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Abstract

Let k and r be two integers with k ≥ 2 and k ≥ r ≥ 1. In this paper we show that (1) if
a strongly connected digraph D contains no directed cycle of length 1 modulo k, then D is
k-colorable; and (2) if a digraph D contains no directed cycle of length r modulo k, then D

can be vertex-colored with k colors so that each color class induces an acyclic subdigraph in
D. The first result gives an affirmative answer to a question posed by Tuza in 1992, and the
second implies the following strong form of a conjecture of Diwan, Kenkre and Vishwanathan:
If an undirected graph G contains no cycle of length r modulo k, then G is k-colorable if
r 6= 2 and (k+1)-colorable otherwise. Our results also strengthen several classical theorems
on graph coloring proved by Bondy, Erdős and Hajnal, Gallai and Roy, Gyárfás, etc.
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1 Introduction

Digraphs considered in this paper contain no loops nor parallel arcs. By a cycle (resp. path)
in a digraph we mean a simple and directed one throughout. Let D be a digraph. As usual,
the underlying graph of D, denoted by G, is obtained from D by replacing each arc with an
edge having the same ends. A proper k-coloring of D is simply a proper k-coloring of G. Thus
D is k-colorable iff so is G, and the chromatic number χ(D) of D is exactly χ(G). An acyclic
k-coloring of D is an assignment of k colors, 1, 2, . . . , k, to the vertices of D so that each color
class induces an acyclic subdigraph in D. The acyclic chromatic number χa(D) of D is the
minimum k for which D admits an acyclic k-coloring. Clearly, χa(D) ≤ χ(D); this inequality,
however, need not hold equality in general.

Classical digraph coloring arises in a rich variety of applications, and hence it has attracted
many research efforts. As it is NP -hard to determine the chromatic number of a given digraph,
the focus of extensive research has been on good bounds. A fundamental theorem due to Gallai
and Roy [8,17] asserts that the chromatic number of a digraph is bounded above by the number
of vertices in a longest path. It is natural to further explore the connection between chromatic
number and cycle lengths. To get meaningful results in this direction, a common practice is
to impose strong connectedness on digraphs we consider. Bondy [3] showed that the chromatic
number of a strongly connected digraph D is at most its circumference, the length of a longest
cycle in D. In [18], Tuza proved that if an undirected graph G contains no cycle whose length
minus one is a multiple of k, then G is k-colorable. He also asked whether or not similar results
can be obtained for digraphs in terms of cycle lengths that belong to prescribed residue classes.
One objective of this paper is to give an affirmative answer to his question, which strengthens,
among others, all the theorems stated above.

Theorem 1. Let k ≥ 2 be an integer. If a strongly connected digraph D contains no directed
cycle of length 1 modulo k, then χ(D) ≤ k.

We point out that the bound is sharp for infinitely many digraphs, such as strongly connected
tournaments with an even number of vertices.

The odd circumference of a graph G (directed or undirected), denoted by l(G), is the length
of a longest odd cycle (if any) in G. We set l(G) = 1 if G contains no odd cycle. A corollary of
the above theorem is the following statement, which has interest in its own right and is in the
same spirit as the above Bondy theorem [3].

Theorem 2. For every strongly connected digraph D, we have χ(D) ≤ l(D) + 1.

It was shown by Erdős and Hajnal [7] that χ(G) ≤ l(G)+ 1 for any undirected graph G; the
equality is achieved only when G contains a complete subgraph with l(G)+1 vertices (see Kenkre
and Vishwanathan [13]). So a natural question to ask is whether this characterization remains
valid for the directed case. Interestingly, the answer is in the negative: Let D be obtained from
the orientation

v1 → v2 ← v3 → . . .→ v2k ← v2k+1 → . . .→ v2n ← v2n+1 → v1
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of a (2n + 1)-cycle v1v2 . . . v2n+1v1 by adding a new vertex v2n+2 and a pair of opposite arcs
(v2n+2, vi) and (vi, v2n+2) for all 1 ≤ i ≤ 2n + 1. It is easy to see that D is strongly connected
with χ(D) = 4 and l(D) = 3. Nevertheless, D does not contain four pairwise adjacent vertices.

The concept of acyclic chromatic number was independently introduced by Neumann-Lara
[16] and Mohar et al. [2, 15], and the theory of acyclic coloring provides an interesting way to
extend theorems about coloring graphs to digraphs. In [5], Chen, Hu and Zang proved that it is
NP -complete to decide if the acyclic chromatic number of a given digraph D is 2, even when D

is restricted to a tournament. A tournament H is called a hero if there exists a constant c(H)
such that every tournament not containing H as a subtournament has acyclic chromatic number
at most c(H). In [1], Berger et al. obtained a complete characterization of all heroes. In a series
of papers [2, 10–12, 15], Mohar and his collaborators proved that many interesting results on
graph coloring can be naturally carried over to digraphs with respect to acyclic coloring.

