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ABSTRACT

Let G be a plane graph with outer cycle C and let (L(v) : v ∈ V (G)) be a family of sets
such that |L(v)| ≥ 5 for every v ∈ V (G). By an L-coloring of a subgraph J of G we mean a
(proper) coloring φ of J such that φ(v) ∈ L(v) for every vertex v of J . We prove a conjecture
of Dvořák et al. that if H is a minimal subgraph of G such that C is a subgraph of H and
every L-coloring of C that extends to an L-coloring of H also extends to an L-coloring of G,
then |V (H)| ≤ 19|V (C)|.

This is a lemma that plays an important role in subsequent papers, because it motivates
the study of graphs embedded in surfaces that satisfy an isoperimetric inequality suggested
by this result. Such study turned out to be quite profitable for the subject of list coloring
graphs on surfaces.
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1 Introduction

All graphs in this paper are finite and simple; that is, they have no loops or parallel edges.

Paths and cycles have no repeated vertices or edges. If G is a graph and L = (L(v) : v ∈
V (G)) is a family of sets, then we say that L is a list assignment for G. It is a k-list-

assignment, if |L(v)| ≥ k for every vertex v ∈ V (G). An L-coloring of G is a (proper)

coloring φ of G such that φ(v) ∈ L(v) for every vertex v of G. We prove the following

theorem which settles a conjecture of Dvořák et al. [1].

Theorem 1.1 Let G be a plane graph with outer cycle C, let L a 5-list-assignment for G,

and let H be a minimal subgraph of G such that every L-coloring of C that extends to an

L-coloring of H also extends to an L-coloring of G. Then H has at most 19|V (C)| vertices.

Earlier versions of this theorem were proved for ordinary coloring (that is, when all the

lists in L are equal) by Thomassen [6, Theorem 5.5], who proved it with 19|V (C)| replaced

by 5|V (C)|3 , and by Yerger [7], who improved the bound to O(|V (C)|3). If every vertex of

G\V (C) has degree at least five and all its neighbors in G belong to C, then the only graph

H satisfying the hypothesis of Theorem 1.1 is the graph G itself. It follows that our bound

is asymptotically best possible.

The fact that our bound in Theorem 1.1 is linear in |V (C)| turned out to be fairly

significant. In [4] we define a family F of graphs embedded in surfaces to be hyperbolic if

there exists a constant c > 0 such that if G ∈ F is a graph that is embedded in a surface

Σ, then for every closed curve γ : S1 → Σ that bounds an open disk ∆ and intersects G

only in vertices, if ∆ includes a vertex of G, then the number of vertices of G in ∆ is at

most c(|{x ∈ S1 : γ(x) ∈ V (G)}| − 1). We say that c is a Cheeger constant for F . We were

able to develop a structure theory of hyperbolic families, and that theory has applications

to coloring, as follows.

Let L be a list assignment for a graph G. We say that G is L-critical if G is not L-

colorable, but every proper subgraph of G is. It follows from Theorem 1.1 that the family

of embedded graphs that are L-critical for some 5-list-assignment L is a hyperbolic. The

theory of hyperbolic families now implies that if G is a graph embedded in a surface Σ of

genus g and L is a 5-list-assignment for G, then

• if every non-null-homotopic cycle in G has length Ω(log g), then G has an L-coloring,

and

• for every fixed g there is a polynomial time algorithm to decide whether G has an

L-coloring.

Let us emphasize that the above results are consequences of Theorem 1.1 and the theory

of hyperbolic families. Thus the same conclusion holds for other coloring problems that
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satisfy the analog of Theorem 1.1 (with 19 replaced by an arbitrary constant). We will

return to this in a moment.

The structure theory of hyperbolic families suggests the following strengthening of hyper-

bolicity. Let F be a hyperbolic family of embedded graphs, let c be a Cheeger constant for

F , and let d := d3(2c+ 1) log2(8c+ 4)e. We say that F is strongly hyperbolic if there exists

a constant c2 such that for every G ∈ F embedded in a surface Σ and for every two disjoint

cycles C1, C2 of length at most 2d in G, if there exists a cylinder Λ ⊆ Σ with boundary

components C1 and C2, then Λ includes at most c2 vertices of G.

In a later paper of this series we will show that the family of embedded graphs that

are L-critical for some 5-list-assignment L is, in fact, strongly hyperbolic. Our theory of

hyperbolicity then implies that if G is a graph embedded in a surface Σ of genus g and L is

a 5-list-assignment for G, then

• if G is L-critical, then |V (G)| = O(g),

• if every non-null-homotopic cycle in G has length Ω(g), and a set X ⊆ V (G) of vertices

that are pairwise at distance Ω(1) is precolored from the corresponding lists, then the

precoloring extends to an L-coloring of G, and

• if every non-null-homotopic cycle in G has length Ω(g), and the graph G is allowed to

have crossings, but every two crossings are at distance Ω(1), then G has an L-coloring.

When combined with the strong hyperbolicity of another closely related family, we further

obtain that

• if G has at least one L-coloring, then it has at least 2Ω(|V (G)|) distinct L-colorings.

As indicated earlier, these results follow from the strong hyperbolicity of the family of

L-critical graphs, and hence the same results hold for other coloring problems as well. The

two other most interesting strongly hyperbolic families are the family of embedded graphs

of girth at least four that are L-critical for some 4-list-assignment L, and the family of

embedded graphs of girth at least five that are L-critical for some 3-list-assignment L. We

refer to [4] for details.

In order to prove Theorem 1.1 we prove a stronger version, stated below as Theorem 4.6,

which bounds the number of vertices in terms of the sum of the sizes of large faces, a notion

we call “deficiency”. Another aspect to the proof is to incorporate the counting of neighbors

of C into the stronger formula. This allows the finding of reducible configurations close to

the boundary in a manner similar to the discharging method’s use of Euler’s formula.

The paper is organized as follows. In Section 2 we define a more general notion of

criticality for graphs and “canvases”, which will be useful for proving Theorem 1.1, and

we prove a structure theorem for said critical canvases. In Section 3 we formally define
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deficiency and prove some lemmas about the deficiency of canvases. In Section 4 we formulate

Theorem 4.6 and prove several auxiliary results. In Section 5 we prove Theorem 4.6. In

Section 6 we prove Theorem 1.1.

2 Critical Canvases

In this section we define the notion of “canvas”, which will be used throughout the paper.

We define critical graphs and critical canvases, and prove several lemmas and Theorem 2.10,

which may be regarded as a structure theorem for critical canvases.

In a plane graph G exactly one of its faces is unbounded; we call that face the outer face

of G. All other faces of G are called internal. If the outer face is a bounded by a cycle C,

then we refer to C as the outer cycle of G.

We will need the following beautiful theorem of Thomassen [5]. We state it in a slightly

stronger form than [5], but our version follows easily from the original by induction.

Theorem 2.1 (Thomassen) Let G be a plane graph, Z the set of vertices incident with

the outer face of G, and let S ⊆ Z be such that |S| ≤ 2, and if |S| = 2 then the vertices in

S are adjacent. Let L be a list assignment for G with |L(v)| ≥ 5 for all v ∈ V (G) \ V (Z),

|L(v)| ≥ 3 for all v ∈ V (Z) \ V (S), |L(v)| = 1 for all v ∈ S, and if |S| = 2, then the lists of

vertices in S are disjoint. Then G is L-colorable.

Definition 2.2 (T -critical) Let G be a graph, T ⊆ G a (not necessarily induced) subgraph

of G and L a list assignment for G. For an L-coloring φ of T , we say that φ extends to an

L-coloring of G if there exists an L-coloring ψ of G such that φ(v) = ψ(v) for all v ∈ V (T ).

The graph G is φ-critical if φ extends to every proper subgraph of G containing T but not

to G.

The graph G is T -critical with respect to the list assignment L if G 6= T and for every

proper subgraph G′ ⊂ G such that T ⊆ G′, there exists an L-coloring of T that extends to

an L-coloring of G′, but does not extend to an L-coloring of G. If the list assignment is clear

from the context, we shorten this and say that G is T -critical.

We need the following lemma about subgraphs of critical graphs. If G is a graph and

X ⊆ V (G), then let G[X] denote the subgraph of G induced by X.

Lemma 2.3 Let T be a subgraph of a graph G such that G is T -critical with respect to a

list assignment L. Let A,B ⊆ G be such that A∪B = G, T ⊆ A and B 6= A[V (A)∩ V (B)].

Then G[V (B)] is A[V (A) ∩ V (B)]-critical.

