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Abstract. Motivated by a conjecture of Gyárfás, recently Böttcher, Hladký, Piguet, and
Taraz showed that every collection T1, . . . , Tt of trees on n vertices with

řt
i“1 epTiq ď

`

n
2
˘

and with bounded maximum degree, can be packed into the complete graph on p1`op1qqn
vertices. We generalise this result where we relax the restriction of packing families of
trees to families of graphs of any given non-trivial minor-closed class of graphs.

§1. Introduction

Given graphs H and F , an F -packing of H is a collection of edge-disjoint subgraphs
of H that are isomorphic to F . This definition naturally extends to sequences of graphs.
In particular, we say that F “ pF1, . . . , Ftq packs into H if there exist edge-disjoint
subgraphs H1, . . . , Ht Ď H with Hi isomorphic to Fi for every i P rts. Gyárfás’ tree packing
conjecture [6] initiated a lot of research and asserts the following for the case where H is a
complete graph and F is a sequence of trees.

Conjecture 1. Any sequence of trees pT1, . . . , Tnq with vpTiq “ i for i P rns packs into Kn.

The difficulty of this conjecture lies in the fact that it asks for a perfect packing, i.e., a
packing where all the edges of Kn are used, since each tree has epTiq “ i ´ 1 edges and
hence

ř

iPrns epTiq “
`

n
2

˘

. Although some special cases were proven (see, e.g., [7] and the
references in [4]), this conjecture is still widely open.

Recently, Böttcher, Hladký, Piguet, and Taraz [4] showed that a restricted approximate
version holds. More precisely, they considered a host graph with slightly more than n

vertices and trees with bounded maximum degree, while relaxing the assumption on the
number of vertices of each tree.
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Theorem 2 (Böttcher, Hladký, Piguet, and Taraz). For any ε ą 0 and any ∆ P N

there exists n0 P N such that for any n ě n0 the following holds for every t P N. If
T “ pT1, . . . , Ttq is a sequence of trees satisfying

(a ) ∆pTiq ď ∆ and vpTiq ď n for every i P rts, and
(b )

řt
i“1 epTiq ď

`

n
2

˘

,

then T packs into Kp1`εqn.

In case p1 ` εqn is not an integer, we should talk about Ktp1`εqnu. However, since
we provide asymptotical results, we will omit floors and ceilings here. The proof of
Theorem 2 is based on a randomized embedding strategy, which draws some similarities to
the semirandom nibble method (see e.g. [2]). Inspired by the result in [4], we obtained a
somewhat simpler proof of Theorem 2, which extends from sequences of trees to sequences
of graphs contained in any non-trivial minor-closed class.

Theorem 3. For any ε ą 0, ∆ P N, and any non-trivial minor-closed family G there
exists n0 P N such that for every n ě n0 the following holds for every integer t P N.
If F “ pF1, . . . , Ftq is a sequence of graphs from G satisfying

(a ) ∆pFiq ď ∆ and vpFiq ď n for every i P rts, and
(b )

řt
i“1 epFiq ď

`

n
2

˘

,

then F packs into Kp1`εqn.

In the following we will consider graphs that do not contain isolated vertices. In fact,
such vertices can easily be embedded after larger components just by picking any vertex
of Kp1`εqn that has not been used before for the same graph. In the proof we split the
graphs Fi into smaller pieces by removing a small separator, i.e., a small subset of the
vertex set. We discuss these concepts and a generalisation of Theorem 3 in the next section.

§2. Main technical result

We shall establish a generalisation of Theorem 3 for graphs with small separators (see
Theorem 7 below). In fact, the Separator Theorem of Alon, Seymour, and Thomas [1] will
provide the connection between Theorem 3 and slightly more general Theorem 7.

Theorem 4 (Alon, Seymour, and Thomas). For every non-trivial minor-closed family
of graphs G there exists cG ą 0 such that for every graph G P G there exists U Ď V pGq

with |U | ď cG
?
n such that every component of G´ U has order at most n{2.

