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Abstract: We present a short proof of a generalization of a result of Cheriyan &

Thurimella: a simple graph of minimum degree k can be augmented to a k-edge con-

nected simple graph by adding ≤ kn
k+1 edges, where n is the number of nodes. One

application (from the previous paper) is an approximation algorithm with a guarantee

of 1 + 2
k+1 for the following NP-hard problem: given a simple undirected graph, find a

minimum-size k-edge connected spanning subgraph. For the special cases of k = 4, 5, 6,

this is the best approximation guarantee known.

1 Introduction

Our goal is to study an extremal question in graph connectivity that has a well-known application

in the area of approximation algorithms; also, we present a short proof for a generalization of a key

result on this topic. Our first result is on the edge connectivity of simple, undirected graphs; we

also have a result for undirected multigraphs. Let n and m denote the number of nodes and edges.

For a graph G = (V,E) and S ⊆ V , δ(S) denotes the cut with shores S and V − S, i.e., δ(S) is the

set consisting of edges that have one end in S and the other end in V − S. By a k-cut we mean

a cut that consists of exactly k edges, and by a k	-cut we mean a cut that has ≤ k edges. Recall

that a graph G is called k-edge connected if every cut δ(S), where ∅ 6= S ⊂ V , has ≥ k edges. We

study the following question:

Given a simple graph (V,M) of minimum degree d, what is the maximum size of an

edge set F (where M ∩ F = ∅) such that the graph G = (V,M ∪̇F ) stays simple and

every edge in F belongs to some k	-cut of G?
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A key special case of the question was answered by [CT 96, Theorem 4.3] which proved an upper

bound on |F | of k(n−1)
k+1 when d = k and the resulting simple graph G is required to be k-edge

connected, that is, a graph of minimum degree k can be augmented to a simple k-edge connected

graph by adding at most this number of edges.

We discuss two applications. (At the moment, these are the only applications known to us.) The

first one is to the problem of finding an approximately minimum-size k-edge connected spanning

subgraph of a given simple graph G = (V,E). Let opt denote the minimum size. For k ≥ 2,

computing opt is NP-hard. A polynomial-time algorithm in [CT 96] achieves an approximation

guarantee of 1+ 2
k+1 by first finding a minimum-size subgraph (V,M) of minimum degree k (this can

be done in polynomial-time, via matching algorithms), and then adding an inclusionwise-minimal

set of edges F ⊆ E − M such that the resulting graph is k-edge connected. The minimality of F

implies that every edge in F belongs to a k-cut of the resulting graph. The approximation guarantee

follows because opt ≥ kn/2, opt ≥ |M |, and |F | ≤ kn
k+1 ≤

2opt
k+1 . Another application is to an edge-

connectivity analogue of Mader’s “cycle theorem” for k-node connected graphs [Ma 72, Theorem 1].

An edge e of a k-edge connected graph G is called critical if e belongs to a k-cut of G, that is, if

G−e is not k-edge connected; analogously, an edge e of a k-node connected graph G is called critical

(w.r.t. k-node connectivity) if G− e is not k-node connected. Mader’s theorem [Ma 72, Theorem 1]

states that in a k-node connected graph, a cycle consisting of critical (w.r.t. k-node connectivity)

edges must be incident to a node of degree k. An immediate consequence is that if G = (V,E)

is k-node connected and (V,M) is a subgraph of minimum degree k, then the number of critical

(w.r.t. k-node connectivity) edges in E−M is at most n− 1. Whereas, [CT 96, Theorem 4.3] gives

a bound of k(n−1)
k+1 for the analogous number for the k-edge connectivity of simple graphs.

We briefly discuss the research on approximation algorithms for minimum-size k-edge connected

spanning subgraphs. This line of research was initiated by Khuller and Vishkin [KV 94]. Subse-

quently, many papers have been published on this topic; see the survey by Khuller [K 96], and for

more recent publications, see the references in [GG 08]. Consider the problem restricted to simple

graphs, i.e., assume that the input graph is simple. The algorithm in [CT 96] (discussed above)
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achieves an approximation guarantee of 1+ 2
k+1 . Recently, Gabow and Gallagher [GG 08] presented

an approximation algorithm with a guarantee of 1 + 1
2k + O( 1

k2 ); this improves on the guarantee of

[CT 96] for k ≥ 7. The algorithm of [GG 08] is based on Jain’s iterative rounding method [J 01].

