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Diameter critical graphs

Po-Shen Loh ∗ Jie Ma†

Abstract

A graph is called diameter-k-critical if its diameter is k, and the removal of any edge
strictly increases the diameter. In this paper, we prove several results related to a con-
jecture often attributed to Murty and Simon, regarding the maximum number of edges
that any diameter-k-critical graph can have. In particular, we disprove a longstanding
conjecture of Caccetta and Häggkvist (that in every diameter-2-critical graph, the average
edge-degree is at most the number of vertices), which promised to completely solve the
extremal problem for diameter-2-critical graphs.

On the other hand, we prove that the same claim holds for all higher diameters, and
is asymptotically tight, resolving the average edge-degree question in all cases except
diameter-2. We also apply our techniques to prove several bounds for the original ex-
tremal question, including the correct asymptotic bound for diameter-k-critical graphs,
and an upper bound of (1

6
+o(1))n2 for the number of edges in a diameter-3-critical graph.

1 Introduction

An (x, y)-path is a path with endpoints x and y, and its length is its number of edges. We
denote by dG(x, y) the smallest length of an (x, y)-path in a graph G, where we often drop the
subscript if the graph G is clear from context. The diameter of G is the maximum of dG(x, y)
over all pairs {x, y}. A graph G is said to be diameter-critical if for every edge e ∈ G, the
deletion of e produces a graph G − e with higher diameter.

The area of diameter-criticality is one of the oldest subjects of study in extremal graph
theory, starting from papers of Erdős-Rényi [11], Erdős-Rényi-Sós [12], Murty-Vijayan [21],
Murty [18–20], and Ore [22] from the 1960’s. Many problems in this domain were investigated,
such as that of minimizing the number of edges subject to diameter and maximum-degree
conditions (see, e.g., Erdős-Rényi [11], Bollobás [1, 2], Bollobás-Eldridge [3], Bollobás-Erdős
[4]), controlling post-deletion diameter (Chung [8]), and vertex-criticality (Caccetta [5], Erdős-
Howorka [9], Huang-Yeo [16], Chen-Füredi [7]), to name just a few.

The natural extremal problem of maximizing the number of edges (or equivalently, the
average degree) in a diameter-critical graph also received substantial attention. Our work is
inspired by the following long-standing conjecture of Ore [22], Plesńık [23], Murty and Simon
(see in [6]). A diameter-k-critical graph is a diameter-critical graph of diameter k.
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Conjecture 1.1. For each n, the unique diameter-2-critical graph which maximizes the num-
ber of edges is the complete bipartite graph K⌊n/2⌋,⌈n/2⌉.

Successively stronger estimates were proved in the 1980’s by Plesńık [23], Cacetta-Häggkvist
[6], and Fan [13], culminating in a breakthrough by Füredi [14], who used a clever application
of the Ruzsa-Szemerédi (6,3) theorem to prove the exact (non-asymptotic) result for large n.
As current quantitative bounds on the (6,3) theorem are of tower-type, the constraint on n
is quite intense, and there is interest in finding an approach which is free of Regularity-type
ingredients. For example, the recent survey by Haynes, Henning, van der Merwe, and Yeo [15]
discusses recent work following a different approach based upon total domination, but we do
not pursue that direction in this paper.

One hope for a Regularity-free method was proposed at around the origin of the early
investigation. In their original 1979 paper, Caccetta and Häggkvist posed a very elegant
stronger conjecture for a related problem, which would establish the extremal number of edges
in diameter-2-critical graphs for all n. For an edge e, let its edge-degree d(e) be the sum of
the degrees of its endpoints, and let d(e) be the average edge-degree over all edges, so that in
terms of the total number of edges m,

d(e) =
1

m

∑

uv∈E(G)

(du + dv) =
1

m

∑

v∈V (G)

d2
v.

Just as the Ore-Plesńık-Murty-Simon problem sought to maximize the average vertex-degree
over diameter-critical graphs, one can also ask to maximize the average edge-degree.

Conjecture 1.2. (Caccetta-Häggkvist [6]; also see [14]) For any diameter-2-critical graph,
the average edge-degree is at most the number of vertices.

In terms of the numbers of vertices and edges (n and m), the conclusion of this conjecture
is equivalent to:

∑

v

d2
v ≤ nm.

Given the Caccetta-Häggkvist conjecture, Conjecture 1.1 then follows as an immediate
consequence of convexity:

∑

d2
v is at least n times the square of the average degree, and so

Conjecture 1.2 implies that nm ≥ n(2m/n)2, giving m ≤ n2/4. In [6], Caccetta and Häggkvist
proved the constant-factor approximation

∑

d2
v ≤ 6

5nm, but there was no improvement for
over three decades. Our first result indicates why: the Caccetta-Häggkvist conjecture is false.
We demonstrate this by constructing a rich family of diameter-2-critical graphs, which may
be of independent interest, as one challenge in the study of diameter-critical graphs is to find
broad families of examples. (See our Constructions 2.1 and 2.2).

Theorem 1.3. There is an infinite family of diameter-2-critical graphs for which

d(e) ≥
(

10

9
− o(1)

)

n,

where o(1) tends to 0 as n tends to infinity.
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Since our construction opens a constant factor gap, this shows that the Caccetta-Häggkvist
conjecture cannot be used to resolve the original problem. We were intrigued to study the
best value of the constant multiplier on the Caccetta-Häggkvist conjecture, as it is a natural
question in its own right, and proved that the 6

5 factor from [6] was not sharp either.

Theorem 1.4. There are absolute constants c and N such that for every diameter-2-critical
graph with at least N vertices, the average edge-degree is at most (6

5 − c) times the number of
vertices.

On the other hand, it turns out that for all k ≥ 3, the diameter-k-critical analogue of the
Caccetta-Häggkvist conjecture holds precisely, and is tight.

Theorem 1.5. For every diameter-critical graph with diameter at least 3, the average edge-
degree is at most the number of vertices. This is asymptotically tight: for each fixed k ≥ 3,
there is an infinite family of graphs for which the average edge-degree is at least (1 − o(1))
times the number of vertices.

As an immediate consequence, the earlier convexity argument proves that diameter-critical
graphs with diameter at least 3 have at most n2/4 edges, for all n. Regarding the maximum
number of edges in diameter-k-critical graphs for k ≥ 3, however, it was conjectured by
Krishnamoorthy and Nandakumar [17] (who disproved an earlier conjecture of Caccetta and
Häggkvist on this question) that a particular instance of the following construction is optimal
(see Lemma 3.2 for a proof of diameter-criticality).

Construction 1.6. Let a, b, and c be positive integers. Create a partition V0 ∪ V1 ∪ · · · ∪ Vk

such that |V0| = a, |V1| = |V2| = . . . = |Vk−1| = b and |Vk| = c. Introduce edges by placing
complete bipartite graphs between V0 and V1, and between Vk−1 and Vk, and placing b vertex-
disjoint paths of length k − 2 from V1 to Vk−1, each with exactly one vertex in Vi for every
1 ≤ i ≤ k − 1.

Krishnamoorthy and Nandakumar [17] observed that choosing a = 1, b ≈ n
2(k−1) , and

c = n − a − b(k − 1) optimized the number of edges in this construction, yielding a total of
n2

4(k−1) +o(n2) edges. Our next result establishes a bound which deviates by an constant factor.

Theorem 1.7. Every diameter-k-critical graph on n vertices has at most 3n2

k edges.

Finally, we investigated the case k = 3 in greater depth, as it is the first (asymptoti-
cally) unresolved diameter. The above construction produces a diameter-3-critical graph with
(1

8 + o(1))n2 edges. We point out that there is a significantly different graph with the same
asymptotic edge count: a clique A := Kn/2 together with a perfect matching (with n/2 edges)
between A and its complement Ac. On the other hand, as observed above, our Theorem 1.5
immediately gives n2/4 as an upper bound. We improve this to an intermediate value, and
note that our proof applies in diameters greater than 3 as well (see remark at end of Section
6).

