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LINEAR EMBEDDINGS OF GRAPHS AND GRAPH LIMITS

HUDA CHUANGPISHIT, MAHYA GHANDEHARI, MATT HURSHMAN,
JEANNETTE JANSSEN, AND NAUZER KALYANIWALLA

Abstract. Consider a random graph process where vertices are chosen from
the interval [0, 1], and edges are chosen independently at random, but so that,
for a given vertex x, the probability that there is an edge to a vertex y decreases
as the distance between x and y increases. We call this a random graph with
a linear embedding.

We define a new graph parameter Γ∗, which aims to measure the similarity
of the graph to an instance of a random graph with a linear embedding. For
a graph G, Γ∗(G) = 0 if and only if G is a unit interval graph, and thus a
deterministic example of a graph with a linear embedding.

We show that the behaviour of Γ∗ is consistent with the notion of conver-
gence as defined in the theory of dense graph limits. In this theory, graph
sequences converge to a symmetric, measurable function on [0, 1]2. We define
an operator Γ which applies to graph limits, and which assumes the value zero
precisely for graph limits that have a linear embedding. We show that, if a
graph sequence {Gn} converges to a function w, then {Γ∗(Gn)} converges as
well. Moreover, there exists a function w∗ arbitrarily close to w under the box
distance, so that limn→∞ Γ∗(Gn) is arbitrarily close to Γ(w∗).

1. Introduction

Consider the following random graph model on n vertices. Vertices are randomly
chosen from the interval [0, 1] according to a given distribution. Then, for each pair
of vertices x, y, independently, an edge is added with probability w(x, y), where
w : [0, 1]2 → [0, 1] is a symmetric, measurable function.

In this article, we are interested in the special case where w is increasing towards
the diagonal. Specifically, for x < y, w(x, y) decreases as y increases or x decreases.
Such a random graph has a linear geometric interpretation: vertices are embedded
in the line segment [0, 1], and live in a probability landscape where link probabilities
decrease as the linear distance between points increases. We will refer to this as a
random graph with a linear embedding.

Consider now the problem of recognizing graphs produced by a random graph
process with a linear embedding. If the labels of the vertices are provided, this
question may be answered by regular statistical methods. When only the isomor-
phism type of the graph is given, the question becomes more complicated. We
address the question of how to recognize graphs whose structure is consistent with
that of a random graph with a linear embedding.

Recognition is easy in the special case of unit interval graphs, or one-dimensional

geometric graphs. Here, the selection of vertices is random, but the edge formation
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is deterministic. In other words, the function w governing edge formation only
takes values in {0, 1}. In this paper, we introduce a graph parameter Γ∗ which
aims to measure the similarity of the graph to an instance of a random graph with
a linear embedding. We show that Γ∗ of a given graph equals zero if and only if the
graph is a one-dimensional geometric graph (Proposition 3.4). We then consider the
behaviour of Γ∗ when it is applied to convergent sequences of graphs {Gn}, where
convergence is defined as in the theory of graph limits as developed by Lovász and
Szegedy in [20].

In this theory, convergence is defined based on homomorphism densities, and the
limit is a symmetric, measurable function. The theory is developed and extended
to sequences of random graphs by Borgs et al. in [6, 8, 7] and is explored further
by Lovász and others (see for example [5, 9, 22]. See also the recent book [19]). As
shown by Diaconis and Janson in [14], the theory of graph limits is closely connected
to the probabilistic theory of exchangeable arrays. A different view, where the limit
object is referred to as a kernel, is provided by Bollobás, Janson and Riordan in
[1, 2]. The connection with the results of Borgs et al. and an extension of the theory
to sparse graphs are presented in [4].

Homomorphism densities characterize the isomorphism type of a (twine-free)
graph. A graph sequence {Gn} converges if and only if all of the homomorphism
densities of the graphs Gn converge. Moreover, the limits of all these homomor-
phism densities can be obtained from a symmetric, measurable function w on [0, 1]2

which represents the “limit object”. Thus, w encapsulates the local structure of the
graphs in the sequence. Conversely, the randomly growing graph sequence obtained
from w, according to the process described earlier, will asymptotically exhibit the
same homomorphism densities, and thus have a similar structure.

Let {Gn} be a sequence of graphs converging to a symmetric, measurable func-
tion w. (One may think of this sequence as an instance of a randomly growing graph
sequence generated by w.) Can we recognize whether this sequence is generated
by a random graph process with a linear embedding? To answer this question, we
introduce a parameter Γ, which applies to symmetric, measurable functions. For
such a function w, Γ(w) = 0 if and only if the function w is diagonally increasing
(Proposition 4.2). A random graph process with a linear embedding is simply one
for which the corresponding function w satisfies Γ(w) = 0.

The main result in this paper regards the relation between Γ∗ as applied to a
convergent graph sequence {Gn}, and Γ applied to the limiting function w. Firstly,
every graph G can also be regarded as a {0, 1}-valued function wG. It is not hard
to prove that, for a given graph G, Γ∗(G) and Γ(wG) are asymptotically equal
(Theorem 5.1 and Corollary 5.2). A harder question concerns the relation between
the sequence of Γ∗-values of the graphs, {Γ∗(Gn)}, and the Γ-value of the limiting
function, Γ(w). This question is addressed in Section 6. To obtain any continuity
type results, we need to address the fact that functions w representing the limit
of a converging graph sequence are not unique. Moreover, Γ can attain different
values for different functions representing the same limit object. Thus, we introduce
Γ̃ as the infimum of Γ(w), where the infimum is taken over equivalence classes of
functions that all have box distance 0 to each other. Note that every equivalence
class consists of functions that all represent the same limit object.

Our main result (Theorem 6.4) shows that Γ̃ is continuous. It follows that, for a
graph sequence {Gn} converging to a function w, the sequence {Γ∗(Gn)} converges
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to Γ̃(w), the infimum of Γ(w∗) over all functions w∗ which represent the limit of
the converging sequence {Gn}. Thus, there exists a function w∗ arbitrarily close to
w under the box distance, so that limn→∞ Γ∗(Gn) is arbitrarily close to Γ(w∗).

Our findings justify the conclusion that, for large graphs, Γ∗(G) does give an
indication of compatibility of G with a random graph model with linear embedding.
In particular for a converging graph sequence {Gn}, we have Γ∗(Gn) → 0 as n→ ∞
if and only if {Gn} converges to a function w which has Γ-value arbitrarily small
(Corollary 6.5).

The approach we take in this paper was inspired by a paper by Bollobás, Janson
and Riordan on monotone graph limits (see [3]). In that paper, a graph parameter
Ω is introduced, which assumes value zero precisely for threshold graphs. It is
then shown that a converging sequence of graphs for which Ω tends to zero has
a limit that is a monotone function. Thus, monotone graph limits can be seen as
generalizations of threshold graphs.