One drawback of this method is that a large linear programming problem has to be solved. In

contrast, the methods in [CT 96] and in this paper are based on simple combinatorial algorithms.

For the special but important cases of k = 2 and k = 3, better approximation guarantees are

known. Jothi, Raghavachari and Varadarajan [JRV 03] presented a 5/4-approximation algorithm

for k = 2, and Gubbala and Raghavachari [GR 07] presented a 4/3-approximation algorithm for

k = 3. (The approximation algorithms and guarantees of [JRV 03] and [GR 07] apply for both

simple graphs and multigraphs.) To the best of our knowledge, for the special cases of k = 4, 5 and

6, there has been no improvement on the approximation guarantee of [CT 96].

Our results

Our main contribution is a short and simple proof of the following generalization of [CT 96, Theo-

rem 4.3]:

Theorem 1 Let d, k be positive integers where n > d ≥ k, and let G = (V,M ∪̇F ) (where M ∩F =

∅) be a simple graph such that (i) the graph (V,M) has minimum degree d, and (ii) each edge in F

belongs to some k	-cut of G. Then |F | ≤ k

⌊
n

d + 1

⌋
− k, and this bound is tight.

We extend this result to the case d < k by noting that a graph of minimum degree d < k can

be made into a graph of minimum degree k by adding ≤ (k − d)(n− 1) edges.

Corollary 2 For d < k (and the other notation as in the above theorem), we have |F | ≤ (k−d)n+

k

⌊
n

k + 1

⌋
− 2k + d.

Possibly, the upper bound is not tight. For the case of d = 0, the complete bipartite graph

Kn−k,k shows that |F | ≥ k(n − k), whereas our upper bound is kn + kb n
k+1c − 2k. For the case
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of d = k − 1 ≥ 1, we have a lower bound (an example) with |F | ≥ 2k bn− (k + 1)
h

c, where

h = (k + 1) + d
√

k + 1e.

Our question arises also in the setting of multigraphs, and we settle this by a simple proof that

gives tight bounds.

Theorem 3 Let d, k ≥ 0 be integers, and let G = (V,M ∪̇F ) (where M ∩ F = ∅) be a multigraph

such that (i) the graph (V,M) has minimum degree d, and (ii) each edge in F belongs to some

k	-cut of G. If d ≤ k, then |F | ≤
(

k − d

2

)
n − k, otherwise |F | ≤ kn

2
− k. Moreover, both these

bounds are tight for even n.

2 Proofs

Let the graph (or multigraph) G = (V,M ∪̇F ) be as in the theorems, that is, (V,M) has minimum

degree d, M ∩ F = ∅, and each edge in F belongs to a k	-cut of G.

We call an edge in F (in M) an F -edge (an M -edge). Call a node set S ⊆ V a good set if

∅ 6= S 6= V and δ(S) is a k	-cut. A good set S is said to cover an edge if the cut δ(S) contains

the edge. It is well known that there exists a laminar family of good sets L = {A1, A2, . . . , At}

that covers all the edges that belong to k	-cuts (i.e., each such edge is in δ(Ai) for some Ai ∈ L);

this follows from the construction of Gomory-Hu trees [CCPS, Chap.3.5.2]. (In more detail, there

exists a laminar family of sets such that for every pair of nodes s, t, one of the sets in the laminar

family is a shore of a minimum s, t cut.) For a laminar family L, let V (L) denote ∪{Ai | Ai ∈ L}.

For any set Ai in a laminar family L, define the core φi to be Ai −
⋃
{Aj | Aj ∈ L, Aj ( Ai} (φi is

the set of nodes in Ai but not in any set of L that is a proper subset of Ai), and define the level `i

to be zero if Ai is an inclusionwise-minimal set of L, and 1 + max{`j | Aj ∈ L, Aj ( Ai} otherwise.