Proof. Let G′ = G[V (B)] and S = A[V (A) ∩ V (B)]. Since G is T -critical, every isolated

vertex of G belongs to T , and thus every isolated vertex of G′ belongs to S. Suppose for a
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contradiction that G′ is not S-critical. Then, there exists an edge e ∈ E(G′)\E(S) such that

every L-coloring of S that extends to G′ \ e also extends to G′. Note that e 6∈ E(T ). Since

G is T -critical, there exists a coloring Φ of T that extends to an L-coloring φ of G \ e, but

does not extend to an L-coloring of G. However, by the choice of e, the restriction of φ to S

extends to an L-coloring φ′ of G′. Let φ′′ be the coloring that matches φ′ on V (G′) and φ on

V (G) \ V (G′). Observe that φ′′ is an L-coloring of G extending Φ, which is a contradiction.

�

Definition 2.4 We say the triple (G,C, L) is a canvas if G is a 2-connected plane graph, C

is its outer cycle, and L is a list assignment for some graph G′ such that G is a subgraph of

G′, |L(v)| ≥ 5 for all v ∈ V (G)−V (C) and there exists an L-coloring of C. We say a canvas

(G,C, L) is critical if G is C-critical with respect to the list assignment L.

This definition of canvas differs from the one we used in [3] in two respects. First, we

allow L to include lists of vertices that do not belong to G. That is just an artificial device

to make the notation easier when we pass to subgraphs. Second, and more importantly,

the current definition restricts the graph G to be 2-connected. The reason for that is that

frequently we will need to manipulate faces of G and doing so is much easier when all the

face boundaries are cycles. That we can restrict to 2-connected graphs follows from the next

lemma.

Lemma 2.5 If G is a plane graph, C is its outer cycle, and L is a list assignment for the

vertices of G such that G is C-critical with respect to L, then G is 2-connected, and hence

(G,C, L) is a canvas.

Proof. If G is not 2-connected, then it has subgraphs A,B such that A ∪ B = G,

|V (A ∩ B)| ≤ 1, C is a subgraph of A and V (B) − V (A) 6= ∅. By Lemma 2.3 the graph

G[V (B)] is A[V (A) ∩ V (B)]-critical, contrary to Theorem 2.1. �

Lemma 2.3 has a useful corollary. To state it, however, we need notation for a subgraph

of a plane graph G, where the subgraph consists of vertices and edges drawn in the closed

disk bounded by a cycle C of G. In fact, we will need this notation even when C uses edges

that do not belong to G. Hence the following definition.

Definition 2.6 Let T = (G,C, L) be a canvas, and let G′ be a plane graph obtained from

G by adding a (possibly empty) set of edges inside internal faces of G. If C ′ is a cycle in G′,

we let G〈C ′〉 denote the subgraph of G∪C ′ contained in the closed disk bounded by C ′. We

let T 〈C ′〉 denote the canvas (G〈C ′〉, C ′, L).

Corollary 2.7 Let T = (G,C, L) be a critical canvas. If C ′ is a cycle in G such that

G〈C ′〉 6= C ′, then T 〈C ′〉 is a critical canvas.
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Proof. Let B = G〈C ′〉 and let A be obtained from G by deleting all vertices and edges

drawn in the open disk bounded by C ′. By applying Lemma 2.3, it follows that G〈C ′〉 is

A[V (C ′)]-critical, and hence C ′-critical. By Lemma 2.5, T 〈C ′〉 is a critical canvas. �

Definition 2.8 Let T = (G,C, L) be a canvas and G′ ⊆ G such that C ⊆ G′ and G′ is

2-connected. We define the subcanvas of T induced by G′ to be (G′, C, L) and we denote it

by T [G′].

Another useful fact is the following. We omit the proof, which is easy.

Proposition 2.9 Let T = (G,C, L) be a canvas such that there exists a proper L-coloring

of C that does not extend to G. Then T contains a critical subcanvas.

If G is a graph, we let N(v) denote the set of neighbors of a vertex v of G. If X ⊆ V (G),

we let N(X) denote the set of vertices of G not in X with at least one neighbor in X. If C is

a cycle in a graph G, then a chord of C is an edge e in E(G)\E(C) with both ends in V (C).

The following theorem gives useful information about the structure of critical canvases.

Theorem 2.10 (Cycle Chord or Tripod Theorem)

If T = (G,C, L) is a critical canvas, then either

1. C has a chord in G, or

2. there exists a vertex v ∈ V (G) \ V (C) with at least three neighbors on C such that at

most one of the faces of G[{v} ∪ V (C)] includes a vertex or edge of G.

Proof. Suppose C does not have a chord. Let X be the set of vertices with at least three

neighbors on C. Let G′ be the subgraph of G defined by V (G′) = C ∪ X and E(G′) =

E(G[C ∪X])− E(G[X]).

We claim that if f is face of G′ such that f is incident with at most one vertex of X,

then f does not include a vertex or edge of G. Suppose not. Let C ′ be the boundary

of f . As C has no chords and every edge with one end in X and the other in C is in

E(G′), it follows that C ′ has no chords. As T is critical, there exists an L-coloring φ of

G \ (V (G〈C ′〉) \ V (C ′)) which does not extend to G. Hence, the restriction of φ to C ′ does

not extend to V (G〈C ′〉). Let G′′ = G〈C ′〉 \ V (C), S = V (C ′) \ V (C), L′(v) = {φ(v)} for

v ∈ S and L′(v) = L(v) \ {φ(x) : x ∈ V (C)∩N(v)} for v ∈ V (G′′) \S. Note that |L′(v)| ≥ 3

for all v 6∈ S by definition of X. By Theorem 2.1, there exists an L′-coloring of G′′ and hence

an L-coloring of G which extends φ, a contradiction. This proves the claim.

As T is critical, G 6= C. As C has no chords, it follows from the claim above that X 6= ∅.
Let F be the set of internal faces of G′ incident with at least two elements of X. Consider

the graph H whose vertices are X ∪ F , where a vertex x ∈ X is adjacent to f ∈ F if x is
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incident with f . By planarity, H is a tree. Let v be a leaf of H. By the definition of H,

v ∈ X. Hence at most one of the faces of G[{v} ∪ V (C)] is incident with another vertex of

X. Yet all other faces of G[{v} ∪ V (C)] are incident with only one element of X, namely v,

and so by the claim above, these faces do not include a vertex or edge of C, as desired. �

We also need the following proposition, where the first statement is a consequence of

Theorem 2.1 and the second follows directly.

Proposition 2.11 If T = (G,C, L) is a critical canvas, then

(1) for every cycle C ′ of G of length at most four, V (G〈C ′〉) = V (C ′), and

(2) every vertex in V (G) \ V (C) has degree at least five.

3 Deficiency

In this section we introduce the notion of deficiency, which will play a pivotal role in the rest

of the paper, and we prove several basic lemmas about deficiency.

Definition 3.1 Let G be a plane graph with outer cycle C. We say that a vertex v ∈ V (G)

is internal if v 6∈ V (C). We denote the number of internal vertices by v(G), and we define

the deficiency of G, denoted by def(G), as

def(G) := |E(G) \ E(C)| − 3v(G).

If T = (G,C, L) is a canvas, then we define v(T ) := v(G) and def(T ) := def(G).

Definition 3.2 Let G be a 2-connected plane graph. We let F(G) denote the set of internal

faces of G. If f is a face of G, then we let |f | denote the length of the cycle bounding f .

Likewise, if C is a cycle in G, then we denote its length by |C|. For f ∈ F(G) we let Cf be

the cycle bounding f . We denote by G[f ] the subgraph G〈Cf〉. If T = (G,C, L) is a canvas

and f is a face of G, let T [f ] denote the canvas T 〈Cf〉, that is, (G[f ], Cf , L).

The following is an equivalent formula for the deficiency of a 2-connected plane graph.

Lemma 3.3 If G is a 2-connected plane graph with outer cycle C, then

def(G) = |C| − 3−
∑

f∈F(G)

(|f | − 3).

Proof. Euler’s formula gives |C|+ v(G) + |F(G)|+ 1 = |E(G)|+ 2, and hence

|C| − 3−
∑

f∈F(G)(|f | − 3) = |C| − 3− (2|E(G)| − |C|) + 3|F(G)| =
2|C| − 2|E(G)| − 3 + 3|E(G)| − 3|C| − 3v(G) + 3 =

|E(G) \ E(C)| − 3v(G) = def(G),
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as desired. �

In fact, it was the above formula that led us to the notion of deficiency. However, for most

of the proof it is more convenient to use the definition of deficiency. We will not need

Lemma 3.3 until the proof of Theorem 1.1 in Section 6.

Lemma 3.4 If G is a 2-connected plane graph with outer cycle C and G′ is a 2-connected

subgraph of G containing C, then

def(G) = def(G′) +
∑

f∈F(G′)

def(G[f ]).