As exhibited by Neumann-Lara [16], there also exist some intimate connections between
acyclic chromatic numbers and cycle lengths: For any fixed integers k and r with 2 ≤ r ≤ k,
if a digraph D contains no cycle of length 0 or 1 modulo r, then χa(D) ≤ k. Recall the
aforementioned Tuza theorem [18], if an undirected graph G has no cycle of length 1 modulo k,
then χ(G) ≤ k. In [6], Diwan, Kenkre and Vishwanathan proved that χ(G) ≤ k + 1 if graph G

contains no cycle of length 2 modulo k, and χ(G) ≤ 2k if G contains no cycle of length 3 modulo
k; they [6] further conjectured that for any fixed integer r with 1 ≤ r ≤ k, if graph G contains
no cycle of length r module k, then χ(G) ≤ k + f(k), where f(k) = o(k) (possibly a constant).
The second objective of this paper is to confirm this conjecture by revealing further connection
between acyclic chromatic numbers and cycle lengths.

Theorem 3. Let k and r be two integers with k ≥ 2 and k ≥ r ≥ 1. If a digraph D contains no
directed cycle of length r modulo k, then χa(D) ≤ k.

Unlike Theorem 1, digraph D is not assumed to be strongly connected here, though (as we
shall see) the assertion reduces to this case. Theorem 3 implies the following strong form of the
above Diwan, Kenkre and Vishwanathan conjecture [6].

Theorem 4. Let k and r be two integers with k ≥ 2 and k ≥ r ≥ 1. If an undirected graph
G contains no cycle of length r modulo k, then G is k-colorable if r 6= 2 and (k + 1)-colorable
otherwise.

We have noticed that this bound is sharp in several cases, such as r = 1 or 2 (consider the
complete graph with k or k + 1 vertices, respectively).

Let us digress to introduce some notations and terminology, which will be used repeatedly
in our proofs. For a directed cycle (or a path) C, we use |C| to denote its length and use xCy to
denote the segment of C from x to y for any two vertices x, y on C. A digraph is called strong
if it is strongly connected, and called nontrivial if it contains at least two vertices.

Let D = (V,A) be a digraph, and let F be a subdigraph of D. An F -ear P in D is either
a path in D whose two ends lie in F but whose internal vertices do not, or a cycle in D that
contains precisely one vertex of F . Recall that if P is a path from u to v, then u and v are
called the origin and terminus of P , respectively. If P is a cycle, then we view the common
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vertex of P and F as both the origin and terminus of P . A nested sequence (D0,D1, . . . ,Dm)
of subdigraphs of D is called an ear decomposition of D if the following conditions are satisfied:

• D0 is a cycle;

• Di+1 = Di ∪ Pi+1, where Pi+1 is a Di-ear in D for 0 ≤ i ≤ m− 1;

• Dm = D.

As is well known, every nontrivial strong digraph admits an ear decomposition (see, for instance,
[4]). For any function f defined on V (Di) (the vertex set of Di) and any Di-ear P with origin
u and terminus v in Di, define

fi(P ) = |P | − (f(v)− f(u)). (1.1)

Observe that fi(P ) = |P | if P is a cycle.

The remainder of this paper is organized as follows. In section 2, we establish Theorem
1 by developing the ear decomposition technique, and then deduce Theorem 2 as a corollary.
In section 3, we prove Theorem 3 based on a more sophisticated ear decomposition, and also
apply it to show Theorem 4. In section 4, we demonstrate that our theorems strengthen several
classical theorems on graph coloring. In the last section, we conclude this paper with some
remarks and open questions.

2 Classical Coloring

The purpose of this section is to prove two theorems concerning classical digraph coloring.

Proof of Theorem 1. Clearly, we may assume that D contains at least two vertices. We
propose to construct an ear decomposition (D0,D1, . . . ,Dm) of D (see the above description)
and a function f : V (D)→ {0, 1, . . . , k − 1}, such that for i = 0, 1, . . . ,m, we have

(A) f(u) 6= f(v) for any arc (u, v) of Di;

(B) fi(P ) 6≡ 1 (mod k) (see (1.1)) for any Di-ear P in D.

If successful, from (A) we see that f is a proper k-coloring of Di for 0 ≤ i ≤ m, and hence
χ(D) = χ(Dm) ≤ k.

For 1 ≤ i ≤ k, let Ci be the set of all cycles of length i modulo k in D, which we call a residue
cycle class. By hypothesis,

(1) C1 = ∅.
For convenience, we define a linear order on other residue cycle classes as follows:

(2) Ck > Ck−1 > Ck−2 > . . . > C2.
Let Ct be the first nonempty residue cycle class in this linear order. From this definition and (1)
we deduce

(3) Ct+1 = ∅.
Let D0 be a cycle in Ct. Write D0 as v0 → v1 → ...→ vn → v0. For each integer r, we use r̄

to denote the element of {0, 1, . . . , k − 1} which is congruent to r modulo k throughout. Define
f : V (D0)→ {0, 1, 2, ..., k − 1} by f(vr) = r̄ for 0 ≤ r ≤ n.

Claim 1. D0 and f satisfy both (A) and (B).
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To justify this, note first that the length of D0 is n + 1, so n 6≡ 0 (mod k) by (1). Hence
f(vn) 6= f(v0). From the definition of f , it follows that (A) is satisfied.

Suppose for a contradiction that (B) fails on D0 and f . Then there exists a D0-ear P with
f0(P ) ≡ 1 (mod k). Let vi and vj be the origin and terminus of P , respectively. By (1.1), we
have f0(P ) = |P |−(f(vj)−f(vi)) ≡ |P |−(j−i) (mod k). So |P | ≡ (j−i)+1 (mod k). Observe
that i 6= j, for otherwise P would be a cycle of length 1 modulo k, contradicting (1). From
the definition of f , we see that |viD0vj | ≡ (j − i) (mod k) if i < j and that |vjD0vi| ≡ (i − j)
(mod k) if j < i. Therefore P ∪ vjD0vi is a cycle in Ct+1 if i < j and in C1 otherwise. This
contradiction to (3) or (1) justifies Claim 1.