Observe that Ai = φi iff `i = 0. For any core φi, we call an edge e in δ(φi) either an up edge if

e ∈ δ(Ai), or a down edge if e 6∈ δ(Ai); thus an up edge has exactly one end in Ai, and a down edge

has both ends in Ai.
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A proof of Theorem 1

Proof of Theorem 1: Fix n = |V |, d, and k, where n > d ≥ k. Let V , M , and F satisfy the

conditions in the theorem, and let L be a laminar family of good sets covering the edges in F ;

moreover, assume that |F | is maximum, |M | is maximum, and L is inclusion-wise minimal. Let

this minimal laminar family be L = {A1, . . . , At}.

The minimality of L implies that for each Ai ∈ L the k	-cut δ(Ai) has an F -edge. Moreover,

there exists an F -edge in δ(φi)∩ δ(Ai); otherwise, all the F -edges in δ(Ai) are covered by good sets

in L that are proper subsets of Ai. A key observation is that each core φi (i = 1, . . . , t) induces a

clique in the graph (V,M). To justify this, note that L does not cover any edge with both ends in

the same core, so none of these edges can belong to F . If there is a nonadjacent pair of nodes in

some core φi, then we may add an M -edge between them; this preserves all the conditions; then

we get a contradiction to the maximality of |M |.

The theorem follows from the next claim.

Claim: Each core in L contains ≥ d + 1 nodes.

proof of the claim: By way of contradiction, suppose the claim fails. Let φi be a core with the

smallest level `i and with p := |φi| < d + 1. Then we have

|δ(φi) ∩M | ≥ p(d + 1− p) ≥ d ≥ k,

because the graph is simple, each node in φi is incident with ≥ d edges of M , and only p − 1 of

these M -edges have both ends in φi; also, for each p = 1, . . . , d we have p(d + 1− p) ≥ d. Suppose

that the level `i is zero, that is, suppose φi = Ai; then we get a contradiction to the minimality of

L, since δ(Ai) has ≥ k edges of M and so cannot have any edges of F . Hence, the level `i must be

≥ 1, and there exist one or more down M -edges incident to nodes in φi.

Suppose that the core φi has a node v∗ that is incident to both a down M -edge, call it e, and

an up F -edge, call it f . Then we swap these two edges between M and F , i.e., we replace F by

(F −{f})∪{e} and M by (M −{e})∪{f}. It is easily seen that the new M and the new F satisfy
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the conditions of the theorem, and L covers the new F . (To see this, let e = v∗x, and note that

there is a good set Aj ∈ L with `j < `i and x ∈ φj ; then e is covered by Aj , and x is in the clique

of (V,M) induced by φj , where |φj | ≥ d + 1 (by choice of φi, `i), hence, x is incident to ≥ d edges

of the new M .)

If there is no such node v∗ ∈ φi, then note that there is a node u ∈ φi that is incident to an

up F -edge, call it f = uy, and also there is a node w ∈ φi that is incident to at least one down M -

edge and to no up edge. (To see the last part, suppose that each node of φi that is incident to a

down M -edge is also incident to an up M -edge; then we get a contradiction since δ(φi) contains

≥ k up M -edges, since d− (p− 1) up M -edges are incident to u and ≥ 1 up M -edge is incident to

every other node in φi.) In this case, we “replace” the F -edge f = uy by a new F -edge f ′ = wy,

i.e., we remove f from F and add f ′ = wy to F . It is easily seen that M and the new F satisfy

the conditions of the theorem, L covers the new F , and the graph stays simple. Now, the node

w satisfies the conditions on v∗, so we proceed as above, i.e., we swap two edges incident to v∗

between M and F .

Clearly, these edge swaps between M and F can be repeated until δ(φi) has no up F -edge. At

that point, we get a contradiction to the minimality of L (since Ai ∈ L is redundant). This proves

the claim.

To obtain the theorem, assume that |L| ≥ 1, and focus on |V (L)| = |A1 ∪ . . . ∪ At|. We claim

that |V (L)| ≤ n − (d + 1); to see this, pick a good set Aj with level `j = 0 and pick a node

v∗ in Aj = φj ; then replace every good set Ai ∈ L that contains v∗ by its complement V − Ai;

the resulting family of good sets L′ stays laminar, covers F , and stays minimal; moreover, V (L′)

contains none of the nodes in φj , hence, |V (L′)| ≤ n − (d + 1). Finally, examine the good sets

Ai ∈ L′ by increasing levels, and note that each good set contributes at most k new edges to F and

contributes |φi| new nodes to V (L′), hence,

|L′| ≤
⌊
|V (L′)|
d + 1

⌋
≤

⌊
n− (d + 1)

d + 1

⌋
, and |F | ≤ k|L′| ≤ k

⌊
n− (d + 1)

d + 1

⌋
.