The flavour of the results in this paper is similar to those on monotone graph
limits. Namely, we show that diagonally increasing graph limits can be seen as
generalizations of unit interval graphs. However, monotone functions have “nice”
properties that do not carry over to diagonally increasing functions. So there are
significant differences where the proofs are concerned. Specifically, the equivalence
class of functions obtained by applying measure preserving maps to a given function
w contains at most one monotone function. This is not true for diagonally increasing
functions, which is why we need to introduce the parameter Γ̃, which complicates
the statement and proof of the main result. Another major difference is that, for
monotone functions, L1-distance and box distance are equivalent. This however is
not true for diagonally increasing functions. Thus we need to use entirely different
methods to prove our continuity result than the ones developed in [3].

Diaconis, Holmes and Janson also consider the limits of threshold graphs (see
[12]), and the limits of interval graphs (see [13]). Note that the one-dimensional
geometric graphs studied in our paper are a special class of interval graphs; namely
unit interval or proper interval graphs. However, the authors of [13] focus on
different properties and generalizations of interval graphs, and their results do not
apply to the problems we consider here.

Finally, we say a few words about the motivation behind this paper. Our results
show that a graph parameter, Γ∗, applied to graphs of increasing size, can help
recognize graphs that are “close” to a diagonally increasing function, and thus
resemble a random graph with a linear embedding. Therefore, we can interpret
Γ∗ as a parameter that helps recognize the (one-dimensional) spatial embedding
underlying the graph.

The question of recognizing graphs that have a spatial embedding is motivated
by the study of real-life complex networks. If one assumes that such networks
are the manifestation of an underlying reality, then a useful way to model these
networks is to take a latent space approach. In this approach, the formation of the
graph is informed by the hidden spatial reality. The graph formation is modelled as
a stochastic process, where the probability of a link occurring between two vertices
decreases as their metric distance increases.

The spatial reality can be used to represent attributes of the vertices which are
inaccessible or unknown, but which are assumed to inform link formation. For
example, in a social network, vertices may be considered as members of a social
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space, where the coordinates represent the interests and background of the users.
Given only the graph, such a spatial model allows us to mine the underlying spatial
reality. This approach was taken by Hoff et al. in [17]. In most cases, spatial
models are formed on spaces of dimension at least two, but a one-dimensional
(linear) spatial model, the niche model, is proposed in [24] to model food webs.
Our result can be interpreted as a step towards the recognition of graphs that can
be well-modelled by a linear spatial model.

This paper is organized as follows. In Section 2, we briefly review the results
from the theory of graph limits. In Section 3, we give precise definitions for the
concepts of spatial embedding and linear embedding for a random graph model,
introduce the graph parameter Γ∗, and show that it characterizes one-dimensional
geometric graphs. In Section 4, we introduce a continuous analogue of Γ∗, called
Γ, which applies to symmetric measurable functions. In Section 5 we show that,
for any graph G, Γ∗(G) is asymptotically equal to the value of Γ applied to the
{0, 1}-valued function representing G. In Section 6 we introduce the generalized

parameter Γ̃. Our main result is Theorem 6.4 which shows that Γ̃ is continuous. In
Corollary 6.5, we interpret this continuity result for converging graph sequences.

2. Preliminaries: graph limits

In this section we summarize the basic definitions and results from the theory of
graph limits, insofar as they are relevant to this paper. For more background, the
reader is referred to the papers referenced in the introduction. A thorough study
of the subject can be found in [19]. In this section, we follow the terminology of
[20].

Let F and G be two simple graphs, i.e. graphs without loops or multiple edges.
Let V (F ) and V (G) be vertex sets of F and G respectively. A map V (F ) → V (G)
is called a homomorphism from F to G if it maps adjacent vertices in F to adjacent
vertices in G. Let hom(F,G) be the number of homomorphisms of F into G. The
homomorphism density of F into G is defined as

t(F,G) =
hom(F,G)

|V (G)||V (F )|
.

The homomorphism density can be interpreted as the probability that a random
mapping V (F ) → V (G) is a homomorphism.

Let {Gn} be a sequence of simple graphs such that |V (Gn)| → ∞. We can define
a notion of convergence based on homomorpism densities.

Definition 2.1. We say that the sequence {Gn} converges if for every simple graph
F , the sequence {t(F,Gn)} converges.

This definition of convergence is non-trivial only for dense graphs, i.e. for graph
sequences {Gn} with the property that |E(Gn)| = Ω(|V (Gn)|2). When {Gn} con-
sists of sparse graphs, then for all graphs F with at least one edge, t(F,Gn) → 0.

As shown in [6], the notion of convergence of graph sequences is closely con-
nected to a certain metric space described as follows: Let W0 denote the set of all
measurable functions w : [0, 1]2 → [0, 1] which are symmetric, i.e. w(x, y) = w(y, x)
for every x, y ∈ [0, 1]. The elements of W0 are called graphons. We also denote by
W the space of all the bounded symmetric measurable functions from [0, 1]2 to R.
We can extend the definition of homomorphism densities to W as follows. For each
function w ∈ W , let
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(1) t(F,w) =

∫

[0,1]k

∏

ij∈E(F )

w(xi, xj)dx1 . . . dxk,

where V (F ) = {1, 2, . . . , k}.
A simple graph G, with vertex set V (G) = {1, 2, . . . , n} and adjacency matrix

A, can be represented by a function wG ∈ W0, which takes values in {0, 1}. Split
the interval [0, 1] into n equal intervals I1, I2 . . . , In. Now for (x, y) ∈ Ii × Ij , let

wG(x, y) =

{
Ai,j for i 6= j
1 for i = j

.(2)

Our definition of wG differs slightly from that given in [20] since we give the diagonal
blocks Ii × Ii value one, not zero. The advantage of this choice becomes apparent
when we discuss “diagonally increasing” functions. It is a convenience and is not
essential for the results.

Note that a graph can be represented by many different functions wG. Each
labelling of the vertices of G results in a permutation of the rows and columns of
the adjacency matrix, and leads to a trivially different function. Since a graph
represents an entire isomorphism class, we need to introduce an equivalent notion
for functions in W . Recall that a map φ : [0, 1] → [0, 1] is measure-preserving if
for every measurable set X ⊆ [0, 1], the pre-image φ−1(X) is measurable with the
same measure as X . Let Φ be the set of all invertible maps φ : [0, 1] → [0, 1] such
that both φ and its inverse are measure-preserving. Any φ ∈ Φ acts on a function
w ∈ W by transforming it into a function wφ, where wφ(x, y) = w(φ(x), φ(y)).