Recall the definition of an ear decomposition of D, suppose we have already constructed a
Di and a function f : V (Di) → {0, 1, 2, ..., k − 1} that satisfy both (A) and (B) for some i ≥ 0
(see Claim 1). If Di = D, we are done by (A). So we assume that Di is a proper subdigraph of
D. Let us proceed to the construction of Di+1.

As D is strong, it contains at least one Di-ear. For 1 ≤ j ≤ k, let Pj be the set of all Di-ears
P with fi(P ) ≡ j (mod k). Since Di and f satisfy (B),

(4) P1 = ∅.
Now let us define a linear order on other Pj ’s as follows:

(5) Pk > Pk−1 > Pk−2 > . . . > P2.
Let Ps be the first nonempty set in this linear order. By this definition and (4), we obtain

(6) Ps+1 = ∅.
Let Pi+1 be a member of Ps and set Di+1 = Di ∪ Pi+1. Write Pi+1 as u0 → u1 → . . . → uh,
where {u0, uh} ⊆ V (Di). We extend the previous function f to the domain V (Di+1) by defining
f(ur) = f(u0) + r for 1 ≤ r ≤ h− 1. Let us show that Di+1 and f are as desired.

Claim 2. Di+1 and f satisfy both (A) and (B).

To justify this, note first that f(uh−1) = f(u0) + h− 1 ≡ f(u0) + h− 1 ≡ f(u0) + |Pi+1| − 1
(mod k). By (4), we have fi(Pi+1) 6≡ 1 (mod k); that is, |Pi+1| − (f(uh)− f(u0)) 6≡ 1 (mod k)
using (1.1). So f(u0) + |Pi+1| − 1 6≡ f(uh) (mod k) and hence f(uh−1) 6= f(uh). From the
definition of f , we see that (A) is satisfied.

To establish property (B), assume the contrary: fi+1(P ) ≡ 1 (mod k) for some Di+1-ear P in
D. Let a and b be the origin and terminus of P , respectively. Then fi+1(P ) = |P |−(f(b)−f(a)).
So

(7) |P | − (f(b)− f(a)) ≡ 1 (mod k).
It follows that a 6= b, for otherwise P would be a cycle of length 1 modulo k, contradicting (1).
Since Di and f satisfy (B), we may assume that at least one of a and b is in Pi+1\Di. Depending
on the locations of a and b, we distinguish among four cases.

Case 1. a = up and b = uq with 0 ≤ q < p ≤ h. In this case, set C = P ∪ bPi+1a. If
a 6= uh, then C is a cycle in D with |C| = |P | + p − q ≡ |P | − (f(b) − f(a)) ≡ 1 (mod k)
by (7). Hence C ∈ C1, contradicting (1). If a = uh, then b 6= u0. Thus cycle C is a Di-
ear in D with fi(C) = |C| = |P | + |bPi+1a| ≡ (f(b) − f(a) + 1) + (|Pi+1| − f(b) + f(u0)) ≡
|Pi+1| − (f(uh)− f(u0)) + 1 ≡ fi(Pi+1) + 1 ≡ s+ 1 (mod k), contradicting (6).

Case 2. a = up and b = uq with 0 ≤ p < q ≤ h. In this case, set Q1 = u0Pi+1a∪P ∪bPi+1uh.
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If b 6= uh, then Q1 is aDi-ear inD with |Q1|−|Pi+1| ≡ |P |−(f(b)−f(a)) ≡ 1 (mod k) by (7). As
Pi+1 ∈ Ps, we get Q1 ∈ Ps+1, contradicting (6). If b = uh, then fi(Q1) = |Q1|− (f(b)−f(u0)) =
|P |+ |u0Pi+1up|−(f(b)−f(u0)) ≡ |P |+(f(a)−f(u0))−(f(b)−f(u0)) ≡ |P |−(f(b)−f(a)) ≡ 1
(mod k) by (7), contradicting (4).

Case 3. a ∈ Di\Pi+1 and b = up with 0 < p < h. In this case, setQ2 = P∪bPi+1uh. ThenQ2

is aDi-ear inD with fi(Q2) = |Q2|−(f(uh)−f(a)) ≡ (|P |+|Pi+1|−f(b)+f(u0))−(f(uh)−f(a))
(mod k). From (7) it follows that fi(Q2) ≡ 1 + |Pi+1| + f(u0) − f(uh) ≡ fi(Pi+1) + 1 ≡ s + 1
(mod k), which implies Q2 ∈ Ps+1, contradicting (6).

Case 4. b ∈ Di\Pi+1 and a = up with 0 < p < h. In this case, set Q3 = u0Pi+1up∪P . Then
Q3 is a Di-ear in D with fi(Q3) = |Q3|− (f(b)−f(u0)) ≡ (|P |+f(a)−f(u0))− (f(b)−f(u0)) ≡
|P | − (f(b) − f(a)) ≡ 1 (mod k) by (7), which implies Q3 ∈ P1, contradicting (4). So Claim 3
holds.

Repeating the above construction process, we shall eventually get an ear decomposition
(D0,D1, . . . ,Dm) of D and a function f : V (D)→ {0, 1, . . . , k− 1} with properties (A) and (B)
(see Claims 1 and 2). This completes the proof of Theorem 1.