Proof. The lemma follows from the fact that every internal vertex of G is an internal

vertex of exactly one of the graphs G′ and G[f ] for f ∈ F(G′), and the same holds for edges

not incident with the outer face. �

Theorem 3.5 (Cycle Sum of Faces Theorem)

If T = (G,C, L) is a critical canvas, then def(T ) ≥ 1.

Proof. We proceed by induction on the number of vertices of G. We apply Theorem 2.10

to T . Suppose first that (1) holds; that is, there is a chord e of C. Let C1, C2 be the cycles

of C+ e other than C. Hence |V (C1)|+ |V (C2)| = |V (C)|+ 2. Let T1 = T 〈C1〉 = (G1, C1, L)

and T2 = T 〈C2〉 = (G2, C2, L). By Lemma 3.4 applied to G′ = C + e, def(T ) = def(T1) +

def(T2) + 1. By Corollary 2.7, for i ∈ {1, 2}, either Ti is critical or Gi = Ci. If Gi 6= Ci,

then def(Ti) ≥ 1 by induction. If Gi = Ci, then def(Ti) = 0 by definition. In either case,

def(Ti) ≥ 0. Thus def(T ) ≥ 0 + 0 + 1 ≥ 1, as desired.

So we may suppose that (2) holds; that is, there exists an internal vertex v of G such that

v is adjacent to at least three vertices of C and at most one of the faces of G[{v} ∪ V (C)]

includes a vertex or edge of G. Let G′ = G[{v} ∪ C]. First suppose that none of the faces

of G′ includes a vertex or edge of G, and hence V (G) = V (C) ∪ {v}. As G is C-critical, it

follows from Proposition 2.11(2) that v must have degree at least five. Thus, def(T ) ≥ 2, as

desired.

So we may suppose that exactly one of the faces of G′ includes a vertex or edge of G.

Let C ′ be the boundary of that face. We have

def(T ) ≥ def(T 〈C ′〉) ≥ 1,

where the first inequality follows from the definition of deficiency and the second by induction,

because T 〈C ′〉 is a critical canvas by Corollary 2.7. �

To handle critical canvases with at most four internal vertices will need the following

inequality.
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Lemma 3.6 If G is a 2-connected plane graph with outer cycle C and every internal vertex

of G has degree at least five, then

def(G) ≥ 2v(G)− |E(G \ V (C))|,

with equality if and only if every vertex of G has degree exactly five.

Proof. By Proposition 2.11(2)

def(G) = |E(G)\E(C)|−3v(G) ≥ 5v(G)−|E(G\V (C))|−3v(G) = 2v(G)−|E(G\V (C))|,

with equality if and only if every vertex of G has degree exactly five. �

4 Linear Bound for Cycles

The purpose of this section is to state Theorem 4.6, the desired strengthening of Theorem 1.1.

First a few definitions. If G is a plane graph and u, v ∈ V (G), then we say that u and v are

cofacial if there exists a face f of G such that u and v are both incident with f .

Definition 4.1 Let G be a 2-connected plane graph with outer cycle C. We define the

boundary of G, denoted by B(G), as N(V (G)). We also define the quasi-boundary of G,

denoted by Q(G), as the set of vertices not in C that are cofacial with at least one vertex

of C. We let b(G) := |B(G)| and q(G) := |Q(G)|. Note that B(G) ⊆ Q(G).

If T = (G,C, L) is a canvas, then we extend the above notions to T in the obvious way,

so that we can speak of the boundary or quasi-boundary of T , and we define B(T ) := B(G)

and similarly for all the other quantities.

For the rest of this paper let ε, α > 0 be fixed positive real numbers. Our main result,

Theorem 4.6, depends on ε and α and holds as long as ε and α satisfy three natural inequal-

ities. Later we will make a specific choice of ε and α in order to optimize the constant in

Theorem 1.1. We need to introduce the following quantities.

Definition 4.2 Let G be a 2-connected plane graph. We define

s(G) := εv(G) + α(b(G) + q(G)) and d(G) := def(G)− s(G).

If T = (G,C, L) is a canvas, then we define s(T ) := s(G) and d(T ) := d(G).

We need to establish a few properties of the quantities just introduced before we can

state Theorem 4.6.

Proposition 4.3 Let G be a 2-connected plane graph with outer cycle C, and let G′ be a

2-connected subgraph of G containing C as a subgraph. Then
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• v(G) = v(G′) +
∑

f∈F(G′) v(G[f ]),

• b(G) ≤ b(G′) +
∑

f∈F(G′) b(G[f ]),

• q(G) ≤ q(G′) +
∑

f∈F(G′) q(G[f ]),

• s(G) ≤ s(G′) +
∑

f∈F(G′) s(G[f ]),

• d(G) ≥ d(G′) +
∑

f∈F(G′) d(G[f ]).

Proof. For f ∈ F(G′), let Cf denote the cycle bounding f . The first assertion follows as

every vertex of V (G) \ V (C) is in exactly one of G′ \ V (C) and G[f ] \ V (Cf ) for f ∈ F(G′),

and every vertex in one of those sets is in V (G) \ V (C).

The second assertion follows from the claim that B(G) ⊆ B(G′) ∪
⋃

f∈F(G′) B(G[f ]). To

see this claim, suppose that v ∈ B(G). Now v ∈ B(G) if and only if v has a neighbor u in

V (C). If v ∈ V (G′), then v ∈ B(G′). So we may assume that v is a vertex of G[f ] \ V (Cf )

for some f ∈ F(G′). So it must be that u ∈ V (Cf ) and hence v ∈ B(G[f ]).

The third assertion follows from the claim that Q(T ) ⊆ Q(G′)∪
⋃

f∈F(G′) Q(G[f ]). That

claim follows with the same argument as above, except that u ∈ V (C) is cofacial with v

instead of a neighbor of v.

The fourth statement follows from the first three. The fifth statement follows from the

fourth and Lemma 3.4. �

Corollary 4.4 Let G be a 2-connected plane graph with outer cycle C. If e is a chord of C

and C1, C2 are the cycles of C + e other than C, then

d(G) ≥ d(G〈C1〉) + d(G〈C2〉) + 1.

If v is a vertex with two neighbors u1, u2 ∈ V (C) and C1, C2 cycles such that C1∩C2 = u1vu2

and C1 ∪ C2 = C ∪ u1vu2, then

d(G) ≥ d(G〈C1〉) + d(G〈C2〉)− 1− (2α + ε).

Proof. Both formulas follow from Proposition 4.3 applied to G′ := G[C1 ∪ C2]. �

For future convenience we state the following facts, which follow directly from the defi-

nitions.

Proposition 4.5 Let T = (G,C, L) be a canvas.

(i) If v(T ) = 0, then d(T ) = |E(G) \ E(C)|.

(ii) If v(T ) = 1, then d(T ) = |E(G) \ E(C)| − 3− (2α + ε).
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We are now ready to state our generalization of Theorem 1.1.

Theorem 4.6 Let ε, α, γ > 0 satisfy the following:

(I1) 3ε ≤ 2α,

(I2) 6α + 3ε ≤ γ,

(I3) 2α + 3ε+ γ ≤ 1.

If T = (G,C, L) is a critical canvas and v(T ) ≥ 2, then d(T ) ≥ 3− γ.

5 Proof of Theorem 4.6

This section is devoted to a proof of Theorem 4.6. We proceed in a series of claims. Through-

out this section let T = (G,C, L) be a counterexample to Theorem 4.6 such that

(M1) |E(G)| is minimum,

and, subject to that,

(M2)
∑

v∈V (G) |L(v)| is minimum.

Let us recall the useful facts of Proposition 2.11, especially that there is no triangle C ′ of G

with G〈C ′〉 6= C ′ and that deg(v) ≥ 5 for all v ∈ V (G) \ V (C).

Claim 5.1 v(T ) ≥ 5.

Proof. Suppose for a contradiction that v(T ) ≤ 4, and let m := |E(G \ V (C))|. Then

m ≤ 1 if v(G) = 2, m ≤ 3 if v(G) = 3, and m ≤ 5 if v(G) = 4, where the last inequality

follows from Proposition 2.11(1). By Proposition 2.11(2) and Lemma 3.6 we have def(G) ≥ 3.