The notion of the convergence of a graph sequence can be better understood if
W is equipped with a distance derived from the cut-norm, introduced in [15] and
defined as follows: For all w ∈ W ,

(3) ‖w‖� = sup
S,T⊂[0,1]

∣∣∣
∫

S×T

w(x, y)dxdy
∣∣∣,

where S and T are measurable subsets of [0, 1]. We then define the cut-distance of
two functions w1 and w2 in W by

(4) δ✷(w1, w2) = inf
φ∈Φ

‖w1 − wφ2 ‖� = inf
φ∈Φ

sup
S,T⊂[0,1]

∣∣∣
∫

S×T

(w1 − wφ2 )
∣∣∣.

This yields the definition of the cut-distance of two (unlabelled) graphs G and G′,
defined as

(5) δ✷(G,G
′) = δ✷(wG, wG′).

The choice of term “distance” rather than “metric” is due to the fact that δ✷(G,G
′)

can be zero for different graphsG and G′, for example when G′ is the k-fold blow-up
of G (see [6] for more details).

It is shown in Theorem 3.8 of [6] that a graph sequence {Gn} converges whenever
the corresponding sequence of functions wGn

is δ✷-Cauchy. Moreover, to a conver-
gent graph sequence {Gn}, one assigns a “limit object” represented by a function
w ∈ W0 (not necessarily integer-valued, or corresponding to a graph). More pre-
cisely, for every convergent sequence {Gn}, there exists w in W0 such that the
homomorphism densities t(F,Gn) converge to the homomorphism densities t(F,w)
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for every finite simple graph F . If this is the case, we say {Gn} converges to w,
and write Gn → w. Such a function w encodes the common structure of the graphs
of the sequence. For more details, see [20]. In this paper, we use the following
characterization of convergent graph sequences which is given in [6].

Theorem 2.2. [6] A sequence {Gn} converges to a function w in W0 if and only
if δ✷(wGn

, w) → 0. Furthermore, if this is the case, and ‖V (Gn)‖ → ∞, then there
is a way to label the vertices of the graphs Gn such that ‖wGn

− w‖✷ → 0.

The limit object of a convergent graph sequence is unique up to measure-preserving
transformations. Namely w and w′ are limits of a convergent graph sequence
{Gn} if and only if wφ = w′ψ almost everywhere for some measure-preserving
maps φ, ψ : [0, 1] → [0, 1] (or equivalently whenever δ✷(w,w

′) = 0). Note that
cut-distance does not define a metric on W , as two different functions can have
δ✷-distance zero. We say two functions w′, w ∈ W0 are equivalent, and we write
w′ ≈ w, if δ✷(w

′, w) = 0. Identifying equivalent functions w and w′ in W , we

consider the cut-distance as a metric on the quotient space W/ ≈, denoted by W̃.

Similarly, we define the set W̃0 of unlabelled graphons. It was shown in [21] that

W̃0 is in fact a compact metric space.
Finally, given any function w ∈ W0, and integer n, we define the random graph

G(n,w) to be the probability space of graphs on vertex set {1, 2, . . . , n} obtained
through the following stochastic process: Each vertex j receives a value xj , drawn
independently and uniformly at random from [0, 1]. For each pair i < j, indepen-
dently, vertices i and j are then linked with conditional probability w(xi, xj). In
[20], it is shown that, asymptotically almost surely, for any finite graph F , the
homorphism density t(F,G) for a graph G produced by G(n,w) is arbitrarily close
to t(F,w). Thus, a graph sequence {Gn}, where for each n, Gn is produced by
G(n,w), almost surely converges to w.

3. Linear embeddings and the parameter Γ∗

In this section, we will define a graph parameter Γ∗ which is zero precisely when
the graph is a unit interval graph, or one-dimensional geometric graph, and thus
has a natural linear embedding. In subsequent sections we will then introduce a
related parameter Γ which applies to functions in W0. Using graph limits, we will
show a close relationship between the two parameters, especially when applied to
convergent graph sequences.

First, we need precise definitions of the concepts discussed in the introduction.
Following the convention, see for example [18], we use both random graph and
random graph model to denote a discrete probability space where the sample space
is the set of all graphs on a given vertex set. The notation u ∼ v signifies “u is
adjacent to v”. The link probability for a given pair of vertices u, v is the probability
of the event u ∼ v.

Given a convex region S ⊆ R
k equipped with a metric d derived from one of

the Lp norms, we define a symmetric function f : S × S → [0, 1] to be a spatial
link function if for every a ∈ [0, 1] and for every x ∈ S, the region Ra(x) = {y :
f(x, y) ≥ a} is a convex set containing x. Thus, if we move a point y away from a
given point x along a ray starting at x, then f(x, y) decreases as the distance from
x increases. This does not mean that f(x, y) is always decreasing as the distance
d(x, y) is increasing, however. For example, if S = [0, 1], one can define a spatial
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link function f as follows:

f(x, y) =

{
1− |x− y| if x+ y ≥ 1,
x+ y − |x− y| otherwise.

Then for f(12 ,
1
2 + δ) = 1 − δ, and f(12 ,

1
2 − δ) = 1 − 2δ. In both cases, the link

probability decreases as δ increases, but the rate is different for values on different
sides of 1

2 .

Let k be a positive integer, and S be a convex region in R
k. Let d denote a

metric derived from one of the Lp norms on S. Fix n ∈ N. For a spatial link
function f and a probability measure µ on S, we define a spatial random graph

SG(S, d, f, µ, n) to be a random graph with vertex set {1, 2, . . . , n} formed according
to the following process. Each vertex j receives a value xj , drawn from S according
to the probability distribution given by µ. For each pair i < j, independently,
vertices i and j are then linked with a conditional probability which equals f(xi, xj).

Definition 3.1. A random graph on the vertex set {1, 2, . . . , n} has a spatial em-

bedding into a given metric space (S, d) if there exist a probability distribution µ
and a link probability function f so that the random graph corresponds to the spatial
random graph SG(S, d, f, µ, n) (i.e. gives the same probability distribution on the
sample space of all graphs with vertex set {1, 2, . . . , n}). A linear embedding is a
spatial embedding into (R, | · |).

The notion of spatial embedding can be seen as a “fuzzy” version of a random
geometric graph. A graphG is called a geometric graph on a bounded region S ⊆ R

k

with metric d if there exists an embedding π of the vertices ofG in S, and a threshold
value r > 0, such that for every two vertices u and v of G, u is adjacent to v if
and only if d(π(u), π(v)) ≤ r. Geometric graphs have been studied extensively; see
for example [10, 11, 23]. The random geometric graph RG(S, n, r) is the geometric
graph which results if the embeddings of the vertices are chosen randomly from
S. Random geometric graphs clearly have a spatial embedding. Link probabilities
in this case can only be 1 or 0. Precisely, the spatial link function f is given by
f(x, y) = 1 if d(x, y) ≤ r, and f(x, y) = 0 otherwise. For all a ∈ [0, 1], Ra(x)
equals the closed ball around x of radius r, so clearly f is a spatial link function. In
this paper, we restrict ourselves to geometric graphs on the one-dimensional space
(R, | · |) and will refer to these as one-dimensional geometric graphs.