Proof of Theorem 2. Let k = l(D) + 1. Then k is an even integer with k ≥ 2. Observe
that D contains no cycle C whose length minus one is a multiple of k, for otherwise C is an odd
cycle with |C| ≥ k + 1 > l(D), contradicting the definition of l(D). From Theorem 1, we thus
deduce that χ(D) ≤ k = l(D) + 1, as desired.

3 Acyclic Coloring

Let us define a few terms before presenting the proof of Theorem 3. Let D = (V,A) be a
digraph and let ≺ be a linear order on V ; that is, for any two vertices u and v, precisely one of
the relations u ≺ v and v ≺ u holds. We say that u precedes v (also v succeeds u) in the order ≺
if u ≺ v. An arc (u, v) of D is called forward if u ≺ v and backward otherwise. More generally,
let F be a subdigraph of D. An F -ear P with origin u and terminus v is called forward if u ≺ v,
backward if v ≺ u, and cyclic otherwise. A vertex pair {u, v} of F is called a backward pair in F

if there exists a backward F -ear between u and v in D.

Proof of Theorem 3. For convenience, we will treat r as an integer satisfying 0 ≤ r ≤ k−1.
It is easy to see that for any digraph D, we have

χa(D) = max{χa(F ) : F is a strong subdigraph of D}.

So we may assume that D addressed in the theorem is strong. Clearly, we may also assume that
D is nontrivial.

We propose to construct an ear decomposition (D0,D1, . . . ,Dm) of D, a linear order ≺ on
the vertices of D, and a function f : V (D)→ {0, 1, . . . , k− 1}, with the following properties for
each i = 0, 1, ...,m:

(A) f(u) 6= f(v) for any forward arc (u, v) of Di;

(B) fi(P ) 6≡ 1 (mod k) (see (1.1)) for any forward Di-ear P in D; and
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(C) there exists an integer α = α(u, v) for any backward pair {u, v} with u ≺ v in Di, such
that |P | 6≡ α (mod k) for any backward Di-ear P from v to u in D.

If successful, from (A) we see that each color class induces a subdigraph in Di which contains
no forward arcs and hence is acyclic. It follows that f is an acyclic k-coloring of Di for all
0 ≤ i ≤ m. Therefore, χa(D) = χa(Dm) ≤ k.

Once again, we use p̄ to denote the element of {0, 1, . . . , k−1} which is congruent to p modulo
k for any integer p; and we use Cp to denote the residue cycle class consisting of all cycles of
length p modulo k in D for 0 ≤ p ≤ k − 1. By hypothesis, we have

(1) Cr = ∅.
We define a linear order on other residue cycle classes by

(2) Cr−1 > Cr−2 > . . . > C0 > Ck−1 > Ck−2 > . . . > Cr+1.
Let Ct be the first nonempty residue cycle class in this linear order. In view of (1), we obtain

(3) Ct+1 = ∅.
Let D0 be a cycle in Ct and write D0 = v0 → v1 → . . .→ vn → v0. We define a linear order

≺ on V (D0) by v0 ≺ v1 ≺ v2 ≺ . . . ≺ vn, and define a function f : V (D0)→ {0, 1, . . . , k − 1} by
f(vp) = p̄ for 0 ≤ p ≤ n.

Claim 1. D0, ≺ and f satisfy all of (A), (B) and (C).

Indeed, since the arc (vn, v0) is backward, property (A) follows instantly from the definition
of f .

Assume on the contrary that property (B) fails. Then there exists a forward D0-ear P from
some vi to vj with f0(P ) ≡ 1 (mod k). By (1.1), we obtain |P | ≡ f(vj)−f(vi)+1 ≡ |viD0vj|+1
(mod k) as vi ≺ vj. Thus the cycle P ∪vjD0vi has length |P |+ |D0|− |viD0vj| ≡ |D0|+1 ≡ t+1
(mod k) and hence belongs to Ct+1, contradicting (3).

To establish property (C), set α(vi, vj) = i − j + r for each vertex pair {vi, vj} of D0 with
i < j. If there exists a backward D0-ear P in D from vj to vi with |P | ≡ α(vi, vj) (mod k),
then the cycle P ∪ viD0vj would belong to Cr, because |P ∪ viD0vj | ≡ α(vi, vj) + |viD0vj | ≡
(i− j + r) + (j − i) ≡ r (mod k); this contradiction to (1) justifies Claim 1.

Suppose we have already constructed a nontrivial strong Di, a linear order ≺ on V (Di), and
a function f : V (Di)→ {0, 1, 2, ..., k − 1} that satisfy all of (A), (B) and (C) for some i ≥ 0 (see
Claim 1). If Di = D, we are done by (A). So we may assume that Di is a proper subdigraph of
D. Let us proceed to the construction of Di+1 and first consider the situation when

(4) there exists at least one forward or cyclic Di-ear in D.
For 0 ≤ j ≤ k − 1, let Pj (resp. Qj) be the set of all forward (resp. cyclic) Di-ears P with
fi(P ) ≡ j (mod k). Observe that

(5) P1 = ∅ and Qr = ∅,
where the first equality follows from property (B) with respect to i, and the second from (1).
We define a linear order on other Pj ’s and Qj ’s as follows:

(6) P0 > Pk−1 > Pk−2 > . . . > P2 > Qr−1 > Qr−2 > . . . >

Q0 > Qk−1 > Qk−2 > . . . > Qr+1.
Let A denote the first nonempty set in this linear order. Then A is Ps or Qs for some subscript
s. From the definition of A and (5), we deduce that
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(7) Ps+1 = ∅ in any case, and Qs+1 = ∅ if A = Qs.
Let Pi+1 be an element of A (so we always have fi(Pi+1) ≡ s (mod k)) and set Di+1 = Di∪Pi+1.
Write Pi+1 = u0 → u1 → . . .→ uh, where {u0, uh} ⊆ V (Di). If A = Ps, then Pi+1 is a forward
Di-ear, implying that

(8) u0 ≺ uh when u0 6= uh.
Let u+

0
be the vertex of Di that succeeds u0 immediately in the order ≺. We extend the linear

order ≺ from V (Di) to V (Di+1) by inserting all uj, with 1 ≤ j ≤ h − 1, between u0 and u+
0
,

such that
(9) u0 ≺ u1 ≺ . . . ≺ uh−1 ≺ u+

0
.

Moreover, we extend the function f from the domain V (Di) to the domain V (Di+1) by defining
f(uj) = f(u0) + j for 1 ≤ j ≤ h− 1. Let us now establish correctness of this construction.

Claim 2. Di+1, ≺ and f satisfy both (A) and (B).

To justify this, note from (8) and (9) that (uj , uj+1) is a forward arc for 0 ≤ j ≤ h −
2, and that (uh−1, uh) is a forward arc if u0 6= uh and a backward arc otherwise. Clearly,
f(uh−1) = f(u0) + h− 1 ≡ f(u0) + h − 1 ≡ f(u0) + |Pi+1| − 1 (mod k). If u0 6= uh, then
fi(Pi+1) 6≡ 1 (mod k) by (5), which implies |Pi+1| − (f(uh) − f(u0)) 6≡ 1 (mod k) using (1.1).
So f(u0) + |Pi+1| − 1 6≡ f(uh) (mod k) and hence f(uh−1) 6= f(uh). From the definition of f ,
we see that (A) is satisfied.

Suppose for a contradiction that (B) fails. Then there exists a forward Di+1-ear P from a

to b with fi+1(P ) ≡ 1 (mod k). Thus
(10) a ≺ b and |P | − (f(b)− f(a)) ≡ 1 (mod k).

As (B) holds for Di, ≺ and f , we may assume that at least one of a and b is in Pi+1\Di.
Depending on the locations of a and b, we consider three cases.

Case 1. a, b ∈ Pi+1. By (8), (9) and (10), we have a = up and b = uq for some p and
q with 0 ≤ p < q ≤ h. Set Q1 = u0Pi+1a ∪ P ∪ bPi+1uh. If b 6= uh, then Q1 is a Di-
ear from u0 to uh in D with |Q1| − |Pi+1| ≡ |P | − (f(b) − f(a)) ≡ 1 (mod k) by (10). It
follows that Q1 ∈ Ps+1 if Pi+1 ∈ Ps and that Q1 ∈ Qs+1 if Pi+1 ∈ Qs, contradicting (7) in
either subcase. If b = uh, then u0 6= uh by (9) and (10). Thus Q1 is a forward Di-ear from
u0 to uh in D with fi(Q1) = |Q1| − (f(b) − f(u0)) = |P | + |u0Pi+1up| − (f(b) − f(u0)) ≡
|P | + (f(a) − f(u0)) − (f(b) − f(u0)) ≡ |P | − (f(b) − f(a)) ≡ 1 (mod k) by (10), and hence
Q1 ∈ P1, contradicting (5).

Case 2. a ∈ Pi+1\Di and b ∈ Di\Pi+1. By (9) and (10), we have u0 ≺ a ≺ b. Set
Q2 = u0Pi+1a ∪ P . Then Q2 is a forward Di-ear from u0 to b in D with fi(Q2) ≡ |u0Pi+1a| +
|P | − (f(b)− f(u0)) ≡ (f(a)− f(u0)) + (f(b)− f(a) + 1) − (f(b)− f(u0)) ≡ 1 (mod k), where
the second equality follows from (10). Hence Q2 ∈ P1, contradicting (5).

Case 3. a ∈ Di\Pi+1 and b ∈ Pi+1\Di. By (8), (9) and (10), we have a ≺ b ≺ uh if u0 6= uh
and a ≺ u0 ≺ b if u0 = uh. Set Q3 = P ∪ bPi+1uh. Then Q3 is a forward Di-ear from a to uh in
D with fi(Q3) = |Q3|− (f(uh)− f(a)) ≡ (|P |+ |Pi+1|− f(b)+ f(u0))− (f(uh)− f(a)) (mod k).
From (10) we see that fi(Q3) ≡ 1 + |Pi+1| − (f(uh) − f(u0)) ≡ fi(Pi+1) + 1 ≡ s + 1 (mod k).
So Q3 ∈ Ps+1; this contradiction to (7) establishes Claim 2.

Claim 3. Di+1, ≺ and f satisfy (C).
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We aim to show that for any backward pair {a, b} in Di+1 with a ≺ b, the integer α(a, b)
as described in (C) (with i + 1 in place of i) exists. Since (C) holds for Di, ≺ and f , we may
assume that at least one of a and b is in Pi+1\Di. Depending on the locations of a and b, we
consider four cases.