Furthermore, if v(T ) = 4, then equality holds if and only if m = 5 and every internal vertex

of G has degree exactly five. However, that cannot happen, because in that case G\V (C) is

obtained from the complete graph on four vertices by deleting an edge, and hence every L-

coloring of C extends to an L-coloring of G, contrary to the criticality of T . Thus def(G) ≥ 4

when v(T ) = 4. Clearly s(G) ≤ v(G)(2α + ε), and hence d(G) ≥ 3 − 3(2α + ε) ≥ 3 − γ by

inequality (I2) when v(G) ∈ {2, 3}, and d(G) ≥ 4 − 4(2α + ε) ≥ 3 − γ by inequalities (I2)

and (I3) when v(G) = 4, in either case contrary to the fact that T is a counterexample to

Theorem 4.6. �
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5.1 Proper Critical Subgraphs

Here is a remarkably useful lemma.

Claim 5.2 Suppose T0 = (G0, C0, L0) is a critical canvas with |E(G0)| ≤ |E(G)| and v(T0) ≥
2, and let G′ be a proper subgraph of G0 such that for some list assignment L′ the triple

(G′, C0, L
′) is a critical canvas. Then

(1) d(T0) ≥ 4− γ, and

(2) d(T0) ≥ 4− 2(2α + ε) if |E(G0) \ E(G′)|, |E(G′) \ E(C0)| ≥ 2, and

(3) d(T0) ≥ 5− 2α− ε− γ if |E(G0) \ E(G′)|, |E(G′) \ E(C0)| ≥ 2 and v(T0) ≥ 3.

Proof. Note that the inequality in (3) implies the inequality in (2) implies the inequality

in (1) by inequalities (I2) and (I3). Given Proposition 4.5 and the fact that T is a minimum

counterexample, it follows that d(T0[f ]) ≥ 0 for all f ∈ F(G′) and d(T0[f ]) ≥ 1 if f includes a

vertex or edge of G0. Moreover as G′ is a proper subgraph of G0, there exists at least one f ∈
F(G′) such that f includes a vertex or edge of G0. Furthermore, if |E(G0)\E(G′)| ≥ 2, either

there exist two such f ’s or d(T0[f ]) ≥ 2− (2α + ε) for some f ∈ F(G′) by Proposition 4.5.

Now d(T0) ≥ d(G′) +
∑

f∈F(G′) d(T0[f ]) by Proposition 4.3. As noted above though,∑
f∈F(G′) d(T0[f ]) ≥ 1 and is at least 2 − (2α + ε) if |E(G0) \ E(G′)| ≥ 2. Furthermore if

v(T0[f ]) ≥ 2, then d(T0[f ]) ≥ 3− γ.

Assume first that v(G′) > 1. Then d(G′) ≥ 3 − γ as T is a minimum counterexample.

Hence d(T0) ≥ 4 − γ if |E(G0) \ E(G′)| = 1 and (1) holds as desired. Otherwise d(T0) ≥
5− (2α + ε)− γ and (2) and (3) hold as desired.

So we may assume that v(G′) ≤ 1. Suppose v(G′) = 1. Thus d(G′) ≥ 2 − (2α + ε) by

Proposition 4.5 and criticality. Moreover, there exists f ∈ F(G′) such that v(T0[f ]) ≥ 1.

If v(T0[f ]) ≥ 2, then d(T0[f ]) ≥ 3 − γ as T is a minimum counterexample. As above,

d(T0) ≥ d(G′) + d(T0[f ]) ≥ 5 − (2α + ε) − γ and (3) holds, as desired. If v(T0[f ]) = 1,

then d(T0[f ]) ≥ 2 − (2α + ε) by Proposition 4.5. As above, d(T0) ≥ d(G′) + d(T [f ]) ≥
2(2 − (2α + ε)) = 4 − 2(2α + ε) and (1) and (2) hold, as desired. Yet if v(T0) ≥ 3, there

must be two such faces if no face has at least two internal vertices. In that case then,

d(T0) ≥ 3(2− (2α+ ε)) = 6− 3(2α+ ε) which is at least 5− (2α+ ε)− γ by inequality (I2)

and (3) holds, as desired.

So suppose v(G′) = 0. As G′ 6= C0, d(T0[G′]) ≥ |E(G′) \ E(C0)| by Proposition 4.5. As

v(T0) ≥ 2, either there exists f ∈ F(G′) such that v(T0[f ]) ≥ 2 or there exist f1, f2 ∈ F(G′)

such that v(T0[f1]), v(T0[f2]) ≥ 1. Suppose the first case. Then d(T0[f ]) ≥ 3 − γ as T is a

minimum counterexample. Hence d(T0) ≥ |E(G′)\E(C0)|+3−γ. Since |E(G′)\E(C0)| ≥ 1,

d(T0) ≥ 4− γ and (1) holds, as desired. If |E(G′) \ E(C0)| ≥ 2, then d(T0) ≥ 5− γ and (2)

and (3) hold, as desired. So suppose the latter. Then d(T0[f1]), d(T0[f2]) ≥ 2− (2α+ ε) and
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d(T0) ≥ 1 + 2(2− (2α + ε)) = 5− 2(2α + ε), and all three statements hold as desired, since

2α + ε ≤ γ by inequality (I2). �

Claim 5.3 There does not exist a proper C-critical subgraph G′ of G.

Proof. This follows from Claim 5.2 applied to T0 = T . �

Claim 5.4 There does not exist a chord of C.

Proof. Suppose there exists a chord e of C. Let G′ = C + e. As v(T ) 6= 0, G′ is a proper

subgraph of G. Yet G′ is C-critical, contradicting Claim 5.3. �

5.2 Dividing Vertices

Definition 5.5 Let G0 be a 2-connected plane graph with outer cycle C0. Let v be an

internal vertex of G0 and suppose there exist two distinct faces f1, f2 ∈ F(G0) such that

for i ∈ {1, 2} the boundary of fi includes v and a vertex of C0, say ui. Let us assume that

u1 6= u2 and let G′ be the plane graph obtained from G0 by adding the edges u1v, u2v if

they are not present in G0. Consider the cycles C1, C2 of G′, where C1 ∩ C2 = u1vu2 and

C1 ∪ C2 = C0 ∪ u1vu2. If for both i ∈ {1, 2} we have |E(T 〈Ci〉) \ E(Ci)| ≥ 2, then we say

that v is a dividing vertex of G0. If for both i ∈ {1, 2} we have v(T 〈Ci〉) ≥ 1, we say v is a

strong dividing vertex of G0. If v is a dividing vertex of G0 and the edges u1v, u2v belong to

G0, then we say that v is a true dividing vertex of G0. If T0 = (G0, C0, L0) is a canvas, then

by a dividing vertex of T0 we mean a dividing vertex of G0, and similarly for strong and true

dividing vertices.

Claim 5.6 Suppose T0 = (G0, C0, L0) is a critical canvas with |E(G0)| ≤ |E(G)| and v(T0) ≥
2. If G0 contains a true dividing vertex, then

(1) d(T0) ≥ 3− 2(2α + ε), and

(2) d(T0) ≥ 4− 2α− ε− γ if v(T0) ≥ 3.

Proof. Note that the inequality in (2) implies the inequality in (1) by inequality (I3).

Let u1, u2, C1, C2 and v be as in the definition of true dividing vertex. Since v is true, u1v

and u2v belong to G0. Let G′ = C1 ∪ C2. Hence G′, C1 and C2 are subgraphs of G0. Thus

d(T0[G′]) = −1− (2α + ε) by Proposition 4.5(ii).

Note that, by Corollary 2.7, T0〈C1〉, T0〈C2〉 are critical canvases. If v(T0〈C1〉) = 0, then

d(T0〈C1〉) ≥ 2 by Proposition 4.5(i), because |E(T0[C1]) \ E(C1)| ≥ 2 by the definition of

dividing vertex. If v(T0〈C1〉) = 1, then d(T0〈C1〉) ≥ 2 − (2α + ε) by Proposition 4.5(ii). If
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v(T0〈C1〉) ≥ 2, then d(T0〈C1〉) ≥ 3 − γ as T is a minimum counterexample. In any case,

d(T0〈C1〉) ≥ 2 − (2α + ε) as γ ≤ 1 + (2α + ε) by inequality (I3). Similarly, d(T0[C2]) ≥
2− (2α + ε).

By Proposition 4.3, d(T0) ≥ d(T0[G′]) + d(T0〈C1〉) + d(T0〈C2〉). Now let us choose v such

that a = min{v(T0〈C1〉), v(T0〈C2〉)} is minimized. Note then that a 6= 1, as otherwise there

exists another true dividing vertex, contradicting the minimality of a. First suppose that

a ≥ 2 and hence

d(T0) ≥ (−1− (2α + ε)) + 2(3− γ) = 5− 2γ − (2α + ε)

and (1) and (2) hold by inequality (I3), as desired. So we may suppose that a = 0. Hence

d(T0) ≥ (−1− (2α + ε)) + 2 + 2− (2α + ε) = 3− 2(2α + ε)

and (1) holds, as desired. Yet if v(T0) ≥ 3, then

d(T0) ≥ (−1− (2α + ε)) + 2 + 3− γ = 4− γ − (2α + ε)

and (2) holds, as desired. �

Claim 5.7 Suppose T0 = (G0, C0, L0) is a critical canvas with |E(G0)| ≤ |E(G)|. If G0

contains a strong dividing vertex, then d(T0) ≥ 4− 2γ.