Theorem 1.8. Every diameter-3-critical graph on n vertices has at most n2

6 + o(n2) edges.
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The rest of this paper is organized as follows. The next section contains constructions
of families of diameter-2-critical graphs, which contain counterexamples to the Caccetta-
Häggkvist conjecture. Section 3 resolves the Caccetta-Häggkvist conjecture for all diameters
k ≥ 3. In Section 4, we improve the upper bound on the diameter-2 Caccetta-Häggkvist
result. Section 5 establishes an upper bound on the edge count for all diameters, which devi-
ates by a constant factor (12) from all best known constructions. Finally, Section 6 proves a
substantially stronger upper bound for the diameter-3 case.

Throughout our proofs, we will encounter and manipulate many paths. We will use ab to
denote an edge, and abc, abcd, etc. to denote paths. If u and v are vertices of a path P , we
will write uPv to denote the subpath of P with u and v as endpoints.

2 Diameter-2-critical constructions

In this section, we prove Theorem 1.3, by constructing a very rich family of diameter-2-
critical graphs. Indeed, a major challenge in studying diameter-2-critical graphs is the lack of
understanding of the menagerie of examples of such graphs. We proceed with a series of two
constructions which give rise to a broad variety of examples.

Construction 2.1. Let G be an arbitrary n-vertex graph for which both G and its complement
have diameter at most 2. Create a new graph G′ by taking two disjoint copies A and B of the
set V (G), placing an induced copy of G in A, placing an induced copy of the complement of G
in B, and placing a perfect matching between A and B such that each edge in this matching
joins a vertex in A to its copy in B. Then G′ is diameter-2-critical.

Proof. Select vertices x ∈ A and y ∈ B so that xy is not an edge of the perfect matching. Let
x′ ∈ B and y′ ∈ A be the respective partners of x and y according to the perfect matching.
Then, exactly one of x′y and xy′ is in G′, while xy is not, and thus distance between x and y
is exactly 2. At the same time, vertices in the same part are at distance at most 2, since both
G and its complement have diameter at most 2. Therefore, G′ has diameter equal to 2.

Also, it is clear that upon deleting any matching edge xx′ (where x ∈ A and x′ ∈ B), the
distance between x and x′ rises to at least 3. Deleting any edge xy in A increases the distance
between x and y′ above 2, where y′ ∈ B is the partner of y ∈ A, and so we conclude that G′

is indeed diameter-2-critical.

At this point, although we can generate a wide variety of diameter-2-critical graphs, they
do not yet bring

∑

d2
v above nm. However, if one uses a very sparse graph G (with o(n2)

edges) as the generator, one finds that
∑

d2
v is asymptotically nm, while being very different

from the balanced complete bipartite graph that also achieves that bound. As the balanced
complete bipartite graph was quite a stable optimum, this second point creates the possibility
for us to destabilize it. We exploit this by augmenting the construction with a third part.

Construction 2.2. Let r be an arbitrary natural number, and let G be an n-vertex graph
for which both G and its complement have diameter at most 2. Create G′ from G as in
Construction 2.1, and add a third disjoint set C of r vertices, with a complete bipartite graph
between B and C. Then, the resulting (2n + r)-vertex graph G′′ is diameter-2-critical.

4



Proof. We build upon our existing knowledge about G′. It is clear that each vertex of C is
at distance at most 2 from every other vertex, and so G′′ has diameter 2 as well. Also, the
deletion of any edge yz with y ∈ B and z ∈ C would put z at distance greater than 2 from
y′ ∈ A (the matching partner of y ∈ B). Therefore, G′′ is diameter-2-critical, as claimed.

We build our counterexample to the Caccetta-Häggkvist conjecture by selecting suitable n
and r, and using a sparse diameter-2 random graph G whose complement also has diameter
2. We saw that a property holds asymptotically almost surely, or a.a.s., if its probability tends
to 1 as n → ∞. The random graph Gn,p is constructed by starting with n vertices, and taking
each of the

(n
2

)

potential edges independently with probability p.

Lemma 2.3. Let 2
√

log n
n ≤ p ≤ 1− 2

√

log n
n . Then, a.a.s., Gn,p and its complement both have

diameter at most 2, and all vertex degrees are at most 2np.

Proof. For any fixed pair of vertices, the probability that they have no common neighbors
is exactly (1 − p2)n−2. A union bound over all pairs of vertices produces a total failure

probability of at most n2e−p2(n−2), which is clearly o(1) because p ≥ 2
√

log n
n . Similarly, since

(1 − p) ≥ 2
√

log n
n , we see that a.a.s., both Gn,p and its complement have diameter at most

2. For the degrees, since a given vertex’s degree is distributed as Bin [n − 1, p], the Chernoff
inequality implies that the probability it exceeds 2np is at most e−Θ(np), and another union
bound over all vertices implies the result.

We are now ready to prove our first result, showing that there exist graphs which have
∑

d2
v significantly greater than the product of their numbers of vertices and edges.

Proof of Theorem 1.3. Use p = 2
√

log n
n to create a random n-vertex graph G which satisfies

the properties in Lemma 2.3. Use that in Construction 2.2 with r = xn for some x. We
will optimize the choice of x at the end. The total number of edges is then exactly

(n
2

)

+ n +
n(xn), because G and its complement together contribute exactly

(n
2

)

edges, the A–B matching
contributes n edges, and n(xn) edges come from the complete bipartite graph between B and
C.

On the other hand, each vertex in B has degree at least (1 − 2p)n + xn, and each vertex
in C has degree equal to n. Therefore, the sum of the squares of the vertex degrees is at least

(1 − o(1))n(1 + x)2n2 + (xn)n2 = (1 − o(1))n3(1 + 3x + x2).

The ratio between this and the product of the numbers of vertices and edges is at least

(1 − o(1))
n3(1 + 3x + x2)

(2n + xn)
(

n2+n
2 + xn2

) = (1 − o(1))
1 + 3x + x2

(2 + x)
(

1
2 + x

) .

Substituting x = 1 gives a ratio of 10
9 − o(1), proving Theorem 1.3, and it is easy to verify that

this choice of x maximizes the final function on the right hand side.
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3 Caccetta-Häggkvist for higher diameter

In this section, we prove Theorem 1.5, which resolves the analogue of the Caccetta-Häggkvist
conjecture in diameters k ≥ 3. The key concept which enables a number of our proofs is the
following definition.

Definition 3.1. In a graph G, an unordered vertex pair {x, y} and an edge e are said to
be k-associated if their distance dG(x, y) is at most k, but when e is deleted, their distance
dG−e(x, y) becomes greater than k. A pair {x, y} is called k-critical if there exists some edge e
which is k-associated with {x, y}.

Note that whenever an edge e is k-associated with a pair {x, y}, it immediately follows
that e is part of every shortest path between x and y. When k ≥ 3, there may be multiple
shortest paths (all of the same length). It is convenient for us to have a single path to refer
to for each {x, y}, and so for each k-critical pair {x, y}, we arbitrarily select one such shortest
path and denote it Pxy. Let these Pxy be called k-critical paths. (We will have exactly one
k-critical path per k-critical pair.) For each edge e, let P(e) be the set of all k-critical paths
Pxy such that {x, y} is k-associated with e. Observe that by the above, e is always on every
Pxy ∈ P(e), and in diameter-k-critical graphs, P(e) is always nonempty.

In both this section and the next section, it will be useful to keep track of the 3-vertex
subgraph statistics. For 0 ≤ i ≤ 3, let Ti be the set of unordered triples {x, y, z} in V (G) such
that their induced subgraph G[{x, y, z}] has exactly i edges. By counting the number of pairs
(v, f) that vertex v is not incident to edge f , we see that

m(n − 2) = 3|T3| + 2|T2| + |T1|, (1)

which, together with the fact that

∑

v

(

dv

2

)

= 3|T3| + |T2|, (2)

implies that

∑

v

d2
v − mn = 3|T3| − |T1|. (3)

We are now ready to prove the diameter-k-critical analogue of the Caccetta-Häggkvist
conjecture for k ≥ 3.

