Edge-colouring eight-regular planar graphs

Maria Chudnovsky ${ }^{1}$
Columbia University, New York, NY 10027
Katherine Edwards ${ }^{2}$, Paul Seymour ${ }^{3}$
Princeton University, Princeton, NJ 08544

January 13, 2012; revised November 12, 2018

[^0]
Abstract

It was conjectured by the third author in about 1973 that every d-regular planar graph (possibly with parallel edges) can be d-edge-coloured, provided that for every odd set X of vertices, there are at least d edges between X and its complement. For $d=3$ this is the four-colour theorem, and the conjecture has been proved for all $d \leq 7$, by various authors. Here we prove it for $d=8$.

1 Introduction

One form of the four-colour theorem, due to Tait [9, asserts that a 3-regular planar graph can be 3 -edge-coloured if and only if it has no cut-edge. But when can d-regular planar graphs be d-edge-coloured?

Let G be a graph. (Graphs in this paper are finite, and may have loops or parallel edges.) If $X \subseteq V(G), \delta_{G}(X)=\delta(X)$ denotes the set of all edges of G with an end in X and an end in $V(G) \backslash X$. We say that G is oddly d-edge-connected if $|\delta(X)| \geq d$ for all odd subsets X of $V(G)$. Since every perfect matching contains an edge of $\delta(X)$ for every odd set $X \subseteq V(G)$, it follows that every d regular d-edge-colourable graph is oddly d-edge-connected. (Note that for a 3 -regular graph, being oddly 3-edge-connected is the same as having no cut-edge, because if $X \subseteq V(G)$, then $|\delta(X)|=1$ if and only if $|X|$ is odd and $|\delta(X)|<3$.) The converse is false, even for $d=3$ (the Petersen graph is a counterexample); but for planar graphs perhaps the converse is true. That is the content of the following conjecture [8], proposed by the third author in about 1973.
1.1 Conjecture. If G is a d-regular planar graph, then G is d-edge-colourable if and only if G is oddly d-edge-connected.

Some special cases of this conjecture have been proved.

- For $d=3$ it is the four-colour theorem, and was proved by Appel and Haken [1, 2, 7];
- for $d=4,5$ it was proved by Guenin [5];
- for $d=6$ it was proved by Dvorak, Kawarabayashi and Kral 3];
- for $d=7$ it was proved by Kawarabayashi and the second author, and appears in the Master's thesis [4] of the latter. The methods of the present paper can also be applied to the $d=7$ case, resulting in a proof somewhat simpler than the original, and this simplified proof for the $d=7$ case will be presented in another, four-author paper [6].

Here we prove the next case, namely:

1.2 Every 8 -regular oddly 8-edge-connected planar graph is 8 -edge-colourable.

All these proofs (for $d>3$), including ours, proceed by induction on d. Thus we need to assume the truth of the result for $d=7$.

2 An unavoidable list of reducible configurations.

The graph we wish to edge-colour has parallel edges, but it is more convenient to work with the underlying simple graph. If H is d-regular and oddly d-edge-connected, then H has no loops, because for every vertex v, v has degree d, and yet $\left|\delta_{H}(v)\right| \geq d$. (We write $\delta(v)$ for $\delta(\{v\})$.) Thus to recover H from the underlying simple graph G say, we just need to know the number $m(e)$ of parallel edges of H that correspond to each edge e of G. Let us say a d-target is a pair (G, m) with the following properties (where for $F \subseteq E(G), m(F)$ denotes $\sum_{e \in F} m(e)$):

- G is a simple graph drawn in the plane;
- $m(e) \geq 0$ is an integer for each edge e;
- $m(\delta(v))=d$ for every vertex v; and
- $m(\delta(X)) \geq d$ for every odd subset $X \subseteq V(G)$.

In this language, 1.1 says that for every d-target (G, m), there is a list of d perfect matchings of G such that every edge e of G is in exactly $m(e)$ of them. (The elements of a list need not be distinct.) If there is such a list we call it a d-edge-colouring, and say that (G, m) is d-edge-colourable. For an edge $e \in E(G)$, we call $m(e)$ the multiplicity of e. If $X \subseteq V(G), G \mid X$ denotes the subgraph of G induced on X. We need:
2.1 Let (G, m) be a d-target, that is not d-edge-colourable, but such that every d-target with fewer vertices is d-edge-colourable. Then

- $|V(G)| \geq 6$;
- for every $X \subseteq V(G)$ with $|X|$ odd, if $|X|,|V(G) \backslash X| \neq 1$ then $m(\delta(X)) \geq d+2$; and
- G is three-connected, and $m(e) \leq d-2$ for every edge e.

Proof. If $m(e)=0$ for some edge e, we may delete e without affecting the problem; so we may assume that $m(e)>0$ for every edge e. It is easy to check that G is connected and $|V(G)| \geq 6$ and we omit it. For the second assertion let $X \subseteq V(G)$ with $|X|$ odd and with $|X|,|V(G) \backslash X| \neq 1$. Thus $m(\delta(X)) \geq d$ since (G, m) is a d-target; suppose that $m(\delta(X))=d$. There is a component of $G \mid X$ with an odd number of vertices, with vertex set X^{\prime} say; and so $m\left(\delta\left(X^{\prime}\right)\right) \geq d$ since (G, m) is a d-target. But $\delta\left(X^{\prime}\right) \subseteq \delta(X)$, and $m(e)>0$ for every edge e; and so $\delta\left(X^{\prime}\right)=\delta(X)$. Since G is connected it follows that $X^{\prime}=X$, and so $G \mid X$ is connected. Similarly $G \mid Y$ is connected, where $Y=V(G) \backslash X$. Replace each edge e of G by $m(e)$ parallel edges, forming H; and contract all edges of $H \mid Y$, forming a d-regular oddly d-edge-connected planar graph H_{1} with fewer vertices than H (because $|Y|>1$). By hypothesis it follows that H_{1} is d-edge-colourable. Similarly so is the graph obtained from H by contracting all edges of $G \mid X$. But these colourings can be combined to give a d-edge-colouring of H, a contradiction. This proves that $m(\delta(X))>d$. Since $m(\delta(v))=d$ for every vertex v, it follows that $m(\delta(X))$ has the same parity as $d|X|$, and so $m(\delta(X)) \geq d+2$. This proves the second assertion.

For the third assertion, suppose that G is not three-connected. Since $|V(G)|>3$, there is a partition (X, Y, Z) of $V(G)$ where $X, Y \neq \emptyset$, with $|Z|=2$, such that there are no edges between X and Y. Let $Z=\left\{z_{1}, z_{2}\right\}$ say. Either both $|X|,|Y|$ are odd, or they are both even. If they are both odd, then since $\delta(X), \delta(Y)$ are disjoint subsets of $\delta\left(z_{1}\right) \cup \delta\left(z_{2}\right)$, and

$$
m(\delta(X)), m(\delta(Y)) \geq d=m\left(\delta\left(z_{1}\right)\right), m\left(\delta\left(z_{2}\right)\right)
$$

we have equality throughout, and in particular $m(\delta(X)), m(\delta(Y))=d$. But then $|X|=|Y|=1$ from the second assertion, contradicting that $|V(G)| \geq 6$. Now assume $|X|,|Y|$ are both even. Since $\delta\left(X \cup\left\{z_{1}\right\}\right), \delta\left(Y \cup\left\{z_{2}\right\}\right)$ have the same union and intersection as $\delta\left(z_{1}\right), \delta\left(z_{2}\right)$, it follows that $m\left(\delta\left(X \cup\left\{z_{1}\right\}\right)\right)=d$, contrary to the second assertion. Thus G is three-connected. Since $m(e) \geq 1$ for every edge e, and $m(\delta(v))=d$ for every vertex v, it follows that $m(e) \leq d-2$ for every edge e. This proves the third assertion, and hence proves 2.1.

A triangle is a region of G incident with exactly three edges. If a triangle is incident with vertices u, v, w, for convenience we refer to it as $u v w$, and in the same way an edge with ends u, v is called $u v$. Two edges are disjoint if they are distinct and no vertex is an end of both of them, and otherwise they meet. Let r be a region of G, and let $e \in E(G)$ be incident with r; let r^{\prime} be the other region incident with e. We say that e is i-heavy (for r), where $i \geq 2$, if either $m(e) \geq i$ or r^{\prime} is a triangle $u v w$ where $e=u v$ and

$$
m(u v)+\min (m(u w), m(v w)) \geq i
$$

We say e is a door for r if $m(e)=1$ and there is an edge f incident with r^{\prime} and disjoint from e with $m(f)=1$. We say that r is big if there are at least four doors for r, and small otherwise. A square is a region with length four.

Since G is drawn in the plane and is two-connected, every region r has boundary some cycle which we denote by C_{r}. In what follows we will be studying cases in which certain configurations of regions are present in G. We will give a list of regions the closure of the union of which is a disc. For convenience, for an edge e in the boundary of this disc, we call the region outside the disc incident with e the "second region" for e; and we write $m^{+}(e)=m(e)$ if the second region is big, and $m^{+}(e)=m(e)+1$ if the second region is small. This notation thus depends not just on (G, m) but on what regions we have specified, so it is imprecise, and when there is a danger of ambiguity we will specify it more clearly.

Let us say an 8 -target (G, m) is prime if

- $m(e)>0$ for every edge e;
- $|V(G)| \geq 6$;
- $m(\delta(X)) \geq 10$ for every $X \subseteq V(G)$ with $|X|$ odd and $|X|,|V(G) \backslash X| \neq 1$;
- G is three-connected, and $m(e) \leq 6$ for every edge e;
and in addition (G, m) contains none of of the following:
Conf(1): A triangle $u v w$ where u, v both have degree three.
Conf(2): A triangle $u v w$, where u has degree three and its third neighbour x satisfies

$$
m(u x)<m(u w)+m(v w)
$$

Conf(3): Two triangles $u v w, u w x$ with $m(u v)+m(u w)+m(v w)+m(u x) \geq 8$.
$\operatorname{Conf}(4):$ A square $u v w x$ where $m(u v)+m(v w)+m(u x) \geq 8$ and

$$
(m(u v), m(v w), m(w x), m(u x)) \neq(4,2,1,2)
$$

$\operatorname{Conf}(5):$ Two triangles $u v w, u w x$ where $m^{+}(u v)+m(u w)+m^{+}(w x) \geq 7$.
Conf(6): A square $u v w x$ where $m^{+}(u v)+m^{+}(w x) \geq 7$.
$\operatorname{Conf}(7):$ A triangle $u v w$ with $m^{+}(u v)+m^{+}(u w) \geq 7$.
$\operatorname{Conf}(8)$: A triangle $u v w$, where $m(u v)=3, m(u w)=2, m(v w)=2$, and the second region for one of $u v, u w, v w$ has no door disjoint from $u v w$.
$\operatorname{Conf}(9)$: A triangle $u v w$ with $m(u v), m(u w), m(v w)=2$, such that u has degree at least four, and the second regions for $u v, u w$ both have at most one door, and no door that is disjoint from $u v w$.
$\operatorname{Conf}(10)$: A square $u v w x$ and a triangle $w x y$, where $m(u v)=m(w x)=m(x y)=2$, and $m(v w)=4$.
Conf(11): A square $u v w x$ and a triangle $w x y$, where $m(u v) \geq 3, m(w y) \geq 3, m(w x)=1, m(u x) \leq 3$, and $m^{+}(x y) \geq 3$.

Conf(12): A square $u v w x$ and a triangle $w x y$, where $m^{+}(u v), m(v w) \geq 2, m(w x)=m(w y)=2$, $m(u x) \leq 3$, and $m^{+}(x y) \geq 3$.

Conf(13): A region r of length five, with edges $e_{1} l e_{5}$ in order, where $m\left(e_{1}\right) \geq \max \left(m\left(e_{2}\right), m\left(e_{5}\right)\right)$, $m\left(e_{1}\right)+m\left(e_{2}\right)+m\left(e_{3}\right) \geq 8$ and $m^{+}\left(e_{1}\right)+m^{+}\left(e_{4}\right) \geq 7$.

Conf(14): A region r and an edge e of C_{r}, such that $m^{+}(e) \geq 6$ and at most six edges of C_{r} disjoint from e are doors for r.

Conf(15): A region r with length at least four, and an edge e of C_{r}, such that $m^{+}(e) \geq 4$ and every edge of C_{r} disjoint from e is 3-heavy.
$\operatorname{Conf}(16):$ A region r and an edge $u v$ of C_{r}, and a triangle $u v w$, such that $m(u v)+m^{+}(u w) \geq 4$, and $m(v w) \leq m(u w)$, and the second edge of C_{r} incident with u has multiplicity at most $m(u w)$, and every edge of C_{r} not incident with u is 3-heavy.
$\operatorname{Conf}(17):$ A region r with length at least five, and an edge e of C_{r}, such that $m^{+}(e) \geq 5$, every edge f of C_{r} disjoint from e satisfies $m^{+}(f) \geq 2$, and at most one of them is not 3-heavy.
$\operatorname{Conf}(18):$ A region r with length at least four and an edge $u v$ of C_{r}, and a triangle $u v w$, such that $m^{+}(u w)+m(u v) \geq 5$, and $m(v w) \leq m(u w)$, and the second edge of C_{r} incident with u has multiplicity at most $m(u w)$, and either
$-m(u v)=3$ and $u v$ is 5-heavy, and every edge f of C_{r} disjoint from $u v$ satisfies $m^{+}(f) \geq 2$, and at most one of them is not 3-heavy, or
$-m^{+}(f) \geq 2$ for every edge f of C_{r} not incident with u, and at most one such edge is not 3-heavy.
$\operatorname{Conf}(19):$ A region r with length at least five and an edge e of C_{r}, such that $m^{+}(e) \geq 5$, every edge of C_{r} disjoint from e is 2-heavy, and at most two of them are not 3 -heavy.

We will prove these restrictions are too much, that in fact no 8-target is prime (theorem 3.1). To deduce 1.2, we will show that if there is a counterexample, then some counterexample is prime; but for this purpose, just choosing a counterexample with the minimum number of vertices is not enough, and we need a more delicate minimization. If (G, m) is a d-target, its score sequence is the $(d+1)$-tuple $\left(n_{0}, n_{1} l n_{d}\right)$ where n_{i} is the number of edges e of G with $m(e)=i$. If (G, m) and $\left(G^{\prime}, m^{\prime}\right)$ are d-targets, with score sequences $\left(n_{0} l n_{d}\right)$ and $\left(n_{0}^{\prime} l n_{d}^{\prime}\right)$ respectively, we say that $\left(G^{\prime}, m^{\prime}\right)$ is smaller than (G, m) if either

- $\left|V\left(G^{\prime}\right)\right|<|V(G)|$, or
- $\left|V\left(G^{\prime}\right)\right|=|V(G)|$ and there exists i with $1 \leq i \leq d$ such that $n_{i}^{\prime}>n_{i}$, and $n_{j}^{\prime}=n_{j}$ for all j with $i<j \leq d$, or
- $\left|V\left(G^{\prime}\right)\right|=|V(G)|$, and $n_{j}^{\prime}=n_{j}$ for all j with $0<j \leq d$, and $n_{0}^{\prime}<n_{0}$.
(The anomalous treatment of n_{0} is just a device to allow d-targets to have edges with $m(e)=0$, while minimum d-counterexamples have none.) If some d-target is not d-edge-colourable, then we can choose a d-target (G, m) with the following properties:
- (G, m) is not d-edge-colourable
- every smaller d-target is d-edge-colourable.

Let us call such a pair (G, m) a minimum d-counterexample. To prove 1.2, we prove two things:

- No 8-target is prime (theorem 3.1), and
- Every minimum 8-counterexample is prime (theorem 4.1).

It will follow that there is no minimum 8-counterexample, and so the theorem is true.

3 Discharging and unavoidability

In this section we prove the following, with a discharging argument.

3.1 No 8-target is prime.

The proof is broken into several steps, through this section. Let (G, m) be a 8 -target, where G is three-connected. For every region r, we define

$$
\alpha(r)=8-4\left|E\left(C_{r}\right)\right|+\sum_{e \in E\left(C_{r}\right)} m(e) .
$$

We observe first:
3.2 The sum of $\alpha(r)$ over all regions r is positive.

Proof. Since (G, m) is a 8 -target, $m(\delta(v))=8$ for each vertex v, and, summing over all v, we deduce that $2 m(E(G))=8|V(G)|$. By Euler's formula, the number R of regions of G satisfies $|V(G)|-|E(G)|+R=2$, and so $2 m(E(G))-8|E(G)|+8 R=16$. But $2 m(E(G))$ is the sum over all regions r, of $\sum_{e \in E\left(C_{r}\right)} m(e)$, and $8 R-8|E(G)|$ is the sum over all regions r of $8-4\left|E\left(C_{r}\right)\right|$. It follows that the sum of $\alpha(r)$ over all regions r equals 16. This proves 3.2,

We normally wish to pass one unit of charge from every small region to every big region with which it shares an edge; except that in some rare circumstances, sending one unit is too much, and we only send $1 / 2$ or 0 . More precisely, for every edge e of G, define $\beta_{e}(s)$ for each region s as follows. Let r, r^{\prime} be the two regions incident with e.

- If $s \neq r, r^{\prime}$ then $\beta_{e}(s)=0$.
- If r, r^{\prime} are both big or both small then $\beta_{e}(r), \beta_{e}\left(r^{\prime}\right)=0$.

Henceforth we assume that r is big and r^{\prime} is small; let f, f^{\prime} be the edges of $C_{r} \backslash e$ that share an end with e.

1: If e is a door for r (and hence $m(e)=1$) then $\beta_{e}(r)=\beta_{e}\left(r^{\prime}\right)=0$.
2: If $m(e)=2$ and $m^{+}(f)=m^{+}\left(f^{\prime}\right)=6$ then $\beta_{e}(r)=\beta_{e}\left(r^{\prime}\right)=0$.
3: If $m(e)=2$ and $m^{+}(f)=6$ and $m^{+}\left(f^{\prime}\right)=5$ or vice versa then $\beta_{e}(r)=-\beta_{e}\left(r^{\prime}\right)=1 / 2$.
4: If $m(e)=3$ and $m^{+}(f)=m^{+}\left(f^{\prime}\right)=5$ then $\beta_{e}(r)=\beta_{e}\left(r^{\prime}\right)=0$.
5: If $m(e)=3$ and exactly one of $m^{+}(f), m^{+}\left(f^{\prime}\right)=5$, then $\beta_{e}(r)=-\beta_{e}\left(r^{\prime}\right)=1 / 2$.
6: Otherwise $\beta_{e}(r)=-\beta_{e}\left(r^{\prime}\right)=1$.
(Think of β_{e} as passing some amount of charge between the two regions incident with e.) For each region r, define $\beta(r)$ to be the sum of $\beta_{e}(r)$ over all edges e. We see that the sum of $\beta(r)$ over all regions r is zero.