Proof. Let u1, u2, C1, C2 and v be as in the definition of strong dividing vertex. As v is

strong, v(T0) ≥ 3. Note that v(T0〈C1〉) ≥ 1 as v is strong. If v(T0〈C1〉) = 1, then the unique

vertex in V (T0〈C1〉) \ V (C1) is a true dividing vertex and hence

d(T0) ≥ 4− 2α− ε− γ ≥ 4− 2γ

by Claim 5.6 and inequality (I2), as desired. So we may assume that v(T0〈C1〉) ≥ 2 and

similarly that v(T0〈C2〉) ≥ 2.

LetG′0 be the graph obtained fromG0 by adding vertices z1, z2 and edges u1z1, z1v, vz2, z2u2.

Similarly let G′ be the graph obtained from C0 by adding vertices v, z1, z2 and edges u1z1,

z1v, vz2, z2u2. Let L′0(x) = L0(x) for all x ∈ V (G0) and L0(z1) = L(z2) = R, where R is a

set of five new colors, and let T ′0 = (G′0, C0, L
′
0). Now

def(G′) = |E(G′)| − |E(C0)| − 3v(G′) = 4− 3 · 3 = −5.

Since G0 is C0-critical, there exists a coloring φ0 of C0 that does not extend to G0. By

Claim 5.2 the graph G0 does not have a proper C0-critical subgraph, and hence φ0 extends

to every proper subgraph of G0 by Proposition 2.9. For every c ∈ L(v), let φc(v) = c,

φc(z1) = φc(z2) ∈ R and φc(x) = φ0(x) for all x ∈ C0. Let C ′1, C
′
2 be the two facial cycles
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of G′ other than C0. Since φ0 does not extend to G0, for every c ∈ L(v) the coloring φc

does not extend to an L-coloring of either G′0〈C ′1〉 or G′0〈C ′2〉. Since |L(v)| ≥ 5 there exists

i ∈ {1, 2} such that there exist at least three colors c in L(v) such that φc does not extend

to an L-coloring of G′0〈C ′i〉. We may assume without loss of generality that i = 1. Let C be

the set of all colors c ∈ L(v) such that φc does not extend to an L-coloring of G′0〈C ′1〉. Thus

|C| ≥ 3.

Let G′1 be the graph obtained from G′0〈C ′1〉 by adding the edge z1z2 inside the outer face

of G′0〈C ′1〉. Let C ′′1 = (C ′1 \ v) + z1z2. Let L′(z1) = {c1}, L′(z2) = {c2} where c1, c2 are

two distinct entirely new colors, let L′(v) = C ∪ {c1, c2}, and let L′(x) = L(x) for every

x ∈ V (G0) \ {v}.
We claim that the canvas T1 = (G′1, C

′′
1 , L

′) is a critical canvas. To see this let H be

a proper subgraph of G′1 that includes C ′′1 as a subgraph. Let us extend φ0 by defining

φ0(z1) := c1 and φ0(z2) := c2. We will show that (the restriction to C ′′1 of) φ0 extends

to H but not to G′1. If φ0 extended to G′1, then φ0(v) 6∈ C by the definition of C and

φ0(v) 6∈ {c1, c2}, because v is adjacent to z1, z2, a contradiction. Thus φ0 does not extend

to G′1. To show that φ0 extends to H assume first that H \ {z1, z2} is a proper subgraph of

G0〈C ′1〉. Then (H \{z1, z2})∪G0〈C ′2〉 is a proper subgraph of G0, and hence φ0 extends to it,

as desired. So we may assume that H \ {z1, z2} = G0〈C ′1〉. Since H is a proper subgraph of

G′1 we may assume from the symmetry that vz1 6∈ E(H). Now φ0 extends to an L′-coloring

of G0 \ v. Letting φ0(v) = c1 shows that φ0 extends to H, as desired. This proves the claim

that T1 is critical.

As v(T1) ≥ 2, we find that d(T1) ≥ 3− γ by the minimality of T . Also by the minimality

of T , as v(T ′0〈C ′2〉) ≥ 2, d(T ′0〈C ′2〉) ≥ 3− γ. Let us now count deficiencies. By Lemma 3.4,

def(T ′0) = def(T ′0[G′]) + def(T ′0〈C ′1〉) + def(T ′0〈C ′2〉) = −5 + def(T ′0〈C ′1〉) + def(T ′0〈C ′2〉).

Yet, def(T0) = def(T ′0) + 2. Furthermore, def(T ′0〈C ′1〉) = def(T1) + 1. Hence,

def(T0) = def(T ′0〈C ′1〉) + def(T ′0〈C ′2〉)− 3 = def(T1) + def(T ′0〈C ′2〉)− 2.

Next we count the function s. We claim that s(T0) ≤ s(T1) + s(T ′0〈C ′2〉). This follows as

every vertex of V (G0) \ V (C0) is either in V (G′1) \ V (C ′′1 ) or V (G′0〈C ′2〉) \ V (C ′2). Moreover

every vertex of B(T0) is either in B(T1) or B(T ′0〈C ′2〉) and similarly every vertex of Q(T0) is

either in Q(T1) or Q(T ′0〈C ′2〉).
Finally putting it all together, we find that

d(T0) ≥ d(T1) + d(T ′0〈C ′2〉)− 2 ≥ 2(3− γ)− 2 = 4− 2γ,

as desired. �
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5.3 Tripods

Definition 5.8 Let G0 be a plane graph with outer cycle C0, and let v ∈ V (G0) \ V (C0)

have at least three neighbors in C0. Let u1, u2, . . . , uk be all the neighbors of v in C0 listed in

their order of appearance on C0. Assume that at most one face of G0[V (C0) ∪ {v}] includes

an edge or vertex of G0, and if such a face exists, then it is incident with u1 and uk. If k = 3,

then we say that v is tripod of G0, and if k ≥ 4, then we say that v is quadpod of G0. The

tripod or quadpod v is regular if there exists a face of G0[V (C0)∪{v}] that includes an edge

or vertex of G0. If such a face exists, then we say that u1, u2, . . . , uk are listed in a standard

order. Note that every tripod of degree at least four is regular.

If v is a regular tripod or quadpod, we let C0 ⊕ v denote the boundary of the face of

G0[V (C0)∪ {v}] that includes an edge or vertex of G0, and we define G0⊕ v := G0〈C0⊕ v〉.
If X is a set of tripods or quadpods of G0 and there exists a face of G0[V (C0) ∪ X] that

includes an edge or vertex of G0, then we let C0 ⊕X denote the boundary of such face and

we define G0 ⊕X := G0〈C0 ⊕X〉.
Now if T0 = (G0, C0, L0) is a canvas, then we extend all the above terminology to T0 in the

natural way. Thus we can speak of tripods or quadpods of T0, we define T0⊕X := T0[G0⊕X],

etc.

Claim 5.9 Let T0 = (G0, C0, L0) be a canvas with v(T0) ≥ 2 and let v ∈ V (G0) \ V (C0)

have at least three neighbors in C0. Then v is either a regular tripod of T0, or a true dividing

vertex of T0.

Proof. Let u1, u2, . . . , uk be all the neighbors of v in C0 listed in their order of appearance

on C0 and numbered such that the face f of G0[V (C0)∪{v}] incident with u1 and uk includes

a vertex of G0. If another face of G0[V (C0)∪{v}] includes an edge or vertex of G0, or k ≥ 4,

then by considering the vertices u1 and uk we find that v0 is a true dividing vertex of T0.

Thus we may assume that k = 3 and that f is the only face of G0[V (C0)∪{v}] that includes

a vertex or edge of G0. It follows that v is a tripod, as desired. �

Definition 5.10 Let T0 = (G0, C0, L0) be a canvas. We say that T0 is a 0-relaxation of T0.

Let k > 0 be an integer, T ′0 be a (k − 1)-relaxation of T0 and v be a regular tripod of T ′0.

Then we say that T ′0 ⊕ v is a k-relaxation of T0.