To see that the bound on |F | is tight for n = (t+1)(d+1), consider the k-edge connected graph
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G = (V,E) and edge set M obtained by taking t+1 copies of the (d+1)-clique, C0, C1, . . . , Ct, and

for each i = 1, . . . , t, choosing an arbitrary node wi in Ci and adding k (nonparallel) edges between

wi and C0. Take M =
⋃t

i=0 E(Ci). Note that F = E − M , so |F | =
k

d + 1
(n− (d + 1)). This

construction extends to all n > d ≥ k: fix t + 1 =
⌊

n

d + 1

⌋
, and put the “extra” n− (t + 1)(d + 1)

nodes into C0 (which becomes a bigger clique).

A lower bound for Corollary 2

Here, assuming k ≥ 2, we present an example of a k-edge connected simple graph G = (V,E) such

that there is subgraph (V,M) of minimum degree (k− 1) such that each edge in F := E −M is in

a k-cut of G and |F | ≥ 2k

⌊
n− (k + 1)

h

⌋
, where h = (k + 1) + d

√
k + 1e.

Our construction uses the following k-edge connected simple graph H. Let r and q be integers

such that

r2 ≥ q ≥ k, k ≥ r,

q is an even number, and

r is the smallest positive integer satisfying these conditions.

Thus, we may fix q = k or q = k + 1, and r = d√qe. Let Q and R be (disjoint) sets of nodes,

with |Q| = q and |R| = r, and let R = {a1, a2, . . . , ar}. Let V (H) = Q ∪ R; thus, we have

|V (H)| = q + r ≤ (k + 1) + d
√

k + 1e = h. We define the edge set of H by defining H[Q] and

H[R], and moreover, H has an edge between each node in Q and each node in R. (By H[Q] and

H[R], we mean the subgraphs of H induced by Q and R, respectively.) We take H[R] to be the

complete graph Kr. We take H[Q] to be a (k− r)-regular graph; thus, if k− r = 0, then H[Q] has

no edges; moreover, if k − r = 1, then H[Q] consists of q/2 disjoint copies of the complete graph

K2 (thus the edge set of H[Q] forms a perfect matching); finally, if k− r ≥ 2, then we take H[Q] to

be a (k − r)-regular (k − r)-edge connected graph. (There exist `-reqular `-edge connected simple

graphs on q nodes, q an even number, for all integers 2 ≤ ` < q; see the construction in [BM 76,

Chapter 3.3].) It can be seen that H is k-edge connected, and moreover, every node in Q has degree

k. Next, we partition the edge set E(H) into F (H) and M(H) as follows: first, partition Q into
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r sets Q1, Q2, . . . , Qr such that each set has ≤ r nodes; for each node v in Qj , j = 1, . . . , r, place

the edge vaj in F (H) (note that aj is the jth node in R). Thus, we have |F (H)| = q. Observe

that the remaining edges of H give a subgraph of minimum degree (k − 1), since each node v ∈ Q

is incident to exactly (k − 1) edges of E(H) − F (H), and each node in R is incident to at least

(r − 1) + (k − r) edges of E(H)− F (H).

To construct G, assume that n ≥ h + k + 1. We take t = bn− (k + 1)
h

c copies of H, and call

them H1,H2, . . . ,Ht. We put the remaining nodes into a complete subgraph G0; observe that G0

has at least k + 1 nodes and it is k-edge connected; we place all the edges of G0 into M . For each

Hi, i = 1, . . . , t, we add k edges between the nodes in R(Hi) and V (G0), where R(Hi) denotes the

copy of R in Hi; the k edges in δ(V (Hi)) are placed in F . Thus, we have M = E(G0)∪
⋃t

i=1 M(Hi),

and F =
⋃t

i=1 (F (Hi) ∪ δ(V (Hi))); clearly, |F | = t(q + k) ≥ 2kt. It can be seen that G is k-edge

connected, and that (V,M) is a subgraph of minimum degree (k − 1).