The effect of β is passing charge from small regions to big regions with which they share an edge. We need another "discharging" function, that passes charge from triangles to small regions with which they share an edge. If r is a triangle, incident with edges e, f, g, we define its multiplicity $m(r)=m(e)+m(f)+m(g)$. A region r is tough if r is a triangle, its multiplicity is at least five, and if $r=u v w$ where $m(u v)=1$ and $m(u w)=m(v w)=2$, then $m^{+}(u w)+m^{+}(v w) \geq 5$. For every edge e of G, define $\gamma_{e}(s)$ for each region s as follows. Let r, r^{\prime} be the two regions incident with e.

- If $s \neq r, r^{\prime}$ then $\gamma_{e}(s)=0$.
- If one of r, r^{\prime} is big, or neither is tough, or they both are tough, then $\gamma_{e}(r)=\gamma_{e}\left(r^{\prime}\right)=0$.

Henceforth we assume that r^{\prime} is tough, and r is small and not tough. Let e, e_{1}, e_{2} be the edges incident with r^{\prime}, and let r_{1}, r_{2} be the regions different from r^{\prime} incident with e_{1}, e_{2} respectively.

1: If $m(e)=1$ and $m\left(e_{1}\right), m\left(e_{2}\right) \geq 2$, and $m^{+}\left(e_{1}\right)+m^{+}\left(e_{2}\right) \geq 6$ then $\gamma_{e}(r)=-\gamma_{e}\left(r^{\prime}\right)=1$.
2: If $m(e)=1$ and $m^{+}\left(e_{1}\right) \geq 4$ and $m\left(e_{2}\right)=1$ and r_{2} is small, then $\gamma_{e}(r)=-\gamma_{e}\left(r^{\prime}\right)=1 / 2$.
3: If $m(e)=1$ and $m\left(e_{1}\right)=3$ and $m\left(e_{2}\right)=1$ and r_{2} is small, and the edge f of $C_{r} \backslash e$ that shares an end with e, e_{1} satisfies $m(f)=4$, then $\gamma_{e}(r)=-\gamma_{e}\left(r^{\prime}\right)=1 / 2$.

4: If $m(e)=2$ and $m\left(e_{1}\right), m\left(e_{2}\right) \geq 2$ and $m^{+}\left(e_{1}\right)+m^{+}\left(e_{2}\right) \geq 5$, and either

- r has more than one door, or
- some door for r is disjoint from e, or
- some edge f of C_{r} consecutive with e has multiplicity four, and r_{1}, r_{2} are both small,
then $\gamma_{e}(r)=-\gamma_{e}\left(r^{\prime}\right)=1$.
5: If $m(e)=2$ and $m\left(e_{1}\right), m\left(e_{2}\right)=2$ and some end of e has degree three, incident with e_{1} say, and r_{1} is small and r_{2} is big, then $\gamma_{e}(r)=-\gamma_{e}\left(r^{\prime}\right)=1 / 2$.

6: If $m(e)=3$ and $m\left(e_{1}\right), m\left(e_{2}\right)=2$ then $\gamma_{e}(r)=-\gamma_{e}\left(r^{\prime}\right)=1$.
7: Otherwise $\gamma_{e}(r)=\gamma_{e}\left(r^{\prime}\right)=0$.
For each region r, define $\gamma(r)$ to be the sum of $\gamma_{e}(r)$ over all edges e. Again, the sum of $\gamma(r)$ over all regions r is zero.

We observe that, immediately from the rules, we have
3.3 Let e be incident with regions r, r^{\prime}. Then $\beta_{e}(r)$ is non-zero only if exactly one of r, r^{\prime} is big; and $\gamma_{e}(r)$ is non-zero only if exactly one of r, r^{\prime} is tough and neither is big. Thus in all cases, at most one of $\beta_{e}(r), \gamma_{e}(r)$ is non-zero. Moreover $\left|\beta_{e}(r)+\gamma_{e}(r)\right| \leq 1$.

Let α, β, γ be as above. Then the sum over all regions r of $\alpha(r)+\beta(r)+\gamma(r)$ is positive, and so there is a region r with $\alpha(r)+\beta(r)+\gamma(r)>0$. Let us examine the possibilities for such a region. There now begins a long case analysis, and to save writing we just say "by Conf(7)" instead of "since (G, m) does not contain $\operatorname{Conf}(7)$ ", and so on.
3.4 If r is a big region and $\alpha(r)+\beta(r)+\gamma(r)>0$, then (G, m) is not prime.

Proof. Suppose that (G, m) is prime. Let $C=C_{r}$. Since r is big it follows that $\gamma(r)=0$, and so $\alpha(r)+\beta(r)>0$; that is,

$$
\sum_{e \in E(C)}\left(4-m(e)-\beta_{e}(r)\right)<8 .
$$

For $e \in E(C)$, define $\phi(e)=m(e)+\beta_{e}(r)$, and let us say e is major if $\phi(e)>4$. If e is major, then since $\beta_{e}(r) \leq 1$, it follows that $m(e) \geq 4$; and so $\beta_{e}(r)$ is an integer, from the β-rules, and therefore $\phi(e) \geq 5$. Moreover, no two major edges are consecutive, since G has minimum degree at least three.

Let D be the set of doors for C. Let

- $\xi=1$ if there are consecutive edges e, f in C such that $\phi(e)>5$ and f is a door for r
- $\xi=2$ if there is no such pair e, f.
(1) Let e, f, g be the edges of a path of C, in order, where e, g are major. Then

$$
(4-\phi(e))+2(4-\phi(f))+(4-\phi(g)) \geq 2 \xi|\{f\} \cap D| .
$$

Let r_{1}, r_{2}, r_{3} be the regions different from r incident with e, f, g respectively. Now $m(e) \leq 6$ since (G, m) is prime, and if $m(e)=6$ then r_{1} is big, by $\operatorname{Conf}(14)$, and so $\beta_{e}(r)=0$; and so in any case, $\phi(e) \leq 6$. Similarly $\phi(g) \leq 6$. Also, $\phi(e), \phi(g) \geq 5$ since e, g are major. Thus $\phi(e)+\phi(g) \in$ $\{10,11,12\}$.

Suppose that $\phi(e)+\phi(g)=12$. We must show that $\phi(f) \leq 2-\xi|\{f\} \cap D|$. Now $m(e) \geq 5$, and so $m(f) \leq 2$, since G is three-connected. If $m(f)=2$ then $f \notin D$, and $\beta_{f}(r)=0$ from the β-rules; and so $\phi(f) \leq 2-\xi|\{f\} \cap D|$. If $m(f)=1$, then $\beta_{f}(r) \leq 1$, so we may assume that $f \in D$; but then $\xi=1$ and $\phi(f)=1 \leq 2-\xi|\{f\} \cap D|$.

Next suppose that $\phi(e)+\phi(g)=11$. We must show that $\phi(f) \leq 5 / 2-\xi|\{f\} \cap D|$. Again one of $\phi(e), \phi(g) \geq 6$, say $\phi(e)=6$; and so $m^{+}(e) \geq 6$. In particular $m(e) \geq 5$, and so $m(f) \leq 2$. Since $\phi(g) \geq 5$ we have $m^{+}(g) \geq 5$, and so if $m(f)=2$, then $\beta_{f}(r) \leq 1 / 2$ from the β-rules; and since $f \notin D$ we have $\phi(f) \leq 5 / 2-\xi|\{f\} \cap D|$. If $m(f)=1$, then $\phi(f) \leq 2$, and so we may assume that $f \in D$; but then $\xi=1$ and $\phi(f)=1$, and again $\phi(f) \leq 5 / 2-\xi|\{f\} \cap D|$.

Finally, suppose that $\phi(e)+\phi(g)=10$. We must show that $\phi(f) \leq 3-\xi|\{f\} \cap D|$. Suppose that $m(f) \geq 3$. Since $m^{+}(e), m^{+}(g) \geq 5$ (because e, g are major), it follows that $m(f)=3$, and $m(e)=m(g)=4$ because G is three-connected; but then $\beta_{f}(r)=0$ from the β-rules, and since $f \notin D$ we have $\phi(f) \leq 3-\xi|\{f\} \cap D|$. Next suppose that $m(f)=2$. Then $\phi(f) \leq 3=3-\xi|\{f\} \cap D|$ as required. Lastly if $m(f)=1$, then $\phi(f) \leq 2$, so we may assume that $f \in D$; but then $\xi \leq 2$ and $\phi(f)=1 \leq 3-\xi|\{f\} \cap D|$. This proves (1).
(2) Let e, f be consecutive edges of C, where e is major. Then

$$
(4-\phi(e))+2(4-\phi(f)) \geq 2 \xi|\{f\} \cap D| .
$$

We have $\phi(e) \in\{5,6\}$. Suppose that $\phi(e)=6$. We must show that $\phi(f) \leq 3-\xi|\{f\} \cap D|$; but $m(f) \leq 2$ since $m(e) \geq 5$, and so $\phi(f) \leq 3$. We may therefore assume that $f \in D$; but then $\xi=1$ and $\phi(f)=1 \leq 3-\xi|\{f\} \cap D|$. Next, suppose that $\phi(e)=5$; then we must show that $\phi(f) \leq 7 / 2-\xi|\{f\} \cap D|$. Since $m(e) \geq 4$, it follows that $m(f) \leq 3$. If $m(f)=3$ then $m^{+}(e)=5$ and so $\beta_{f}(r) \leq 1 / 2$, from the β-rules; but then $\phi(f) \leq 7 / 2-\xi|\{f\} \cap D|$. If $m(f) \leq 2$, then $\phi(f) \leq 1$, so we may assume that $f \in D$; but $\xi \leq 2$, and so $\phi(f)=1 \leq 7 / 2-\xi|\{f\} \cap D|$. This proves (2).

For $i=0,1,2$, let E_{i} be the set of edges $f \in E(C)$ such that f is not major, and f meets exactly i major edges in C. Let D be the set of doors for C. By (1), for each $f \in E_{2}$ we have

$$
\frac{1}{2}(4-\phi(e))+(4-\phi(f))+\frac{1}{2}(4-\phi(g)) \geq \xi|\{f\} \cap D|
$$

where e, g are the major edges meeting f. By (2), for each $f \in E_{1}$ we have

$$
\frac{1}{2}(4-\phi(e))+(4-\phi(f)) \geq \xi|\{f\} \cap D|
$$

where e is the major edge consecutive with f. Finally, for each $f \in E_{0}$ we have

$$
4-\phi(f) \geq \xi|\{f\} \cap D|
$$

since $\phi(f) \leq 4$, and $\phi(f)=1$ if $f \in D$. Summing these inequalities over all $f \in E_{0} \cup E_{1} \cup E_{2}$, we deduce that $\sum_{e \in E(C)}(4-\phi(e)) \geq \xi|D|$. Consequently

$$
8>\sum_{e \in E(C)}\left(4-m(e)-\beta_{e}(r)\right) \geq \xi|D| .
$$

But $|D| \geq 4$ since r is big, and so $\xi=1$ and $|D| \leq 7$, a contradiction by $\operatorname{Conf}(14)$. This proves 3.4
3.5 If r is a triangle that is not tough, and $\alpha(r)+\beta(r)+\gamma(r)>0$, then (G, m) is not prime.

Proof. Suppose (G, m) is prime, and let $r=u v w$. Suppose first that r has multiplicity five; and hence, since it is not tough, we may assume that $m(u v)=1$ and $m(u w)=m(v w)=2$, and the second regions for $u w, v w$ are both big. Thus from the β-rules, $\beta_{u w}(r), \beta_{v w}(r)=-1$, and since $\beta_{u v}(r)+\gamma_{u v}(r) \leq 1$, we deduce that $\beta(r)+\gamma(r) \leq-1$. But

$$
\alpha(r)=-4+m(u v)+m(v w)+m(u w)=1,
$$

contradicting that $\alpha(r)+\beta(r)+\gamma(r)>0$. Thus r has multiplicity at most four.
Since $\alpha(r)=-4+m(u v)+m(v w)+m(u w) \leq 0$, and $\beta(r) \leq 0$, it follows that $\gamma(r)>0$. Hence $\gamma_{e}(r)>0$ for some edge e incident with r, say $e=u v$.
(1) $m(e)=1$ for every edge e incident with r such that $\gamma_{e}(r)>0$.

For suppose that $m(e)>1$ and $\gamma_{e}(r)>0$. Since r has multiplicity at most four it follows that $m(e)=2$. Since $\gamma_{e}(r)>0$, there is a vertex $x \neq w$ such that $u v x$ is a triangle, and $m(u x), m(v x) \geq 2$, and one of $m^{+}(u x), m^{+}(v x)$ is at least three, say $m^{+}(u x) \geq 3$; and r has two doors. By Conf(5), $m^{+}(v w)=1$, and so $\beta_{v w}(r)=-1$ and $\beta_{u w} \leq 0$, and hence $\beta(r) \leq-1$; yet $\gamma(r) \leq 1$, contradicting that $\alpha(r)+\beta(r)+\gamma(r)>0$. This proves (1).
(2) There is no edge e incident with r and with a big region such that $m(e)=1$.

Let r be incident with edges e, f, g, and suppose that $m(e)=1$ and e is incident with a big region. Thus $\beta(r) \leq-1$, and so $\gamma(r)>1$; and consequently $\gamma_{f}(r), \gamma_{g}(r)>0$, and therefore $m(f)=m(g)=1$ from (1). But then $\alpha(r)=-1$, and yet $\gamma(r) \leq 2$, contradicting that $\alpha(r)+\beta(r)+\gamma(r)>0$. This proves (2).

Choose e with $\gamma_{e}(r)>0$, say $e=u v$. Thus $m(u v)=1$, and there is a tough triangle $r^{\prime}=u v x$ say. By $\operatorname{Conf}(3), r^{\prime}$ has multiplicity at most six.
(3) We may assume that $m^{+}(u x) \leq 3$ and $m^{+}(v x) \leq 3$.

For suppose that $m^{+}(u x) \geq 4$. By $(2), m^{+}(v w) \geq 2$, contrary to $\operatorname{Conf}(5)$. This proves (3).
Now $\gamma_{u v}(r)>0$, and from (1), (3), it follows that $\gamma_{u v}(r$ is determined by the first γ-rule. In particular, $m^{+}(u x)=3$, and $m^{+}(v x)=3$. By $\operatorname{Conf}(16)$, $u w$ and $v w$ are not 3-heavy, and so by the same argument $\gamma_{u w}(r)=0$ and $\gamma_{v w}(r)=0$; and so $\gamma(r)=1$. Consequently $\alpha(r)>-1$, and so we may assume that $m(u w)=2$. Let r_{1} be the second region for $u w$. Now $m(u x)+m(u v)+m(u w) \leq 6$, and so there is an edge f incident with r_{1} and u different from $u w, u x$. Moreover, $m(f) \leq 3$, since $m(u x)+m(u v)+m(u w) \geq 5$; and so if r_{1} is big then $\beta_{u w}(r)=-1$, a contradiction. Thus r_{1} is small, contrary to $\operatorname{Conf}(5)$. This proves 3.5.
3.6 If r is a tough triangle with $\alpha(r)+\beta(r)+\gamma(r)>0$, then (G, m) is not prime.

Proof. Suppose (G, m) is prime, and let $r=u v w$. Now $\alpha(r)=m(u v)+m(v w)+m(u w)-4$, so

$$
m(u v)+m(v w)+m(u w)+\beta(r)+\gamma(r)>4 .
$$

Let r_{1}, r_{2}, r_{3} be the regions different from r incident with $u v, v w, u w$ respectively. It follows that $\beta_{e}(r), \gamma_{e}(r) \leq 0$ for every edge e of r.
(1) If r_{1} is big then $\beta_{u v}(r)=-1$.

For let us examine the β-rules. Certainly $u v$ is not a door for r_{1}, since r is a triangle; so the first rule does not apply. Let f, f^{\prime} be the edges incident with r_{1} different from $u v$ that are incident with u, v respectively. If the second β-rule applies then $m(u v)=2$ and $m(f), m\left(f^{\prime}\right) \geq 5$, which implies that $m(u w), m(v w)=1$, contradicting that uvw has multiplicity at least five. If the third rule applies, then $m(u v)=2$ and $m^{+}(f)=6$ and $m^{+}\left(f^{\prime}\right)=5$ say; but then $m(u w)=1$ and $m(v w)=2$, contrary to $\operatorname{Conf}(1)$. The fourth rule does not apply, by $\operatorname{Conf}(1)$. Thus we assume that the fifth rule applies. Let $m(u v)=3, m^{+}(f)=5$, and $m^{+}\left(f^{\prime}\right)<5$. Hence $m(f)=4$, and so u has degree three, and $m(v w)=1$ by $\operatorname{Conf}(2)$, and r_{3} is small, and $\beta_{u v}(r)=-1 / 2$. Since

$$
m(u v)+m(v w)+m(u w)+\beta(r)+\gamma(r)>4
$$

it follows that

$$
\beta_{u w}(r)+\beta_{v w}(r)+\gamma_{u w}(r)+\gamma_{v w}(r) \geq 0,
$$

and since all the terms on the left are non-positive it follows that they are all zero. Now r_{2} is not big since $\beta_{v w}(r)=0$, and r_{3} is not a triangle by $\operatorname{Conf}(2)$, so the third γ-rule applies to $u w$, a contradiction since $\gamma_{u w}(r)=0$. This proves (1).

Let $X=\{u, v, w\}$. Since (G, m) is prime, it follows that $|V(G) \backslash X| \geq 3$, and $m(\delta(X)) \geq 10$. But

$$
m(\delta(X))=m(\delta(u))+m(\delta(v))+m(\delta(w))-2 m(u v)-2 m(u w)-2 m(v w),
$$

and so $10 \leq 8+8+8-2 m(u v)-2 m(u w)-2 m(v w)$, that is, r has multiplicity at most seven. Suppose first that r has multiplicity seven. By $\operatorname{Conf}(3)$, none of r_{1}, r_{2}, r_{3} is a triangle. Now $\beta(r)+\gamma(r)>-3$. Consequently we may assume that $\beta_{u v}(r)+\gamma_{u v}(r)>-1$, and hence r_{1} is small by (1). $\operatorname{By} \operatorname{Conf}(7)$, $m(u v)+m(u w)<6$ and hence $m(v w) \geq 2$; and similarly $m(u w) \geq 2$. Now $\gamma_{u v}(r)>-1 / 2$, and so the first, fourth and sixth γ-rules do not apply to $u v$. Since the first γ-rule does not apply, $m(u v)>1$. Since the sixth γ-rule does not apply, one of $m(u w), m(v w)>2$, say $m(u w) \geq 3$, and so $m(u v)=2$, $m(u w)=3$ and $m(v w)=2$. Since the fourth γ-rule does not apply, r_{1} has no door disjoint from $u v$, contrary to $\operatorname{Conf}(8)$.