We introduce first a graph parameter Γ∗, which characterizes geometric graphs in
(R, | · |). One-dimensional geometric graphs are also known as unit interval graphs.
The correspondence becomes clear if we associate each vertex u of a one-dimensional
geometric graph with the interval [π(u) − 1

2 , π(u) +
1
2 ], where π is the geometric

embedding. (We can always assume, without loss of generality, that r = 1.) Now
vertices u and v are adjacent precisely when the associated intervals overlap.

It is well known that unit interval graphs are characterized by the consecutive 1s
property of the vertex-clique matrix (see [16]). Restating this property, it follows
that a graph G is one-dimensional geometric if and only if there exists an ordering
≺ on the vertex set of G such that

(6) ∀v, z, w ∈ V (G), v ≺ z ≺ w and v ∼ w ⇒ z ∼ v and z ∼ w.

To be self-contained, we present a direct proof below.

Proposition 3.2. A graph G is a one-dimensional geometric graph (unit interval
graph) if and only if there exists an ordering ≺ on V (G) that satisfies (6).
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Proof. The forward direction is clear. To prove the converse, we proceed by induc-
tion. Suppose that for every graph G with k < n vertices, if V (G) satisfies (6) for
an ordering ≺, then there exists a linear embedding π of vertices of G, with the
additional conditions that π is injective, and that the distance between adjacent
vertices is strictly less than one. Also, we assume that the embedding respects the
ordering ≺, so u ≺ v implies that π(u) < π(v).

Suppose that G is a graph with n vertices, and there exists an ordering ≺ on
vertices of G which satisfies (6).

Let {v1, . . . , vn} be the vertices of G labeled such that vi ≺ vj whenever i < j.
The ordering ≺ restricted to V (G)\{vn} satisfies Condition (6) for G−vn. Thus, by
the induction hypothesis, G− vn has a linear embedding π of V (G) \ {vn} into the
real line which satisfies the additional conditions. Suppose that m is the smallest
index such that vm is adjacent to vn. Let ℓ = max{π(vn−1), π(vm−1) + 1}, and
consider the interval (ℓ, π(vm)+1). By the induction hypothesis, π(vm−1) < π(vm),
and, since vm and vn are adjacent, so are vm and vn−1, and thus π(vn−1) < π(vm)+
1. This implies that ℓ < π(vm) + 1, and thus the interval is non-empty. Moreover,
every point in the interval has distance greater than one to all embeddings of non-
neighbours of vn, and distance less than one to all embeddings of neighbours of vn.
Therefore, choosing π(vn) in this interval results in a linear embedding of V (G)
with the desired properties, and we are done. �

Using Condition (6), we define a parameter Γ∗ on graphs which identifies the
one-dimensional geometric graphs. Let G be a graph with a linear order ≺ on its
vertices. For every v ∈ V (G), we define the down-set D(v) and the up-set U(v) of
v as follows:

D(v) = {x ∈ V (G) : x ≺ v} and U(v) = {x ∈ V (G) : v ≺ x}.
For every vertex v, the collection of all the neighbours of v is denoted by N(v).

Definition 3.3. Let A ⊆ V (G), and ≺ be a linear order of the vertex set of G. We
define,

Γ∗(G,≺, A) =
1

|V (G)|3
∑

u≺v

[
|N(v) ∩ A ∩D(u)| − |N(u) ∩ A ∩D(u)|

]
+

+
1

|V (G)|3
∑

u≺v

[
|N(u) ∩ A ∩ U(v)| − |N(v) ∩A ∩ U(v)|

]
+
,

where

[x]+ =

{
x if x > 0
0 otherwise

.

We also define

Γ∗(G,≺) = max
A⊆V (G)

Γ∗(G,≺, A),

and

Γ∗(G) = min
≺

Γ∗(G,≺),

where the minimum is taken over all the linear orderings of V (G).

Proposition 3.4. A graph G is one-dimensional geometric if and only if Γ∗(G) =
0.
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Proof. Let G be a one-dimensional geometric graph, and A be an arbitrary subset
of V (G). Let ≺ be a linear ordering that satisfies Condition (6). Fix an arbitrary
pair of vertices u ≺ v of G. By Condition (6), if z belongs to N(v)∩A∩D(u) then
z is adjacent to u as well. Thus |N(v) ∩A ∩D(u)| ≤ |N(u)∩A ∩D(u)|. Similarly,
|N(u) ∩ A ∩ U(v)| ≤ |N(v) ∩ A ∩ U(v)|, which implies that Γ∗(G,≺) = 0. Thus
Γ∗(G) = 0.

Conversely, let G be a graph such that Γ∗(G) = 0. Let ≺ be the linear order of
V (G) such that Γ∗(G,≺) = 0. Let u ≺ v be an arbitrary pair of adjacent vertices of
G, and take z so that u ≺ z ≺ v. Since Γ∗(G,≺, A) = 0 for all A ⊆ V (G), choosing
A = {v} gives that 1 = |N(u)∩{v}∩U(z)| ≤ |N(z)∩{v}∩U(z)|. This implies that
z is adjacent to v. Similarly, one can show that z is adjacent to u. Thus Condition
(6) is satisfied for G, and G is a geometric graph. �

Next, we extend Condition (6) to functions inW0. The generalization is obtained
by considering functions representing graphs, as introduced in the previous section.
Let G be a one-dimensional geometric graph with a linear ordering ≺ of its vertices
that satisfies Condition (6). Let wG be the function in W0 that represents G with
respect to the labelling of V (G) obtained from the linear ordering ≺. It follows
that wG(x, z) = 1 and x ≤ y ≤ z imply that wG(x, y) = 1 and wG(y, z) = 1. We
generalize this property as follows:

Definition 3.5. A function w ∈ W is diagonally increasing if for every x, y, z ∈
[0, 1], we have

(1) x ≤ y ≤ z ⇒ w(x, z) ≤ w(x, y),
(2) y ≤ z ≤ x⇒ w(x, y) ≤ w(x, z).

A function w in W is diagonally increasing almost everywhere if there exists a
diagonally increasing function w′ which is equal to w almost everywhere.

Combining definitions 3.1 and 3.5, it is clear that a symmetric function w is a
spatial link function on [0, 1] if and only if w is diagonally increasing. In the follow-
ing remark, we show that a w-random graph has a “reasonable” linear embedding
whenever w is equivalent to a diagonally increasing function.

