be subgraphs of a graph G such that each
edge of G appears in at least p of the subgraphs. Then ρ(G) ≤ 1

p

∑m
i=1 ρ(Gi).
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Proof. By the monotonicity, we may assume that each edge of G appears in
exactly p of the subgraphs. Let A be the adjacency operator of G and Ai the
adjacency operator of Gi for 1 ≤ i ≤ m, and observe that A = 1

p

∑m
i=1 Ai.

Let ε > 0. There exists a function f such that ||f || = 1 and 〈f |Af〉 ≥
ρ(G) − ε. By linearity, 〈f |Af〉 = 1

p

∑m
i=1〈f |Aif〉 ≤ 1

p

∑m
i=1 ρ(Gi). Therefore,

ρ(G) − ε ≤ 1
p

∑m
i=1 ρ(Gi). Since this inequality holds for any ε > 0, the claim

of the lemma follows.

We are now ready to estimate the spectral radius of tessellations:

Theorem 7.4. If G is a (p,≥ q)-tessellation with p ≥ 4 and q ≥ 4, then

ρ(G) ≤ 2
√

p− 1 +
2

q − 3
.

Proof. Choose a vertex v ∈ V (G) arbitrarily, and consider the layers G1, G2,
. . . with respect to v. Let us color a vertex u ∈ Vi black if u has a neighbor
in Vi−1, and white otherwise. Let an earthworm be a maximal subgraph H of
G1∪G2∪· · · such that every two vertices of H are joined by a path whose inner
vertices are white. By Lemma 7.2(a) and (c), all earthworms are paths of length
at least q−3. Let M1, M2, . . . , Mq−3 be edge-disjoint matchings such that each
of them intersects every earthworm in exactly one edge. For 1 ≤ i ≤ q − 3,
consider the graph Ti = G −Mi. We claim that Ti is a forest. Suppose for a
contradiction that Ti contains a cycle C. Let j be the greatest index such that
V (C) ∩ Vj 6= ∅. As Mi contains at least one edge from each component of Gj ,
C 6⊆ Gj . Let P be a maximal subpath of C ∩Gj . Since each vertex of Gj has at
most one neighbor in Vj−1, P is not a single vertex. We conclude that P joins
two black vertices of Gj and thus it is a supergraph of at least one earthworm.
Therefore, Mi ∩ P 6= ∅, which is a contradiction. This proves our claim.

Let Tq−2 = G1 ∪ G2 ∪ · · · . Observe that each edge of G belongs to at least
q − 3 of the graphs T1, T2, . . . , Tq−2, ρ(Ti) ≤ 2

√
p− 1 for 1 ≤ i ≤ q − 3 and

ρ(Tq−2) = 2. By Lemma 7.3, we get ρ(G) ≤ 2
√
p− 1 + 2

q−3 .

As q goes to infinity, the bound of Theorem 7.4 aproaches 2
√
p− 1, which

is the spectral radius of the p-regular infinite tree. This considerably improves
known upper bounds, including the previously best bound of Higuchi and Shirai
[12], who proved that

ρ(G) ≤ 2
√

(p− 2)(1 + 1
q−2 ).

A non-trivial lower bound on the spectral radius of p-regular graphs has been
obtained only for vertex-transitive graphs. Paschke [22] showed that a vertex
transitive p-regular graph containing a q-cycle has spectral radius at least

min
s>0

(p− 2)φ

(

1 + cosh sq

sinh sq sinh s

)

+ 2 cosh s,
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where φ(t) =
√
1+t2−1

t . This gives a lower bound of the form

2
√

p− 1 +
2(p− 2)

(p− 1)(q+1)/2
h(p, q),

where h is a function such that such that limp→∞ h(p, q) = 1 and limq→∞ h(p, q) =
1. The asymptotics (when p or q is large) of this lower bound is different from
our upper bound in Theorem 7.4 in the “second order term” when (p,≥ q)-
tessellations are considered. It would be of interest to determine the exact
behavior.
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