Proof of Theorem 1.5, upper bound. Let G be a diameter k-critical graph with k ≥ 3. Let
T = {x, y, z} ∈ T3 be an arbitrary triangle in G. Writing xy to denote the edge with endpoints
x and y, etc., select arbitrary P1 ∈ P(xy), P2 ∈ P(yz) and P3 ∈ P(xz). We claim that P1, P2,
and P3 all have length k. Indeed, if, say, P1 was a path of length at most k − 1 from u to v
via xy, then by using xz and zy instead of xy, we obtain an alternate path of length at most
k, contradicting the k-association of xy and {u, v}.

The path P1 contains an edge adjacent to xy. Without loss of generality, suppose that this
edge is tx. It is clear that t 6= z. Label the endpoints of P2 by u and v such that P2 traverses
u, y, z, v in that order. We claim that t /∈ P2. Indeed, if, say, t ∈ uP2y, then since t 6= y, the
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path uP2txzP2v has length at most k while avoiding the edge yz, contradicting the fact that
{u, v} is k-associated with yz. Thus |V (P2) ∪ {t} \ T | ≥ k.

For each vertex s ∈ V (P2) ∪ {t} \ T , we choose an edge fs ∈ E(T ) such that s and fs

form a triple Fs ∈ T1 as follows. For t, we have ty /∈ E(G) and tz /∈ E(G), as otherwise we
could reroute P1 between y and t either directly or via yzt, avoiding yx entirely, contradicting
P1 ∈ P(xy). So, the choice ft = yz produces Ft = {t, y, z} ∈ T1. For any s ∈ V (P2) \ T which
is between u and y, clearly sz /∈ E(G). It also holds that sx /∈ E(G), as otherwise one could
reroute P2 via x to avoid yz, while maintaining length at most k. So Fs := {s, x, z} ∈ T1 by
choosing fs = xz. A similar argument handles the s ∈ V (P2) \ T which are between z and v.

The above argument actually showed that for the triple Ft, ft = yz and the edge xy was
on all shortest paths between t and y. For every other triple Fs, either fs = xz and yz is on
all shortest paths between s and z, or fs = xy and zy is on all shortest paths between s and
y. In all of those cases, we have the property that

For any triple Fs, there exists an edge f ′ ∈ E(T ) − {fs} such that f ′ is contained
in all shortest (s, s′)-paths, where s′ := V (f ′) ∩ V (fs).

Let F(T ) be the collection of triples which arise in this way from T , i.e., F(T ) = {Fs : s ∈
V (P2) ∪ {t} \ T }. We claim that F(T ) ∩ F(T ′) = ∅ for distinct T, T ′ ∈ T3. To see this, assume
for contradiction that it is not the case. Then there exists {s, x, y} ∈ F(T )∩F(T ′) for distinct
triangles T, T ′ such that xy ∈ E(G). As xy ∈ E(T ) ∩ E(T ′) by definition, let T := {x, y, z}
and T ′ := {x, y, z′} for distinct vertices z, z′. In light of the above observation, we may assume
that xz is contained in all shortest (s, x)-paths, and yz′ is contained in all shortest (s, y)-paths.
Let P be a shortest (s, x)-path and P ′ be a shortest (s, y)-path, and assume without loss of
generality that |P | ≤ |P ′|. Then sPzy is an (s, y)-path of length |P | ≤ |P ′| which does not
contain yz′, a contradiction. This proves the claim.

Since F(T )’s are disjoint subsets of T1 with at least k triples each, it follows that |T1| ≥
∑

T ∈T3
|F(T )| ≥ k|T3| ≥ 3|T3|, completing the proof of the upper bound by (3).

For the other part of our Caccetta-Häggkvist-type result for diameter 3 and higher, we
must construct graphs which asymptotically approach our bound. We do this by selecting
specific parameters for Construction 1.6, and we include the following proof for completeness.

Lemma 3.2. Construction 1.6 always produces a diameter-k-critical graph.

Proof. We first verify that every pair of vertices {x, y} has distance at most k. To see this,
arbitrarily select vertices u ∈ V0 and v ∈ Vk, allowing {u, v} to possibly overlap with {x, y}.
Observe that there is a path of length k from u to v which passes through x on the way, and
a path of length k from v to u which passes through y on the way. Therefore, there is a closed
walk (possibly repeating vertices or edges) from x back to itself via y, of length exactly 2k,
which implies that x and y are at distance at most k.

To verify criticality, we have two types of edges. Consider an edge xy in a matching, say
with x ∈ Vi and y ∈ Vi+1 where 1 ≤ i ≤ k − 2. If xy is deleted, then y can only reach V0 by
going all the way to Vk and then coming back, and so the distance between y and any vertex
of V0 rises above k. Now consider the other kind of edge xy, where x ∈ V0 and y ∈ V1, say. Let
P be the unique path of length k − 2 from V1 to Vk−1 with endpoint y, and let y′ ∈ Vk−1 be
the other endpoint of P . If edge xy is deleted, then one may verify that the distance between
x and y′ changes from k − 1 to k + 1, which completes our proof.

7



We now use Construction 1.6 to prove our lower bound on Caccetta-Häggkvist for diameter-
k-critical graphs.

Proof of Theorem 1.5, lower bound. Let k ≥ 3 be fixed. We build n-vertex graphs by using
Construction 1.6 with a = 1, b = 1, and c = n − k. (We actually can select any sub-
linear function b = o(n), e.g., b =

√
n, to create a wider variety of asymptotically extremal

constructions.) Then,
∑

v

d2
v = (1 + o(1))bn2,

and the number of edges is (1 + o(1))bn, and so the ratio between
∑

d2
v and the product of the

numbers of vertices and edges indeed tends to 1 as n → ∞.

4 Caccetta-Häggkvist upper bound for diameter 2

In this section, we prove Theorem 1.4, which improves the upper bound on the constant for
the Caccetta-Häggkvist problem in the diameter-2 setting. Let c and N represent sufficiently
small and sufficiently large absolute constants, respectively, throughout this section. We will
make a series of claims which hold for large N and positive constants ci, where c0 := c and ci

is a function of variables c0, c1, ..., ci−1 tending to 0 as c → 0. The eventual values of N and ci

can be explicitly calculated, although some of them will not be expressed in the proof to keep
the main ideas clean.

Let G be an arbitrary diameter-2-critical graph with n vertices and m edges, where n ≥ N .
We will show that

∑

v∈V (G)

d2
v ≤

(

6

5
− c

)

nm. (4)

We use the notion of 2-critical paths from the beginning of Section 3, and following that
section, we also define P(e) as the set of all 2-critical paths Pxy such that {x, y} is 2-associated
with the edge e. Since our diameter is always 2 in this section, we will write associated and
critical path to refer to the concepts of 2-associated and 2-critical path.

Definition 4.1. Let T ∈ T3 be a triangle. We say that a vertex v 6∈ T is a foot of T if there
are some x, y ∈ T such that the path vxy belongs to P(xy).

Lemma 4.2. Every triangle T ∈ T3 has at least 2 feet, and if v is a foot of T , then it is
adjacent to exactly one vertex of T .

Proof. Consider any triangle T := {x, y, z} ∈ T3. For any edge (say xy) in T , every path
P ∈ P(xy) must have length 2 (suppose it is P = vxy). Since the removal of xy is supposed
to increase the distance between v and y above 2, we must have vy, vz /∈ E(G), as claimed.
Now consider P(yz). This must contain a path of length 2, and the outside vertex cannot be
v because v is adjacent to neither of {y, z}, so it produces another foot of T .

Definition 4.3. Given a triangle T ∈ T3, let F(T ) be the collection of all triples {v, y, z} in
T1 where v is a foot of T , both y and z are in T , and v is not adjacent to either of {y, z}.

Lemma 4.4. For distinct triangles T, T ′ ∈ T3, F(T ) and F(T ′) are disjoint.
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Proof. Assume for contradiction that {v, y, z} ∈ F(T ) ∩ F(T ′) such that yz ∈ E(G). Then
T = {x, y, z} and T ′ = {x′, y, z} for distinct vertices x, x′. Without loss of generality, assume
that vxy is a critical path in P(xy). However, vx′y is also an (v, y)-path of length 2, which
does not contain the edge xy, a contradiction.