If n is an integral multiple of (r + q), then we can replace G0 by another copy of H; then, we

have |F | ≥ 2kn

(r + q)
− k.

A proof of Theorem 3

Proof of Theorem 3: Recall that L = {A1, A2, . . . , At} is a laminar family of good sets that

covers F , and for each Ai ∈ L we denote the core of Ai by φi. Also, define φt+1 := V − V (L) =

V − (A1 ∪ . . . ∪At).

Consider the first part: if d ≤ k, then |F | ≤
(

k − d

2

)
n−k. We play the following dollar game.

First, we give k − d

2
dollars to every core φi (i = 1, . . . , t) for each of its nodes. In return, we

demand that each φi (i = 1, . . . , t) should pay one dollar for each of its up F -edges, and send 50

cents along each of its up M -edges.

Let us make sure that this demand can be met, provided the φi carry out the transactions in

any order determined by increasing levels, starting from level zero. Observe that for a given φi

there is no difficulty if p := |φi| ≥ 2. Indeed, in this case φi gets p ·
(

k − d

2

)
≥ 2k − d ≥ k dollars
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for its nodes, which is certainly enough to pay for and/or send money along φi’s up edges, since

the number of those edges is at most k. Now, assume that p = 1. Let us denote by q the number

of up M -edges. Then, when it is φi’s turn to pay its dues, it has k − d

2
dollars for its node plus at

least (d− q)
2 dollars it has received along its down M -edges. This makes a total of at least k − q

2
dollars. This is easily seen to be at most the amount φi is required to pay and/or send up.

To complete the proof, let us count the money we have invested in the φi (i = 1, . . . , t), and the

money we collect back from φt+1. The difference between these two sums is clearly an upperbound

on |F |.

Let b := |φt+1| = |V − V (L)|. Then we have invested x := (n − b) ·
(

k − d

2

)
dollars. If b ≥ 2

then x is at most the claimed upper bound on |F |. If b = 1 then V − V (L) is a singleton set, say

{vn}, and we collect at least
d

2
dollars along the M -edges incident to node vn. Again, x− d

2
is at

most the claimed upper bound. This proves the first part.

Consider the second part of the theorem: if d > k, then |F | ≤ kn

2
− k. We play a dollar game

similar to that described in the proof of the first part, except for one difference: Every core φi

(i = 1, . . . , t) receives
k

2
dollars for each of its nodes, and is required to send

k

2d
dollars along each of

its up M -edges. As before, φi is required to pay a dollar for each of its up F -edges. For a singleton

φi with q up M -edges (and hence ≥ d−q down M -edges), note that φi gets ≥ k

2
+(d−q)

k

2d
= k− kq

2d

dollars (it receives
k

2
dollars and gets

k

2d
dollars along each down M -edge), and this is sufficient

for φi to pay out ≤ (k − q) +
kq

2d
dollars, since k − q(1 − k

2d
) ≤ k − kq

2d
for k < d. The rest of the

proof is analogous to that of the first part, and is omitted.

To see that the bound on |F | is tight for an even number n = 2q, consider the multigraph

(V,M) formed by q disjoint copies of the multigraph consisting of two nodes and d edges; in other

words, (V,M) is partitioned into q connected components, each with two nodes and d parallel

edges. First, suppose that d > k. Then, we start with a set F0 of q− 1 edges such that (V,M ∪F0)

is connected (that is, F0 corresponds to a spanning tree of the auxiliary graph where we have a

node for each connected component of (V,M)), and then we obtain F by replacing each edge in F0
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by k parallel edges. Clearly, every edge in F is in a k-cut, and we have |F | = k(q − 1) =
kn

2
− k.

Now, suppose that d ≤ k (the first part of the theorem). We use a similar construction, but for

each connected component of (V,M), we add k − d parallel F -edges in the component. Thus, we

have |F | = k(q − 1) + (k − d)q = kn− dn

2
− k.

Remark: Notice that in the case of d = k the statements and the proofs of both the parts in

Theorem 3 become identical.
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