Let us make a few remarks. If T0 is a critical canvas, then every tripod of T0 is regular

by Proposition 2.11(2). Therefore T0 ⊕ v is well-defined; moreover, it is a critical canvas by

Corollary 2.7, and v(T0⊕v) ≥ 2 again by Proposition 2.11(2). It follows that for all k ≥ 1, a

k-relaxation of a critical canvas is well-defined, and if we denote it by T ′0, then T ′0 is critical

and v(T ′0) ≥ 2. Here are some useful claims about relaxations.

Claim 5.11 If T ′0 is a k-relaxation of a canvas T0, then d(T0) ≥ d(T ′0)− k(2α + ε).
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Proof. We proceed by induction on k. The claim clearly holds for k = 0, and so we

may assume that k ≥ 1 and that the claim holds for all integers strictly is smaller than k.

Let Tk−1 be a (k − 1)-relaxation of T0 and v a regular tripod of Tk−1 such that T ′0 is a 1-

relaxation of Tk−1. By induction, d(T0) ≥ d(Tk−1)− (k−1)(2α+ ε). Yet def(Tk−1) = def(T ′0)

while v(Tk−1) = v(T ′0) + 1, b(Tk−1) ≤ b(T ′0) + 1 and q(Tk−1) ≤ q(T ′0) + 1. Thus d(Tk−1) ≥
d(T ′0)− (2α + ε) and the claim follows. �

Claim 5.12 Let k ∈ {0, 1, 2} and let T ′ be a k-relaxation of T . Then T ′ does not have a

true dividing vertex, and if k ≤ 1, then it does not have a strong dividing vertex.

Proof. Suppose for a contradiction that T ′ has a true or strong dividing vertex. By

Claim 2.7, T ′ is critical, and v(T ′) ≥ 3 by Claim 5.1. If T ′ has a true dividing vertex, then

d(T ) ≥ d(T ′)− 2(2α + ε) ≥ 4− (6α + γ + 3ε) ≥ 3− γ

by Claim 5.11, Claim 5.6(2) and inequalities (I2) and (I3). If k ≤ 1 and T ′ has a strong

dividing vertex, then

d(T ) ≥ d(T ′)− (2α + ε) ≥ 4− (2α + 2γ + ε) ≥ 3− γ,

using Claim 5.7 instead of Claim 5.6(2), as desired. �

Claim 5.13 If x1 is a tripod of T , then letting T ′ = T ⊕ x1, either

(1) deg(x1) = 5, or

(2) deg(x1) = 6, the neighbors of x1 not in C form a path of length two and the ends of

that path are in B(T ), b(T ) = b(T ′), q(T ) = q(T ′) and d(T ) ≥ d(T ′)− ε.

Proof. Note that as v(T ) ≥ 4 by Claim 5.1, then v(T ′) ≥ 3. As G is C-critical, deg(x1) ≥ 5.

If deg(x1) = 5, then (1) holds, as desired. So we may assume that deg(x1) ≥ 6. By the

minimality of T , d(T ′) ≥ 3 − γ. Moreover, def(T ) = def(T ′) and v(T ) = v(T ′) + 1. Thus

d(T ) = d(T ′)− ε+ α(b(T ′)− b(T ) + q(T ′)− q(T )). Let c1, c2, c3 be the neighbors of x1 in C

listed in standard order, and let c1, c2, c3, q1, . . . , q2 be all the neighbors of x1 listed in their

cyclic order around x1.

Let R = N(x1) \ {c1, c2, c3, q1, q2}. We claim that R ∩ Q(T ) = ∅. Suppose not, and let

q ∈ R ∩ Q(T ). Then q is a dividing vertex of T ′. Given the presence of q1 and q2, q is a

strong dividing vertex of T ′, contrary to Claim 5.12. This proves that R ∩ Q(T ) = ∅ and

implies that R ∩B(T ) = ∅ as well.

Note that R ⊆ B(T ′) ⊆ Q(T ′). Thus q(T ′) ≥ q(T ) + |R| − 1 and b(T ′) ≥ b(T ) + |R| − 1.

Hence if |R| ≥ 2, then d(T ) ≥ d(T ′)− ε+2α ≥ d(T ′) ≥ 3−γ since 2α ≥ ε by inequality (I1),
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a contradiction. So |R| = 1 and deg(x1) = 6. Thus q(T ′) ≥ q(T ) and b(T ′) ≥ b(T ). Now it

follows that q(T ) = q(T ′) and b(T ) = b(T ′) as otherwise d(T ) ≥ d(T ′)− ε+ α ≥ 3− γ since

α ≥ ε by inequality (I1), a contradiction. Hence d(T ) ≥ d(T ′)− ε.
Let q ∈ R. The conclusions above imply that Q(T ′)\{q} = Q(T )\{x1} and B(T ′)\{q} =

B(T ) \ {x1}. The latter implies that q1, q2 ∈ B(T ). The former implies that q1qq2 form a

path, for otherwise there would exist a vertex other than q, q1, q2 that is cofacial with x1

and therefore belongs to Q(T ′); yet that vertex must then also belong to Q(T ) and so be a

strong dividing vertex of T ′, a contradiction as above. Thus (2) holds as desired. �

Claim 5.14 For k ∈ {0, 1, 2, 3}, if T ′ is a k-relaxation of T , then there does not exist a

proper critical subcanvas of T ′.

Proof. Suppose not. By Claim 5.2, d(T ′) ≥ 4−γ. By Claim 5.11, d(T ) ≥ 4−γ−3(2α+ε),

which is at least 3− γ as 6α + 3ε ≤ 1 by inequalities (I2) and (I3), a contradiction. �

Let X1 be the set of all vertices v ∈ V (G) \ V (C) with at least three neighbors in C.

Claim 5.15 X1 6= ∅ and every member of X1 is a tripod of T .

Proof. By Claim 5.4, there does not exist a chord of C, and hence X1 6= ∅ by Theorem 2.10.

By Claims 5.9 and 5.12 every member of X1 is a tripod of T . �

Claim 5.16 T ⊕X1 is well-defined and is a critical canvas.

Proof. By Proposition 2.11(2) every tripod of G is regular, and hence T⊕X1 is well-defined.

It is critical by Corollary 2.7. �

Claim 5.17 The graph G⊕X1 does not have a chord of C ⊕X1.

Proof. Suppose not. Let v1v2 be a chord of C ⊕ X1. As C has no chord by Claim 5.4,

we may assume without loss of generality that v1 6∈ V (C). Thus v1 is a tripod of C. Hence

v2 is also a tripod, as otherwise v1 is not a tripod. But then v2 is a true dividing vertex for

T ⊕ v1 because v(T ) ≥ 4 by Claim 5.1, contradicting Claim 5.12. �

Claim 5.18 v(T ⊕X1) ≥ 2.

Proof. Every tripod of T has at least two neighbors in (G ⊕ X1) \ V (C) by Proposi-

tion 2.11(2), and no neighbor in X1 by Claim 5.17. �

Let X2 be the set of all tripods and quadpods of G⊕X1.
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Claim 5.19 We have X2 6= ∅. Furthermore, let x2 ∈ X2, and let u1, u2 . . . , uk be all the

neighbors of x2 in C ⊕ X1 listed in a standard order. Then k = 3 and u2 ∈ V (C). In

particular, every member of X2 is a tripod.

Proof. By Claim 5.17, there does not exist a chord of C ⊕X1, and hence from Claim 5.16

and Theorem 2.10 it follows that X2 6= ∅. Let x2 ∈ X2 and u1, u2 . . . , uk be as stated. Let

i ∈ {2, 3, . . . , k − 1}. If ui ∈ X1, then ui has three neighbors in C and is adjacent to x2, but

has no other neighbors, contrary to Proposition 2.11(2). Thus ui ∈ V (C).

We may assume that k ≥ 4, for otherwise the remaining two assertions hold. Since

x2 6∈ X1 we may assume from the symmetry that u1 ∈ X1. By considering the vertices u1

and u4 we find that x2 is a true dividing vertex of either T ⊕u1 (if u4 ∈ V (C)) or T ⊕{u1, u4}
(if u4 6∈ V (C)), in either case contrary to Claim 5.12. �

Since T is a critical canvas there exists an L-coloring of C that does not extend to an

L-coloring of G. For the rest of the proof let us fix one such L-coloring φ.

Claim 5.20 The coloring φ extends to every proper subgraph of G that contains C as a

subgraph.

Proof. This follows from Proposition 2.9 and Claim 5.3. �

For v ∈ V (G) \ V (C) we let S(v) := L(v) \ {φ(u) |u ∈ N(v) ∩ V (C)}.

Claim 5.21 For all v ∈ V (G) \ V (C), |L(v)| = 5 and |S(v)| = 5− |N(v) ∩ V (C)|.