Lemma 4.5. Let T ∗
3 be the set of triangles with at least three feet. To prove (4) and hence

Theorem 1.4, it suffices to establish any one of the following two conditions:

(C1). |T2| ≥ 5c

2
· nm (C2). |T ∗

3 | ≥ 5c

6
· nm.

Proof. By Lemma 4.4 and Lemma 4.2, we have

|T1| ≥
∑

T ∈T3

|F(T )| ≥ 2|T3| + |T ∗
3 |. (5)

By (1) and (5), we see that

m(n − 2) = 3|T3| + 2|T2| + |T1|
mn ≥ 3|T3| + 2|T2| + (2|T3| + |T ∗

3 |) + 2m

mn ≥ 5|T3| + |T ∗
3 | + 2|T2| + 2m. (6)

Also, by doubling (2), we find

∑

v

d2
v −

∑

v

dv = 6|T3| + 2|T2|
∑

v

d2
v = 6|T3| + 2|T2| + 2m

∑

v

d2
v ≤ mn + |T3| − |T ∗

3 |, (7)

where we used (6) for the last deduction.
Now suppose (C1) holds. Then by (6), we have mn ≥ 5|T3| + 5cnm and thus (7) implies

that
∑

v d2
v − nm ≤ |T3| ≤ (1/5 − c)nm, giving (4). On the other hand, if (C2) holds, by

(7) we have
∑

v d2
v − nm ≤ |T3| − 5c

6 · nm. To compare |T3| with nm, we use (6) to obtain
nm ≥ 5|T3| + 5c

6 · nm, and thus
∑

v d2
v − nm ≤ (1/5 − c)nm, which again implies (4).

Our objective is now to show that at least one of (C1) and (C2) always holds, unless (4)
holds directly. To this end, we first show that almost all edges have endpoints with similar
neighborhoods. For the remainder of this section, we write A∆B to denote the symmetric
difference of sets A and B.

Lemma 4.6. Define c1 := c1/4, and let E1 be the set of all edges uv such that |Nu∆Nv| ≤ c1n.
If (C1) does not hold, then |E1| ≥ (1 − c1)m.

Proof. Suppose on the contrary that there are at least c1m edges uv satisfying |Nu∆Nv| > c1n,
but (C1) does not hold. Note that for any vertex w ∈ Nu∆Nv, the set {w, u, v} ∈ T2. Then

|T2| ≥ (c1m)(c1n)
2 > 5c

2 · mn, and so (C1) holds, contradiction.
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Lemma 4.7. Let E2 be the set of edges uv ∈ E1 such that u and v have at least (1/2 + c1)n
common neighbors. If (C1) does not hold and neither does (4), then |E2| ≥ c1m.

Proof. Suppose for contradiction that |E2| < c1m. By Lemma 4.6, it holds that |E1| ≥ (1−c1)m,
and so, for sufficiently small constant c, we have

∑

v

d2
v =

∑

uv∈E(G)

(du + dv) =
∑

uv∈E(G)

(|Nu∆Nv| + 2|Nu ∩ Nv|)

≤
∑

uv∈E1

(c1n + 2|Nu ∩ Nv|) +
∑

uv /∈E1

2n

≤ 3c1mn + 2
∑

uv∈E2

|Nu ∩ Nv| + 2
∑

uv∈E1\E2

|Nu ∩ Nv|

≤ 3c1mn + 2c1mn + 2m(1/2 + c1)n = (1 + 7c1)mn <

(

6

5
− c

)

mn,

that is, (4) holds, contradicting the assumption.

Lemma 4.8. Define c2 :=
√

c/4. If (C1) does not hold, then m ≥ c1

2 n2 and |E2| ≥ c2n2.

Proof. Let H be the subgraph of G spanned by the edges of E2, and let h = |V (H)|/n. Note

that for v ∈ V (H), dG(v) ≥ (1/2 + c1)n. If h ≥ 1
4 , then m ≥ 1

2

∑

dG(v) ≥ n2

16 and thus by
Lemma 4.7, |E2| ≥ c1m ≥ c1

16n2 > c2n2 as desired.
It remains to consider h < 1

4 . Every v ∈ V (H) has at least (1/2 + c1 − h)n neighbors out
of V (H), implying that m ≥ |V (H)| · (1/2 + c1 − h)n = h(1/2 + c1 − h)n2. Using Lemma 4.7,

we find (hn)2

2 ≥ |E2| ≥ c1m ≥ c1h(1/2 + c1 − h)n2, which shows that (h − c1)(1 + 2c1) ≥ 0.
Thus 1

4 > h ≥ c1, implying that m ≥ c1

4 n2 and |E2| ≥ c2
1n2/4 = c2n2.

Lemma 4.9. Define c3 := 40
√

c. If (C1) does not hold, then there exists an edge uv ∈ E2

such that Nu ∩ Nv induces at least (1 − c3)
(|Nu∩Nv|

2

)

edges.

Proof. By Lemma 4.8, there exists a matching M with edges from E2 of size at least c2

2 n.

Suppose for contradiction that for every edge uv ∈ M , Nu ∩ Nv has at least c3
(|Nu∩Nv|

2

)

non-
adjacent pairs. Note that any non-adjacent pair {x, y} in Nu ∩ Nv contributes two triples
{u, x, y} and {v, x, y} to T2. Therefore, we see that

|T2| ≥ 2c3

(

(1/2 + c1)n

2

)

|M | ≥ c2c3

8
n3 ≥ c2c3

4
mn ≥ 5c

2
mn,

that is, (C1) holds.

Lemma 4.10. Define c4 :=
√

40c1/4, suppose (C1) does not hold, and let uv be the edge from
Lemma 4.9. Then G[Nu ∩ Nv] has an induced subgraph D with at least (1/2 − c4)n vertices
and minimum degree at least (1 − c4)|D|.
Proof. Start with D = G[Nu ∩Nv]. As long as D has a vertex of degree less than (1−√

c3)|D|,
delete it. At every stage of this procedure,

√
c3|D| · (|Nu ∩ Nv| − |D|) is at most the number

of non-adjacent pairs in Nu ∩ Nv. Our assumption on uv from Lemma 4.9 then implies that

√
c3|D| · (|Nu ∩ Nv| − |D|) ≤ c3

2
|Nu ∩ Nv|2
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must hold throughout the process. It is clear that this holds when D = Nu ∩Nv, and since the
function f(x) = x(M − x) is a downward-opening parabola, the process must stop well before
D reaches 1

2 |Nu ∩ Nv|. So, throughout the process,

√
c3

|Nu ∩ Nv|
2

· (|Nu ∩ Nv| − |D|) ≤ c3

2
|Nu ∩ Nv|2

|Nu ∩ Nv| − |D| ≤ √
c3|Nu ∩ Nv|,

and we conclude that at the end, |D| ≥ (

1 − √
c3
) |Nu ∩ Nv| ≥ (1/2 − c4) · n.

Definition 4.11. Let D be the subgraph produced by Lemma 4.10. For each edge e ∈ E(D),
since the endpoints of e form a triangle with u, there exists a path of length 2 in P(e), say
x′xy where xy = e, x′ /∈ D, and x′y /∈ E(G). We call any such x′ an arm of edge e. Define

the digraph
−→
D on V (D) as follows: for any edge xy ∈ E(D), we place a directed edge from y

to x to
−→
D whenever xy has an arm x′ such that xx′ ∈ E(G).

Note that each edge in D can produce either one or both directed edges in
−→
D , i.e., between

each pair of vertices, there can be zero, one, or two directed edges.

Lemma 4.12. Define c5 := 5
√

c4, and suppose (C1) does not hold. Let S be the set of vertices

in
−→
D with in-degree at least 4c4|D|. Then, for large n ≥ N , |S| > (1/2 − c5)n.