Remark. Note that the random graphs G(n,w) and G(n,w′) are the same, i.e.
they are identical as probability distributions, if w ≈ w′. To see this, let Prw(F )
denote the probability assigned to a simple graph F on vertex set {1, 2, . . . , } in
G(n,w). Clearly,

Prw(F ) =

∫ ∏

i∼j

w(xi, xj)
∏

k 6∼l

(1− w(xk , xl)) =
∑

F ′

(−1)|e(F
′)|−|e(F )|t(F ′, w),

where the sum is taken over all graphs F ′ on vertex set {1, 2, . . . , n} which contain
F as their subgraph. Our claim clearly follows from Corollary 3.10 of [6], which we
state below:

For two graphons w and w′ we have δ✷(w,w
′) = 0 if and only if

t(F,w) = t(F,w′) for every simple graph F .

Thus, if w is equivalent to a diagonally increasing function, then for any integer
n > 1, the random graph G(n,w) has a linear embedding.

The converse is also true, under certain conditions. Namely, suppose G(n,w)
has a linear embedding SG([0, 1], | · |, f, µ, n). Also suppose that µ is a continuous
probability distribution (i.e. absolutely continuous with respect to Haar measure),
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that assigns nonzero measures to open intervals in [0, 1]. Let F be the cumulative
distribution function of µ on [0, 1]. Then, if x is sampled uniformly from [0, 1],
F (x) is sampled according to µ. Let w′(x, y) = f(F (x), F (y)), where f is the
spatial link function. An argument similar to our previous discussion implies that
for every simple graph H , the densities t(H,w) and t(H,w′) are the same. Thus,
δ✷(w,w

′) = 0. Moreover, w′ is diagonally increasing, since F is increasing and
f is a spatial link function. Therefore w is equivalent to a diagonally increasing
function.

Clearly, a graph is a one-dimensional geometric graph if and only if it has a
function representative in W0 which is diagonally increasing. (Remember that we
assume the function representative to have all blocks on the diagonal equal to 1.)
Indeed, the function representative will be the function wG where the vertices are
ordered according to a linear ordering that satisfies Condition (6). More important
is the connection between diagonally increasing functions and linear embeddings,
which follows in the next section.

4. The parameter Γ on W
Next, we introduce a parameter Γ which generalizes the graph parameter Γ∗ to

functions in W . We will see that Γ identifies the diagonally increasing functions.

Definition 4.1. Let A denote the collection of all measurable subsets of [0, 1]. Let
w be a function in W, and A ∈ A. We define

Γ(w,A) =

∫ ∫

y<z

[ ∫

x∈A∩[0,y]

(w(x, z)− w(x, y)) dx
]
+
dydz

+

∫ ∫

y<z

[ ∫

x∈A∩[z,1]

(w(x, y) − w(x, z)) dx
]
+
dydz.

Moreover, Γ(w) is defined as

Γ(w) = supA∈AΓ(w,A),

where the supremum is taken over all the measurable subsets of [0, 1].

It follows directly from the definitions that any function w ∈ W which is almost
everywhere diagonally increasing has Γ(w) = 0. The converse also holds, as is
stated in the following proposition.

Proposition 4.2. Let w be a function in W. The function w is diagonally increas-
ing almost everywhere if and only if Γ(w) = 0.

Before we give the proof, we introduce some notations which will be used later.
Let w ∈ W0, and A and B be measurable subsets of [0, 1]. We define w̃(A,B) to
be the average of w on A×B, i.e.

w̃(A,B) =
1

µ(A)µ(B)

∫

A×B

w(x, y)dxdy,

where µ is the Lebesgue measure on [0, 1]. Let n be a positive integer. For each
0 ≤ i ≤ n − 1, let Ii = [ i

n
, i+1
n

]. We define the symmetric functions wn, w
+
n , and
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w−
n on [0, 1]2 as follows.

wni,j = w̃(Ii, Ij) for 0 ≤ i, j ≤ n− 1,

wn(x, y) = wni,j if (x, y) ∈ Ii × Ij ,

w−
n (x, y) =





wni−1,j+1 if (x, y) ∈ Ii × Ij & 1 ≤ i ≤ j ≤ n− 2
0 if (x, y) ∈ I0 × Ij
0 if (x, y) ∈ Ii × In−1,

w+
n (x, y) =





wni+1,j−1 if (x, y) ∈ Ii × Ij & i ≤ j − 2
1 if (x, y) ∈ Ii × Ii
1 if (x, y) ∈ Ii × Ii+1.

Let A and B be subsets of [0, 1]. We say A ≤ B if every a in A is smaller than or
equal to every b in B.

We now give the proof of Proposition 4.2. This proof is inspired by the proof of
Lemma 4.6 of [3]. However, we include the proof to make the paper self-contained.

Proof of Proposition 4.2. Clearly, if w is diagonally increasing almost everywhere
then Γ(w) = 0. We now prove the other direction. First, let us assume that w is
a function in W0 with Γ(w) = 0. Let A, B, and C be measurable subsets of [0, 1]
such that C ≤ A ≤ B. Since Γ(w) = 0, for almost every y ∈ A and almost every
z ∈ B,

(7)

∫

x∈C

w(x, z)dx ≤
∫

x∈C

w(x, y)dx.

Taking repeated integrals of both sides of Equation (7) over A and then B and then
dividing by µ(A), we conclude that

(8)

∫

C×B

w(x, z)dxdz ≤ µ(B)

µ(A)

∫

C×A

w(x, y)dxdy.

Similarly, one can show that for subsets A, B, and C of [0, 1] with A ≤ B ≤ C, we
have

(9)

∫

A×C

w(x, y)dydx ≤ µ(A)

µ(B)

∫

B×C

w(x, z)dzdx.

Applying the above inequalities to the sets Ii, we have that for every (x, y) ∈ [0, 1]2,
w−
n (x, y) ≤ wn(x, y) ≤ w+

n (x, y). Now let A and B be measurable subsets of [0, 1].
From Equations (8) and (9) it follows that, if 0 ≤ i ≤ j − 2 ≤ n− 3, then

∫

(A∩Ii)×(B∩Ij)

w(x, y)dxdy ≤ µ(B ∩ Ij)
µ(Ij−1)

∫

(A∩Ii)×Ij−1

w(x, y)dxdy

≤ µ(A ∩ Ii)µ(B ∩ Ij)
µ(Ii+1)µ(Ij−1)

∫

Ii+1×Ij−1

w(x, y)dxdy

= µ(A ∩ Ii)µ(B ∩ Ij)wni+1,j−1.