Next, suppose that r has multiplicity six. Thus $\beta(r)+\gamma(r)>-2$, and so by (1), at most one of r_{1}, r_{2}, r_{3} is big. Suppose that $m(u v)=4$; then $m(v w), m(u w)=1$. Since at most one of r_{1}, r_{2}, r_{3} is big, it follows from $\operatorname{Conf}(7)$ that r_{1} is big, and hence r_{2}, r_{3} are small. By $\operatorname{Conf}(3), r_{2}, r_{3}$ are not tough. By the second γ-rule, $\gamma_{v w}(r)=\gamma_{u w}(r)=-1 / 2$, and since $\beta_{u v}(r)=-1$ by (1), this contradicts $\beta(r)+\gamma(r)>-2$. Thus $m(u v) \leq 3$. Suppose next that $m(u v)=3$; then from the symmetry we may assume that $m(u w)=2$ and $m(v w)=1$. Since one of r_{1}, r_{2} is small, and r_{3} is not tough by $\operatorname{Conf}(3)$, the first γ-rule implies that $\beta_{v w}(r)+\gamma_{v w}(r) \leq-1$. Since $\beta(r)+\gamma(r)>-2$, it follows from (1) that neither of r_{1}, r_{3} is big, contrary to $\operatorname{Conf}(7)$. Thus $m(u v) \leq 2$, and similarly $m(u w), m(v w) \leq 2$, and so
$m(u v), m(u w), m(v w)=2$. Since $\beta(r)+\gamma(r)>-2$, it follows that $\beta_{e}(r)+\gamma_{e}(r) \leq-1$ for at most one edge e incident with r; and so we may assume that $\beta_{u v}(r)+\gamma_{u v}(r)>-1$ and $\beta_{u w}(r)+\gamma_{u w}(r)>-1$. By (1), r_{1}, r_{3} are both small. By $\operatorname{Conf}(3), r_{1}, r_{3}$ are not tough, and since the fourth γ-rule does not apply, it follows that r_{1} has at most one door, and no door disjoint from $u v$, and r_{3} has at most one door, and no door disjoint from $u w$, and u has degree at least four, contrary to $\operatorname{Conf}(9)$.

Finally, suppose that r has multiplicity five. Now $\beta(r)+\gamma(r)>-1$, and hence $\beta_{e}(r)+\gamma_{e}(r)>-1$ for every edge e incident with r; and so by (1) r_{1}, r_{2}, r_{3} are all small. Suppose that $m(u v)=3$, and hence $m(u w), m(v w)=1$. If neither of r_{2}, r_{3} is tough, then by the second γ-rule, $\gamma_{u w}(r)=\gamma_{v w}(r)=$ $-1 / 2$, a contradiction. Thus we may assume that r_{3} is a tough triangle $u w x$. By $\operatorname{Conf}(5), m(w x)=1$, and so $m(u x) \geq 3$ since r_{3} is tough, contrary to $\operatorname{Conf}(3)$. Thus we may assume that $m(u v) \leq 2$; and so from the symmetry we may assume that $m(u v)=m(u w)=2$ and $m(v w)=1$. The first γ-rule does not apply to $v w$, and so r_{2} is a tough triangle $v w x$. By $\operatorname{Conf}(3), m(v x), m(w x) \leq 2$, and so $m(v x), m(w x)=2$. Since r_{2} is tough, one of $v x, w x$ is incident with a small region different from $u v x$, contrary to $\operatorname{Conf}(5)$. This proves 3.6.
3.7 If r is a small region with length at least four and with $\alpha(r)+\beta(r)+\gamma(r)>0$, then (G, m) is not prime.

Proof. Suppose that (G, m) is prime. Let $C=C_{r}$. Note that for each $e \in E(C),-1 \leq \beta_{e}(r) \leq 0$ and $0 \leq \gamma_{e}(r) \leq 1$ Since $\alpha(r)=8-4|E(C)|+\sum_{e \in E(C)} m(e)$, it follows that

$$
8-4|E(C)|+\sum_{e \in E(C)} m(e)+\sum_{e \in E(C)}\left(\beta_{e}(r)+\gamma_{e}(r)\right)>0
$$

that is,

$$
\sum_{e \in E(C)}\left(m(e)+\beta_{e}(r)+\gamma_{e}(r)-4\right)>-8 .
$$

For each $e \in E(C)$, let

$$
\phi(e)=m(e)+\beta_{e}(r)+\gamma_{e}(r) .
$$

It follows that $|\phi(e)-m(e)| \leq 1$ for each e by 3.3. For each integer i, let E_{i} be the set of edges of C such that $\phi(e) \in\left\{i, i-\frac{1}{2}\right\}$.
(1) For every $e \in E(C), \phi(e)$ is one of $0, \frac{1}{2}, 1, \frac{3}{2}, 2, \frac{5}{2}, 3,4$, and hence $E(C)$ is the union of $E_{0}, E_{1}, E_{2}, E_{3}, E_{4}$.

For let $e \in E(C)$. Since $m(e) \geq 1$ and $\beta_{e}(r) \geq-1$ it follows that $\phi(e) \geq 0$. Next we show that $\phi(e) \leq 4$. Now $m(e)<6$ by $\operatorname{Conf}(14)$. Suppose that $m(e)=5$. Then the second region incident with e is big, by $\operatorname{Conf}(14)$; and hence $\beta_{e}(r)=-1$ from the β-rules, and $\gamma_{e}(r)=0$ and so $\phi(e) \leq 4$. Now suppose that $m(e)=4$. Then by the γ-rules, $\gamma_{e}(r)=0$, and so $\phi(e) \leq 4$. Finally, if $m(e) \leq 3$ then $\phi(e) \leq 4$ since $\gamma_{e}(r) \leq 1$. Thus $\phi(e) \leq 4$ in all cases. Finally, suppose that $\phi(e)=\frac{7}{2}$, and hence $m(e)=3$ or 4 . If $m(e)=3$ then $\gamma_{e}(r)=1 / 2$, contrary to the γ-rules; while if $m(e)=4$ then $\beta_{e}(r)=-1 / 2$, contrary to the β-rules. This proves (1).
(2) Let $e \in E(C)$; then $e \in E_{4}$ if and only if either $m^{+}(e) \geq 5$, or $m(e)=3$ and e is 5 -heavy.

Moreover, no two edges in E_{4} are consecutive in C.
The first assertion is immediate from the β - and γ-rules. For the second, suppose that $e, f \in E_{4}$ share an end v. Since v has degree at least three, it follows that $m(e)+m(f) \leq 7$ and so we may assume that $m(e)=3$. Let e have ends u, v; then from the first assertion there is a triangle $u v w$ where $m(u w), m(v w)=2$. Hence $m(f)=3$, and so there is similarly a triangle containing f, with third vertex x. Consequently $w=x$; but this contradicts $\operatorname{Conf}(3)$ and hence proves (2).
(3) If $e \in E_{4}$, and $f \in E(C)$ is disjoint from e, and every edge in $E(C) \backslash\{f\}$ disjoint from e is 3 -heavy, and there is no edge of C with multiplicity one disjoint from f, then $f \in E_{0}$.

For by $\operatorname{Conf}(6)$ if $|E(C)|=4$ and $m^{+}(e) \geq 5$, or by $\operatorname{Conf}(17)$ or $\operatorname{Conf}(18)$ otherwise, it follows that $m^{+}(f)=1$. Since there is no edge of C with multiplicity one disjoint from f, it follows that $\beta_{f}(r)=-1$ from the β-rules, and so $f \in E_{0}$. This proves (3).

For $0 \leq i \leq 4$, let $n_{i}=\left|E_{i}\right|$.
(4) If $e \in E(C)$ satisfies $m(e)=2$, and $n_{4}=0$, and r has at most one door, and no door disjoint from e, then $\phi(e) \leq 2$.

For if not, then $\gamma_{e}(r)>0$, and so from the γ-rules, there is a triangle $u v w$ with $e=u v$, and some edge f of C consecutive with e satisfies $m^{+}(f)=5$; but then $f \in E_{4}$, contradicting that $n_{4}=0$. This proves (4).
(5) If u, v, w are consecutive vertices in C, and $u v \in E_{4}$ and $m(u v)=3$, then $\phi(v w) \leq 2$.

For since $u v \in E_{4}$, by (2) there is a triangle $u v x$ with $m(u x)=m(v x)=2$. From $\operatorname{Conf}(2)$ it follows that $m(v w) \leq 2$; and since w is not adjacent to x by $\operatorname{Conf}(3)$, and hence $v w$ is not 4-heavy, the γ-rules imply that $\phi(v w) \leq 2$. This proves (5).

Let C have vertices $v_{1} l v_{k}$ in order, and let v_{k+1} mean v_{1}. For $1 \leq i \leq k$ let e_{i} be the edge $v_{i} v_{i+1}$, and let r_{i} be the region incident with e_{i} different from r.

Since

$$
\sum_{e \in E(C)}(\phi(e)-4)>-8,
$$

we have $4 n_{0}+3 n_{1}+2 n_{2}+n_{3} \leq 7$, that is,

$$
3 n_{0}+2 n_{1}+n_{2}+k-n_{4} \leq 7,
$$

since $n_{0}+n_{1}+n_{2}+n_{3}+n_{4}=k$. But by (1), $n_{4} \leq k / 2$ and so

$$
3 n_{0}+2 n_{1}+n_{2}+k / 2 \leq 7 .
$$

Since $k \geq 4$ it follows that $3 n_{0}+2 n_{1}+n_{2} \leq 5$, and hence $n_{0}+n_{1} \leq 2$.
Case 1: $n_{0}+n_{1}=2$.

Since $3 n_{0}+2 n_{1}+n_{2}+k-n_{4} \leq 7$, we have $n_{4} \geq n_{0}+n_{2}+k-3$. Thus $n_{4}>0$. If $k=4$, let $e \in E_{4}$; then by (3) the edge f of C disjoint from e belongs to E_{0}, and so by (2), $n_{4}=1$; but this contradicts $n_{0}+n_{2}+k-3 \leq n_{4}$.

Thus $k \geq 5$. Since

$$
3 n_{0}+2 n_{1}+n_{2}+k / 2 \leq 7,
$$

and $2 n_{0}+2 n_{1}=4$ and $k / 2 \geq 5 / 2$, it follows that $n_{0}=n_{2}=0$ and $n_{1}=2$ and $k \leq 6$.
Suppose that $k=6$; then $n_{4}=3$ since $n_{4} \geq n_{0}+n_{2}+k-3$, so we may assume that $e_{1}, e_{3}, e_{5} \in E_{4}$. By $\operatorname{Conf}(17)$ and $\operatorname{Conf}(18)$, it follows that $m^{+}\left(e_{4}\right)=1$, and hence $e_{4} \in E_{0} \cup E_{1}$, and similarly $e_{6}, e_{2} \in E_{0} \cup E_{1}$, a contradiction since $n_{0}+n_{1}=2$. Thus $k=5$, and so $n_{4} \geq 2$, and by (2) $n_{4}=2$ and we may assume that $e_{1}, e_{3} \in E_{4}$. By $\operatorname{Conf}(17)$ and $\operatorname{Conf}(18), m^{+}\left(e_{4}\right)=1$, and similarly $m^{+}\left(e_{5}\right)=1$. Since $n_{1}=2$, and $n_{0}, n_{2}=0$, it follows that $m\left(e_{2}\right)>1$. But then $e_{4} \in E_{0}$ by (3), contradicting that $n_{0}=0$.

Case 2: $k=4$ and $n_{0}+n_{1}=1$ and $n_{4}>0$.
Let $e_{4} \in E_{4}$; by (3), $e_{2} \in E_{0}$ and so $m\left(e_{2}\right)=1$. By (2) and $\operatorname{Conf}(2)$ and $\operatorname{Conf}(4)$, it follows that $m\left(e_{1}\right), m\left(e_{3}\right) \leq 2$. Now e_{2} is the only edge of C that is not 2-heavy, since $n_{0}+n_{1}=1$, and in particular r has at most one door. Since $4 n_{0}+3 n_{1}+2 n_{2}+n_{3} \leq 7$ and $n_{0}=1$, it follows that $n_{2} \leq 1$, so we may assume that $e_{1} \notin E_{2}$. Thus $\phi\left(e_{1}\right)>2$, and hence $m\left(e_{1}\right)=2$. By (2) and (5), $m^{+}\left(e_{4}\right) \geq 5$, so by $\operatorname{Conf}(4), m\left(e_{4}\right)=4$. Since $\phi\left(e_{1}\right)>2$, it follows from the γ-rules that r_{1} is a triangle $v_{1} v_{2} w$ say, where $m\left(v_{1} w\right), m\left(v_{2} w\right) \geq 2$. Consequently $m\left(v_{1} w\right)=2$. Since $e_{3} \notin E_{1}$, it follows that $m^{+}\left(e_{3}\right) \geq 2$; so $m\left(v_{2} w\right)=m^{+}\left(v_{2} w\right)=2$ by $\operatorname{Conf}(18)$ (taking v_{2}, v_{1}, w to be the vertices called u, v, w in $\operatorname{Conf}(18)$ respectively). From $\operatorname{Conf}(10)$ it follows that $m\left(e_{3}\right)=1$. From the γ-rules it follows that $\phi\left(e_{1}\right)=5 / 2$. Since $\sum_{e \in E(C)} \phi(e)>8$ and $\phi\left(e_{2}\right)+\phi\left(e_{4}\right) \leq 4$, it follows that $\phi\left(e_{3}\right) \geq 2$. Since $m\left(e_{3}\right)=1$, the γ-rules imply that e_{3} is 3 -heavy, contrary to $\operatorname{Conf}(16)$ (taking v_{2}, v_{1}, w to be the vertices called u, v, w in Conf(16) respectively).

Case 3: $k=4$ and $n_{0}+n_{1}=1$ and $n_{4}=0$.
Let $e_{4} \in E_{0} \cup E_{1}$, and so $m\left(e_{4}\right) \leq 2$. Since every edge of C that is not 2-heavy belongs to $E_{0} \cup E_{1}$, it follows that e_{1}, e_{2}, e_{3} are 2-heavy. Since $n_{4}=0$, it follows that $m^{+}\left(e_{i}\right) \leq 4$ for $i=1,2,3,4$.

Suppose that $\phi\left(e_{1}\right) \geq 3$, and hence $\phi\left(e_{1}\right)=3$ by (1) since $n_{4}=0$. By (4) it follows that $m\left(e_{1}\right) \geq 3$. If $m^{+}\left(e_{1}\right)=3$, then from the β-rules, the edge $x v_{2}$ of r_{1} incident with v_{2} and different from e_{1} has multiplicity four and hence $m\left(e_{2}\right)=1$; and since x, v_{3} are non-adjacent by $\operatorname{Conf}(2)$, this contradicts that e_{2} is 2-heavy. Thus $m^{+}\left(e_{1}\right) \geq 4$. $\operatorname{By} \operatorname{Conf}(6), m^{+}\left(e_{3}\right) \leq 2$, and so $\phi\left(e_{3}\right) \leq 2$ by (4). Since $\phi\left(e_{2}\right) \leq 3$, and $\phi\left(e_{4}\right) \leq 1$, and $\sum_{e \in E(C)} \phi(e)>8$, it follows that $\phi\left(e_{2}\right) \geq 5 / 2$ (and so e_{2} is 3 -heavy), and $\phi\left(e_{3}\right) \geq 3 / 2$, and $\phi\left(e_{4}\right) \geq 1 / 2$ (and so $m^{+}\left(e_{4}\right) \geq 2$). By $\operatorname{Conf}(2)$, it is not the case that $m\left(e_{3}\right)=2$ and the edge of r_{3} consecutive with e_{3} and incident with v_{3} has multiplicity four; and so, since $\phi\left(e_{3}\right) \geq 3 / 2$, the β-rules imply that $m\left(e_{3}\right)=1$ and r_{3} is a triangle $v_{3} v_{4} y$ say. Now by $\operatorname{Conf}(15)$, not both $m\left(v_{3} y\right), m\left(v_{4} y\right) \geq 2$; and $m\left(e_{2}\right) \leq 3$ by $\operatorname{Conf}(4)$, so by $\operatorname{Conf}(18), m^{+}\left(v_{3} y\right), m^{+}\left(v_{4} y\right) \leq 3$. But then the γ-rules imply that $\phi\left(e_{3}\right) \leq 1$, a contradiction. This proves that $\phi\left(e_{1}\right) \leq 5 / 2$; and similarly $\phi\left(e_{3}\right) \leq 5 / 2$.

Since $\sum_{e \in E(C)} \phi(e)>8$, and $\phi\left(e_{2}\right) \leq 3$ (because $n_{4}=0$) it follows that $\phi\left(e_{1}\right)+\phi\left(e_{3}\right) \geq 9 / 2$, and $\phi\left(e_{4}\right) \geq 1 / 2$; and from the symmetry we may assume that $\phi\left(e_{1}\right)=5 / 2$ and $\phi\left(e_{3}\right) \geq 2$. The β -
and γ-rules imply that $m\left(e_{1}\right)=3$ (since $m^{+}\left(e_{2}\right) \leq 4$). Since $\phi\left(e_{2}\right)+\phi\left(e_{3}\right) \geq 5$, and $\phi\left(e_{3}\right) \leq 5 / 2$, it follows that $\phi\left(e_{2}\right) \geq 5 / 2$ (and hence $m\left(e_{2}\right) \geq 2$).

Suppose that $m\left(e_{3}\right)=1$. Since $\phi\left(e_{3}\right) \geq 2$, the first γ-rule applies, and so r_{3} is a triangle $v_{3} v_{4} y$, and $m\left(v_{3} y\right), m\left(v_{4} y\right) \geq 2$, and $m^{+}\left(v_{3} y\right)+m^{+}\left(v_{4} y\right) \geq 6$. By $\operatorname{Conf}(4), m\left(e_{2}\right) \leq 3$, so by $\operatorname{Conf}(18)$, $m^{+}\left(v_{3} y\right), m^{+}\left(v_{4} y\right) \leq 3$, and hence equality holds for both. By $\operatorname{Conf}(11), m\left(v_{3} y\right), m\left(v_{4} y\right)=2$; but this is contrary to $\operatorname{Conf}(16)$.

So $m\left(e_{3}\right) \geq 2$, and by $\operatorname{Conf}(4), m\left(e_{2}\right)=m\left(e_{3}\right)=2$. If $m^{+}\left(e_{3}\right)=2$, then from the β-rules it follows that both edges of r_{3} consecutive with e_{3} have multiplicity five; but this is impossible since $m\left(e_{2}\right)=2$. So $m^{+}\left(e_{3}\right)=3$. Since $\phi\left(e_{2}\right) \geq 5 / 2$ it follows that r_{2} is a triangle $v_{2} v_{3} x, m\left(v_{2} x\right), m\left(v_{3} x\right) \geq 2$, and one of $m^{+}\left(v_{2} x\right), m^{+}\left(v_{3} x\right) \geq 3$, and e_{4} is a door for r. Since $\phi\left(e_{4}\right)>0$, we deduce that $m^{+}\left(e_{4}\right) \geq 2$. By $\operatorname{Conf}(2), m\left(v_{2} x\right)=2$. By $\operatorname{Conf}(12), m^{+}\left(v_{3} x\right)=2$ and $m^{+}\left(v_{2} x\right)=2$, a contradiction.