Proof. Let Sc be the complement of S in V (D) and let s = |Sc|/n. Let d−(v) denote the

in-degree of v in
−→
D . By Lemma 4.10, the number of non-adjacent pairs in

−→
D is less than

c4

2 |D|2, thus
(

sn

2

)

− c4

2
|D|2 ≤ e(

−→
D [Sc]) ≤

∑

v∈Sc

d−(v) ≤ 4c4|D| · sn.

Thus, for large n ≥ N , we have s2

2 ≤ c4

2 +4c4s+ s
2n < 5c4, implying that s < 4

√
c4. By Lemma

4.10 again, we see |S| = |D| − |Sc| ≥ (1/2 − c4 − 4
√

c4)n > (1/2 − c5)n.

Definition 4.13. For each x ∈ S and x′ /∈ V (D) satisfying xx′ ∈ E(G), define Ax′(x) to the
set of all vertices y ∈ V (D) such that x′xy ∈ P(xy). We say x ∈ S is rich if there exists some
x′ /∈ V (D) such that |Ax′(x)| ≥ 2c4|D|.

Observe that since any edge −→yx ∈ −→
D has an arm x′ /∈ V (D) such that x′xy ∈ P(xy), the

union
⋃

x′ Ax′(x) is just the in-neighborhood N−(x) of x in
−→
D , which is of at least 4c4|D| by

Lemma 4.12.

Lemma 4.14. Suppose (C1) does not hold, and let X be the set of rich vertices in S. Then
|X| ≥ (1 − √

c)|S| or (C2) holds.

Proof. Suppose for contradiction that there are at least
√

c|S| vertices x ∈ S such that
|Ax′(x)| < 2c4|D| for every x′ /∈ V (D) adjacent to x. Fix such a vertex x. Consider any
y ∈ N−(x), say y ∈ Ax1

(x) for x1 /∈ V (D). By Lemma 4.10, y is non-adjacent at most c4|D|
vertices in D. Since |N−(x)| ≥ 4c4|D| (by Lemma 4.12), we see that there are more than c4|D|
vertices y′ ∈ N−(x) \ Ax′(x) such that yy′ ∈ E(D).

11



We need the following property: for distinct x1, x2 /∈ V (D),

If y1 ∈ Ax1
(x) and y2 ∈ Ax2

(x) such that y1y2 ∈ E(D), then {y1, y2, x} ∈ T ∗
3 . (8)

To see this, it is clear that {y1, y2, x} is in T3 and x1, x2 are two feet of it; we can find a third
foot of {y1, y2, x} by considering the edge y1y2.

By (8), every such {y, y′, x} ∈ T ∗
3 , and there are at least 1

2 |N−(x)| · c4|D| pairs {y, y′}.
Thus, for every such vertex x, there are at least 1

2 |N−(x)| ·c4|D| > (c4|D|)2 triples in T ∗
3 which

contain x. So, by Lemmas 4.10 and 4.12, we have

|T ∗
3 | ≥ 1

3
· √

c|S| · (c4|D|)2 >
1

3

√
c(1/2 − c5)c2

4(1/2 − c4)2n3 ≥
√

c

13
· c2

4mn >
5c

6
· mn,

that is, (C2) holds.

Lemma 4.15. Suppose (C1) and (C2) do not hold. For each vertex x ∈ X, choose and fix an
adjacent vertex x′ /∈ V (D) for which |Ax′(x)| ≥ 2c4|D|. Then, every such x′ is not adjacent to
any vertex in its corresponding X \ {x}.

Proof. Suppose for contradiction that x′ is adjacent to some y ∈ X \ {x}. By Lemma 4.10,
y is non-adjacent to at most c4|D| vertices in D. Thus there exists some vertex z ∈ Ax′(x)
such that yz ∈ E(D). Then zyx′ is a (z, x′)-path not containing edge zx. On the other hand,
z ∈ Ax′(x) implies that zxx′ ∈ P(zx), a contradiction.

We are now ready to combine all of the above steps to complete the proof of our improved
upper bound for the diameter-2-critical Caccetta-Häggkvist conjecture.

Proof of Theorem 1.4. Let Y be the set of all x′ as defined in Lemma 4.15. Note that by
construction, Y is disjoint from X, and by that lemma, the bipartite subgraph G[X, Y ] induces
a perfect matching, so

|Y | = |X| > (1 − √
c)(1/2 − c5)n > (1/2 − 20c1/8)n.

Let Z = V (G) \ (X ∪ Y ), and define t such that |X| = |Y | = (1/2 − t)n and |Z| = 2tn for
some 0 ≤ t ≤ 20c1/8. Then for every x ∈ X, by Lemma 4.10, we have that

(1/2 − 10c1/4)n < (1 − c4)(1/2 − c4)n ≤ dG(x) ≤ (1/2 + t)n.

So the total number of edges satisfies

m ≥ 1

2

∑

x∈X

dG(x) + e(Y )

≥ 1

2

(

1

2
− 10c1/4

)(

1

2
− t

)

n2 + e(Y )

≥
(

1

8
− 10c1/8

)

n2 + e(Y ).

12



Also, since every vertex in X or Y has degree at most (1/2 + t)n,

∑

v

d2
v ≤ |X|

(

1

2
+ t

)2

n2 + |Z|n2 +

(

1

2
+ t

)

n
∑

y∈Y

dy

=

(

(

1

2
− t

)(

1

2
+ t

)2

+ 2t

)

n3 +

(

1

2
+ t

)

n · (2e(Y ) + e(X, Y ) + e(Y, Z))

≤
(

(

1

2
− t

)(

1

2
+ t

)2

+ 2t

)

n3 + (1 + 2t)n · e(Y ) +

(

1

2
+ t

)

n ·
(

1

2
− t

)

n · (1 + 2tn)

≤
(

1

8
+ 4t +

1

4n

)

n3 + (1 + 2t)n · e(Y ),

where t ≤ 20c1/8. Therefore, it is clear that by choosing c sufficiently small and N sufficiently
large, given n ≥ N , we will have

∑

v

d2
v ≤

(

6

5
− c

)

mn,

completing the proof.

5 Asymptotics for maximizing edges

Construction 1.6 established a family of diameter-k-critical graphs with n2

4(k−1) + o(n2) edges.
In this section, we show that estimate is tight up to a constant factor by proving Theorem 1.7,
which upper-bounds the number of edges by 3n2

k .
Let k ≥ 2 be fixed throughout this section. Recall from Definition 3.1 that an unordered

pair {x, y} and edge e are k-associated if the distance between x and y is at most k, but rises
above k if e is deleted. In such a situation, if P is an (x, y)-path of length at most k, we also
say that P and e are k-associated.

Lemma 5.1. Let G be a diameter-k-critical graph. For any edge e, there exists a path P of
length ⌈k

3 ⌉ such that e is ⌈k
3 ⌉-associated with P .

Proof. For any edge e, since G is diameter-k-critical, there exists a pair {u, v} such that
dG(u, v) ≤ k and dG−e(u, v) > k. Let L be a shortest (u, v)-path. If L has length at least ⌈k

3⌉,

then we can choose vertices x, y ∈ V (L) such that e ∈ xLy and xLy has length ⌈k
3⌉. We claim

that e and xLy are ⌈k
3⌉-associated. Indeed, if not, then there must exist an (x, y)-path M in

G − e of length at most ⌈k
3 ⌉, and one can use M and L together to construct a path of length

at most k from u to v avoiding e, contradiction.
It thus suffices to consider the case when L has length at most ⌈k

3 ⌉ − 1. Write e = ab and

consider the depth-first-search tree T with root a. We see that the depth of T is at least ⌈k
2⌉,

as otherwise dG(s, t) ≤ dG(a, s) + dG(a, t) ≤ 2(⌈k
2 ⌉ − 1) < k for all pairs {s, t}, contradicting

the fact that G has diameter k. Thus there exists a path P ′ from the root a to some vertex, say
z, such that P ′ has length ⌈k

3 ⌉. We define P := P ′ if e ∈ P ′ and P := P ′ ∪ {e} − z otherwise.