Thus,
∫

(A∩Ii)×(B∩Ij)

w(x, y)dxdy ≤
∫

(A∩Ii)×(B∩Ij)

w+
n (x, y)dxdy.(10)

By definition of w+
n , similar inequalities hold trivially for the cases where i = j − 1

or i = j. Finally, using the fact that w is symmetric, we conclude that (10) holds
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for every i and j. Therefore,
∫

A×B

w(x, y)dxdy =

n−1∑

i,j=0

∫

(A∩Ii)×(B∩Ij)

w(x, y)dxdy

≤
n−1∑

i,j=0

∫

(A∩Ii)×(B∩Ij)

w+
n (x, y)dxdy

=

∫

A×B

w+
n (x, y)dxdy.

Moreover, since measurable subsets of [0, 1]2 can be approximated in measure by
finite unions of disjoint rectangles, we get∫

E

w(x, y)dxdy ≤
∫

E

w+
n (x, y)dxdy,

for every measurable subset E of [0, 1]2. Thus, w ≤ w+
n (and similarly w−

n ≤ w)
almost everywhere in [0, 1]2. Therefore,

‖w − wn‖1 ≤ ‖w+
n − w−

n ‖1 =

∫

[0,1]2
(w+

n − w−
n )(x, y)dxdy.

By the definitions ofw+
n and w−

n , we have
∫
Ii×Ij

w−
n (x, y)dxdy =

∫
Ii−2×Ij+2

w+
n (x, y)dxdy

for every pair i, j satisfying 2 ≤ i ≤ j− 1 ≤ n− 4. Moreover, w+
n , w

−
n ∈ W0. Thus,

‖w − wn‖1 ≤
8

n
.

Using the Borel-Cantelli lemma, we conclude that the sequence {w2n}n∈N converges
to w almost everywhere in [0, 1]2, i.e. ψ := lim supn∈N w2n = w almost everywhere.
Finally, by Equations (8) and (9), each wn is a diagonally increasing function.
Therefore, ψ is diagonally increasing as well. This proves the converse for the case
where w ∈ W0.

Now let w be an element of W such that Γ(w) = 0. Define the new symmetric
function w′ to be w′ = w−a

b−a , where a (respectively b) is a lower bound (respectively

upper bound) for w. Then w′ ∈ W0 and Γ(w′) = 0. Therefore, by the previous part
of the proof, we have that w′ is diagonally increasing almost everywhere. Hence, w
is diagonally increasing almost everywhere as well. �

5. Parameters Γ∗ and Γ asymptotically agree on graphs

A graph G can be represented as a function wG ∈ W0, but it is not necessarily
true that Γ∗(G) = Γ(wG), even when the representation wG is obtained by using
the ordering of the vertices that achieves Γ∗(G). This is due to the fact that a
set A which determines the value of Γ(w) does not have to be consistent with the
partition of [0, 1] into n equal-sized parts on which wG is defined. However, we
show that Γ∗(G) and Γ(wG), computed using the same ordering of the vertices, are
asymptotically equal. This result follows as a corollary from the following theorem.

Theorem 5.1. Let n ∈ N. Let w ∈ W0 be a function which is measurable with
respect to the product algebra A∗

n × A∗
n, where the algebra A∗

n is generated by the
intervals {Ii : 0 ≤ i ≤ n− 1}. Then

Γ(w) = supA∈AΓ(w,A) = max
A∈A∗

n

Γ(w,A) +O(
1

n
).
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Proof. Let n ∈ N and w ∈ W0 be as above. Note that w is constant on the rectangles
Ii × Ij , since it is measurable with respect to the product algebra A∗

n × A∗
n. For

each i, j ∈ {0, . . . , n − 1}, let w(x, y) = aij whenever (x, y) ∈ Ii × Ij . Fix A ∈ A,
and let βk = µ(A∩Ik) for every 0 ≤ k ≤ n−1. The expression for Γ(w,A) as given
in Definition 4.1 can now be simplified.

Consider y < z so that y ∈ Ii and z ∈ Ij . If i = j, then for all x, w(x, z) =
w(x, y), so

[ ∫
x∈A∩[0,y] (w(x, z)− w(x, y)) dx

]
+
= 0. If 0 ≤ i < j ≤ n− 1, then

[ ∫

x∈A∩[0,y]

(w(x, z)− w(x, y)) dx
]
+

=
[ i−1∑

k=0

∫

A∩Ik

(akj − aki)dx+

∫

A∩Ii∩[0,y]

(aij − aii)dx
]
+

=
[ i−1∑

k=0

µ(A ∩ Ik)(akj − aki) + µ(A ∩ Ii ∩ [0, y])(aij − aii)
]
+

≤
(
[ i−1∑

k=0

βk(akj − aki)
]
+
+

2

n

)
.

In the last step, we use the inequality [x + y]+ ≤ [x]+ + [y]+, and the fact that w
is bounded by 1, so |µ(A ∩ Ii ∩ [0, y])(aij − aii)| is at most 2

n
.

Similarly, we have that

[ ∫

x∈A∩[z,1]

(w(x, y)− w(x, z)) dx
]
+

=
[ n−1∑

k=j+1

µ(A ∩ Ik)(aki − akj) + µ(A ∩ Ij ∩ [z, 1])(aji − ajj)
]
+

≤


[

n−1∑

k=j+1

βk(aki − akj)
]
+
+

2

n


 .

Using this, we can bound Γ(w,A):

Γ(w,A) ≤
∑

0≤i<j≤n−1

∫

y∈Ii

∫

z∈Ij

(
[ i−1∑

k=0

βk(akj − aki)
]
+
+

2

n

)
dydz

+
∑

0≤i<j≤n−1

∫

y∈Ii

∫

z∈Ij


[

n−1∑

k=j+1

βk(aki − akj)
]
+
+

2

n


 dydz

=
∑

0≤i<j≤n−1

1

n2

[ i−1∑

k=0

βk(akj − aki)
]
+
+
n− 1

n2

+
∑

0≤i<j≤n−1

1

n2

[ n−1∑

k=j+1

βk(aki − akj)
]
+
+
n− 1

n2
.
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Now define,

gw(A) = gw(β0, . . . , βn−1)

=
∑

0≤i<j≤n−1

1

n2


[

i−1∑

k=0

βk(akj − aki)
]
+
+
[ n−1∑

k=j+1

βk(aki − akj)
]
+


 .

Thus,

(11) Γ(w,A) ≤ gw(A) +
2(n− 1)

n2
≤ gw(A) +

2

n
.

Similarly, one can use the inequality [x+ y]+ ≥ [x]+ − |y| to show that

(12) Γ(w,A) ≥ gw(A)−
2

n
.