Proof. Suppose for a contradiction that |L(v)| ≥ 6 for some v ∈ V (G)\V (C). Let c ∈ L(v)

and let L′ be defined by L′(v) := L(v) \ {c} and L′(x) := L(x) for all x ∈ V (G) \ {v}. Then

(G,C, L′) is a canvas and φ clearly does not extend to an L′-coloring of G. By Proposition 2.9

the canvas (G,C, L′) has a critical subcanvas (G′, C, L′). Condition (M2) in the choice of T

implies that G′ is a proper subgraph of G, but that contradicts Claim 5.2 applied to T0 = T

and G′. This proves that |L(v)| = 5 for every v ∈ V (G) \ V (C).

To prove the second statement suppose for a contradiction that |S(v)| > 5−|N(v)∩V (C)|
for some v ∈ V (G) \ V (C). Thus v has two distinct neighbors w1, w2 ∈ V (C) such that

φ(w1) = φ(w2). But then φ does not extend to G \ vw1, contrary to Claim 5.20. �

By Claim 5.19 there exists x2 ∈ X2. Let u1, u2, u3 be as in Claim 5.19, and let U :=

{ui |ui ∈ X1}. Thus U 6= ∅ and U ⊆ {u1, u3}. Let us choose x2 such that |U | is minimized.

We refer to Figures 1 and 2 for a depiction of x2 and two other vertices whose existence will

be established shortly.

Claim 5.22 If u ∈ U , then deg(u) = 6 and there exist adjacent vertices z1, z2 6∈ V (C) such

that z1 is adjacent to u and is in B(T ), and z2 is adjacent to u and x2.
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Figure 1: Case 1 of a tripod of G⊕X1.
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Figure 2: Case 2 of a tripod of G⊕X1.

Proof. By Claim 5.13 applied to T and u, we find that deg(u) ≤ 6 and the claim follows

unless deg(u) = 5. So suppose for a contradiction that deg(u) = 5.

Let C ′ = (C⊕U)⊕x2 and T 〈C ′〉 = (G′, C ′, L). Let z ∈ V (G′)\V (C ′) be a neighbor of u.

We claim that G′ \uz has a C ′-critical subgraph. To see this we extend φ to an L-coloring φ′

of C ∪C ′ as follows. For v ∈ V (C) let φ′(v) := φ(v). Since x2 6∈ X1 we have |S(x2)| ≥ 3, and

|S(u)| = 2 by Claim 5.21. We may therefore choose φ′(x2) ∈ S(x2) \ S(u). For u′ ∈ U select

φ′(u′) ∈ S(u′)\{φ(x2)}. Now if φ′ extends to an L-coloring φ′′ of G′ \uz, then by re-defining

φ′′(u) to be a color in S(u) \ {φ(z)} we obtain an extension of φ to an L-coloring of G, a

contradiction. Thus φ′ does not extend to an L-coloring of G′ \uz, and so by Proposition 2.9

this proves our claim that G′ \ uz has a C ′-critical subgraph, say G′′. But G′′ is a proper

C ′-critical subgraph of G′, contradicting Claim 5.14. �

Claim 5.23 If u ∈ U and z ∈ N(u) \ V (C), then S(u) ⊆ S(z).

Proof. Suppose that S(u) \ S(z) 6= ∅. Let C ′ = C ⊕ u and T 〈C ′〉 = (G′, C ′, L). We

claim that G′ \ uz has a C ′-critical subgraph. To see this we extend φ to an L-coloring φ′ of

C ∪ C ′ as follows. For v ∈ V (C) let φ′(v) := φ(v), and we choose φ′(u) ∈ S(u) \ S(z). Now
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φ′ does not extend to an L-coloring of G′, for such an extension would be an L-coloring of

G, a contradiction. By Proposition 2.9 this proves our claim that G′ \ uz has a C ′-critical

subgraph, say G′′. But G′′ is a proper C ′-critical subgraph of G′, contradicting Claim 5.14.

�

Claim 5.24 If z 6∈ V (C ⊕ U) is a neighbor of x2 in G⊕ U , then S(x2) ⊆ S(z).

Proof. This follows in a similar manner as the proof of Claim 5.22. We extend φ

to an L-coloring φ′ of C ∪ C ′ as follows. For v ∈ V (C) let φ′(v) := φ(v). We choose

φ′(x2) ∈ S(x2) \ S(z), and for u′ ∈ U we select φ′(u′) ∈ S(u′) \ {φ(x2)}. An extension of φ′

to an L-coloring of G′ would be an L-coloring of G. The rest of the argument is identical to

the proof of Claim 5.22. �

Claim 5.25 If u ∈ U and z1, z2 are as in Claim 5.22, then N(z2) ∩ V (C ⊕ U) = {u}, and

|N(z1) ∩ V (C ⊕ U)| ≤ 3. Furthermore if |U | = 2, then |N(z1) ∩ V (C ⊕ U)| ≤ 2.

Proof. Note that z1 and z2 are adjacent to u. Suppose that |N(z2) ∩ V (C ⊕ U)| ≥ 2. But

then as deg(u) = 6, z2 is a true dividing vertex of G ⊕ U , a contradiction by Claim 5.12.

Since G has no separating 4-cycles by Proposition 2.11, N(z1) ∩ U = {u}. Since z1 6∈ X1

as C ⊕ X1 has no chords by Claim 5.17, it follows that |N(z1) ∩ V (C)| ≤ 2, and hence

|N(z1) ∩ V (C ⊕ U)| ≤ 3. Furthermore suppose |U | = 2 and |N(z1) ∩ V (C ⊕ U)| ≥ 3. Then

|N(z1) ∩ V (C)| = 2; moreover, as z1 is not a true dividing vertex of G⊕ u by Claim 5.12, it

follows from Claim 5.9 that z1 ∈ X2. But then z1 contradicts the choice of x2. �

Let T1 := T 〈C ⊕ U〉 and T2 := T1 ⊕ x2.

Claim 5.26 d(T ) ≥ d(T1)− |U |ε.

Proof. This follows by showing that b(T1) ≥ b(T ) and q(T1) ≥ q(T ). To see that, note

that by Claim 5.22, deg(u) = 6 for all u ∈ U . Then by Claim 5.13, b(T ⊕ u) = b(T ) and

q(T ⊕u) = q(T ) for all u ∈ U . Thus if b(T1) < b(T ) or q(T1) < q(T ), it must be that |U | = 2.

Furthermore, then the two vertices in U either have a common neighbor z or common

cofacial vertex z. In either case, z is a strong dividing vertex of C ⊕U . Hence by Claim 5.7,

d(T1) ≥ 4− 2γ. Yet b(T1) ≥ b(T )− 1 and q(T1) ≥ q(T )− 1. Thus d(T ) ≥ d(T1)− 2ε− 2α.

So d(T ) ≥ 4− 2γ − 2α− 2ε which is at least 3− γ as 2α + 2ε+ γ ≤ 1 by inequality (I3), a

contradiction. �

Claim 5.27 deg(x2) = 6 and d(T ) ≥ d(T2)− (|U |+ 1)ε.
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Proof. Suppose not. Suppose deg(x2) ≥ 6. As x2 is a tripod of T1 by Claim 5.19, v(T1) ≥ 3

and hence v(T2) ≥ 2. Thus by the minimality of T , d(T2) ≥ 3 − γ. Moreover, def(T1) =

def(T2) and v(T1) = v(T2) + 1. Thus d(T1) = d(T2) − ε + α(b(T2) − b(T1) + q(T2) − q(T1)).

Let u1, u2, u3 be as Claim 5.19, and let u1, u2, u3, q1, . . . , q2 be all the neighbors of x2 listed

in their cyclic order around x2.

Let R = N(x2) \ {u1, u2, u3, q1, q2}. We claim that R ∩Q(T1) = ∅. Suppose not, and let

q ∈ R ∩ Q(T1). Then q is a dividing vertex of T2. Given the presence of q1 and q2, q is a

strong dividing vertex of T2. By Claim 5.7, d(T2) ≥ 4 − 2γ. As d(T1) ≥ d(T2) − (2α + ε),

d(T1) ≥ 4−2γ−(2α+ε). Hence d(T ) ≥ 4−2γ−(2α+ε)−2ε, a contradiction as 2α+3ε +γ ≤ 1

by inequality (I3). This proves the claim. Note that this implies that R∩B(T2) = ∅ as well.

Note that R ⊆ B(T2) ⊆ Q(T2). Thus q(T2) ≥ q(T1) + |R|− 1 and b(T2) ≥ b(T1) + |R|− 1.

Suppose deg(x2) ≥ 7, then |R| ≥ 2. Thus d(T1) ≥ d(T2)− ε+2α and d(T ) ≥ d(T2)−3ε+2α.