Note that P is a path of length ⌈k
3 ⌉, satisfying e ∈ P .
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We will show that e is ⌈k
3 ⌉-associated with P . Let x, y be the endpoints of P . Suppose

on the contrary that {x, y} and e are not ⌈k
3⌉-associated; then there exists an (x, y)-path Q

in G − e such that |Q| ≤ ⌈k
3⌉. Then, by combining P and Q, we find that there is a walk of

length at most 2⌈k
3 ⌉ − 1 from one endpoint of e, to x, to y, and then to the other endpoint of

e, completely avoiding e. Therefore, if we follow L from u to the nearest endpoint of e, and
then take this e-avoiding walk to the other endpoint of e, and finish along L to v, we find an
e-avoiding walk from u to v of length at most 3⌈k

3 ⌉ − 2 ≤ k. This contradicts dG−e(u, v) > k,
and completes the proof.

We are now ready to show that every diameter-k-critical graph has at most 3n2

k edges.

Proof of Theorem 1.7. Consider an arbitrary diameter-k-critical graph G. Let us say that a
pair {x, y} and an edge e are matched in G if e is incident to at least one of x, y and all shortest
(x, y)-paths contain e. We will estimate the number N of pairs ({x, y}, e) such that {x, y} and
e ∈ E(G) are matched in G.

By the definition, it is clear that any pair {x, y} can only match at most two edges, implying
that N ≤ 2

(n
2

) ≤ n2. On the other hand, by Lemma 5.1, any edge ab is ⌈k
3 ⌉-associated with a

path P of length ⌈k
3 ⌉. Without loss of generality, suppose that P is an (x, y)-path such that

x, a, b, y appear on P in order, where possibly x = a or b = y. Then for any vertex z ∈ xPa,
the edge ab is matched with {z, b}, and for any vertex z ∈ bPy, the edge ab is matched with
{a, z}. This shows that every edge is matched with at least |V (P )| − 1 = ⌈k

3 ⌉ many pairs,

implying k
3e(G) ≤ N ≤ n2 and therefore e(G) ≤ 3n2

k .

6 Diameter 3

Throughout this section, let G be a diameter-3-critical graph on n vertices. We will prove that
G has at most n2

6 + o(n2) edges. Since we will work exclusively with diameter-3 graphs, let
us simply say that a pair {x, y} of vertices and an edge e are associated if dG(x, y) ≤ 3 and
dG−e(x, y) ≥ 4. Similarly, say that a pair {x, y} is critical if there exists some edge e associated
with {x, y}. For any critical pair {x, y}, we arbitrarily select one of the (x, y)-paths of the
smallest length to be Pxy, its corresponding critical path. We refer to a critical pair {x, y} and
its corresponding critical path Pxy interchangeably, i.e., we also say e is associated with Pxy if
e is associated with {x, y}. Note that Pxy must be of length at most 3 and contain all edges
associated with {x, y}.

For every edge e, let P1(e) be the set containing all critical paths Pxy associated with e.
Since G is diameter 3-critical, P1(e) 6= ∅ for every edge e. A pair {x, y} is 2-critical if there
exists a unique (x, y)-path of length at most 2, and such a path is also called 2-critical. For
every edge e, let P2(e) be the set of all 2-critical paths containing e. The multiplicity of an
edge e is defined as m(e) := |P1(e)| + |P2(e)|.

6.1 Critical paths with all edges associated

Let P be the set of all critical paths Pxy that are associated with at least 2 edges. Since every
(x, y)-path of length at most 3 must then contain those 2 edges, and Pxy has length at most 3,
every edge in Pxy must actually be associated with Pxy, and thus Pxy is the unique (x, y)-path
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of length at most 3. For a positive integer t, let Pt be the set of all critical paths in P with
length 3, where the middle edge has multiplicity at least t and the two non-middle edges each
have multiplicity less than t.

Inspired by the proof of Füredi [14] for the diameter-2 case, we use the “(6, 3)” theorem of
Ruzsa and Szemerédi [24] to show that |Pt| is a lower order term compared to n2. Recall that
a 3-uniform hypergraph H is a pair (V (H), E(H)), where the edge-set E(H) is a collection of
3-element subsets of V (H), each of which is called a 3-edge. H is linear if any two distinct
3-edges share at most one vertex. In a linear 3-uniform hypergraph, three 3-edges form a
triangle if they form a structure isomorphic to {{1, 2, 3}, {3, 4, 5}, {5, 6, 1}}. Let RSz(n) be the
maximum number of 3-edges in a triangle-free, linear 3-uniform hypergraph on n vertices.

Theorem 6.1. (Ruzsa and Szemerédi [24]) RSz(n) = o(n2).

The proof of the following lemma parallels Füredi’s, differing mainly at the definition of
the auxiliary hypergraph. We write out the proof for completeness.

Lemma 6.2. For each positive integer t, |Pt| ≤ 54t · RSz(n).

Proof. Consider a path Pxy := xaby in Pt. By definition, multiplicities m(xa) < t, m(ab) ≥ t,
m(by) < t, and edges xa, ab, by are all associated with Pxy, implying that xab and aby are
2-critical paths. Define the 3-uniform hypergraph H1 such that V (H1) := V (G), and form
the edge-set E(H1) by arbitrarily choosing exactly one of {x, a, y} and {x, b, y} for each path
xaby in Pt, so that |E(H1)| = |Pt|. For a 3-edge {x, a, y} ∈ E(H1) obtained from the path
Pxy = xaby ∈ Pt, we call vertices a and x the center and handle of this 3-edge, respectively.

We claim that the number of 3-edges of H1 intersecting {x, a, y} in 2 elements is at most
2t − 2. To see this, first observe that the critical pair {x, y} does not appear in any other
3-edges of H1. Since m(xa) < t, edge xa (and hence the pair {x, a}) is contained in fewer than
t critical paths in P, implying that the number of 3-edges of H1 containing {x, a} is fewer than
t. Also note that aby is 2-critical, so if {a, y} is contained in some 3-edge of H1 then aby (and
in particular {b, y}) must be contained in the corresponding path in Pt, but {b, y} is contained
in fewer than t paths in Pt as m(by) < t. Therefore, the number of 3-edges of H1 containing
{a, y} is at most t − 1, completing the proof of the claim.

We use a greedy algorithm to construct a linear 3-uniform hypergraph H2 from H1 as
follows. Initially set V (H2) := V (G), E(H2) := ∅ and A := E(H1). In each coming iteration,
if A is empty, then stop; otherwise, choose a 3-edge {x, a, y} ∈ A, move it to E(H2) and then
delete all 3-edges in A which intersect {x, a, y} in 2 elements. When it ends, we obtain a linear
3-uniform hypergraph H2 such that

|E(H2)| ≥ |E(H1)|
2t

=
|Pt|
2t

. (9)

A r-uniform hypergraph H is called r-partite if there is a partition V (H) = V1 ∪V2 ∪ . . .∪Vr

such that for each e ∈ E(H) it holds for all 1 ≤ i ≤ r that |e ∩ Vi| = 1. By randomly and
independently placing each vertex into one of 3 parts, a simple expectation argument shows
that there exists a 3-partite linear 3-uniform hypergraph H3 with parts V1, V2, V3 such that
V (H3) = V (H2), E(H3) ⊂ E(H2) and

|E(H3)| ≥ 3!

33
|E(H2)|. (10)
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Without loss of generality, we may assume that at least 1/6 of the 3-edges of H3 have center
in V2 and handle in V1. So there exists a spanning subhypegraph H4 of H3 satisfying

|E(H4)| ≥ 1

6
|E(H3)| (11)

and the property that if {v1, v2, v3} is a 3-edge of H4 with vi ∈ Vi, then it must be obtained
from the critical path v1v2vv3 ∈ Pt, for some vertex v. By (9)–(11), we see

|Pt| ≤ 54t · |E(H4)|.