The graphs we consider in our main result satisfy the following property.
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Definition 5. Given δ ą 0 and s P N, a pδ, sq-separation of a graph G “ pV,Eq with
minimum degree δpGq ě 1 is a pair pU, Cq satisfying

(i ) U Ď V , |U | ď δvpGq and
(ii ) C “ GrV r U s, i.e., the subgraph of G induced on V r U , has the property that

each component of C has order at least two and at most s.

We refer to U as the separator, and to C as the component graph of G.

Note that, for technical reasons that will become clear later (see equation (13)), in (ii ).
we only allow components of size at least two. Although the removal of a separator
could induce components of size one, such a separator U0 of G may yield at most ∆|U0|

components of size one, because in our setting we only deal with graphs G of bounded
degree ∆pGq ď ∆. This allows us to add these “few” vertices to U0 without enlarging it
too much, and ensure that the resulting set U complies with the definition above.

Definition 6. A family G of graphs with minimum degree at least one is pδ, sq-separable if
every G P G admits a pδ, sq-separation.

We will deduce Theorem 3 from the following result, in which the condition of G being
minor-closed is replaced by the more general property of being pδ, sq-separable.

Theorem 7. For any ε ą 0 and ∆ P N there exists δ ą 0 such that for every s P N and
any pδ, sq-separable family G there exists n0 P N such that for every n ě n0 the following
holds. If F “ pF1, . . . , Ftq is a sequence of graphs from G satisfying

(a ) ∆pFiq ď ∆ and vpFiq ď n for every i P rts, and
(b )

řt
i“1 epFiq ď

`

n
2

˘

,

then F packs into Kp1`εqn.

As mentioned above, Theorem 3 easily follows from Theorem 7. First we show that
for any non-trivial minor-closed family G and any δ ą 0 there is some s such that G is
pδ, sq-separable. Then we use this fact to deduce Theorem 3.

For a given a graph G P G of order n with minimum degree δpGq ě 1 and maximum
degree ∆pGq ď ∆, we apply Theorem 4 to all components of G that have some size r0

with n
2 ď r0 ď n. Since there are at most two such components, at most two applications

of Theorem 4 lead to a separator of size at most 2cGn
1{2 and a set of components all of

which have order less than n{2. We then apply Theorem 4 to all components of G that
have some size r1 with n

4 ď r1 ă
n
2 and obtain another separator of size at most 4cG

`

n
2

˘1{2.
At this point all components have order less than n{4. Again, we apply Theorem 4 to all
components of some size r2 with n

8 ď r2 ă
n
4 , add at most 8cG

`

n
4

˘1{2 more vertices to the
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separator, and so on. After i ą 0 such iterations we obtain a separator U0 Ď V pGq such
that

|U0
| ď 2cGn

1{2
` 4cG

´n

2

¯1{2
` ¨ ¨ ¨ ` 2icG

´ n

2i´1

¯1{2
ă 2cGn

1{2
¨

?
2 i ´ 1
?

2´ 1
ă 6cGn

1{2 2i{2

and each component of G´ U0 has order at most n{2i. For given δ ą 0 we can apply this
with

i “

Z

2 log2

ˆ

δn1{2

6cGp∆` 1q

˙^

and obtain a separator U0 of order at most δn{p∆ ` 1q, and a set of components all of
which have order at most 72c2

Gp∆` 1q2{δ2. Note that some of the components in G´ U0

may have size one. However, owing to the maximum degree of G there are at most ∆|U0|

such components. By defining U as the separator of size at most δn obtained from U0 by
adding all these degenerate components of order one, we have shown that the non-trivial
minor-closed family G is pδ, sq-separable with s “ 72c2

Gp∆` 1q2{δ2. Applying Theorem 7
with this s yields Theorem 3.