Case 1. a, b ∈ Pi+1. In this case, set α(a, b) = r − |aPi+1b|. Suppose on the contrary
that there exists a backward Di+1-ear P from b to a in D with |P | ≡ α(a, b) (mod k). Let
C = P ∪aPi+1b. Then C is a directed cycle of length |C| = |P |+|aPi+1b| ≡ α(a, b)+|aPi+1b| ≡ r

(mod k), so C ∈ Cr, contradicting (1).
Case 2. a ∈ Pi+1\Di and b ∈ Di\Pi+1 with uh ≺ b. In this case, by (8) and (9), we have

u0 ≺ a ≺ uh ≺ b if u0 6= uh and u0 ≺ a ≺ b if u0 = uh. Let P be an arbitrary backward Di+1-ear
from b to a in D. Then Q1 = P ∪ aPi+1uh is a backward Di-ear from b to uh. Since (C) holds
for Di, ≺ and f , there exists an integer α(b, uh) such that no backward Di-ear from b to uh
in D has length α(b, uh) modulo k. In particular, |P | + |aPi+1uh| = |Q1| 6≡ α(b, uh) (mod k).
Therefore, |P | 6≡ α(b, uh)− |aPi+1uh| (mod k). So α(a, b) = α(b, uh)− |aPi+1uh| is as desired.

Case 3. a ∈ Pi+1\Di and b ∈ Di\Pi+1 with b ≺ uh. In this case, by (8) and (9), we
obtain u0 6= uh and u0 ≺ a ≺ b ≺ uh. Let us show that α(a, b) = f(a) − f(b) + 1 will
do. Assume the contrary: some backward Di+1-ear P from b to a in D has length α(a, b)
modulo k. Let Q2 = P ∪ aPi+1uh. Then Q2 is a forward Di-ear from b to uh in D with
fi(Q2) = |P |+ |aPi+1uh| − (f(uh)− f(b)) ≡ α(a, b) + |Pi+1| − (f(a)− f(u0))− (f(uh)− f(b)) ≡
1 + fi(Pi+1) ≡ s+ 1 (mod k), so Q2 ∈ Ps+1, contradicting (7).

Case 4. a ∈ Di\Pi+1 and b ∈ Pi+1\Di. In this case, by (9) we have a ≺ u0 ≺ b. Since (C)
holds for Di, ≺ and f , there exists an integer α(a, u0) such that no backward Di-ear from u0 to
a has length α(a, u0) modulo k. Set α(a, b) = α(a, u0)−f(b)+f(u0). Then there is no backward
Di+1-ear P from b to a in D with |P | ≡ α(a, b) (mod k), for otherwise, Q3 = u0Pi+1b∪P would
be a backward Di-ear from u0 to a in D with |Q3| ≡ (f(b) − f(u0)) + |P | ≡ α(a, u0) (mod k);
this contradiction finishes the proof of Claim 3.

It remains to consider the situation when (4) does not occur; that is,
(11) there exists neither forward nor cyclic Di-ear in D.

Since D is strong, Di contains at least one backward pair. Among all such backward pairs, we
choose a pair {x, y} with x ≺ y such that

(12) the set [x, y]i = {z ∈ V (Di) : x � z � y} has the smallest size.
For 0 ≤ j ≤ k − 1, let Rj be the set of all backward Di-ears P from y to x in D with |P | ≡ j

(mod k). Since property (C) holds on Di, ≺ and f , there exists an integer α = α(x, y) such that
(13) Rα = ∅.

We define a linear order on other Rj ’s as follows:
(14) Rα−1 > Rα−2 > . . . > R0 > Rk−1 > Rk−2 > . . . > Rα+1.

Let Rs be the first nonempty set in this linear order. By (13), we obtain
(15) Rs+1 = ∅.

Let Pi+1 be a path in Rs and set Di+1 = Di∪Pi+1. Write Pi+1 = uh → uh−1 → . . .→ u1 → u0.
Then

(16) u0 = x ≺ y = uh.
Let u−

0
be the vertex of Di that precedes u0 immediately in the order ≺. We extend the linear

order ≺ from V (Di) to V (Di+1) by inserting all uj, with 1 ≤ j ≤ h − 1, between u−
0

and u0,
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such that
(17) u−

0
≺ uh−1 ≺ uh−2 ≺ . . . ≺ u1 ≺ u0.

Moreover, we extend the function f from the domain V (Di) to the domain V (Di+1) by defining
f(uj) = f(u0)− j for 1 ≤ j ≤ h− 1. Let us now show correctness of this construction.

Claim 4. Di+1, ≺ and f satisfy both (A) and (B).

To justify this, note that (uj , uj−1) is a forward arc for 1 ≤ j ≤ h − 1 while (uh, uh−1) is a
backward arc by (16) and (17). From the definition of f , we see that (A) is satisfied.

To establish property (B), assume the contrary: there exists some forward Di+1-ear P from
a to b with fi+1(P ) ≡ 1 (mod k). Then

(18) a ≺ b and |P | ≡ f(b)− f(a) + 1 (mod k).
By (11), at least one of a and b is in Pi+1\Di. Depending on the locations of a and b, we
distinguish among three cases.