To complete the proof, it suffices to show that H4 has no triangles. Suppose, on the
contrary, that three 3-edges T1, T2, T3 of H4 form a triangle. Since H4 is linear, we must
have |T1 ∪ T2 ∪ T3| = 6. It also holds for each 1 ≤ i ≤ 3 that |Vi ∩ (T1 ∪ T2 ∪ T3)| = 2,
as otherwise there is a common vertex in all of 3-edges. Let Vi ∩ (T1 ∪ T2 ∪ T3) = {ai, bi}.
Without loss of generality, we may assume T1 ∩ T2 ∩ V1 = {a1} such that T1 = {a1, a2, a3}
and T2 = {a1, b2, b3}. By symmetry, the only case to consider is T3 = {b1, a2, b3}. Then the
construction of H4 ensures that a1a2 ∈ E(G) and there are critical paths Pa1b3

:= a1b2ub3

and Pb1b3
:= b1a2vb3 in Pt for some u and v. Clearly a1a2vb3 is an (a1, b3)-path of length 3

distinct from Pa1b3
. But Pa1b3

should be the unique (a1, b3)-path of length at most 3 because
Pa1b3

∈ P. This contradiction finishes the proof.

6.2 Covering by critical paths

The key innovation in our proof for the diameter-3 case is a delicate accounting of critical
paths and edges. We will construct a family F of critical paths such that

every edge in G is associated with at least one path in F . (12)

This family will be obtained by an iterative greedy algorithm. In the i-th iteration, we will
enlarge F by adding one or two critical paths that are selected according to several prescribed
rules (see the algorithm below). We define the set P (i) to keep track of the critical paths
added in the i-th iteration, and for bookkeeping purposes, we also define sets P 2(i) of some
2-critical paths relevant for the i-th iteration.

During this process, we also maintain an unsettled set U which contains edges of G not
“essentially” contained in those paths in F . Let us give the formal definition for U . We have
|P1(e)| ≥ 1 for every e ∈ E(G), as G is diameter-3-critical, and thus it is possible that e is
associated with several critical paths of F added in different iterations. We say edge e is settled
in iteration i, if i is the first iteration which adds one critical path associated with the edge
e. Note that given an edge settled in i, that edge could be contained in some critical path
added by previous iterations. Throughout the process, U is defined to be the up-to-date set
consisting of all edges which are not settled yet. We define types for edges in U as follows. An
edge e ∈ U is of:

Type 1: if there exists a critical path P ∈ P1(e) which contains at least two associated edges
(including e) in U .

Type 2: if it is not of type 1 and there exists a critical path Q ∈ P1(e) such that |Q| = 3 and
e is the middle edge of Q.
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Type 3: if its type is not in {1, 2} and there exists some edge f ∈ U such that e and f induce
a 2-critical path.

Type 4: if its type is not in {1, 2, 3} and there exists a critical path R ∈ P1(e) such that
|R| = 3 and e is not the middle edge of R.

Type 5: if its type is not in {1, 2, 3, 4} and there exists a critical path in P1(e) of length two.

Type 6: if its type is not in {1, 2, 3, 4, 5}. Note that if e is of type 6, then we must have
P1(e) = {e}.

We now describe the greedy algorithm. Initially, set F := ∅ and U := E(G); we iterate
until U = ∅. In the i-th iteration, let ti be the smallest type that the edges in U have. (Note
that when ti ≥ 2, P1(e) ∩ P1(f) = ∅ for any e, f ∈ U .) We split into cases based upon the
value of ti:

(C1). If ti = 1, choose a critical path Pxy which contains at least two associated edges in U . Add
Pxy to F , update U by deleting all associated edges of Pxy, and then let P (i) := {Pxy}
and P 2(i) := {Pxy − x, Pxy − y}.

(C2). If ti = 2, choose an edge e ∈ U and a critical path Pxy ∈ P1(e) of length three such that
e is the middle edge of Pxy. Add Pxy to F , delete e from U , and let P (i) := {Pxy} and
P 2(i) := {Pxy − x, Pxy − y}.

(C3). If ti = 3:

(C3-1). If there exist e, f ∈ U such that the path P := e ∪ f is in P1(e), then choose a
critical path P ′ ∈ P1(f), add P, P ′ to F , delete e, f from U , and let P (i) := {P, P ′}
and P 2(i) := ∅. If there are multiple choices for e, f , choose one that maximizes
|P | + |P ′|.

(C3-2). Otherwise, choose edges e, f ∈ U and critical paths P ∈ P1(e), P ′ ∈ P1(f) such that
e∪f is a 2-critical path. Add P, P ′ to F , delete e, f from U , and let P (i) := {P, P ′}
and P 2(i) := {e ∪ f}.

(C4). If ti = 4, choose an edge e ∈ U and a path Pxy ∈ P1(e) of length three such that e is
incident to x but not y. Add Pxy to F , delete e from U , and let P (i) := {Pxy} and
P 2(i) := {Pxy − y}.

(C5). If ti = 5, choose an edge e ∈ U and a path P ∈ P1(e) of length two. Add P to F , delete
e from U , and let P (i) := {P} and P 2(i) := {e}.

(C6). If ti = 6, then all edges in U are critical paths of length one. Choose any e ∈ U , add e
to F , delete e from U , and let P (i) := {e} and P 2(i) := ∅.

When the algorithm stops, the obtained family F clearly satisfies the property (12). In
each iteration, at least one edge is deleted from U and thus settled, and one or two critical
paths are added to F . We also observe that for every edge e, as the algorithm is proceeding,
the type of e is nondecreasing (until e is deleted from U). This is because the type of an edge
could change from 1 or 3 to some larger k, but any type other than 1 or 3 will stay as it is.
This also shows that the sequence {ti} is nondecreasing.
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Lemma 6.3. For every iteration i,

(a) Each path in P (i) is critical, and each path in P 2(i) is 2-critical. Each such path contains
at least one edge settled in the i-th iteration.

(b) For each path in P 2(i), one of the following holds:

• all edges of P are settled in iteration i; or

• P is of length two such that one edge of P is settled in iteration i and the other is
settled in some previous iteration.

Proof. We split into cases based upon which of (C1)–(C6) happened at the i-th iteration.
First, we observe that (a) and (b) hold trivially if (C3) or (C6) occur. If (C1) or (C2) occurs,
we see that the critical path Pxy must be in the set P (see its definition in last subsection).
Thus (a) and (b) both follow by the fact that all edges of Pxy are associated with Pxy. If
(C4) occurs, by definition we see that e ∪ e′ := Pxy − y is 2-critical. And we also have e′ /∈ U ,
as otherwise the type of e would be at most 3. Hence e′ was settled before iteration i and
the conclusions hold in this case. Lastly, if (C5) occurs, it is easy to verify that e indeed is
2-critical, finishing the proof.

Lemma 6.4. All sets P (i) and P 2(i) are pairwise disjoint, and for all but at most n
2 iterations

i, we have |P (i) ∪ P 2(i)| ≥ 2.

Proof. We first prove the second part. It is clear from the algorithm that |P (i) ∪ P 2(i)| = 1 if
and only if ti = 6. Let us consider the first iteration i when all edges in U are of type 6 (hence
all critical paths of length one). We claim that this must be a matching. Indeed, suppose on
the contrary that e, f ∈ U share a common vertex. It is easy to verify that e ∪ f actually is
2-critical, implying that the type of e is at most 3, a contradiction. Thus, for all but the last
|U | ≤ n

2 iterations i, it holds that |P (i) ∪ P 2(i)| ≥ 2.
It remains to prove the first part, for which it is enough to show that P (i)∪P 2(i) is disjoint

from P (j) ∪ P 2(j) when i < j. Since the sequence {ti} is nondecreasing, it holds that ti ≤ tj.
Consider any P ∈ P (i) ∪ P 2(i) and Q ∈ P (j) ∪ P 2(j), and suppose for contradiction that
P = Q. First, consider the case when P ∈ P 2(i). By Lemma 6.3, every edge of P is settled in
iteration i or earlier, whereas there is at least one edge of Q settled in iteration j, so Q 6= P ,
contradiction.

We may therefore assume that P ∈ P (i). If Q ∈ P (j), then P = Q actually contained at
least two associated edges which were in U at time i, and hence we must have been in (C1) at
time i. However, then we would have deleted all of P ’s associated edges at that time, making
it impossible to find Q in P (j) later, contradiction.