The rest of this paper is devoted to the proof of Theorem 7. In Section 3 we introduce
some definitions and state two technical lemmas that are used in the proof of the theorem,
which is given at the end of the section. Resolvable and almost resolvable decompositions,
which we will use to construct our packing, are introduced in Section 4. Finally, the two
technical lemmas, Lemma 10 and Lemma 11, are proved in Sections 5 and 6, respectively.

§3. Proof of the main result

The following notation will be convenient.

Definition 8. Let G be a family of graphs. A t-tuple of graphs F “ pF1, . . . , Ftq with
Fi P G and i P rts is called a pG, n,∆q-sequence if

(a ) ∆pFiq ď ∆ and vpFiq ď n for every i P rts, and
(b )

řt
i“1 epFiq ď

`

n
2

˘

.

We will consider pG, n,∆q-sequences with the following additional properties:

‚ G will be a pδ, sq-separable family and
‚ each graph Fi will be associated with a fixed pδ, sq-separation pUi, Ciq.

Note that, since we are only considering graphs Fi that do not contain isolated vertices,
we have vpFiq ď 2epFiq and, hence,

t
ÿ

i“1
|Ui| ď

t
ÿ

i“1
δvpFiq ď δ

t
ÿ

i“1
2epFiq

(b )
ď 2δ

ˆ

n

2

˙

ă δn2 .
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For a simpler notation we will often suppress the dependence on Ui when we refer to a
pG, n,∆q-sequence pF1, . . . , Ftq, since the separator Ui will be always clear from the context.
In a component C from Ci we distinguish the set of vertices that are connected to the
separator Ui and refer to this set as the boundary BC of C

BC “ V pCq XNpUiq,

where as usual NpUiq denotes the union of the neighbours in Fi of the vertices in Ui.
Moreover, for a component graph Ci we consider the union of the boundary sets of its

components and set
BCi “

ď

tBC : C component in Ciu.

Note that
|BCi| ď

ÿ

uPUi

dpuq ď |Ui|∆ ď δn∆ . (1)

For the proof of Theorem 7 we shall pack a given pG, n,∆q-sequence into Kp1`εqn. The
vertices of the host graph Kp1`εqn will be split into a large part X of order p1 ` ξqn for
some carefully chosen ξ “ ξpε,∆q ą 0, and a small part Y “ V rX. We will pack the
graphs tCiuiPrts into the clique spanned on X and the sets tUiuiPrts into Y . For this, we shall
ensure that the vertices representing the boundary BCi will be appropriately connected to
the vertices representing the separator Ui. Having this in mind we will make sure that
each vertex of X will only host a few boundary vertices. In fact, since every edge of the
complete bipartite graph induced by X and Y can be used only once in the packing, each
vertex x P X can be used at most |Y | times as boundary vertex for the packing of the
sequence tCiuiPrts. This leads to the following definition.

Definition 9. For every i P rts, let Fi “ pVi, Eiq be graphs with separators Ui,Ď Vi

and component graphs Ci “ FirVi r Uis. For a family of injective maps f “ tfiuiPrts

with fi : V pCiq Ñ X and for x P X we define the boundary degree of x with respect to f by

dBf pxq “ |ti P rts : f´1
i pxq P BCiu| .

We call such a family of maps b-balanced for some b P R if dBf pxq ď b for every x P X.

Theorem 7 follows from Lemma 10 and Lemma 11 below. Lemma 10 yields a balanced
packing of the component graphs tCiuiPrts into the clique spanned by X with |X| ď p1` ξqn.

Lemma 10. For any ξ ą 0 and ∆ P N there exists δ ą 0 such that for every s P N and
any pδ, sq-separable family G there exists n0 P N such that if F is a pG, n,∆q-sequence
with n ě n0, then there exists a pξnq-balanced packing of the component graphs tCiuiPrts of
all members of F into Kp1`ξqn.
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Once we have a balanced packing of tCiuiPrts into Kp1`ξqn, the next lemma allows us to
extend it to a packing of F “ pF1, . . . , Ftq into a slightly larger clique of size p1` εqn.