Case 4: $k=4$ and $n_{0}+n_{1}=0$.
Since $n_{0}, n_{1}=0$, it follows that $\phi\left(e_{i}\right) \geq 3 / 2$ and hence e_{i} is 2-heavy, for $1 \leq i \leq 4$. Consequently $n_{4}=0$, from (3). Since $\sum_{e \in E(C)} \phi(e)>8$, we may assume because of the symmetries of the square that $\phi\left(e_{1}\right)+\phi\left(e_{3}\right) \geq 9 / 2$, and $\phi\left(e_{1}\right) \geq \phi\left(e_{3}\right)$, and therefore $\phi\left(e_{1}\right) \geq 5 / 2$. Thus $m\left(e_{1}\right) \geq 3$ from (4). If some edge f of the boundary of r_{1} consecutive with e_{1} satisfies $m(f)=4$, say $f=v_{1} x$, then $m\left(e_{4}\right)=1$ and v_{1} has degree three; but since e_{4} is 2-heavy, it follows that x, v_{4} are adjacent, contrary to $\operatorname{Conf}(2)$. Thus there is no such f, and so by the β-rules, $m^{+}\left(e_{1}\right) \geq 4$.

Suppose that $m\left(e_{3}\right) \geq 2$. By $\operatorname{Conf}(6)$ it follows that $m^{+}\left(e_{3}\right)=2$, and in particular r_{3} is big. Since $\phi\left(e_{3}\right) \geq 3 / 2$, the β-rules imply that some edge f of the boundary of r_{3} consecutive with e_{3} satisfies $m(f)=5$, say $f=v_{4} x$; and since x, v_{1} are nonadjacent by $\operatorname{Conf}(2)$ it follows that $e_{4} \in E_{0} \cup E_{1}$, a contradiction. Thus $m\left(e_{3}\right)=1$. Since e_{3} is 2-heavy it follows that r_{3} is a triangle $v_{3} v_{4} x$ say.

By $\operatorname{Conf}(4), m\left(e_{2}\right), m\left(e_{4}\right) \leq 3$. By $\operatorname{Conf}(15)$, we may assume that $m\left(v_{3} x\right)=1$; and by $\operatorname{Conf}(18)$, $m^{+}\left(v_{4} x\right) \leq 3$. Since $m\left(e_{4}\right) \leq 3$, the γ-rules imply that $\phi\left(e_{3}\right) \leq 1$, a contradiction.

Case 5: $k \geq 5$ and $n_{0}+n_{1}=1$.
Since $3 n_{0}+2 n_{1}+n_{2}+k-n_{4} \leq 7$, we have $n_{4} \geq n_{0}+n_{2}+k-5$. Let $E_{0} \cup E_{1}=\left\{e_{k}\right\}$.
Suppose that $n_{4}=0$. Then since $n_{4} \geq n_{0}+n_{2}+k-5$ it follows that $k=5$. Since

$$
\sum_{e \in E(C)} \phi(e)>4 k-8=12,
$$

and $\phi\left(e_{5}\right) \leq 1$, and $\phi\left(e_{i}\right) \leq 3$ for $i=1,2,3,4$ (by (1), since $n_{4}=0$) it follows that $\phi\left(e_{i}\right) \geq 5 / 2$ for $i=1,2,3,4$, and hence $e_{1} l e_{4}$ are 3-heavy. If $m\left(e_{1}\right) \leq 2$, then since $\phi\left(e_{1}\right) \geq 5 / 2$ it follows from the γ rules that $m\left(e_{2}\right)=4$ and r_{2} is small; but then $e_{2} \in E_{4}$, a contradiction. Thus $m\left(e_{1}\right) \geq 3$; so $m\left(e_{1}\right)=$ $m^{+}\left(e_{1}\right)=3$ by $\operatorname{Conf}(15)$. Since $m\left(e_{2}\right) \geq 2$, it follows that not both edges of r_{1} consecutive with e_{1} have multiplicity four, and so from the β-rules, $\phi\left(e_{1}\right) \leq 5 / 2$. Similarly $\phi\left(e_{4}\right) \leq 5 / 2$, contradicting that $\sum_{e \in E(C)} \phi(e)>12$. This proves that $n_{4}>0$.

Suppose that $n_{2}=0$. Thus $e_{1} l e_{4}$ are 3-heavy. Since $n_{4}>0$, (3) implies that $n_{0}=1$. Since $\phi\left(e_{1}\right)>2$, the β - and γ-rules imply that either:

- $m\left(e_{1}\right)=2$ and r_{1} is a triangle $v_{1} v_{2} w$ say; and $m\left(v_{1} w\right), m\left(v_{2} w\right) \geq 2$, and $m\left(e_{2}\right)=4$. Consequently $m\left(v_{2} w\right)=2$, contrary to $\operatorname{Conf}(16)$.
- $m\left(e_{1}\right)=3$ and r_{1} is big, and, if $u_{1} \mathrm{y}_{1} \mathrm{y}_{2} \mathrm{u}_{2}$ is the three-edge path of $C_{r_{1}}$ with middle edge e_{1}, then one of $m\left(u_{1} v_{1}\right), m\left(u_{2} v_{2}\right)=4$ and is incident with a small region. But if $m\left(u_{1} v_{1}\right)=4$ then the second region incident with it is r_{k}, and this is not small since $n_{0}=1$; and if $m\left(u_{2} v_{2}\right)=4$ then v_{2} has degree three and $m\left(e_{2}\right)=1$, and since e_{2} is 3-heavy it follows that u_{2}, v_{3} are adjacent, and $m\left(u_{2} v_{3}\right) \geq 2$, contrary to $\operatorname{Conf}(2)$.
- $m^{+}\left(e_{1}\right) \geq 4$; but this is contrary to $\operatorname{Conf}(15)$.

This proves that $n_{2} \geq 1$.
Since $3 n_{0}+2 n_{1}+n_{2}+k / 2 \leq 7$, we have $n_{0}+n_{2}+k / 2 \leq 5$, and in particular $n_{2} \leq 2$. If $e \in E(C)$ is not 3 -heavy, then $\phi(e) \leq 2$ from the γ-rules, and so at most two edges of $E(C)$ not in $E_{0} \cup E_{1}$ are not 3-heavy. By $\operatorname{Conf}(8)$ and $\operatorname{Conf}(19)$ it follows that $e_{1}, e_{k-1} \notin E_{4}$, so every edge in E_{4} is disjoint from e_{k}. Since there are three consecutive edges of C not in E_{4}, and no two edges in E_{4} are consecutive by (2), it follows that $n_{4} \leq k / 2-1$; and since $3 n_{0}+2 n_{1}+n_{2}+k-n_{4} \leq 7$, it follows that $n_{0}+n_{2}+k / 2 \leq 4$, and so $n_{2}=1$, and $n_{0}=0$, and $k \leq 6$. In particular, from (5) every edge $e \in E_{4}$ has $m(e) \geq 4$.

Suppose that $k=6$. Since $n_{4} \geq n_{0}+n_{2}+k-5$ and $n_{4} \leq k / 2-1$, it follows that $n_{4}=2$; and so $E_{4}=\left\{e_{2}, e_{4}\right\}$, since the members of E_{4} are disjoint from e_{6} and from each other. Since $e_{2} \in E_{4},(3)$ implies that e_{5} is not 3-heavy, and so $e_{5} \in E_{2}$; and similarly $e_{1} \in E_{2}$, a contradiction since $n_{2}=1$.

Thus $k=5$. Since $n_{4} \leq k / 2-1$ it follows that $n_{4}=1$, so we may assume that $E_{4}=\left\{e_{2}\right\}$. By (3), e_{4} is not 3-heavy, and so $\phi\left(e_{4}\right) \leq 2$. Consequently $E_{2}=\left\{e_{4}\right\}$, and $\phi\left(e_{1}\right)+\phi\left(e_{3}\right) \geq 11 / 2$. Since $\phi\left(e_{4}\right), \phi\left(e_{5}\right)>0$, it follows that $m^{+}\left(e_{4}\right), m^{+}\left(e_{5}\right) \geq 2$, and since $m^{+}\left(e_{2}\right) \geq 5$, two applications of $\operatorname{Conf}(13)$ imply that $m\left(e_{3}\right)+m\left(e_{4}\right) \leq 3$ and $m\left(e_{1}\right)+m\left(e_{5}\right) \leq 3$. Since $m\left(e_{1}\right), m\left(e_{3}\right) \geq 2$ (because $\left.\phi\left(e_{1}\right), \phi\left(e_{3}\right)>2\right)$ it follows that $m\left(e_{1}\right), m\left(e_{3}\right)=2$ and e_{1}, e_{3} are 4-heavy; and $m\left(e_{4}\right), m\left(e_{5}\right)=1$. Since $\phi\left(e_{4}\right)>1, r_{4}$ is a triangle $v_{4} v_{5} x$ say. Since e_{4} is not 3-heavy, one of $m\left(v_{4} x\right), m\left(v_{5} x\right)=1$. If $m\left(v_{4} x\right)=1$ then by $\operatorname{Conf}(16), m\left(x v_{5}\right) \leq 2$; but then $\phi\left(e_{4}\right)=1$ from the γ-rules, a contradiction. So $m\left(v_{5} x\right)=1$. Since $\phi\left(e_{4}\right)>1$, the γ-rules imply that $m^{+}\left(v_{4} x\right) \geq 4$. But this contradicts $\operatorname{Conf}(18)$.

Case 6: $k \geq 5$ and $n_{0}+n_{1}=0$.
Since $n_{0}, n_{1}=0$, it follows that $\phi\left(e_{i}\right) \geq 3 / 2$ and hence e_{i} is 2-heavy, for $1 \leq i \leq k$. Since $3 n_{0}+2 n_{1}+n_{2}+k-n_{4} \leq 7$, we have $n_{4} \geq n_{2}+k-7$.

Suppose first that $n_{4}>0$. By (2) and $\operatorname{Conf}(8)$ and $\operatorname{Conf}(19)$, every edge in E_{4} is disjoint from at least three edges that are not 3-heavy and that therefore belong to E_{2}. In particular $n_{2} \geq 3$. Let $e \in E_{4}$; then e is disjoint from all the other edges in E_{4}, and from at least three edges in E_{2}, so $k-3 \geq n_{4}-1+3$, that is, $k \geq n_{4}+5$. But $n_{4} \geq n_{2}+k-7 \geq k-4$, a contradiction.

This proves that $n_{4}=0$, and so $E(C)=E_{2} \cup E_{3}$. Since $n_{4} \geq n_{2}+k-7$, it follows that $n_{2}+k \leq 7$. In particular, $k \in\{5,6,7\}$. From (4), every edge $e \in E(C)$ with $m(e)=2$ belongs to E_{2}, since $n_{4}=0$ and there are no doors for r. Consequently every $e \in E_{3}$ satisfies $m(e) \geq 3$. Suppose that $m^{+}(e)=3$ for some $e \in E_{3}$, say $e=e_{1}$. Thus r_{1} is big, and $\beta_{e}(r)>-1$ since $\phi(e)>2$. Hence from the β-rules, some edge of $C_{r_{1}}$ consecutive with e_{1} has multiplicity four, say $v_{1} x$. Hence $m\left(e_{k}\right)=1$, and since $n_{0}, n_{1}=0$, it follows that r_{k} is a triangle, and therefore x, v_{k} are adjacent, contrary to Conf(2). This proves that $m^{+}(e) \geq 4$ for every $e \in E_{3}$.

By $\operatorname{Conf}(15)$, every edge in E_{3} is disjoint from some edge in E_{2}, and in particular $n_{2} \geq 2$. Since $n_{2}+k \leq 7$, we have $k=5$ and $n_{2}=2$. Every edge in E_{3} is disjoint from one of the edges in E_{2}, so we may assume that $e_{1}, e_{2} \in E_{2}$, and $e_{3}, e_{4}, e_{5} \in E_{3}$. Since $m^{+}\left(e_{3}\right), m^{+}\left(e_{4}\right), m^{+}\left(e_{5}\right) \geq 4$, $\operatorname{Conf}(13)$
implies that $m^{+}\left(e_{1}\right) \leq 2$; and by $\operatorname{Conf}(15), e_{1}$ is not 3-heavy. From the γ-rules, $\phi\left(e_{1}\right) \leq 3 / 2$, and similarly $\phi\left(e_{2}\right) \leq 3 / 2$. But for $i=3,4,5, \phi\left(e_{i}\right) \leq 3$ since $n_{4}=0$; and so $\sum_{e \in E(C)} \phi(e) \leq 12$, contradicting our initial assumption that

$$
\sum_{e \in E(C)}(\phi(e)-4)>-8
$$

This completes the proof of 3.7,
Proof of 3.1. Suppose that (G, m) is a prime 8 -target, and let α, β, γ be as before. Since the sum over all regions r of $\alpha(r)+\beta(r)+\gamma(r)$ is positive, there is a region r with $\alpha(r)+\beta(r)+\gamma(r)>0$. But this is contrary to one of 3.4, 3.5, 3.6, 3.7. This proves 3.1.

4 Reducibility

Now we begin the second half of the paper, devoted to proving the following.

4.1 Every minimum 8-counterexample is prime.

Again, the proof is broken into several steps. Clearly no minimum 8-counterexample (G, m) has an edge e with $m(e)=0$, because deleting e would give a smaller 8 -counterexample; and by 2.1, every minimum 8 -counterexample satisfies the conclusions of [2.1. Thus, it remains to check that (G, m) contains none of $\operatorname{Conf}(1)-\operatorname{Conf}(19)$. Sometimes it is just as easy to prove a result for general d instead of $d=8$, and so we do so.
4.2 If (G, m) is a minimum d-counterexample, then every triangle has multiplicity less than d.

Proof. Let $u v w$ be a triangle of G, and let $X=\{u, v, w\}$. Since $|V(G)| \geq 6$, 2.1 implies that $m(\delta(X)) \geq d+2$. But

$$
m(\delta(X))=m(\delta(u))+m(\delta(v))+m(\delta(w))-2 m(u v)-2 m(u w)-2 m(v w)
$$

and so $d+2 \leq d+d+d-2 m(u v)-2 m(u w)-2 m(v w)$, that is, $m(u v)+m(u w)+m(v w) \leq d-1$. This proves 4.2.

If C is a cycle of length four in G, say with vertices u, v, w, x in order, let m^{\prime} be defined as follows: $m^{\prime}(u v)=m(u v)-1, m^{\prime}(v w)=m(v w)+1, m^{\prime}(w x)=m(w x)-1, m^{\prime}(u x)=m(u x)+1$, and $m^{\prime}(e)=m(e)$ for all other edges e. If (G, m) is a minimum d-counterexample, then because of the second statement of 2.1] it follows that $\left(G, m^{\prime}\right)$ is a d-target. (Note that possibly $m^{\prime}(u v), m^{\prime}(w x)$ are zero; this is the reason to permit $m(e)=0$ in a d-target.) We say that (G, m^{\prime}) is obtained from (G, m) by switching on the sequence uvwxu. If $\left(G, m^{\prime}\right)$ is smaller than (G, m), we say that the sequence u ywxup is switchable.
4.3 No minimum d-counterexample contains $\operatorname{Conf}(1)$.

Proof. Suppose that (G, m) is a minimum d-counterexample, with a triangle $u v w$, where u, v have degree three. Let the neighbours of u, v not in $\{u, v, w\}$ be x, y respectively. Let H be a simple graph obtained from G by adding new edges if necessary to make w, x, y pairwise adjacent, and extend m to $E(H)$ by setting $m(e)=0$ for every new edge. Thus (H, m) is not d-edge-colourable, and although it may not be a minimum d-counterexample, no d-counterexample has fewer vertices.

Define $f(w)=m(u w)+m(v w), f(x)=m(u x)$, and $f(y)=m(v y)$. Since $m(\delta(\{u, v\}))$ is even, it follows that $f(w)+f(x)+f(y)$ is even. Define

$$
\begin{aligned}
n(w x) & =\frac{1}{2}(f(x)+f(w)-f(y)) \\
n(w y) & =\frac{1}{2}(f(y)+f(w)-f(x)) \\
n(x y) & =\frac{1}{2}(f(x)+f(y)-f(w))
\end{aligned}
$$

It follows that $n(w x), n(w y), n(x y)$ are integers. Since $m(\delta(\{u, v, w\})) \geq d$ and $m(\delta(w))=d$, it follows that $m(u x)+m(v y) \geq m(u w)+m(v w)$ and hence $n(x y) \geq 0$. Similarly, since $m(\delta(\{u, v, x\})) \geq$ d and $m(\delta(x))=d$, it follows that $n(w y) \geq 0$, and similarly $n(w x) \geq 0$.

Let $G^{\prime}=H \backslash\{u, v\}$. For each edge e of G^{\prime}, define $m^{\prime}(e)$ as follows. If e is incident with a vertex different from x, y, w let $m^{\prime}(e)=m(e)$. For $e=x y, w x, w y$ let $m^{\prime}(e)=m(e)+n(e)$. We claim that $\left(G^{\prime}, m^{\prime}\right)$ is a d-target. To show this, let $X \subseteq V\left(G^{\prime}\right)$ with $|X|$ odd; we must show that $m^{\prime}\left(\delta_{G^{\prime}}(X)\right) \geq d$. By replacing X by its complement if necessary (which also is odd, since $|V(G)|$ is even), we may assume that X contains at most one of w, x, y. But then from the choice of $f(w), f(x), f(y)$, it follows that $m^{\prime}\left(\delta_{G^{\prime}}(X)\right)=m\left(\delta_{G}(X)\right) \geq d$ as required. Thus ($\left.G^{\prime}, m^{\prime}\right)$ is a d-target. Since $\left|V\left(G^{\prime}\right)\right|<|V(G)|$, there are d perfect matchings $F_{1}^{\prime} l F_{d}^{\prime}$ of G^{\prime} such that every edge $e \in E\left(G^{\prime}\right)$ is in exactly $m^{\prime}(e)$ of them. Now each of $F_{1}^{\prime} l F_{d}^{\prime}$ contains at most one of the edges $w x, w y, x y$. Let $I_{1}, I_{2}, I_{3}, I_{0}$ be the sets of $i \in\{1 l d\}$ such that F_{i}^{\prime} contains $w x, w y, x y$ or none of the three, respectively. Thus $\left|I_{1}\right|=m^{\prime}(w x)=m(w x)+n(w x)$. For $n(w x)$ values of $i \in I_{1}$ let $F_{i}=\left(F_{i}^{\prime} \backslash\{w x\}\right) \cup\{u x, v w\}$, and for the remaining $m(w x)$ values let $F_{i}=F_{i}^{\prime} \cup\{u v\}$. Thus F_{i} is a perfect matching of G for each $i \in I_{1}$. Define $F_{i}\left(i \in I_{2}\right)$ similarly. For $n(x y)$ values of $i \in I_{3}$ let $F_{i}=\left(F_{i}^{\prime} \backslash\{x y\}\right) \cup\{u x, v y\}$, and for the others let $F_{i}=F_{i} \cup\{u v\}$. For $i \in I_{0}$ let $F_{i}=F_{i}^{\prime} \cup\{u v\}$. Then $F_{1} l F_{d}$ are perfect matchings of G, and we claim that every edge e is in exactly $m(e)$ of them. This is clear if e has an end different from u, v, w, x, y; and true from the construction if both ends of e are in $\{w, x, y\}$. From the symmetry we may therefore assume that e is incident with u. If $e=u x$, then e belongs to $n(w x)+n(x y)$ of $F_{1} l F_{d}$; but

$$
n(w x)+n(x y)=\frac{1}{2}(f(x)+f(w)-f(y))+\frac{1}{2}(f(x)+f(y)-f(w))=f(x)=m(u x)
$$

as required. The other two cases are similar. This is a contradiction, since (G, m) is a minimum d-counterexample, and so there is no such triangle $u v w$. This proves 4.3,

Incidentally, a similar proof would show that G is four-connected except for cutsets of size three that cut off just one vertex, but we do not need this.