Thus, we may assume that Q ∈ P 2(j). By Lemma 6.3(a), at least one edge of P was
settled at iteration i, and so Lemma 6.3(b) implies that P = Q is of length 2, say e ∪ e′, such
that P ∈ P1(e) and e and e′ are settled in iterations i and j respectively. From the algorithm,
we see that (C5) and (C6) do not produce paths of length 2 in P 2(j), and so tj ≤ 4. On the
other hand, we have that ti /∈ {1, 2, 4}. As ti ≤ tj, it must be the case that ti = 3 and tj = 4,
that is, (C3) occurs at time i and (C4) occurs at time j.

Since we must be in (C3) at time i, let f be the other settled edge in that iteration, and
let P ′ ∈ P1(f) be the other critical path in P (i). Similarly, since we must be in (C4) at time
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j, and e′ is settled there, let Q′ ∈ P1(e′) be the corresponding critical path from P (j), so
that Q ( Q′. From above, we had e ∪ e′ = P ∈ P1(e), so e, e′ form a candidate for (C3-1)
in iteration i with |P | = 2 and |Q′| = 3. This shows that (C3-1) must occur at time i, when
the two settled edges are e, f . Looking back on the algorithm, in (C3-1), the two paths in
P (i) are e ∪ f , together with a critical path which is associated with either e or f . Since
e ∪ e′ = P ∈ P (i), it must be one of these. We see that P 6= e ∪ f , because that would force
e′ = f , and f is settled at time i while e′ is settled at time j. Therefore, P must be the other
critical path in P (i) rather than e ∪ f . Since P has length 2, we conclude that the two paths
in P (i) both have length 2. Yet, as mentioned, e and e′ gave rise to an alternate candidate
for iteration i in which the two paths P ∈ P1(e) and Q′ ∈ P1(e′) had lengths 2 and 3, and
since the algorithm sought to maximize the sum of path lengths in P (i) at (C3-1), we have a
contradiction.

6.3 Putting everything together

The previous section’s accounting enables us to complete our proof with methods similar to to
Füredi’s [14] diameter-2 argument. For a graph H, let Disj(H) denote the set of pairs {u, v}
in V (H) such that u and v have disjoint neighborhoods, and let disj(H) := | Disj(H)|. We say
that a 2-critical path P is t-light if |P | = 2 and both its edges have multiplicity less than t.
Recall from the beginning of Section 6 that we define the multiplicity m(e) of an edge e to be
the sum |P1(e)| + |P2(e)|, where P1(e) is the set of critical paths associated with e and P2(e)
is the set of 2-critical paths containing e. We record two results from Füredi [14], which hold
for arbitrary graphs H (not necessarily diameter-2-critical).

Lemma 6.5. (Derived from Lemmas 2.1 and 3.3 of Füredi [14].) For any n-vertex graph H,
e(H) + disj(H) ≤ n2/2, and the number of t-light 2-critical paths is less than 27t · RSz(n) for
any positive integer t.

In the rest of the section, let G be a diameter-3-critical graph, and define t :=
√

n2/ RSz(n).
By the Ruzsa-Szemerédi (6,3) Theorem (See Theorem 6.1), t tends to infinity as n → ∞. Let
G0 be the n-vertex graph obtained from G by deleting

(i) all edges of G whose multiplicity is at least t, and

(ii) all edges which appear in a t-light 2-critical path of G.

By Lemma 6.5, at most 54t ·RSz(n) edges are deleted in (ii). To control the number deleted in
(i), observe that

∑

m(e) < 3n2, because each critical path is associated with at most 3 edges
and each 2-critical path contains at most 2 edges, and thus it follows from

∑ |P1(e)| ≤ 3
(n

2

)

and
∑ |P2(e)| ≤ 2

(n
2

)

. So, we delete fewer than 3n2/t edges in (i), producing

e(G) ≤ e(G0) +
3n2

t
+ 54t · RSz(n), (13)

and it is clear that, after deleting the edges in (i) and (ii) from G,

all 2-critical paths in G of length two are destroyed in G0. (14)

Lemma 6.6. Every critical or 2-critical pair of G is contained in Disj(G0).
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Proof. Consider any 2-critical pair {x, y} in G. If the 2-critical (x, y)-path P has length 1,
then by definition {x, y} ∈ Disj(G) and thus {x, y} ∈ Disj(G0). If it has length 2, then by
(14), at least one edge of P is deleted in G0, implying that {x, y} ∈ Disj(G0).

Now consider any critical pair {x, y}. Note that the critical path Pxy is a shortest (x, y)-
path. If |Pxy| ≤ 2, then {x, y} is also 2-critical. Thus, we may assume that |Pxy| = 3. This
shows that NG(x) ∩ NG(y) = ∅ and thus {x, y} ∈ Disj(G0).

Run our algorithm from the previous section on G, and let s be the number of iterations it
runs for before it stops. By Lemma 6.3, every path in P (i)∪P 2(i) is either critical or 2-critical,
which also uniquely determines a critical or 2-critical pair of G. Thus, by Lemmas 6.4 and
6.6, we obtain

disj(G0) ≥
∑

i

|P (i) ∪ P 2(i)| ≥ 2s − n/2. (15)

Let S(i) be the set of edges settled in iteration i, which were also still in G0. By property
(12), every edge is settled in some iteration, which shows that E(G0) is a disjoint union of the
sets S(i).

Lemma 6.7. For all but at most 54t · RSz(n) iterations, we have |S(i)| ≤ 1, and hence
e(G0) =

∑ |S(i)| ≤ s + 54t · RSz(n).

Proof. Consider an arbitrary iteration i. If (C2), (C4), (C5) or (C6) occur, exactly one edge
is settled, giving |S(i)| ≤ 1 trivially. If (C3) occurs, then there are two edges e and f settled
such that e ∪ f is a 2-critical path. By (14), at most one of e and f remains in G0, and
thus it also holds that |S(i)| ≤ 1. It remains to consider (C1). Then there are at least two
edges settled in this iteration, all of which are associated with a single critical path, say Pxy.
And such Pxy ∈ P (recall the definitions of P and Pt at the beginning of Section 6.1). If
|Pxy| = 2, then such Pxy is also 2-critical, and thus |S(i)| ≤ 1 by the same argument as in
(C3). Only |Pxy| = 3 remains. Let Pxy = xaby. Note that xab and aby both are 2-critical.
By the definition of G0, one can verify that at most one edge of Pxy can be in G0, unless it is
the situation that m(ab) ≥ t, m(xa) < t and m(by) < t, that is, Pxy ∈ Pt. Thus, |S(i)| ≤ 1
if Pxy /∈ Pt and |S(i)| ≤ 2 otherwise. By Lemma 6.2, we see that |Pt| ≤ 54t · RSz(n). This
completes the proof.

We are now ready to prove our final main result, that G has at most n2/6 + o(n2) edges.

Proof of Theorem 1.8. Let G be an arbitrary diameter-3-critical graph. By (15) and Lemma
6.7, we find

disj(G0) ≥ 2e(G0) − 108t · RSz(n) − n

2
.

Apply Lemma 6.5 to G0, we find

n2

2
≥ e(G0) + disj(G0) ≥ 3e(G0) − 108t · RSz(n) − n

2
,

which, together with (13), implies that

e(G) ≤ n2

6
+

3n2

t
+ 90t · RSz(n) +

n

6
=

n2

6
+

(

93n2

t
+

n

6

)

=
n2

6
+ o(n2),

where the equalities follow by the fact that t =
√

n2/ RSz(n) → ∞ as n → ∞.
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Remark. The proofs in Section 6 actually work for any diameter-critical graph with diameter
at least 3. The only information from diameter-3-critical graphs we need in the proof is
that for each edge e, the set of 3-critical paths of e is nonempty. This clearly holds for all
diameter-critical graphs with diameter at least 3. Therefore, for all such graphs G, we have
e(G) ≤ n2/6 + o(n2) as well.
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