As d(T2) ≥ 3 − γ by the minimality of T , d(T ) ≥ 3 − γ since 2α ≥ 3ε by inequality (I1),

a contradiction. So suppose deg(x2) = 6. Then |R| = 1 and hence q(T2) ≥ q(T1) and

b(T2) ≥ b(T1). It follows that d(T1) ≥ d(T2)− ε and hence d(T ) ≥ d(T2)− (|U |+ 1)ε and the

claim holds as desired.

So we may assume that deg(x2) = 5. Let u ∈ U and z1, z2 be as in Claim 5.22. By

Claim 5.23, S(u) ⊂ S(x2) and hence L(z2) \ (S(u)∪ S(x2)) = L(z2) \ S(x2). By Claim 5.25,

N(z2)∩V (C) = ∅ and thus |L(z2)\S(x2)| ≥ 1 as |L(z2)| = 5 and |S(x2)| ≤ 4 by Claim 5.21.

Let C ′ be obtained from (C ⊕ U)⊕ x2 \ {ux2} by adding the vertex z2 and edges uz2, x2z2,

and let T ′ = (G′, C ′, L) = T 〈C ′〉. Note T ′ is critical by Corollary 2.7.

Consider G′ \ {uz1, x2z3}, where z3 ∈ N(x2) \ (V (C ′) ∪ V (C)). We claim that G′ \
{uz1, x2z3} has a C ′-critical subgraph. To see this, choose φ(z2) ∈ L(z2) \ S(x2). Also

choose φ(u′) ∈ S(u′) if |U | = 2 where u′ ∈ U \ {u}. If φ extends to an L-coloring of

G′ \ {u, x2}, then φ could be extended to an L-coloring of G as follows. First extend φ to u

by choosing φ(u) ∈ S(u) \ φ(z1) which is non-empty as |S(u)| = 2. Then extend φ to x2 by

choosing φ(x2) ∈ S(x2) \ {φ(u), φ(u′), φ(z3)}. This set is non-empty since if |U | = 1, then

|S(x2)| = 3 and if |U | = 2, then |S(x2)| = 4. Hence φ could be extended to an L-coloring

of G, contradicting that T is a counterexample. Thus φ does not extend to G′ \ {u, x2}
and so does not extend to G′ \ {uz1, x2z3}. By Proposition 2.9 this proves the claim that

G′ \ {uz1, x2z3} has a C ′-critical subgraph.

Thus G′ contains a proper C ′-critical subgraph G′′. Note that v(T ′) ≥ 3 given that

deg(z2) ≥ 5 and |N(z2)∩ V (C ′)| ≤ 2. Moreover, |E(G′) \E(G′′)| ≥ 2. In addition, we claim

that |E(G′′) \E(C ′)| ≥ 2. Suppose not. Then there would exist a chord of C ′, which would

imply that z2 is adjacent to a vertex in C. But then z2 is a true dividing vertex of C ⊕ u,

contradicting Claim 5.12. This proves the claim that |E(G′′) \ E(C ′)| ≥ 2.

By Claim 5.2(3) applied to T ′ and G′′, we find that d(T ′) ≥ 5− γ − (2α+ ε). Moreover,

s(T1) ≤ s(T ′)+2(2α+ε), def(T1) = def(T ′)−1 and hence d(T1) ≥ d(T ′)−1−2(2α+ε). Thus
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d(T1) ≥ 4− γ − 3(2α+ ε). Yet d(T ) ≥ d(T1)− 2ε by Claim 5.26. So d(T ) ≥ 4− γ − 6α− 5ε

which is at least 3 − γ as 6α + 5ε ≤ 1 by inequalities (I2) and (I3), a contradiction. This

completes the proof of Claim 5.27. �

Let u ∈ U and z1, z2 be as in Claim 5.22. Let C ′ be obtained from (C ⊕ U) ⊕ x2 \ {u}
by adding the vertices z1, z2 and edges yz1, z1z2, z2x2, where y ∈ N(z1) ∩ V (C) is chosen so

that |V (C ′)| is minimized. Let T ′ = (G′, C ′, L) = T 〈C ′〉. Consider G′ \ {x2z3, x2z4}, where

z3 6= z4 ∈ N(x2) \ (V (C ⊕ U) ∪ V (C) ∪ {z2}).
We claim that G′ \ {x2z3, x2z4} has a C ′-critical subgraph. To see this choose φ(z1) ∈

S(z1) \ S(u), which is nonempty as |S(z1)| ≥ 3 by Claims 5.25 and 5.21. Then choose

φ(z2) ∈ S(z2) \ (S(x2)∪ {φ(z1)}) which is nonempty as |L(z1)| = |S(z1)| = 5 by Claims 5.25

and 5.21. Furthermore if |U | = 2, then choose φ(u′) ∈ S(u′) where u′ ∈ U \{u}. If φ extends

to an L-coloring of G′ \ {u, x2}, then φ could be extended to an L-coloring of G as follows.

First extend φ to x2 by choosing φ(x2) ∈ S(x2) \ {φ(z3), φ(z4), φ(u′)} which is non-empty

since by Claim 5.21, |S(x2)| ≥ 3 if |U | = 1 and |S(x2)| ≥ 4 if |U | = 2. Then extend φ to

u by choosing φ(u) ∈ S(u) \ φ(x2) which is non-empty as |S(u)| = 2 by Claim 5.21. But

this contradicts that T is a counterexample. Thus φ does not extend to an L-coloring of

G′ \ {u, x2}. By Proposition 2.9 this proves the claim that G′ \ {x2z3, x2z4} has a C ′-critical

subgraph.

Thus G′ contains a proper C ′-critical subgraph G′′. Note that z1 has at least one neighbor

in G′ not in C ′ and z1 is not adjacent to either z3 or z4 as G has no separating 4-cycles by

Proposition 2.11. Hence v(T ′) ≥ 3. Moreover, |E(G′) \ E(G′′)| ≥ 2. In addition, we claim

that |E(G′′) \E(C ′)| ≥ 2, for otherwise there would exist a chord of C ′, which is impossible

given the choice of C ′ and by Claim 5.25.

By Claim 5.2(3) applied to T ′ and G′′, we find that d(T ′) ≥ 5− (2α+ ε)− γ. Moreover,

s(T2) ≤ s(T ′) + 2(2α + ε), def(T2) ≥ def(T ′) − 1 and hence d(T2) ≥ d(T ′) − 1 − 2(2α + ε).

Thus d(T2) ≥ 4− 3(2α+ ε)− γ. By Claim 5.27, d(T ) ≥ d(T2)− 3ε ≥ 4− γ − 6α− 6ε which

is at least 3− γ as 6α+ 6ε ≤ 1 by inequalities (I2) and (I3), a contradiction. This concludes

the proof of Theorem 4.6.

6 Consequences of Theorem 4.6

Let us state Theorem 4.6 with explicit constants while omitting boundary and quasi-boundary

from the formula.

Theorem 6.1 If (G,C, L) is a critical canvas, then

|V (G) \ V (C)|/18 +
∑

f∈F(G)

(|f | − 3) ≤ |C| − 4.
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Proof. Let ε = 1/18, α = 1/12 and γ = 2/3. By Proposition 4.5, Theorem 4.6 and

Lemma 3.3

1 ≤ d(G) ≤ def(G)− v(G)/18 = |C| − 3−
∑

f∈F(G)

(|f | − 3)− v(G)/18,

and the theorem follows. �

The following corollary follows immediately.

Corollary 6.2 Let (G,C, L) be a critical canvas. If f is an internal face of G, then |f | <
|C| − 1.

Omitting face sizes from the formula of Theorem 6.1 gives the following even simpler

bound:

Theorem 6.3 If (G,C, L) is a critical canvas, then |V (G)| ≤ 19|V (C)|.

Proof. Theorem 6.1 implies |V (G) \ V (C)| ≤ 18|C|, and hence |V (G)| = |V (G) \ V (C)|+
|V (C)| ≤ 19|V (C)|. �

We are now ready to prove Theorem 1.1. Indeed, Theorem 6.3 is a stronger version of

Theorem 1.1.

Proof of Theorem 1.1. Let G,C, L and H be as in the statement of Theorem 1.1. We

claim that H is C-critical. Suppose not. Then, by definition, there exists a proper subgraph

H ′ of H such that for every L-coloring φ of C, φ extends to H ′ if and only if φ extends to

H. But now if φ is an L-coloring of C that extends to H ′, then φ extends to H and hence

to G, contradicting the minimality of H. This proves the claim that H is C-critical.

It follows from Lemma 2.5 that (H,C, L) is a critical canvas. By Theorem 6.3 we have

|V (H)| ≤ 19|V (C)|, as desired. �
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