Case 1. a, b ∈ Pi+1. If b = y, then a 6= x, and thus C = P ∪ bPi+1a is a cyclic Di-ear
in D, contradicting (11). So b 6= y. By (16), (17) and (18), we have a = up and b = uq with
0 ≤ q < p < h. Let Q1 = yPi+1a ∪P ∪ bPi+1x. Then Q1 is a backward Di-ear from y to x in D

with |Q1| ≡ |P |+ |Pi+1|− (f(b)− f(a)) ≡ |Pi+1|+1 ≡ s+1 (mod k), where the second equality
follows from (18). So Q1 ∈ Rs+1, contradicting (15).

Case 2. a ∈ Di\Pi+1 and b ∈ Pi+1\Di. By (17) and (18), we have a ≺ b ≺ x. Thus
Q2 = P ∪ bPi+1x is a forward Di-ear in D, contradicting (11).

Case 3. a ∈ Pi+1\Di and b ∈ Di\Pi+1. By (17) and (18), we have a ≺ x ≺ b. Let
Q3 = yPi+1a ∪ P . By (11), Q3 must be a backward Di-ear in D. So b ≺ y and thus {b, y} is a
backward pair in Di with [b, y]i ( [x, y]i, contradicting (12). This proves Claim 4.

Claim 5. Di+1, ≺ and f satisfy (C).

We aim to show that for any backward pair {a, b} in Di+1 with a ≺ b, the integer α(a, b)
as described in (C) (with i + 1 in place of i) exists. Since (C) holds for Di, ≺ and f , we may
assume that at least one of a and b is in Pi+1\Di. Depending on the locations of a and b, we
consider four cases.

Case 1. a ∈ Pi+1\Di and b = y. By (16) and (17), we have a ≺ x ≺ y = b. Define
α(a, b) = α−f(x)+f(a) (see (13) for the definition of α). Then there is no backward Di+1-ear P
from b to a inD with |P | ≡ α(a, b) (mod k), for otherwise Q1 = P∪aPi+1x would be a backward
Di-ear from y to x in D of length |P |+ |aPi+1x| ≡ |P |+ f(x)− f(a) ≡ α(a, b)+ f(x)− f(a) ≡ α

(mod k), contradicting (13).
Case 2. a, b ∈ Pi+1 with b 6= y. Since a ≺ b, by (16) and (17) we have a = up and b = uq

with 0 ≤ q < p < h. Set α(a, b) = f(a)− f(b) + r. Then there exists no backward Di+1-ear P

from b to a in D with |P | ≡ α(a, b) (mod k), for otherwise C = P ∪ aPi+1b would be a cycle of
length |P |+ |aPi+1b| ≡ α(a, b) + f(b)− f(a) ≡ r (mod k), so C ∈ Cr, contradicting (1).

Case 3. a ∈ Pi+1\Di and b ∈ Di\Pi+1. Since a ≺ b, by (16) and (17) we have a ≺ x ≺ b.
Since (C) holds forDi, ≺ and f , there exists an integer α(b, x) such that no backwardDi-ear from
b to x in D has length α(b, x) modulo k. Define α(a, b) = α(b, x)−f(x)+f(a). Then there exists
no backward Di+1-ear P from b to a with |P | ≡ α(a, b) (mod k), for otherwise Q2 = P ∪aPi+1x

would be a backward Di-ear from b to x with length |Q2| ≡ |P |+f(x)−f(a) ≡ α(b, x) (mod k),
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a contradiction.
Case 4. a ∈ Di\Pi+1 and b ∈ Pi+1\Di. In this case, by (16) and (17) we have a ≺ b ≺ x ≺ y.

Since (C) holds for Di, ≺ and f , there exists an integer α(a, y) such that no backward Di-ear
from y to a in D has length α(a, y) modulo k. Define α(a, b) = α(a, y) − |Pi+1| + f(x) − f(b).
Then there is no backward Di+1-ear P from b to a inD with |P | ≡ α(a, b) (mod k), for otherwise
Q3 = yPi+1b∪ P would be a backward Di-ear from y to a in D of length |P |+ |Pi+1| − (f(x)−
f(b)) ≡ α(a, y), a contradiction. So Claim 5 is true.

Repeating this construction process, we shall eventually get an ear decomposition (D0,D1, . . . ,

Dm) of D, a linear order ≺ on the vertices of D, and a function f : V (D) → {0, 1, . . . , k − 1}
with properties (A), (B) and (C) (see Claims 1-5). This completes the proof of Theorem 3.

Proof of Theorem 4. Recall that if G contains no odd cycle, then G is a bipartite graph,
and that if G contains no even cycle, then each block of G other than an edge is an odd cycle,
so the assertion holds trivially for k = 2.

Consider the case when k ≥ 3. As shown by Diwan, Kenkre and Vishwanathan [6] (see its
Corollary 2), if r = 2, then χ(G) ≤ k + 1. So we assume r 6= 2 hereafter.

Let D be the digraph obtained from G by replacing each edge uv of G with a pair of opposite
arcs (u, v) and (v, u). Clearly, D has a directed cycle of length n iff G has a cycle of length n

for any n ≥ 3. Thus, it follows from hypothesis that D has no directed cycle of length r modulo
k. By Theorem 3, V (D) can be partitioned into k sets V1, V2, ..., Vk such that each Vi induces
an acyclic subdigraph D[Vi] in D. Therefore D[Vi] contains no arc (u, v) of D, for otherwise
u → v → u would be a directed cycle in D[Vi], a contradiction. So, by definition, G[Vi] is an
independent set for all 1 ≤ i ≤ k, and hence χ(G) ≤ k.