Since x 7→ [x]+ is a convex function, gw is the sum of convex functions, and therefore
is itself also convex. Moreover, since βk ∈ [0, 1

n
], the function gw achieves its

maximum when each of the coefficients βk is either 0 or 1
n
. Since βk = µ(A ∩ Ik),

this implies that the maximum is achieved when, for each k, either A contains Ik,
or is disjoint from Ik. Hence, supA∈Agw(A) = maxA∈A∗

n
gw(A).

Let A′ ∈ A∗
n be such that maxA∈A∗

n
gw(A) = gw(A

′). Then, by Equation (11)
and (12) we have,

sup
A∈A

Γ(w,A) ≤ sup
A∈A

gw(A) +
2

n
= max

A∈A∗

n

gw(A) +
2

n

= gw(A
′) +

2

n
≤ Γ(w,A′) +

4

n

≤ max
A∈A∗

Γ(w,A) +
4

n
.(13)

On the other hand, we clearly have

(14) max
A∈A∗

n

Γ(w,A) ≤ sup
A∈A

Γ(w,A),

completing the proof. �

Corollary 5.2. Let G be a graph with n vertices, and wG be the function in W0

that represents G with respect to a linear ordering ≺ of the vertices of G. Then

Γ∗(G,≺) = Γ(wG) +O(
1

n
).

Proof. Let A ∈ A∗
n, and define Ã = {0 ≤ i ≤ n − 1 : Ii ⊆ A}. From the proof of

Theorem 5.1, it is easy to observe that Γ∗(G,≺, Ã) = gwG
(A), and gwG

(A) − 2
n
≤

Γ(wG, A) ≤ gwG
(A) + 2

n
. Thus,

max
A∈A∗

n

Γ∗(G,≺, Ã)− 2

n
≤ max

A∈A∗

n

Γ(wG, A) ≤ max
A∈A∗

n

Γ∗(G,≺, Ã) + 2

n
.

Using Theorem 5.1, we conclude that |Γ∗(G,≺)−Γ(wG)| ≤ 6
n
, and we are done. �
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6. Continuity of the parameter Γ̃.

Our main result, presented in this section, concerns the behaviour of the param-
eter Γ∗ if applied to a converging graph sequence {Gn}. Using the theory developed
in the previous sections, we will show that the sequence {Γ∗(Gn)} converges. Pre-
cisely, suppose {Gn} converges to a limit w ∈ W0. Then there exists a function w∗

arbitrarily close to w under the box distance, so that limn→∞ Γ∗(Gn) is arbitrarily
close to Γ(w∗).

The above follows from the continuity of a related parameter, Γ̃, which is defined
on W0 as the infimum of Γ(w) over a set of functions that have box distance zero to
each other. The precise definition is given below in Definition 6.3. We first present
the following lemmas.

Lemma 6.1. Let w : [0, 1]2 → [−2, 2] be a measurable function. Then ‖wχ‖✷ ≤
2
√
‖w‖✷, where

χ(x, y) =

{
1 x ≤ y
0 otherwise

.

Proof. Let Ω = {(x, y) : 0 ≤ x ≤ y ≤ 1} denote the subset of points above the
diagonal in [0, 1]2. Define k = ⌈ 1√

‖w‖✷

⌉, which is a positive integer. Now, we can

decompose Ω into k− 1 rectangles and k triangles as shown in Figure 6. Precisely,
the i-th rectangle has width 1

k
and ranges from y = i

k
to y = 1, and each triangle

has base and height equal to 1
k
. By the definition of cut-norm, the integral of w

over each of the rectangles is at most ‖w‖✷, in absolute value. Also, each of the
triangles has measure 1

2k2 , and there are k triangles in total. Since |w| is bounded
by 2, the integral of w over the triangles is at most 1

2k2 (2)(k) = 1
k
, in absolute

value. Therefore, we have

Figure 1. The decomposition of the set of points above the diag-
onal as used in the proof of Lemma 6.1
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∣∣∣∣
∫ 1

0

∫ 1

0

wχ(x, y)dxdy

∣∣∣∣ ≤ 1

k
+ (k − 1)‖w‖✷

≤
√
‖w‖✷ + (

1√
‖w‖✷

)‖w‖✷ = 2
√
‖w‖✷.(15)

For arbitrary subsets A and B of [0, 1], let χA×B denote the characteristic func-
tion of the subset A × B of [0, 1]2. Applying (15) to wχA×B instead of w, we

get |
∫ 1

0

∫ 1

0
wχA×Bχ(x, y)dxdy| ≤ 2

√
‖wχA×B‖✷ ≤ 2

√
‖w‖✷, which proves that

‖wχ‖✷ ≤ 2
√
‖w‖✷. �

Lemma 6.2. Let w1 and w2 be elements of W0. Then |Γ(w1) − Γ(w2)| ≤ 2‖w1 −
w2‖✷ + 4

√
‖w1 − w2‖✷.

Proof. Let

Γ1(w,A) =

∫ ∫

y<z

[∫

x∈A∩[0,y]

(w(x, z)− w(x, y)) dx

]

+

dydz,

Γ2(w,A) =

∫ ∫

y<z

[∫

x∈A∩[z,1]

(w(x, y) − w(x, z)) dx

]

+

dydz,

so Γ(w,A) = Γ1(w,A) + Γ2(w,A). Fix a measurable set A ∈ A. Using again the
inequality [x+ y]+ ≤ [x]+ + [y]+, we obtain that

Γ1(w1, A) =

∫ ∫

y<z

[∫

x∈A∩[0,y]

(w1(x, z)− w1(x, y)) dx

]

+

dydz

≤
∫ ∫

y<z

[∫

x∈A∩[0,y]

(w1(x, z)− w2(x, z)) dx

]

+

dydz

+

∫ ∫

y<z

[∫

x∈A∩[0,y]

(w2(x, z)− w2(x, y)) dx

]

+

dydz

+

∫ ∫

y<z

[∫

x∈A∩[0,y]

(w2(x, y)− w1(x, y)) dx

]

+

dydz.
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Recall that a function on [0, 1] attains a value at least as large as the average of the
function at some point. Therefore there exists y0, z0 ∈ [0, 1] such that

Γ1(w1, A) ≤
∫

y0<z

[∫

x∈A∩[0,y0]

(w1(x, z)− w2(x, z)) dx

]

+

dz

+ Γ1(w2, A)

+

∫

y<z0

[∫

x∈A∩[0,y]

(w2(x, y)− w1(x, y)) dx

]

+

dy

=

∫

z∈T1

∫

x∈A∩[0,y0]

(w1(x, z)− w2(x, z)) dxdz

+ Γ1(w2, A)

+

∫

y∈T2

∫

x∈A∩[0,y]

(w2(x, y)− w1(x, y)) dxdy,

where T1 and T2 are the appropriate sets of points which make the associated
expressions positive. From the definition of the cut-norm, it then follows that

Γ1(w1, A)− Γ1(w2, A) ≤ ‖w1 − w2‖✷ + ‖(w1 − w2)χ‖✷.
Similarly, by switching w1 and w2, we get Γ1(w2, A)− Γ1(w1, A) ≤ ‖w1 − w2‖✷ +
‖(w1 − w2)χ‖✷, which implies that

|Γ1(w1, A)− Γ1(w2, A)| ≤ ‖w1 − w2‖✷ + ‖(w1 − w2)χ‖✷
holds for every subset A. Moreover, one can prove the analogus result for Γ2. Thus,

|Γ(w1, A)− Γ(w2, A)| ≤ |Γ1(w1, A)− Γ1(w2, A)|+ |Γ2(w1, A)− Γ2(w2, A)|
≤ 2‖w1 − w2‖✷ + 2‖(w1 − w2)χ‖✷.