If (G, m) is a d-target, and x, y are distinct vertices both incident with some common region r, we define $(G, m)+x y$ to be the d-target $\left(G^{\prime}, m^{\prime}\right)$ obtained as follows:

- If x, y are adjacent in G, let $\left(G^{\prime}, m^{\prime}\right)=(G, m)$.
- If x, y are non-adjacent in G, let G^{\prime} be obtained from G by adding a new edge $x y$, extending the drawing of G to one of G^{\prime} and setting $m^{\prime}(e)=m(e)$ for every $e \in E(G)$ and $m^{\prime}(x y)=0$.

4.4 No minimum d-counterexample contains Conf(2).

Proof. Let (G, m) be a minimum d-counterexample, with a triangle $u v w$, and suppose that u has only one other neighbour x, and $m(u x)<m(u w)+m(v w)$. Let $\left(G^{\prime}, m^{\prime \prime}\right)=((G, m)+v x)+w x$. For each $e \in E\left(G^{\prime}\right)$, define $m^{\prime}(e)$ as follows. If $e \neq u x, u w, v w, v x$ let $m^{\prime}(e)=m(e)$. Let

$$
\begin{aligned}
m^{\prime}(v x) & =m^{\prime \prime}(v x)+m(v w) \\
m^{\prime}(v w) & =0 \\
m^{\prime}(u x) & =m(u x)-m(v w) \\
m^{\prime}(u w) & =m(u w)+m(v w) .
\end{aligned}
$$

Since $m(u v)+m(u w)+m(u x)=d$ and $m(u v)+m(u w)+m(v w) \leq d$ since $m(\delta(\{u, v, w\})) \geq d$, it follows that $m(u x) \geq m(v w)$, and so $m^{\prime}(e) \geq 0$ for every edge e. Moreover, $m^{\prime}(\delta(z))=d$ for every vertex z, from the construction. We claim that $\left(G^{\prime}, m^{\prime}\right)$ is a d-target. For let $X \subseteq V\left(G^{\prime}\right)$ with $|X|$ odd; and we may assume that $u \notin X$. We must show that $m^{\prime}(\delta(X)) \geq d$. If X contains at most one of v, w, x then $m^{\prime}(\delta(X))=m(\delta(X)) \geq d$ as required, so we may assume that X contains at least two of v, w, x. If $v, w, x \in X$ then $m^{\prime}(\delta(X)) \geq m^{\prime}(\delta(u))=d$ as required. If $X \cap\{v, w, x\}=\{v, w\}$ then $m^{\prime}(\delta(X))=m(\delta(X))+2 m(v w) \geq d$, and if $X \cap\{v, w, x\}=\{w, x\}$ then $m^{\prime}(\delta(X))=m(\delta(X)) \geq d$, so we may assume that $X \cap\{v, w, x\}=\{v, x\}$, and hence $m^{\prime}(\delta(X))=m(\delta(X))-2 m(v w)$. We must therefore show that in this case, $m(\delta(X)) \geq 2 m(v w)+d$. To see this, note that

$$
\begin{aligned}
m(\delta(X \cup\{u, w\}))= & m(\delta(X))-m(u x)-m(u v)-m(v w)-m^{\prime \prime}(x w) \\
& +\left(d-m(u w)-m(v w)-m^{\prime \prime}(x w)\right) \leq m(\delta(X))-2 m(v w)
\end{aligned}
$$

since $m^{\prime \prime}(x w) \geq 0$ and $m(u x)+m(u v)+m(u w)=d$. Since $m(\delta(X \cup\{u, w\})) \geq d$, it follows that $m(\delta(X)) \geq 2 m(v w)+d$ as required. This proves that $\left(G^{\prime}, m^{\prime}\right)$ is a d-target. Since $m^{\prime}(u w)>$ $m(u x), m(v w)$ (the first from the hypothesis), it follows that $\left(G^{\prime}, m^{\prime}\right)$ is smaller than (G, m), and so is d-edge-colourable; let $F_{1}^{\prime} l F_{d}^{\prime}$ be a d-edge-colouring. Now every perfect matching containing $v x$ also contains $u w$, since $v x$ is not disjoint from any other edge incident with u. Hence there are at least $m(v w)$ of $F_{1}^{\prime} l F_{d}^{\prime}$ that contain both $v x$ and $u w$. Choose $m(v w)$ of them, say $F_{1}^{\prime} l F_{m(v w)}^{\prime}$; and for $1 \leq i \leq m(v w)$ define $F_{i}=\left(F_{i}^{\prime} \backslash\{v x, u w\}\right) \cup\{v w, u x\}$. Define $F_{i}=F_{i}^{\prime}$ for $m(v w)+1 \leq i \leq d$. Then every edge e of G is in $m(e)$ of $F_{1} l F_{d}$, a contradiction. Thus there is no such triangle uvw. This proves 4.4 .

4.5 No minimum 8-counterexample contains $\operatorname{Conf}(3)$ or $\operatorname{Conf}(4)$.

Proof. To handle both cases at once, let us assume that (G, m) is an 8 -target, and $u v w, u w x$ are triangles with $m(u v)+m(u w)+m(v w)+m(u x) \geq 8$, (where possibly $m(u w)=0$); and either (G, m) is a minimum 8 -counterexample, or $m(u w)=0$ and deleting $u w$ gives a minimum 8 -counterexample $\left(G_{0}, m_{0}\right)$ say. We must show that $m(u w)=0$ and $(m(u v), m(v w), m(w x), m(u x))=(4,2,1,2)$. Let (G, m^{\prime}) be obtained by switching (G, m) on u ب̣wxụ.
(1) $\left(G, m^{\prime}\right)$ is not smaller than (G, m).

Because suppose it is. Then it admits an 8 -edge-colouring; because if (G, m) is a minimum 8counterexample this is clear, and otherwise $m(u w)=0$, and (G^{\prime}, m^{\prime}) is smaller than $\left(G_{0}, m_{0}\right)$. Let $F_{1}^{\prime} l F_{8}^{\prime}$ be an 8 -edge-colouring of $\left(G^{\prime}, m^{\prime}\right)$. Since

$$
m^{\prime}(u v)+m^{\prime}(u w)+m^{\prime}(v w)+m^{\prime}(u x) \geq 9,
$$

one of $F_{1}^{\prime} l F_{8}^{\prime}$, say F_{1}^{\prime}, contains two of $u v, u w, v w, u x$ and hence contains $v w, u x$. Then

$$
\left(F_{1}^{\prime} \backslash\{v w, u x\}\right) \cup\{u v, w x\}
$$

is a perfect matching, and it together with $F_{2}^{\prime} l F_{8}^{\prime}$ provide an 8 -edge-colouring of (G, m), a contradiction. This proves (1).

From (1) we deduce that $\max (m(u x), m(v w))<\max (m(u v), m(w x))$. It follows that

$$
m(u v)+m(u w)+m(v w)+m(w x) \leq 7,
$$

by (1) applied with u, w exchanged; and

$$
m(u v)+m(u x)+m(w x)+m(u w) \leq 7,
$$

by (1) applied with v, x exchanged. Consequently $m(u x)>m(w x)$, and hence $m(u x) \geq 2$; and $m(v w)>m(w x)$, and so $m(v w) \geq 2$. Suppose that $m(u v) \leq 3$. Since

$$
\max (m(u x), m(v w))<\max (m(u v), m(w x))
$$

it follows that $m(u v)=3$ and $m(v w)=m(u x)=2$; and therefore $m(w x)=1$, since $m(u x)>m(w x)$. But this is contrary to (1).

We deduce that $m(u v) \geq 4$. Since $m(v w) \geq 2$ and $m(u v)+m(u w)+m(v w)+m(w x) \leq 7$, it follows that $m(u w)+m(w x) \leq 1$; so $m(u w)=0$ and $m(w x)=1$. But then

$$
(m(u v), m(v w), m(w x), m(u x))=(4,2,1,2)
$$

This proves 4.5.

5 Guenin's cuts

We still have many configurations to handle, to finish the proof of 4.1, but all the others are handled by a method of Guenin [5], which we introduce in this section. In particular, nothing so far has assumed the truth of 1.1 for $d=7$, but now we will need to use that.

Let (G, m) be a d-target, and let $x u ̣ y$ be a three-edge path of G, where x, y are incident with a common region. Let $\left(G^{\prime}, m^{\prime}\right)$ be obtained from $(G, m)+x y$ by switching on the cycle x ụyyx. We say that $\left(G^{\prime}, m^{\prime}\right)$ is obtained from (G, m) by switching on xuvy. If $\left(G^{\prime}, m^{\prime}\right)$ is smaller than (G, m), we say that the path x ụyy is switchable.

Let G be a three-connected graph drawn in the plane, and let G^{*} be its dual graph; let us identify $E\left(G^{*}\right)$ with $E(G)$ in the natural way. A cocycle means the edge-set of a cycle of the dual graph; thus, $Q \subseteq E(G)$ is a cocycle of G if and only if Q can be numbered $\left\{e_{1} l e_{k}\right\}$ for some $k \geq 3$ and there are distinct regions $r_{1} l r_{k}$ of G such that $1 \leq i \leq k, e_{i}$ is incident with r_{i} and with r_{i+1} (where r_{k+1} means r_{1}).

Guenin's method is the use of the following:
5.1 Suppose that $d \geq 1$ is an integer such that every $(d-1)$-regular oddly $(d-1)$-edge-connected planar graph is $(d-1)$-edge-colourable. Let (G, m) be a minimum d-counterexample, and let xuvy be a path of G with x, y on a common region. Let $\left(G^{\prime}, m^{\prime}\right)$ be obtained by switching on xuvy, and let $F_{1} l F_{d}$ be a d-edge-colouring of $\left(G^{\prime}, m^{\prime}\right)$, where $x y \in F_{k}$. Let $I=\{1 l d\} \backslash\{k\}$ if $x y \notin E(G)$, and $I=\{1 l d\}$ if $x y \in E(G)$. Then for each $i \in I$, there is a cocycle Q_{i} of G^{\prime} with the following properties:

- for $1 \leq j \leq d$ with $j \neq i,\left|F_{j} \cap Q_{i}\right|=1$;
- $\left|F_{i} \cap Q_{i}\right| \geq 5$;
- there is a set $X \subseteq V(G)$ with $|X|$ odd such that $\delta_{G^{\prime}}(X)=Q_{i}$; and
- $u v, x y \in Q_{i}$ and $u x, v y \notin Q_{i}$.

Proof. Let $i \in I$. If $i \neq k$ and $x y \in F_{i}$, it follows that $m^{\prime}(x y) \geq 2$ since $x y \in F_{k}$; and so $x y \in E(G)$. Thus in either case F_{i} is a perfect matching of G. For each edge e of G^{\prime}, let $p(e)=1$ if $e \in F_{i}$, and $p(e)=0$ otherwise; and for each edge e of G, let $n(e)=m(e)-p(e)$. Thus (G, n) has the property that for each vertex $z, n\left(\delta_{G}(z)\right)=d-1$. If there is a list of $d-1$ perfect matchings of G such that every edge e is in $n(e)$ of them, then adding F_{i} to this list gives a d-edge-colouring of (G, m), a contradiction. Thus by hypothesis, there exists $Y \subseteq V(G)$ with $|Y|$ odd and with $n\left(\delta_{G}(Y)\right)<d-1$. Since $|Y|$ and $n\left(\delta_{G}(Y)\right)$ have the same parity, it follows that $n\left(\delta_{G}(Y)\right) \leq d-3$. Since $\delta_{G}(Y)$ is an edge-cut of the connected graph G, it can be partitioned into "bonds" (edge-cuts $\delta_{G}(X)$ such that $G \mid X, G \backslash X$ are both connected), and hence one of these bonds $\delta_{G}(X)$ has $n\left(\delta_{G}(X)\right)$ odd, and consequently $|X|$ also odd. Since $\delta_{G}(X)$ is a bond of G and hence $\delta_{G^{\prime}}(X)$ is a bond of G^{\prime}, there is a cocycle Q_{i} of G^{\prime} with $Q_{i}=\delta_{G^{\prime}}(X)$. We claim that Q_{i} satisfies the theorem. For we have seen the third assertion; we must check the other three.

From the choice of X we have $n\left(\delta_{G}(X)\right) \leq d-3$. Since $|X|,|V(G) \backslash X| \geq 3$ (because $n\left(\delta_{G}(z)\right)=$ $d-1$ for each vertex z), it follows from 2.1 that $m\left(\delta_{G}(X)\right) \geq d+2$, and so $p\left(\delta_{G}(X)\right) \geq 5$, that is, $\left|F_{i} \cap Q_{i}\right| \geq 5$. This proves the second assertion. We recall that $F_{1} l F_{d}$ is a d-edge-colouring of $\left(G^{\prime}, m^{\prime}\right)$; and so for $1 \leq j \leq d$ with $j \neq i$, some edge of $\delta_{G^{\prime}}(X)$ belongs to F_{j}, and so

$$
\sum_{1 \leq j \leq d, j \neq i}\left|F_{j} \cap Q_{i}\right| \geq d-1
$$

On the other hand, every edge e of G^{\prime} belongs to $m^{\prime}(e)$ of $F_{1} l F_{d}$, and hence to $m^{\prime}(e)-p(e)$ of the $d-1$ perfect matchings in this list without F_{i}. Consequently

$$
\sum_{1 \leq j \leq d, j \neq i}\left|F_{j} \cap Q_{i}\right|=\sum_{e \in Q_{i}} m^{\prime}(e)-p(e) .
$$

It follows that $\sum_{e \in Q_{i}} m^{\prime}(e)-p(e) \geq d-1$; but $m^{\prime}(e)-p(e)=n(e)$ for all edges of G^{\prime} except $x u, u v, v y, x y$, and so

$$
\left|\{u v, x y\} \cap Q_{i}\right|-\left|\{u x, v y\} \cap Q_{i}\right|+\sum_{e \in Q_{i}} n(e) \geq d-1
$$

Since $\sum_{e \in Q_{i}} n(e) \leq d-3$, it follows that $u v, x y \in Q_{i}$ and $u x, v y \notin Q_{i}$. This proves the fourth assertion. Moreover, since

$$
\sum_{1 \leq j \leq d, j \neq i}\left|F_{j} \cap Q_{i}\right|=d-1,
$$

it follows that $\left|F_{j} \cap Q_{i}\right|=1$ for all $j \in\{1 l d\}$ with $j \neq i$. This proves the first assertion, and so proves 5.1

By the result of [6], every 7-regular oddly 7-edge-connected planar graph is 7-edge-colourable, so we can apply 5.1 when $d=8$.

5.2 No minimum 8-counterexample contains $\operatorname{Conf}(5)$ or $\operatorname{Conf}(6)$.

Proof. To handle both at once, let us assume that (G, m) is an 8 -target, and $u v w, u w x$ are two triangles with $m^{+}(u v)+m(u w)+m^{+}(w x) \geq 7$; and either (G, m) is a minimum 8-counterexample, or $m(u w)=0$ and deleting $u w$ gives a minimum 8-counterexample. We claim that u xwwụu is switchable. For suppose not; then we may assume that $m(v w)>\max (m(u v), m(w x))$ and $m(v w) \geq m(u x)$. Now since one of $m(u v), m(w x) \geq 3$, and 4.5 implies that we do not have $\operatorname{Conf}(3)$ or $\operatorname{Conf}(4)$, it follows that

$$
m(u v)+m(u w)+m(v w)+m(w x) \leq 7 .
$$

Yet $m(u v)+m(u w)+m(w x) \geq 5$ since $m^{+}(u v)+m(u w)+m^{+}(w x) \geq 7$; and so $m(v w) \leq 2$. Consequently $m(u v), m(w x)=1$, and $m(u x) \leq 2$. Since uxwyụ is not switchable, it follows that $m(u x)=2$; and since $m^{+}(u v)+m(u w)+m^{+}(w x) \geq 7$, it follows that $m(u w) \geq 3$, giving $\operatorname{Conf}(3)$, contrary to 4.5. This proves that u x̣wyụ is switchable.

Let r_{1}, r_{2} be the second regions incident with $u v, w x$ respectively, and for $i=1,2$ let D_{i} be the set of doors for r_{i}. Let $k=m(u v)+m(u w)+m(w x)+2$. Let (G, m^{\prime}) be obtained by switching, and let $F_{1} l F_{8}$ be an 8 -edge-colouring of $\left(G, m^{\prime}\right)$, where F_{i} contains one of $u v, u w, w x$ for $1 \leq i \leq k$. For $1 \leq i \leq 8$, let Q_{i} be as in 5.1.
(1) For $1 \leq i \leq 8$, either $F_{i} \cap Q_{i} \cap D_{1} \neq \emptyset$, or $F_{i} \cap Q_{i} \cap D_{2} \neq \emptyset$; and both are nonempty if either $k=8$ or $i=8$.

For let the edges of Q_{i} in order be $e_{1} l e_{n}, e_{1}$, where $e_{1}=w x, e_{2}=u w$, and $e_{3}=u v$. Since F_{j} contains one of e_{1}, e_{2}, e_{3} for $1 \leq j \leq k$, it follows that none of $e_{4} l e_{n}$ belongs to any F_{j} with $j \leq k$ and $j \neq i$, and, if $k=7$ and $i \neq 8$, that only one of them is in F_{8}. But since at most one of e_{1}, e_{2}, e_{3} is in F_{i} and $\left|F_{i} \cap Q_{i}\right| \geq 5$, it follows that $n \geq 7$; so either e_{4}, e_{5} belong only to F_{i}, or e_{n}, e_{n-1} belong only to F_{i}, and both if $k=8$ or $i=8$. But if e_{4}, e_{5} are only contained in F_{i}, then they both have multiplicity one, and are disjoint, so e_{4} is a door for r_{1} and hence $e_{4} \in F_{i} \cap Q_{i} \cap D_{1}$. Similarly if e_{n}, e_{n-1} are only contained in F_{i} then $e_{n} \in F_{i} \cap Q_{i} \cap D_{2}$. This proves (1).

Now $k \leq 8$, so one of r_{1}, r_{2} is small since $m^{+}(u v)+m(u w)+m^{+}(w x) \geq 7$; and if $k=8$ then by (1) $\left|D_{1}\right|,\left|D_{2}\right| \geq 8$, a contradiction. Thus $k=7$, so both r_{1}, r_{2} are small, but from (1) $\left|D_{1}\right|+\left|D_{2}\right| \geq 9$, again a contradiction. This proves 5.2.