Lemma 11. For any ε ą 0 and ∆ P N, there exist ξ ą 0 and δ ą 0 such that for every s
and any pδ, sq-separable family G there exists n0 such that for any n ě n0 the following holds.
Suppose there exists a pξnq-balanced packing of the component graphs tCiuiPrts associated
with a pG, n,∆q-sequence F into Kp1`ξqn. Then there exists a packing of F into Kp1`εqn.

We postpone the proofs of Lemma 10 and Lemma 11 to Section 5 and Section 6. Here
we describe the proof of our main Theorem based on these two lemmas.

3.1. Proof of Theorem 7. We will first fix all involved constants. Note that Theorem 7
and Lemma 11 have a similar quantification. Hence, for the proof of Theorem 7, we may
apply Lemma 11 with ε and ∆ from Theorem 7 and obtain ξ and δ1. Then Lemma 10
applied with ξ and ∆ yields a constant δ2. For Theorem 7 we set δ “ mintδ1, δ2u. After
displaying δ for Theorem 7 we are given some s P N and a pδ, sq-separable family G.

With constants chosen as above, we can apply Lemma 10 for a pG, n,∆q-sequence F
which then asserts that the assumptions of Lemma 11 are fulfilled. Finally, the conclusion
of Lemma 11 yields Theorem 7. �

§4. Resolvable and almost resolvable decompositions

The idea of the proof is to split the given graphs pF1, . . . , Ftq into small components,
group such components by isomorphism types, and pack components from the same group
into complete subgraphs of Kp1`εqn. For that we will use Theorem 12 and Theorem 14.

A Km-factor of Kn is a collection of n
m

vertex disjoint cliques of order m, and a resolvable
Km-decomposition of Kn is a collection of

`

n
2

˘

`

m
2

˘

m

n
“

n´ 1
m´ 1

edge disjoint Km-factors. Theorem 12 states that the obvious necessary divisibility condi-
tions for the existence of a Km-decomposition of Kn are actually sufficient.

Theorem 12 (Ray-Chaudhury and Wilson). For every m ě 2 there exists n0 such that
if n ě n0 and n ” m pmod mpm´ 1qq, then Kn admits a resolvable Km-decomposition.

For general F , resolvable decompositions do not necessarily exists (for example it is easy
to see that there is no n for which resolvable K1,3-decompositions of Kn exist). Therefore,
instead of F -factors, we consider F -matchings, i.e., sets of vertex disjoint copies of F .
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Definition 13. A pF, ηq-factorization of K` is a collection of F -matchings of K` such that

(i ) each matching has size at least p1´ ηq `
vpF q

, and
(ii ) these matchings together cover all but at most η

`

`
2

˘

edges of K`.

From these two properties we deduce that the number t of F -matchings in an pF, ηq-
factorization satisfies

p1´ ηqp`´ 1qvpF q
2epF q ď t ď

p`´ 1qvpF q
2epF q .

Also note that any pF, 0q-factorization of K` is a resolvable F -decomposition of K`. We
will then use the following approximate result, which can be deduced from [5] and [9] (see
also [3]).

Theorem 14. For every graph F and η ą 0 there exists `0 such that for every ` ě `0 there
exists an pF, ηq-factorization of K`.

§5. Packing the components

The crucial part in the proof of Theorem 7 is Lemma 10, which we are going to prove in
this section. In Lemma 10 we are given a pG, n,∆q-sequence pF1, . . . , Ftq of graphs from
a pδ, sq-separable family G with fixed separations pUi, Ciq associated with each Fi. Our goal
will be to construct a pξnq-balanced packing of the component graphs tCiuiPrts into KN ,
with N “ p1` ξqn.

The packing of tCiuiPrts will make use of a resolvable Km-decomposition of KN (actually
we will use a somewhat more complicated auxiliary structure which we will describe in
Section 5.1) and will be realized in two steps: the assignment phase and the balancing
phase.