Since Γ(wi) = supAΓ(wi, A) for i = 1, 2, it follows that

|Γ(w1)− Γ(w2)| ≤ 2‖w1 − w2‖✷ + 2‖(w1 − w2)χ‖✷.
This fact, together with Lemma 6.1, finishes the proof. �

We are now ready to prove our continuity result. In order to study the limit
of the sequence {Γ∗(Gn)}, we need to define the following parameter, which is a
generalized notion of Γ. Recall that two functions u,w ∈ W0 are equivalent (i.e.
u ≈ w) precisely when δ✷(u,w) = 0.

Definition 6.3. Let w be a bounded function in W. We define the new parameter
Γ̃ to be

Γ̃(w) := inf
w′≈w

Γ(w′) = inf{Γ(w′) : δ✷(w,w
′) = 0}.

The lemmas above lead to the following theorem, which establishes the continuity
of the parameter Γ̃ on the space W0 with the cut-distance δ✷.

Theorem 6.4. Let w ∈ W0 be the limit of a δ✷-convergent sequence {wn}n∈N of

functions in W0. Then {Γ̃(wn)}n∈N converges to Γ̃(w) as n→ ∞.

Proof. By the definition of Γ̃, for each positive integer m there exists an element
um ∈ W0 such that δ✷(w, um) = 0 and |Γ(um) − Γ̃(w)| ≤ 1

m
. Fix such a sequence

of graphons {um}∞m=1.
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Fix m ∈ N. Then
δ✷(wn, um) = δ✷(wn, w) → 0,

as n goes to infinity. By the definition of cut-distance, this convergence implies
that there exist maps ψn ∈ Φ such that

‖wψn
n − um‖✷ → 0 as n→ ∞.

By Lemma 6.2 we have,
Γ(wψn

n ) → Γ(um).

Thus, for every m ∈ N,

lim sup
n∈N

Γ̃(wn) ≤ lim sup
n∈N

Γ(wψn
n ) = Γ(um) ≤ Γ̃(w) +

1

m
,

which implies that lim supn∈N
Γ̃(wn) ≤ Γ̃(w).

To prove the other inequality, let γ := lim infn∈N Γ̃(wn), and recall that, by
assumption, δ✷(wn, w) → 0 as n → ∞. Fix 0 < ǫ < 1, and let n ∈ N be chosen
such that it satisfies

δ✷(wn, w) <
ǫ2

182
, and |Γ̃(wn)− γ| < ǫ

3
.

In addition, let w′
n ∈ W0 be such that δ✷(w

′
n, wn) = 0 and |Γ(w′

n)− Γ̃(wn)| < ǫ/3.

By definition of the δ✷-distance, there exists φ ∈ Φ such that ‖w′
n − wφ‖✷ < ǫ2
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and thus, by Lemma 6.2, |Γ(w′
n)− Γ(wφ)| ≤ 6

√
‖w′

n − wφ‖✷ < ǫ/3. Thus,

|Γ(wφ)− γ| ≤ |Γ(wφ)− Γ(w′
n)|+ |Γ(w′

n)− Γ̃(wn)|+ |Γ̃(wn)− γ|
< ǫ.

Therefore, for every 0 < ǫ < 1, Γ̃(w) ≤ Γ(wφ) ≤ lim infn∈N Γ̃(wn) + ǫ. Combining
this with the lower bound, we get

lim sup
n∈N

Γ̃(wn) ≤ Γ̃(w) ≤ lim inf
n∈N

Γ̃(wn),

which implies that limn→∞ Γ̃(wn) = Γ̃(w).
�

Corollary 6.5. Let w ∈ W0 be the limit of a convergent sequence {Gn}n∈N of

graphs with |V (Gn)| → ∞. Then {Γ∗(Gn)}n∈N converges to Γ̃(w) as n→ ∞.

Proof. For each n ∈ N, let w′
Gn

be the step function representing Gn with respect
to an ordering ≺′

n that is optimal for Γ∗. Thus, by Corollary 5.2,

lim inf
n∈N

Γ∗(Gn) = lim inf
n∈N

Γ∗(Gn,≺′
n) = lim inf

n∈N

Γ(w′
Gn

) ≥ lim inf
n∈N

Γ̃(w′
Gn

).

Clearly the sequence {w′
Gn

} converges to w with respect to δ✷- distance. Thus by
Theorem 6.4,

lim inf
n∈N

Γ∗(Gn) ≥ Γ̃(w).

On the other hand, let u ∈ W0 be an element equivalent to w such that Γ̃(w)+ ǫ ≥
Γ(u). Since the sequence {Gn} converges to u, there is a labelling of vertices of
graphs Gn, corresponding to an ordering ≺n, for which ‖wGn

− w‖✷ → 0. Thus
by Lemma 6.2, we have Γ(wGn

) → Γ(w). Therefore by another application of
Corollary 5.2 we have,

ǫ+ Γ̃(w) ≥ Γ(u) = lim
n→∞

Γ(wGn
) = lim

n→∞
Γ∗(Gn,≺n) ≥ lim sup

n∈N

Γ∗(Gn).
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�

In particular, if a convergent graph sequence {Gn} with limit w has the property

that {Γ∗(Gn)} converges to zero, the above theorem states that Γ̃(w) = 0. This
implies that there exist functions u with Γ(u) arbitrarily small so that the graphs
{Gn} have similar structure, in terms of homomorphism densities, as the random
graph G(n, u). We would like to conclude that the graphs {Gn} are consistent with
having been formed by a random process with a linear embedding. However, it
does not follow from our results that any function u with Γ(u) small is “close” to
a diagonally increasing function. We conjecture that, in fact, if Γ(w) is small, then
there exists a diagonally function u which is close to w in box distance.

Conjecture 6.6. There exists a strictly increasing function f which approaches
zero as x→ 0 such that:

For every w ∈ W0, there exists u ∈ W0 with Γ(u) = 0 and ‖w− u‖✷ ≤ f(Γ(w)).
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