5.3 No minimum 8-counterexample contains Conf(7).

Proof. Let (G, m) be a minimum 8-counterexample, and suppose that $u v w$ is a triangle with $m^{+}(u v)+m^{+}(u w) \geq 7$. Let r_{1}, r_{2} be the second regions for $u v, u w$ respectively, and for $i=1,2$ let D_{i} be the set of doors for r_{i}. By 5.2, we do not have $\operatorname{Conf}(5)$, so neither of r_{1}, r_{2} is a triangle. Since $m(u v)+m(u w) \geq 5$, one of $m(u v), m(u w) \geq 3$, so we may assume that $m(u v) \geq 3$. Let $t u$ be the edge incident with r_{2} different from $u w$. Since $m(u v)+m(u w) \geq 5$, it follows that $m(t u) \leq 3$, and by 4.2, $m(v w) \leq 2$. Thus the path tụyw is switchable. Note that t, w are non-adjacent in G, since r_{2} is not a triangle. Let $\left(G^{\prime}, m^{\prime}\right)$ be obtained by switching on this path, and let $F_{1} l F_{8}$ be an 8 -edge-colouring of it. Let $k=m(u v)+m(u w)+2$; thus $k \geq 7$, since $m(u v)+m(u w) \geq 5$, and we may assume that for $1 \leq j<k, F_{j}$ contains one of $u v, u w$, and $t w \in F_{k}$.

Let $I=\{118\} \backslash\{k\}$, and for each $i \in I$, let Q_{i} be as in 5.1. Now let $i \in I$, and let the edges of Q_{i} in order be $e_{1} l e_{n}, e_{1}$, where $e_{1}=u v, e_{2}=u w$, and $e_{3}=t w$. Since F_{j} contains one of e_{1}, e_{2}, e_{3} for $1 \leq j \leq k$ it follows that none of $e_{4} l e_{n}$ belong to any F_{j} with $j \leq k$; and if $k=7$ and $i \neq 8$, only one of them belongs to F_{8}. Since F_{i} contains at most one of e_{1}, e_{2}, e_{3} and $\left|F_{i} \cap Q_{i}\right| \geq 5$, it follows that $n \geq 7$, and so either e_{4}, e_{5} are only contained in F_{i}, or e_{n}, e_{n-1} are only contained in F_{i}; and both if either $k=8$ or $i=8$. Thus either $e_{4} \in F_{i} \cap Q_{i} \cap D_{2}$ or $e_{n} \in F_{i} \cap Q_{i} \cap D_{1}$, and both if $k=8$ or $i=8$. Since $k \leq 8$, one of r_{1}, r_{2} is small since $m^{+}(u v)+m^{+}(u w) \geq 7$; and yet if $k=8$ then $\left|D_{1}\right|,\left|D_{2}\right| \geq|I|=7$, a contradiction. Thus $k=7$, so r_{1}, r_{2} are both small, and yet $\left|D_{1}\right|+\left|D_{2}\right| \geq 8$, a contradiction. This proves 5.3.

5.4 No minimum 8-counterexample contains $\operatorname{Conf}(8)$.

Proof. Let (G, m) be a minimum 8-counterexample, and suppose that $u v w$ is a triangle, and its edges have multiplicities $3,2,2$ (in some order). We will show that the second region r for $u w$ has a door disjoint from $u w$. By 4.5, we do not have $\operatorname{Conf}(3)$, so r is not a triangle. By exchanging u, w if necessary we may assume that $m(v w)=2$. Let $t u$ be the edge incident with r different from $u w$. We claim that the path tụyw is switchable. For certainly $m(u v) \geq m(v w)$, so it suffices to check that $m(u v) \geq m(t u)$. If not, then since $m(u v) \geq 2$ and $m(u v)+m(u w) \geq 5$, it follows that $m(u v)=2, m(t u)=3$ and $m(u w)=3$, and we have $\operatorname{Conf}(2)$, contrary to 4.4. Thus tụvw is switchable. Let $\left(G^{\prime}, m^{\prime}\right)$ be obtained by switching, and let $F_{1} l F_{8}$ be an 8 -edge-colouring of $\left(G^{\prime}, m^{\prime}\right)$. Since $m^{\prime}(u v)+m^{\prime}(u w)=6$, we may assume that $F_{1} l F_{6}$ each contain one of $u v, u w$; and $t w \in F_{7}$, and therefore $v w \in F_{8}$. Let $I=\{116,8\}$; and for $i \in I$, let Q_{i} be as in 5.1. Since Q_{8} contains $u v, u w, t w$ and $F_{1} l F_{7}$ each contain one of $u v, u w, t w$, it follows that no other edge of Q_{8} belongs to any of $F_{1} l F_{7}$, and so $Q_{8} \cap F_{8}$ contains a door for r, say e. Moreover $e \neq t u$ since $t u \notin Q_{8}$; and e is not incident with w since $v w \in F_{8}$. Consequently e is disjoint from $u w$. This proves 5.4,

5.5 No minimum 8-counterexample contains $\operatorname{Conf}(9)$.

Proof. Let (G, m) be a minimum 8-counterexample, and suppose that $u v_{1} v_{2}$ is a triangle, with $m\left(u v_{1}\right), m\left(u v_{2}\right), m\left(v_{1} v_{2}\right)=2$, such that the second regions r_{1}, r_{2} for $u v_{1}, u v_{2}$ respectively both have at most one door, and no door that is disjoint from $u v_{1} v_{2}$. For $i=1,2$, let D_{i} be the set of doors for r_{i}. For $i=1,2$, let $u x_{i}$ and $v_{i} y_{i}$ be edges incident with r_{i} different from $u v_{i}$.

Now $x_{1} \neq x_{2}$ since u has degree at least four; and so $m\left(u x_{1}\right)+m\left(u x_{2}\right) \leq 4$ and we may assume that $m\left(u x_{1}\right) \leq 2$. Consequently the path $x_{1} u \mathrm{v}_{2} \mathrm{v}_{1}$ is switchable. Note that v_{1}, x_{1} may be adjacent, but if so then $m\left(v_{1} x_{1}\right)=1$ from 4.2. Let $\left(G^{\prime}, m^{\prime}\right)$ be obtained by switching, and let $F_{1} l F_{8}$ be an 8-edge-colouring, where $u v_{2} \in F_{1}, F_{2}, F_{3}$, and $u v_{1} \in F_{4}, F_{5}$ and $v_{1} x_{1} \in F_{6}$, and $v_{1} x_{1} \in F_{7}$ if $v_{1} x_{1} \in E(G)$. Since $v_{1} v_{2}$ belongs to some F_{i}, and $v_{1} v_{2}$ meets all of $u v_{2}, u v_{1}, v_{1} x_{1}$, we may assume that $v_{1} v_{2} \in F_{8}$. Let $I=\{115,7,8\}$ if $x_{1} v_{1} \notin E(G)$, and $I=\{1 l 8\}$ otherwise. For $i \in I$, let Q_{i} be as in 5.1

We claim that $F_{i} \cap Q_{i} \cap\left(D_{1} \cup D_{2}\right) \neq \emptyset$ for $i=7,8$. First suppose that $v_{1} x_{1} \notin E(G)$. Then for $1 \leq j \leq 6$ and for $i=7,8, F_{j} \cap Q_{i} \cap\left\{u v_{2}, u v_{1}, v_{1} x_{1}\right\} \neq \emptyset$, and so no other edges of Q_{i} belong to any F_{j} with $j \in\{1 l 6\}$. Since only one edge of $Q_{i} \backslash\left\{u v_{2}, u v_{1}, v_{1} x_{1}\right\}$ belongs to the F_{j} with $j \in\{7,8\} \backslash\{i\}$, it follows that $F_{i} \cap Q_{i} \cap\left(D_{1} \cup D_{2}\right) \neq \emptyset$ as required. Now suppose that $v_{1} x_{1} \in E(G)$. Then for $1 \leq j \leq 7$ and for $i=7,8, F_{j} \cap Q_{i} \cap\left\{u v_{2}, u v_{1}, v_{1} x_{1}\right\} \neq \emptyset$. and so no other edges of Q_{i} belong to any F_{j} with $j \in\{1 l 7\}$ and $j \neq i$. For $i=7$, as before it follows that $F_{i} \cap Q_{i} \cap\left(D_{1} \cup D_{2}\right) \neq \emptyset$; for $i=8$ we find that $F_{i} \cap Q_{i} \cap D_{1}, F_{i} \cap Q_{i} \cap D_{2} \neq \emptyset$. Thus in any case, we have $F_{i} \cap Q_{i} \cap\left(D_{1} \cup D_{2}\right) \neq \emptyset$ for $j=7,8$.

Now by hypothesis, $D_{1} \cup D_{2} \subseteq\left\{u x_{1}, u x_{2}, v_{1} y_{1}, v_{2} y_{2}\right\}$; and $u x_{1} \notin Q_{7}, Q_{8}$ from the choice of switchable path, and $v_{1} y_{1}, v_{2} y_{2} \notin F_{8}$ since $v_{1} v_{2} \in F_{8}$. Thus $u x_{2} \in F_{8} \cap D_{2}$. Since $\left|D_{2}\right| \leq 1$ by hypothesis, it follows that $v_{2} y_{2} \notin D_{2}$, and $u x_{2} \notin F_{7}$ since $u x_{2} \in F_{8}$ and $m\left(u x_{2}\right)=1$. Thus $v_{1} y_{1} \in D_{1}$. Now $m\left(u x_{2}\right)=1$, and so the path $x_{2} u \mathrm{v}_{1} \mathrm{y}_{2}$ is switchable; so by the same argument with v_{1}, v_{2} exchanged, it follows that $u x_{1} \in D_{1}$ and $v_{2} y_{2} \in D_{2}$, contrary to the hypothesis. This proves 5.5

5.6 No minimum 8-counterexample contains $\operatorname{Conf}(10)$.

Proof. For suppose that (G, m) is a minimum counterexample, with a square $u v w x$ and a triangle $w x y$, where $m(u v)=m(w x)=m(x y)=2$, and $m(v w)=4$. By 4.5, we do not have $\operatorname{Conf}(4)$, and it follows that $m(u x)=1$. Since $m(\delta(w))=8$ it follows that $m(w y) \leq 2$, and so u xyw is switchable. Let $\left(G^{\prime}, m^{\prime}\right)$ be obtained by switching on this path, and let $F_{1} l F_{8}$ be an 8 -edge-colouring of it. We may assume that $x y \in F_{1}, F_{2}, F_{3}$, and $x w \in F_{4}, F_{5}$, and $u w \in F_{6}$. Let $I=\{1 l 8\} \backslash\{6\}$, and let $Q_{i}(i \in I)$ be as in 5.1. Now $v w \notin F_{4}, F_{5}, F_{6}$, so there are four values of $i \in\{1,2,3,7,8\}$ such that $v w \in F_{i}$, and from the symmetry we may assume that F_{1}, F_{2}, F_{7} contain $v w$ (and so does one of F_{3}, F_{8}). It follows that $v w \notin Q_{i}$ for $i \in I$, and so $u v \in Q_{i}$ for each $i \in I$. Since $u v$ belongs to two of $F_{1} l F_{8}$, there exists $j \neq 8$ with $u v \in F_{j}$. Moreover, F_{j} does not contain $v w$, and so $j \neq 1,2,7$; so $j \in\{3,4,5,6\}$. But $\left|Q_{1} \cap F_{j}\right| \geq 2$, since one of $x y, x w, v w \in Q_{1} \cap F_{j}$, a contradiction. This proves 5.6
5.7 No minimum 8-counterexample contains $\operatorname{Conf}(11), \operatorname{Conf}(12)$ or $\operatorname{Conf}(13)$.

Proof. To handle all these cases simultaneously, let us assume that (G, m) is a 8 -target, and $v_{1} \mathrm{Y}_{2} \mathrm{Y}_{3} \mathrm{Y}_{4} \mathrm{Y}_{5} \mathrm{Y}_{1}$ are the vertices in order of some cycle of G, and this cycle bounds a disc which is
the union of three triangles of G, namely $v_{1} v_{2} v_{3}, v_{1} v_{3} v_{5}$ and $v_{3} v_{4} v_{5}$. Moreover, there is a subset $Z \subseteq\left\{v_{1} v_{3}, v_{3} v_{5}\right\}$ such that $m(e)=0$ for all $e \in Z$ and deleting the edges in Z gives a minimum 8 -counterexample. Finally, we assume that

$$
m\left(v_{1} v_{2}\right)+m\left(v_{1} v_{3}\right)+m\left(v_{2} v_{3}\right)+m\left(v_{3} v_{4}\right)+m\left(v_{3} v_{5}\right) \geq 8
$$

and

$$
m^{+}\left(v_{1} v_{2}\right)+m\left(v_{1} v_{3}\right)+m\left(v_{3} v_{5}\right)+m^{+}\left(v_{4} v_{5}\right) \geq 7 .
$$

To obtain the subcases $\operatorname{Conf}(11), \operatorname{Conf}(12)$ and $\operatorname{Conf}(13)$, we set, respectively,

- $Z=\left\{v_{1} v_{3}\right\}, m\left(v_{1} v_{2}\right) \geq 3, m\left(v_{3} v_{4}\right) \geq 3, m\left(v_{3} v_{5}\right)=1, m^{+}\left(v_{4} v_{5}\right) \geq 3$, and $m\left(v_{1} v_{5}\right) \leq 3$
- $Z=\left\{v_{3} v_{5}\right\}, m^{+}\left(v_{1} v_{2}\right) \geq 3, m\left(v_{2} v_{3}\right)=2, m\left(v_{3} v_{4}\right) \geq 2, m\left(v_{1} v_{3}\right)=2, m\left(v_{1} v_{5}\right) \leq 3$ and $m^{+}\left(v_{4} v_{5}\right) \geq 2$
- $Z=\left\{v_{1} v_{3}, v_{3} v_{5}\right\}, m\left(v_{1} v_{2}\right) \geq \max \left(m\left(v_{2} v_{3}\right), m\left(v_{1} v_{5}\right)\right)$.
(Edges not mentioned are unrestricted.) Let (G, m^{\prime}) be obtained by switching on the sequence $v_{2} \mathrm{~V}_{3} \mathrm{~V}_{5} \mathrm{~V}_{1} \mathrm{~V}_{2}$. (We postpone for the moment the question of whether this sequence is switchable.) Let us suppose (for a contradiction) that (G, m^{\prime}) admits an 8 -edge-colouring $F_{1} l F_{8}$. Let $k=m\left(v_{1} v_{2}\right)+$ $m\left(v_{1} v_{3}\right)+m\left(v_{3} v_{5}\right)+2$; then we may assume that $F_{1} l F_{k}$ each contain exactly one of $v_{1} v_{2}, v_{1} v_{3}, v_{3} v_{5}$, and $v_{3} v_{5} \in F_{k}$. Hence $k \leq 8$. Let $I=\{118\}$ if $m\left(v_{3} v_{5}\right) \geq 1$, and $I=\{1 l 8\} \backslash\{k\}$ otherwise. Since $v_{2} v_{3}$ meets all the edges $v_{1} v_{2}, v_{1} v_{3}, v_{3} v_{5}$, it follows that none of $F_{1} l F_{k}$ contain $v_{2} v_{3}$, and so $k+m\left(v_{2} v_{3}\right)-1 \leq 8$ and we may assume that $v_{2} v_{3} \in F_{j}$ for $k+1 \leq j \leq k+m\left(v_{2} v_{3}\right)-1$. Thus there are exactly $9-k-m\left(v_{2} v_{3}\right)$ values of $j \in\{118\}$ such that F_{j} contains none of $v_{1} v_{2}, v_{1} v_{3}, v_{3} v_{5}, v_{2} v_{3}$. Since by hypothesis

$$
m\left(v_{1} v_{2}\right)+m\left(v_{1} v_{3}\right)+m\left(v_{2} v_{3}\right)+m\left(v_{3} v_{4}\right)+m\left(v_{3} v_{5}\right) \geq 8,
$$

and so $m\left(v_{3} v_{4}\right)>9-k-m\left(v_{2} v_{3}\right)$, there exists $h \leq k+m\left(v_{2} v_{3}\right)-1$ such that $v_{3} v_{4} \in F_{h}$; since $v_{3} v_{4}$ meets each of $v_{1} v_{3}, v_{2} v_{3}$ and $v_{3} v_{5}$, it follows that $v_{1} v_{2} \in F_{h}$, and so $h<k$; and from the symmetry we may assume that $h=1$.

For each $i \in I$ let Q_{i} as in 5.1. Now $\left|F_{j} \cap Q_{i}\right|=1$ for $1 \leq j \leq 8$ with $j \neq i$; and since F_{1} contains $v_{1} v_{2}, v_{3} v_{4}$ it follows that for $i \neq 1 v_{3} v_{4} \notin Q_{i}$. Consequently $v_{4} v_{5} \in Q_{i}$ for all $i \in I \backslash\{1\}$. Let r_{1}, r_{2} be the second regions for $v_{1} v_{2}, v_{4} v_{5}$ respectively, and let their sets of doors be D_{1}, D_{2}. Hence for each $j \in\{118\}$, since there exists $i \in I \backslash\{1\}$ with $i \neq j$, it follows that F_{j} contains at most one of $v_{1} v_{2}, v_{1} v_{3}, v_{3} v_{5}, v_{4} v_{5}$, and so we may assume that $v_{4} v_{5} \in F_{j}$ for $k+1 \leq j \leq k^{\prime}$ where $k^{\prime}=k+m\left(v_{4} v_{5}\right)$, and in particular $k^{\prime} \leq 8$. From the hypothesis, $k^{\prime} \geq 7$.
(1) For $i \in I \backslash\{1\}$, one of $F_{i} \cap D_{1}, F_{i} \cap D_{2}$ is non-empty, and both if $k^{\prime}=8$ or $i=8$.

Let $e_{1} l e_{n}, e_{1}$ be the edges of Q_{i} in order, where $e_{1}=v_{1} v_{2}, e_{2}=v_{1} v_{3}, e_{3}=v_{3} v_{5}$ and $e_{4}=v_{4} v_{5}$. Thus for $1 \leq j \leq k^{\prime}, F_{j}$ contains one of $e_{1}, e_{2}, e_{3}, e_{4}$, and hence contains none of $e_{5} l e_{n}$ if $j \neq i$. Now since F_{i} contains at most one of $e_{1}, e_{2}, e_{3}, e_{4}$ and $\left|F_{i} \cap Q_{i}\right| \geq 5$, it follows that $n \geq 8$. Hence $e_{5} l e_{n}$ belong only to F_{i}, except that one belongs to F_{8} if $i, k<8$. This proves (1) as usual.

Since $k^{\prime} \leq 8$, one of r_{1}, r_{2} is small since $m^{+}\left(v_{1} v_{2}\right)+m\left(v_{1} v_{3}\right)+m\left(v_{3} v_{5}\right)+m^{+}\left(v_{4} v_{5}\right) \geq 7$. Consequently, (1) implies that $k^{\prime}=7$; and so r_{1}, r_{2} are both small, again a contradiction to (1).