4 Implications

In this section we show that the results established in the preceding sections strengthen several
classical theorems proved by various researchers.

Theorem 5. (Erdős and Hajnal [7]) For any undirected graph G, there holds χ(G) ≤ l(G) + 1.

Proof. Let D be the digraph obtain from G by replacing each edge uv with a pair of opposite
arcs (u, v) and (v, u). Then the odd circumference l(D) of D is precisely l(G). By Theorem 2,
we have χ(D) ≤ l(D) + 1 and hence χ(G) ≤ l(G) + 1.

The following result can be deduced from Theorem 1 by using the same proof technique as
above, and is also contained in Theorem 4 as a special case.

Theorem 6. (Tuza [18]) Let k ≥ 2 be an integer. If an undirected graph G contains no cycle
whose length minus one is a multiple of k, then χ(G) ≤ k.

Theorem 7. (Gyárfás [9]) For an undirected graph G, let Lo(G) be the set of odd cycle lengths
in G. Then χ(G) ≤ 2|Lo(G)|+ 2.
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Proof. Let |Lo(G)| = k and let Ci be the set of all cycles of length i modulo 2k + 2 in G.
Since G has k distinct odd cycle lengths in total, at least one of C1, C3, . . . , C2k+1 must be empty.
By Theorem 4, we obtain χ(G) ≤ 2k + 2.

Theorem 8. (Mihók and Schiermeyer [14]) For an undirected graph G, let Le(G) be the set of
even cycle lengths in G. Then χ(G) ≤ 2|Le(G)| + 3.

Proof. Let |Le(G)| = k and let Ci be the set of all cycles of length imodulo 2k+2 in G. Then
at least one of C0, C2, . . . , C2k must be empty. From Theorem 4 we deduce that χ(G) ≤ 2k + 3,
as desired.

We remark that the bound in Theorem 7 (resp. Theorem 8) is achieved only when G contains
a complete graph with 2|Lo(G)|+2 (resp. 2|Le(G)|+3) vertices, as shown by Gyárfás [9] (resp.
by Mihók and I. Schiermeyer [14]).

Theorem 9. (Bondy [3]) The chromatic number of every strongly connected digraph is at most
its circumference.

Proof. Let k be the circumference of a strongly connected digraph D. Then D contains no
cycle whose length minus one is a multiple of k. From Theorem 1 it follows that χ(D) ≤ k.

Theorem 10. (Gallai-Roy [8,17]) The chromatic number of every digraph is at most the number
of vertices in a longest path.

Proof. Let k be the number of vertices in a longest path in a digraph D = (V,A). To
show that χ(D) ≤ k, we construct a digraph D′ from D by adding a new vertex u and a
pair of opposite arcs (u, v) and (v, u) for each v ∈ V . Clearly, D′ is strongly connected and
χ(D′) = χ(D) + 1. Observe that D′ contains no cycle C whose length minus one is a multiple
of k + 1, for otherwise C\u and hence D would contain a path with at least k + 1 vertices. By
Theorem 1, we have χ(D′) ≤ k + 1. So χ(D) ≤ k.

5 Concluding Remarks

In this paper we have established bounds on chromatic numbers and acyclic chromatic numbers
of digraphs in terms of cycle lengths. In particular, χ(D) ≤ l(D) + 1 for any strong digraph D,
where l(D) is the odd circumference of D. An interesting open problem is to characterize all
strong digraphs D for which χ(D) = l(D) + 1. We believe that the following lemma will play a
certain role in the study of such extremal digraphs.

Lemma 11. Let D = (V,A) be a strong digraph and let U be a subset of pairwise adjacent
vertices of D. Then there exists a cycle C in D that contains all vertices in U . (In fact it holds
that |C| ≥ |U |+ 1, if D[U ] is not strongly connected.)

Proof. Partition U into disjoint subsets U1, U2, ..., Ut such that
• for each i, either |Ui| = 1 or Ui induces a strong subdigraph in D, and
• for any i < j, each arc between Ui and Uj is directed from Ui to Uj.
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Since D is strongly connected, there exists a path P from some vertex in Ut to a vertex in U1;
we choose such a shortest P . Let P1, P2, ..., Ps be all sub-paths of P , each of which is internally
vertex-disjoint from U and has at least two arcs. Let xi and yi be the origin and terminus of Pi,
respectively. From the choice of P , we deduce that (yi, xi) is an arc in D. Let H be obtained
from D[U ] by replacing each arc (yi, xi) with (xi, yi). Then H is strongly connected and hence
contains a Hamiltonian cycle C. Let Q be obtained from C by replacing each arc (xi, yi) with
Pi. Clearly, Q is a cycle in D containing all vertices in U .

Given a strong digraph D with no cycle of length r modulo k, our theorems assert that
χa(D) ≤ k for a general r and χ(D) ≤ k for r = 1. Can we establish a good bound on χ(D) in
terms of k for a general r? This question is clearly worth some research effort.

In [18], Tuza came up with a linear-time algorithm for finding a proper k-coloring of a graph
with no cycle of length 1 modulo k. In [6], an efficient algorithm for finding a proper (k + 1)-
coloring of a graph with no cycle of length 2 modulo k was also given. We close this paper with
the following question: Is it true that there also exist efficient combinatorial algorithms for the
coloring problems addressed in Theorems 1, 3 and 4?
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