This proves that (G, m^{\prime}) is not 8-edge-colourable, and in particular the sequence $v_{2} \mathrm{y}_{3} \mathrm{y}_{5} \mathrm{y}_{1} \mathrm{y}_{2}$ is not switchable. Let us look at the subcases for $\operatorname{Conf}(11), \operatorname{Conf}(12), \operatorname{Conf}(13)$ listed above. In the $\operatorname{Conf}(11)$ subcase, $m\left(v_{1} v_{2}\right) \geq 3 \geq m\left(v_{1} v_{5}\right)$, so we only need to check that $m\left(v_{1} v_{2}\right) \geq m\left(v_{2} v_{3}\right)$. If not, then $m\left(v_{2} v_{3}\right)=4$, contrary to $\operatorname{Conf}(2)$. In the $\operatorname{Conf}(13)$ subcase, the condition that $m\left(v_{1} v_{2}\right) \geq$ $\max \left(m\left(v_{2} v_{3}\right), m\left(v_{1} v_{5}\right)\right)$ is explicitly given. In the $\operatorname{Conf}(12)$ subcase, $m\left(v_{1} v_{2}\right) \geq 2 \geq m\left(v_{2} v_{3}\right)$, so we only need to check that $m\left(v_{1} v_{2}\right) \geq m\left(v_{1} v_{5}\right)$. Suppose not; then $m\left(v_{1} v_{5}\right)=3$ and $m\left(v_{1} v_{2}\right)=2$. In this case the sequence $v_{2} \mathrm{Y}_{3} \mathrm{Y}_{5} \mathrm{y}_{1} \mathrm{y}_{2}$ is not switchable, so we need a different approach.

Since (G, m^{\prime}) given above is not 8 -colourable, it follows from 2.1 that $m^{\prime}(\delta(X)) \geq 10$ for every subset $X \subseteq V(G)$ with $|X|$ odd and $|X|,|V(G) \backslash X| \geq 3$. Let ($G, m^{\prime \prime}$) be obtained from (G, m^{\prime}) by switching again on the same sequence. Now $\left(G, m^{\prime \prime}\right)$ is a 8 -target, since $m\left(v_{2} v_{3}\right), m\left(v_{1} v_{5}\right) \geq 2$; and it is smaller than (G, m), and therefore admits an 8-edge-colouring, say $F_{1} l F_{8}$. Since $m^{\prime \prime}\left(v_{1} v_{2}\right)+$ $m^{\prime \prime}\left(v_{1} v_{3}\right)+m^{\prime \prime}\left(v_{3} v_{5}\right)+m^{\prime \prime}\left(v_{1} v_{5}\right)>8$, some F_{i} contains two of $v_{1} v_{2}, v_{1} v_{3}, v_{3} v_{5}, v_{1} v_{5}$, and therefore contains $v_{1} v_{2}$ and $v_{3} v_{5}$. By replacing F_{i} by $\left(F \backslash\left\{v_{1} v_{2}, v_{3} v_{5}\right\}\right) \cup\left\{v_{2} v_{3}, v_{1} v_{5}\right\}$ we therefore obtain an 8 -edge-colouring of $\left(G, m^{\prime}\right)$, a contradiction. This proves 5.7.

5.8 No minimum 8-counterexample contains Conf(14).

Proof. Let (G, m) be a minimum 8-counterexample, and suppose that some edge $u v$ is incident with regions r_{1}, r_{2} where r_{1} has at most six doors disjoint from $u v$, and $m(u v) \geq 5$, and either $m(u v) \geq 6$ or r_{2} is small. By exchanging r_{1}, r_{2} if necessary, we may assume that if r_{1}, r_{2} are both small, then the length of r_{1} is at least the length of r_{2}. By 4.5, we do not have $\operatorname{Conf}(3)$, so not both r_{1}, r_{2} are triangles, and by 4.2, if $m(u v) \geq 6$ then neither of r_{1}, r_{2} is a triangle; so r_{1} is not a triangle. Let x ưy be a path of $C_{r_{1}}$. Since $m(e) \geq 5$, this path is switchable; let (G^{\prime}, m^{\prime}) be obtained from (G, m) by switching on it, and let $F_{1} l F_{8}$ be an 8-edge-colouring of (G^{\prime}, m^{\prime}). Let $k=m^{\prime}(u v)+m^{\prime}(x y) \geq 7$. Let $I=\{1 l 8\} \backslash\{k\}$ if x, y are non-adjacent in G, and $I=\{118\}$ if $x y \in E(G)$. For $i \in I$, let Q_{i} be as in 5.1. Since Q_{i} contains both $u v, x y$ for each $i \in I$, it follows that for $1 \leq j \leq 8, F_{j}$ contains at most one of $u v, x y$. Thus we may assume that $u v \in F_{i}$ for $1 \leq i \leq m^{\prime}(u v)$, and $x y \in F_{i}$ for $m^{\prime}(u v)<i \leq k$. Thus $k \leq 8$. Let D_{1} be the set of doors for r_{1} that are disjoint from e, and let D_{2} be the set of doors for r_{2}.
(1) For each $i \in I$, one of $F_{i} \cap Q_{i} \cap D_{1}, F_{i} \cap Q_{i} \cap D_{2}$ is nonempty, and if $k=8$ or $i>k$ then both are nonempty.

Let $i \in I$, and let the edges of Q_{i} in order be $e_{1} e_{n}, e_{1}$, where $e_{1}=u v$ and $e_{2}=x y$. Since $\left|F_{i} \cap Q_{i}\right| \geq 5$ and F_{i} contains at most one of e_{1}, e_{2}, it follows that $n \geq 6$. Suppose that $k=8$. Then for $1 \leq j \leq 8, F_{j}$ contains one of e_{1}, e_{2}; and hence for all $j \in\{118\}$ with $j \neq i, e_{3} l e_{n} \notin F_{j}$. It follows that e_{n}, e_{n-1} belong only to F_{i} and hence $e_{n} \in F_{i} \cap Q_{i} \cap D_{2}$. Since this holds for all $i \in I$, it follows that $\left|D_{2}\right| \geq|I| \geq 7$. Hence r_{2} is big, and so by hypothesis, $m(u v) \geq 6$. Since $k=8$ it follows that $x y \notin E(G)$. Consequently e_{3} is an edge of $C_{r_{1}}$, and since e_{3}, e_{4} belong only to F_{i}, it follows that e_{3} is a door for r_{1}. But $e_{3} \neq u x, v y$ from the choice of the switchable path, and so $e_{3} \in F_{i} \cap Q_{i} \cap D_{1}$. Hence in this case (1) holds.

Thus we may assume that $k=7$; and so $m(e)=5$, and r_{2} is small, and $x y \notin E(G)$, and $u v \in F_{1} l F_{6}$, and $x y \in F_{7}$. Thus $I=\{1 l 6,8\}$. If $i=8$, then since $u v, x y \in Q_{i}$ and F_{j} contains one of e_{1}, e_{2} for all $j \in\{117\}$, it follows as before that $e_{3} \in F_{i} \cap Q_{i} \cap D_{1}$ and $e_{n} \in F_{i} \cap Q_{i} \cap D_{2}$. Thus we
may assume that $i \leq 6$. For $1 \leq j \leq 8$ with $j \neq i,\left|F_{j} \cap Q_{i}\right|=1$, and for $1 \leq j \leq 7, F_{j}$ contains one of e_{1}, e_{2}. Hence $e_{3} l e_{n}$ belong only to F_{i} and to F_{8}, and only one of them belongs to F_{8}. If neither of e_{n}, e_{n-1} belong to F_{8} then $e_{n} \in F_{i} \cap Q_{i} \cap D_{2}$ as required; so we assume that F_{8} contains one of e_{n}, e_{n-1}; and so $e_{3} l e_{n-2}$ belong only to F_{i}. Since $n \geq 6$, it follows that $e_{3} \in F_{i} \cap Q_{i} \cap D_{1}$ as required. This proves (1).

If $k=8$, then (1) implies that $\left|D_{1}\right| \geq 7$ as required. So we may assume that $k=7$ and hence $m(e)=5$ and $x y \notin E(G)$; and r_{2} is small. Suppose that there are three values of $i \in\{1 l 6\}$ such that $\left|F_{i} \cap D_{1}\right|=1$ and $F_{i} \cap D_{2}=\emptyset$, say $i=1,2,3$. Let $f_{i} \in F_{i} \cap D_{1}$ for $i=1,2,3$, and we may assume that f_{3} is between f_{1} and f_{2} in the path $C_{r_{1}} \backslash\{u v\}$. Choose $X \subseteq V\left(G^{\prime}\right)$ such that $\delta_{G^{\prime}}(X)=Q_{3}$. Since only one edge of $C_{r_{1}} \backslash\{e\}$ belongs to Q_{3}, one of f_{1}, f_{2} has both ends in X and the other has both ends in $V\left(G^{\prime}\right) \backslash X$; say f_{1} has both ends in X. Let Z be the set of edges of G^{\prime} with both ends in X. Thus $\left(F_{1} \cap Z\right) \cup\left(F_{2} \backslash Z\right)$ is a perfect matching, since $e \in F_{1} \cap F_{2}$, and no other edge of $\delta_{G^{\prime}}(X)$ belongs to $F_{1} \cup F_{2}$; and similarly $\left(F_{2} \cap Z\right) \cup\left(F_{1} \backslash Z\right)$ is a perfect matching. Call them $F_{1}^{\prime}, F_{2}^{\prime}$ respectively. Then $F_{1}^{\prime}, F_{2}^{\prime}, F_{3}, F_{4} l F_{8}$ form an 8-edge-colouring of $\left(G^{\prime}, m^{\prime}\right)$, yet f_{1}, f_{2} are the only edges of $D_{1} \cup D_{2}$ included in $F_{1}^{\prime} \cup F_{2}^{\prime}$, and neither of them is in F_{2}^{\prime}, contrary to (1). Thus there are no three such values of i; and similarly there are at most two such that $\left|F_{i} \cap D_{2}\right|=1$ and $F_{i} \cap D_{1}=\emptyset$. Thus there are at least three values of $i \in I$ such that $\left|F_{i} \cap D_{1}\right|+\left|F_{i} \cap D_{2}\right| \geq 2$ (counting $i=8$), and so $\left|D_{1}\right|+\left|D_{2}\right| \geq 10$. But $\left|D_{1}\right| \leq 6$ by hypothesis and $\left|D_{2}\right| \leq 3$ since r_{2} is small, a contradiction. This proves 5.8.

5.9 No minimum 8-counterexample contains $\operatorname{Conf}(15)$ or $\operatorname{Conf}(16)$.

Proof. To handle both at once, we assume that (G, m) is an 8-target with a region r, and $u v \in E\left(C_{r}\right)$, and $u v w$ is another region, satisfying:

- either (G, m) is a minimum 8-counterexample, or $m(u v)=0$ and deleting $u v$ gives a minimum 8-counterexample
- $m(u v)+m^{+}(u w) \geq 4$
- every edge of C_{r} not incident with u is 3-heavy
- $m(v w) \leq m(u w)$, and the second edge of C_{r} incident with u has multiplicity at most $m(u w)$.

Note that while $\operatorname{Conf}(16)$ fits these conditions, some instances of $\operatorname{Conf}(15)$ may not, and we will handle them later. Let the second neighbour of u in C be t.

By hypothesis, the path tuwy is switchable; let $\left(G^{\prime}, m^{\prime}\right)$ be obtained from it by switching, and let $F_{1} l F_{8}$ be an 8 -edge-colouring of it. Let $k=m(u w)+m(u v)+2 \geq 5$; then we may assume that $F_{1} l F_{k-1}$ contain one of $u w, u v$, and $t v \in F_{k}$. Let $I=\{1 l 8\}$ if $t v \in E(G)$, and $I=\{1 l 8\} \backslash\{k\}$ otherwise. For each $i \in I$ let Q_{i} be as in 5.1. Thus each Q_{i} contains all of $u w, u v, t v$, and so no edge of $Q_{i} \backslash\{u w, u v, t v\}$ belongs to F_{j} for any $j \neq i$ with $j \leq k$.
(1) $k=5$.

For suppose that $k \geq 6$. Choose $i \in I \cap\{7,8\}$. Since Q_{i} contains $u v, u w, t v$, it follows that $F_{1} l F_{6}$ all
contain an edge in $\{u v, u w, t v\} \cap Q_{i}$; and hence no edge of $Q_{i} \backslash\{u v, u w, t v\}$ belongs to any of $F_{1} l F_{6}$. Choose an edge f of $C_{r} \backslash\{u, v\}$ with $f \in Q_{i}$. Now $f \neq t u$ by the choice of switchable path, and so f is 3-heavy (with respect to (G, m)), and if $f=t v$ then $m^{\prime}(f)>m(f)$. Consequently there are three values of $j \in\{118\} \backslash\{k\}$ such that $F_{j} \cap Q_{i}$ contains an edge different from $u v, u w$, and hence some such j belongs to $\{115\}$, a contradiction. This proves (1).

Let r_{1} be the second region for $u w$, and let D_{1} be the set of doors for r_{1}. From (1) it follows that r_{1} is small, and so $\left|D_{1}\right| \leq 3$.
(2) For $i=6,7,8,\left|Q_{i} \cap F_{i} \cap D_{1}\right|=1$; and the edges of F_{6} and F_{8} in Q_{7} have a common end (they may be the same).

For let $i \in\{6,7,8\}$; then $i \in I$. Let the edges of Q_{i} be $e_{1} l e_{n}, e_{1}$ in order, where $e_{1}=u w, e_{2}=u v$ and $e_{3}=t v$. Then $n \geq 7$, since $\left|F_{i} \cap Q_{i}\right| \geq 5$. Let $h=3$ if $t v \in E(G)$, and $h=4$ otherwise. Then e_{h} is an edge of C_{r} not incident with u, and so it is 3-heavy; and hence either $m\left(e_{h}\right) \geq 3$, or the second region for e_{h} is a triangle and e_{h+1} is an edge of it, and $m\left(e_{h}\right)+m\left(e_{h+1}\right) \geq 3$. Moreover, if $e_{h}=t v$ then $m^{\prime}\left(e_{h}\right)>m\left(e_{h}\right)$. Thus in all cases it follows that there are three values of $j \neq 5$ with $1 \leq j \leq 8$ such that $F_{j} \cap Q_{i}$ contains one of e_{h}, e_{h+1}. We deduce that these three values of j are $6,7,8$, since $F_{j} \cap Q_{i} \subseteq\{u v, u w\}$ for $1 \leq j \leq 4$. Consequently for $1 \leq j \leq 8, F_{j} \cap Q_{i}$ includes one of $e_{1}, e_{2}, e_{3}, e_{4}, e_{5}$. It follows that only F_{i} contains e_{n}, e_{n-1}, and consequently $e_{n} \in Q_{i} \cap F_{i} \cap D_{1}$. Since $\left|D_{1}\right|=3$, this proves the first assertion of (2). The second follows since, taking $i=7$ and defining e_{h} as before, F_{6} and F_{8} each contain one of e_{h}, e_{h+1}, and these edges have a common end. This proves (2).

Let $Q_{i} \cap F_{i} \cap D_{1}=\left\{f_{i}\right\}$ for $i=6,7,8$. We may assume that f_{6}, f_{7}, f_{8} are in order in the path $C_{r_{1}} \backslash\{u w\}$. Choose $X \subseteq V(G)$ with $\delta_{G^{\prime}}(X)=Q_{7}$. Let H be the subgraph of G^{\prime} with vertex set $V(G)$ and edge set $\left(F_{6} \backslash F_{8}\right) \cap\left(F_{8} \backslash F_{6}\right)$. Thus each component of H is either a single vertex or a cycle of even length. Now there are either no edges, or two edges, of H that belong to $\delta_{G^{\prime}}(X)$; and if there are two then they have a common end by (2). It follows that the component of H, say C, that contains f_{6} does not contain f_{8}. Let $F_{6}^{\prime}=\left(F_{8} \cap E(C)\right) \cup\left(F_{6} \backslash E(C)\right)$ and $F_{8}^{\prime}=\left(F_{6} \cap E(C)\right) \cup\left(F_{8} \backslash E(C)\right)$; then $F_{6}^{\prime}, F_{8}^{\prime}$ are perfect matchings of G^{\prime}, and $F_{1} l F_{5}, F_{6}^{\prime}, F_{7}, F_{8}^{\prime}$ is an 8 -edge-colouring of $\left(G, m^{\prime}\right)$. On the other hand both f_{6}, f_{8} belong to F_{8}^{\prime}, so this 8 -edge-colouring does not satisfy (2), a contradiction.

It remains to deal with the case of $\operatorname{Conf}(15)$ when the path $t u \underline{w} y$ is not switchable. Thus, now we assume that

- (G, m) is a minimum 8 -counterexample
- r is a region of length at least four, and e is an edge of C_{r}
- $m^{+}(e) \geq 4$, and every edge of C_{r} disjoint from e is 3-heavy
- one of the edges of C_{r} incident with e has multiplicity more than $m(e)$.

Let C_{r} have vertices $v_{1} l v_{p}$ in order, where $p \geq 4, e=v_{1} v_{2}$, and $m\left(v_{2} v_{3}\right)>m(e)$. It follows that $m\left(v_{1} v_{2}\right)=3$ and $m\left(v_{2} v_{3}\right)=4$. By 4.5, we do not have $\operatorname{Conf}(4)$ so $p \geq 5$. The path $v_{1} \mathrm{y}_{2} \mathrm{y}_{3} \mathrm{y}_{4}$ is switchable; let (G, m^{\prime}) be obtained by switching on it. We may assume that $v_{2} v_{3} \in F_{i}$ for $1 \leq i \leq 5$
and $v_{1} v_{4} \in F_{6}$. Since $m^{\prime}\left(v_{1} v_{2}\right)=2$ and $v_{1} v_{2}$ meets both $v_{2} v_{3}$ and $v_{1} v_{4}$, it follows that $v_{1} v_{2} \in F_{7}, F_{8}$. Consequently $v_{p} v_{1} \in F_{h}$ for some h with $1 \leq h \leq 5$. Let $I=\{1 l 8\} \backslash\{6\}$. For each $i \in I$ let Q_{i} be as in 5.1. Now Q_{7} contains $v_{2} v_{3}, v_{1} v_{4}$, and so for $1 \leq j \leq 6, F_{j} \cap Q_{7} \subseteq\left\{v_{2} v_{3}, v_{1} v_{4}\right\}$. In particular $v_{p} v_{1} \notin Q_{7}$. But Q_{7} contains an edge f of C_{r}, different from $v_{1} v_{2}$, and this edge is 3 -heavy, since it is different from $v_{p} v_{1}$ and hence disjoint from e; and so $F_{j} \cap Q_{i} \backslash\left\{v_{2} v_{3}, v_{1} v_{4}\right\} \neq \emptyset$ for three values of $j \in\{118\}$, a contradiction. This proves 5.9.

5.10 No minimum 8-counterexample contains $\operatorname{Conf(17)}$ or $\operatorname{Conf}(18)$.

Proof. To handle both at once, we assume that (G, m) is an 8 -target with a region r with length at least four, and $u v \in E\left(C_{r}\right)$, and $u v w$ is another region, satisfying:

- either (G, m) is a minimum 8-counterexample, or $m(u v)=0$ and deleting $u v$ gives a minimum 8-counterexample
- $m(u v)+m^{+}(u w) \geq 5$
- let t, x be the second neighbours of u, v in C_{r} respectively; if $m(u v)=3$ and e is 5 -heavy let $P=C_{r} \backslash\{u, v\}$, and otherwise let $P=C_{r} \backslash\{u\}$; then every edge f of P satisfies $m^{+}(f) \geq 2$, and at most one edge of P is not 3-heavy
- $m(t u), m(v w) \leq m(u w)$.

The path tuwy is switchable; let $\left(G^{\prime}, m^{\prime}\right)$ be obtained by switching on it, and let $F_{1} l F_{8}$ be an 8 -edgecolouring of $\left(G^{\prime}, m^{\prime}\right)$. Since r has length at least four, $t v \notin E(G)$. Let $k=m(u w)+(u v)+2 \geq 6$; we may assume that F_{i} contains one of $u v, u w$ for $1 \leq i<k$, and F_{k} contains $t v$. Let $I=\{1 l 8\} \backslash\{k\}$; and for each $i \in I$ let Q_{i} be as in 5.1.
(1) There is at most one value of $i \in I$ such that $Q_{i} \cap E(P)=\emptyset$, and if i is such a value then $k=7$ and $m(u v)=3$ and $m(u w), m(v w)=2$ and $u w \in F_{i}$.

For suppose that $i \in I$ and $Q_{i} \cap E(P)=\emptyset$. It follows that $P=C_{r} \backslash\{u, v\}$, and so $m(u v)=3$ and $m(u w), m(v w)=2$, and $k=7$. Now for $1 \leq i \leq 7, F_{i}$ contains one of $u w, u v, t v$, and since $v w$ meets all of these edges it follows that $v w \in F_{8}$. But $v x$ belongs to some F_{j} such that F_{j} contains none of $t v, u v, v w$, and so $u w \in F_{j}$. Then $\left|F_{j} \cap Q_{i}\right| \geq 2$, so $j=i$ and hence $u w \in F_{i}$. This proves (1).

Let I^{\prime} be the set of $i \in I$ such that $Q_{i} \cap E(P) \neq \emptyset$. By (1), $\left|I^{\prime}\right| \geq 6$. Let r_{1} be the second region for $u w$, and let its set of doors be D_{1}. Thus $\left|D_{1}\right| \leq 3$ if $k=6$, since $m(u v)+m^{+}(u w) \geq 5$. Let $I^{\prime \prime}$ be the set of $i \in I^{\prime}$ such that the edge in $Q_{i} \cap E(P)$ is not 3-heavy.
(2) There is a unique edge $f \in E(P)$ that is not 3 -heavy, and it belongs to none of $F_{1} l F_{k}$. Moreover, if $i \in I^{\prime} \backslash I^{\prime \prime}$ then $k=6$ and $i \leq 5$ and $F_{i} \cap Q_{i} \cap D_{1} \neq \emptyset$.

Suppose that $i \in I^{\prime} \backslash I^{\prime \prime}$. There are therefore three values of $j \in\{118\}$ such that $F_{j} \cap Q_{i} \nsubseteq\{u w, u v, t v\}$, and so at least two that are also different from i. Consequently, for those two values of j, it follows that $u w, u v, t v \notin F_{j}$ and hence $k=6$ and $j \in\{7,8\}$. Thus $i \leq 5$. Let the edges of Q_{i} in order be $e_{1} l e_{n}, e_{1}$, where $e_{1}=u w, e_{2}=u v$ and $e_{3}=t v$; then $n \geq 7$, since $\left|F_{i} \cap Q_{i}\right| \geq 5$. But $F_{1} l F_{8}$
each contain one of $e_{1} l_{5}$, so $e_{n} \in F_{i} \cap Q_{i} \cap D_{1}$. This proves the second assertion of (2). For the first assertion, since $\left|D_{1}\right| \leq 3$, it follows that $\left|I^{\prime} \backslash I^{\prime \prime}\right| \leq 3$. Since $\left|I^{\prime}\right| \geq 6$, it follows that $\left|I^{\prime \prime}\right| \geq 3$. But by hypothesis, there is at most one edge in P that is not 3-heavy, and so this edge exists, say f. It follows that $f \in Q_{i}$, for all $i \in I^{\prime \prime}$. Now let $j \in\{1 l k\}$. Choose $i \in I^{\prime \prime}$ with $i \neq j$; then $F_{j} \cap Q_{i} \subseteq\{u w, u v, t v\}$, and so F_{j} does not contain f. This proves (2).

By (2) we may assume that $f \in F_{k+1}$. Let r_{2} be the second region at f, and let D_{2} be its set of doors. By hypothesis, if $m(f)=1$ then $\left|D_{2}\right| \leq 3$.

Suppose that $k \geq 7$. By (2), $I^{\prime \prime}=I^{\prime}$ and $m(f)=1$. Let $i \in I^{\prime}$, and let the edges of Q_{i} in order be $e_{1} l e_{n}$, where $e_{1}=u w, e_{2}=u v, e_{3}=t v$, and $e_{4}=f$. Since only one of $e_{1} l e_{4}$ belongs to F_{i}, and $\left|F_{i} \cap Q_{i}\right| \geq 5$, it follows that $n \geq 8$. But $F_{1} l F_{8}$ each contain one of $e_{1} l e_{4}$, and so $e_{5} l e_{n}$ only belong to F_{i}; and hence $e_{5} \in F_{i} \cap Q_{i} \cap D_{2}$. Consequently $\left|D_{2}\right| \geq\left|I^{\prime}\right| \geq 6$, a contradiction.

This proves that $k=6$, and hence $\left|D_{1}\right| \leq 3$, and $I^{\prime}=I$ by (1), and $7,8 \in I^{\prime \prime}$ by (2). Now let $i \in I^{\prime \prime}$. Let the edges of Q_{i} in order be $e_{1} l e_{n}, e_{1}$, where $e_{1}=u w, e_{2}=u v, e_{3}=t v$, and $e_{4}=f$. Again $n \geq 8$.

Suppose that $m(f) \geq 2$; then $m(f)=2$ by (2), and $f \in F_{7}, F_{8}$, and so $F_{1} l F_{8}$ each contain one of $e_{1} l e_{4}$, and therefore $e_{5} l e_{n}$ belong to no F_{j} with $j \neq i$. Since $n \geq 8$, it follows that $e_{n} \in D_{1}$, and so $F_{i} \cap Q_{i} \cap D_{1} \neq \emptyset$. By (2), it follows that $F_{i} \cap Q_{i} \cap D_{1} \neq \emptyset$ for all $i \in I^{\prime}$, and so $\left|D_{1}\right| \geq\left|I^{\prime}\right|=7$, a contradiction. Thus $m(f)=1$, and so $\left|D_{2}\right| \leq 3$.

Again, let $i \in I^{\prime \prime}$, and let $e_{1} l e_{n}, e_{1}$ be as before. Now $F_{1} l F_{7}$ each contain one of $e_{1} l e_{4}$, and so $e_{5} l e_{n}$ belong to no F_{j} with $1 \leq j \leq 7$ and $j \neq i$, and only one of them belongs to F_{8} if $i \neq 8$. We assume first that $i \neq 8$. Since $n \geq 8$, either $e_{5}, e_{6} \notin F_{8}$, or $e_{n}, e_{n-1} \notin F_{8}$, and so either $e_{5} \in D_{2}$ or $e_{n} \in D_{1}$. Now we assume $i=8$. Then $e_{5} l e_{n}$ belong to no F_{j} with $1 \leq j \leq 7$, and so $e_{5} \in D_{2}$ and $e_{n} \in D_{1}$.

In summary, we have shown that for each $i \in I^{\prime \prime}$, either $F_{i} \cap D_{1} \neq \emptyset$, or $F_{i} \cap D_{2} \neq \emptyset$ (both if $i=8$); and $8 \in I^{\prime \prime}$. By (2), if $i \in I^{\prime} \backslash I^{\prime \prime}$ then either $F_{i} \cap D_{1} \neq \emptyset$, or $F_{i} \cap D_{2} \neq \emptyset$; and so $\left|D_{1}\right|+\left|D_{2}\right| \geq\left|I^{\prime}\right|+1 \geq 7$, a contradiction. This proves 5.10,

5.11 No minimum 8-counterexample contains Conf(19).

Proof. Let (G, m) be a minimum 8-counterexample, and suppose that r is a region with length at least five, and e is an edge of C_{r}, such that $m^{+}(e) \geq 5$, and every edge of C_{r} disjoint from e is 2-heavy, and at most two of them are not 3-heavy. By 5.10, we do not have $\operatorname{Conf}(17)$, so there are at least two edges in C_{r} disjoint from e that are not 3-heavy, and so by hypothesis, there are exactly two, say g_{1}, g_{2}. Thus $m\left(g_{1}\right), m\left(g_{2}\right) \leq 2$. By hypothesis, g_{1}, g_{2} are 2-heavy.

Let $e=u v$, and let the second neighbours of u, v in C_{r} be t, w respectively. Since $m(e) \geq 4$, it follows that $m(t u), m(v w) \leq m(u v)$ and so the path tụyw is switchable. Let $\left(G^{\prime}, m^{\prime}\right)$ be obtained by switching on this path, and let $F_{1} l F_{8}$ be an 8 -edge-colouring of it. Let $k=m(e)+2$. We may assume that $t w \in F_{k}$. Let $I=\{118\} \backslash\{k\}$, and for each $i \in I$ let Q_{i} be as in 5.1. Let I_{1}, I_{2}, I_{3} be the sets of $i \in I$ such that $g_{1} \in Q_{i}, g_{2} \in Q_{i}$, and $g_{1}, g_{2} \notin Q_{i}$ respectively.
(1) $k=6$.

For suppose that $k>6$. Let $i \in I$, and let the edges of Q_{i} in order be $e_{1} l e_{n}, e_{1}$, where $e_{1}=u v$ and
$e_{2}=t w$. Thus e_{3} is an edge of C_{r} disjoint from e. Since $\left|F_{i} \cap Q_{i}\right| \geq 5$ and $\left|F_{i} \cap\left\{e_{1}, e_{2}\right\}\right| \leq 1$, it follows that $n \geq 6$. Now there are $k \geq 7$ values of $j \in\{118\}$ such that F_{j} contains one of e_{1}, e_{2}; and so there is at most value of $j \neq i$ such that F_{j} contains one of e_{3}, e_{4}. It follows that e_{3} is not 3 -heavy and so $i \in I_{1} \cup I_{2}$. Since this holds for all $i \in I$, we may assume that $\left|I_{1}\right| \geq 4$. Let $i \in I_{1}$; as before, there is at most one value of $j \neq i$ such that F_{j} contains one of e_{3}, e_{4}. Now $m\left(g_{1}\right) \leq 2$. If $m\left(g_{1}\right)=2$, then $g_{1} \in F_{i}$, and since this holds for all $i \in I_{1}$ it follows that g_{1} is contained in F_{i} for four different values of i, a contradiction. Thus $m\left(g_{1}\right)=1$. Since g_{1} is 2-heavy, the second region for g_{1} is a triangle with edge set $\left\{g_{1}, p, q\right\}$ say, where $e_{4}=p$. Hence one of f_{1}, p, q has multiplicity one and is contained in F_{i}. Since this holds for all $i \in I_{1}$ and $\left|I_{1}\right| \geq 4$, this is impossible. This proves (1).

We may therefore assume that $u v \in F_{i}$ for $1 \leq i \leq 5$ and $t w \in F_{6}$. Since $k=6$, it follows that $m(e)=4$ and since $m^{+}(e) \geq 5$, the second region r_{1} for $u v$ is small. Let D_{1} be its set of doors.
(2) If $i \in I_{3}$ then $i \leq 5$ and $F_{i} \cap Q_{i} \cap D_{1} \neq \emptyset$.

For let the edges of Q_{i} in order be $e_{1} l e_{n}, e_{1}$, where $e_{1}=u v$ and $e_{2}=t w$. Then $F_{1} l F_{6}$ each contain an edge in $\left\{e_{1}, e_{2}\right\}$, and so for $1 \leq j \leq 6$ with $j \neq i$, none of $e_{3} l e_{n}$ belongs to F_{j}. Now e_{3} is 3-heavy, and so there are three values of j such that F_{j} contains one of e_{3}, e_{4}; and so these three values are $i, 7,8$, and $i \neq 7,8$. (Thus $i \leq 5$ since $6 \notin I$.) Hence for $1 \leq j \leq 8, F_{j}$ contains one of $e_{1} l e_{4}$; and so e_{n}, e_{n-1} belong only to F_{i}. Hence $e_{n} \in D_{1}$. This proves (2).

For $j=1,2$, let I_{j}^{\prime} be the set of all $i \in I_{j}$ such that $F_{i} \cap Q_{i} \cap D_{1}=\emptyset$.
(3) For $j=1,2,\left|I_{j}^{\prime}\right| \leq 2$, and $7,8 \notin I_{j}^{\prime}$, and if $\left|I_{j}^{\prime}\right|=2$ then $7,8 \notin I_{j}$.

For let $j=1$ say. Suppose first that $m\left(g_{1}\right)=2$, and let $g_{1} \in F_{a}, F_{b}$ where $1 \leq a<b \leq 8$. Let $i \in I_{1}^{\prime}$, and let $e_{1} l e_{n}$ be as before; then $e_{3}=g_{1}$. Again, for $1 \leq j \leq 6$ with $j \neq i$, none of $e_{3} l e_{n}$ belong to F_{j}, and consequently $a, b \in\{i, 7,8\}$. In particular, $b \geq 7$, and $a \in\{i, 7\}$. Thus if $a \leq 6$ then $i=a$ and so $\left|I_{1}^{\prime}\right|=1$ and the claim holds. We assume then that $(a, b)=(7,8)$. But then $F_{1} l F_{8}$ each contain one of e_{1}, e_{2}, e_{3}, and so $e_{n} \in D_{1}$, contradicting that $i \in I_{1}^{\prime}$. So the claim holds if $m\left(g_{1}\right)=2$.

Next we assume that $m\left(g_{1}\right)=1$. Since g_{1} is 2-heavy, the second region at g_{1} is a triangle with edge set $\left\{g_{1}, p, q\right\}$ say. Let $g_{1} \in F_{a}$. Let $i \in I_{1}^{\prime}$, and let $e_{1} l e_{n}$ be as before; then $e_{3}=g_{1}$. Again, for $1 \leq j \leq 6$ with $j \neq i$, none of $e_{3} l e_{n}$ belongs to F_{j}, and consequently $a \in\{i, 7,8\}$. Thus if $a \neq 7,8$ then $i=a$ and $\left|I_{1}^{\prime}\right|=1$ and the claim holds. We assume then that $a=7$. Thus each of $F_{1} l F_{7}$ contains one of e_{1}, e_{2}, e_{3}, and for $1 \leq j \leq 7$ with $j \neq i, F_{j}$ contains none of $e_{4} l e_{n}$. Since $F_{i} \cap Q_{i} \cap D_{1}=\emptyset$, there exists $j \in\{118\}$ with $j \neq i$ such that F_{j} contains one of e_{n}, e_{n-1}; and hence $j=8$, and so $i \neq 8$. (Also, $i \neq 7$ since $g_{1} \in F_{7}$ and g_{1} meets e_{4}. Consequently, $7,8 \notin I_{j}^{\prime}$.) Thus $F_{1} l F_{8}$ each contain one of $e_{1}, e_{2}, e_{3}, e_{n-1}, e_{n}$, and so e_{4} is only contained in F_{i}. Consequently, i has the property that one of p, q has multiplicity one, and F_{i} contains it. Thus there are at most two such values of i, and so $\left|I_{j}^{\prime}\right| \leq 2$. Moreover, if there are two such values, say c, d, then $c, d \leq 5$ and F_{c} contains one of p, q and F_{d} contains the other. Consequently if $7 \in I_{1}$, then one of F_{c}, F_{d} contains two edges of Q_{7}, a contradiction. So if $\left|I_{j}^{\prime}\right|=2$ then $7,8 \notin I_{j}$. This proves (3).

From (2), we may assume that $7 \in I_{1}$, and so $\left|I_{1}^{\prime}\right|+\left|I_{2}^{\prime}\right| \leq 3$ by (3). Consequently there are at
least four values of $i \in I$ such that $F_{i} \cap Q_{i} \cap D_{1} \neq \emptyset$, and so $\left|D_{1}\right| \geq 4$, a contradiction. This proves 5.11

This completes the proof of 4.1 and hence of 1.2. Perhaps despite appearances, there was some system to our choice of the β - and γ-rules. We started with the idea that we would normally pass a charge of one from each small region to each big region sharing an edge with it, and made the minimum modifications we could to the β-rules so that the proof of 3.4 worked. Then we experimented with the γ-rules to make 3.5, 3.6 and 3.7 work out.

It is to be hoped that solving these special cases of the main conjecture 1.1 will lead us to a proof of the general case, but that seems far away at the moment. The same approach does indeed work (more simply) for seven-regular planar graphs, and this gives an alternative proof of the result of [4, to appear in [6]. We tried the same again for nine-regular graphs, but there appeared to be some serious difficulties. Maybe more perseverance will bring it through, but it seems much harder than the eight-regular case.

References

[1] K.Appel and A.Haken, "Every planar map is four colorable. Part I. Discharging", Illinois J. Math. 21 (1977), 429-490.
[2] K.Appel, A.Haken and J.Koch, "Every planar map is four colorable. Part II. Reducibility", Illinois J. Math. 21 (1977), 491-567.
[3] Z.Dvorak, K.Kawarabayashi and D.Kral, "Packing six T-joins in plane graphs", manuscript (2010arXiv1009.5912D)
[4] K.Edwards, Optimization and Packings of T-joins and T-cuts, M.Sc. Thesis, McGill University, 2011.
[5] B.Guenin, "Packing T-joins and edge-colouring in planar graphs", Mathematics of Operations Res., to appear.
[6] M.Chudnovsky, K.Edwards, K.Kawarabayashi and P.Seymour, "Edge-colouring seven-regular planar graphs", in preparation.
[7] N.Robertson, D.Sanders, P.Seymour and R.Thomas, "The four colour theorem", J. Combinatorial Theory, Ser. B, 70 (1997), 2-44.
[8] P. Seymour, Matroids, Hypergraphs and the Max.-Flow Min.-Cut Theorem, D.Phil. thesis, Oxford, 1975, page 34.
[9] P.G.Tait, "Remarks on the colourings of maps", Proc. R. Soc. Edinburgh 10 (1880), 729.

[^0]: ${ }^{1}$ Supported by NSF grants DMS-1001091 and IIS-1117631.
 ${ }^{2}$ Supported by an NSERC PGS-D3 Fellowship and a Gordon Wu Fellowship.
 ${ }^{3}$ Supported by ONR grant N00014-10-1-0680 and NSF grant DMS-0901075.