‚ In the assignment phase we consider a Km-decomposition of KN and then describe
which components of each Ci are assigned to which copies of Km.

‚ In the balancing phase we ensure that the mapping from components of each Ci into
copies of Km from KN will form a pξnq-balanced packing as promised in Lemma 10.

Below we outline the main ideas of these two steps. We start with the assignment phase
first. The balancing phase will be discussed in Section 5.3.

5.1. Outline of the assignment phase. The purpose of the assignment phase is to
produce a “preliminary packing” of each Ci, i “ 1, . . . , t into some Km-factor. We recall
that each component graph Ci consists of several components each with at most s vertices
and maximum degree at most ∆. Moreover, in each component C we distinguish the
set BC of vertices that are connected to the separator Ui.
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We define an isomorphism type S as a pair pR,Bq where R is a graph on at most s
labeled vertices and maximum degree at most ∆, and B is a subset of the vertices of R.
Let S “ pS1, . . . , Sσq be the enumeration of all isomorphism types Sj “ pRj, Bjq, such that

epR1q

vpR1q
ě ¨ ¨ ¨ ě

epRσq

vpRσq
. (2)

The definition of S yields
σ ď 2p

s
2q ¨ 2s ď 2s2

. (3)

For every component C of Ci there exists an isomorphism type Sj “ pRj, Bjq P S such
that there exists a graph isomorphism ϕ : V pCq Ñ V pRjq with the additional property
that ϕpBCq “ Bj. Therefore, we can describe the structure of a component graph Ci as a
disjoint union

Ci “
ď

SPS
νipSq ¨ S

where νipSq denotes the number of components isomorphic to S contained in Ci. In the
rest of the paper we will simplify the notation and refer to S as a graph.

The assignment procedure makes use of further decomposition layers. In fact, for each
copy of Km appearing in the resolvable decomposition of KN we consider a resolvable
K`-decomposition of such a copy of Km. Each resolution class consisting of m

`
disjoint

copies of K` will be reserved for some isomorphism class S and the copies of S coming from
various Ci will be then packed into each such K`. Since we consider Km-decomposition
of KN , K`-decomposition of Km, and S-decomposition of K` for each S P S, we will refer
to such structure as three layer decomposition and motivate its use below.

5.2. The three layer decomposition. We begin our discussion with the simpler case
when all components in all the component graphs Ci are isomorphic to a given graph S
and argue why even in this simpler case at least two layers are required. Then we look at
the general case, where the component graphs consist of more different isomorphism types,
and explain the use of three layers.

5.2.1. One layer. In the case where all components in tCiuiPrts are isomorphic to a single
graph S, a straightforward way to pack tCiuiPrts into KN would be the following. Suppose
there exists a resolvable S-decomposition of KN . Then, by assigning the components of
a graph Ci to copies of S from the same S-factor, we ensure that the components within
each component graph are packed vertex-disjointly.

With this approach, however, we might end up not covering many edges of KN (and
consequently not being able to find a packing of the graphs Ci). Let C1 and C2 be component
graphs with strictly more than N{2 vertices. Once we assign the components of C1 to an
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S-factor of KN , we cannot use the other copies of S in the same S-factor to accomodate
the components of C2. In fact, at least one component of C2 would not fit in that S-factor
and we would have to use a copy of S from another S-factor. We would have to ensure that
this copy of S is vertex disjoint from those already used for C2 in the previous S-factor,
and an obvious way to get around this would be to embed all components of C2 in a new
S-factor all together. However, this would be very wasteful and if many (for example Ωpnq)
graphs Ci would be of size strictly larger than N{2, then we would not be able to pack
all Ci into KN in such a straightforward way. We remedy this situation by introducing an
additional layer.

5.2.2. Two layers. For an appropriately chosen integer m, suppose there exist a resolvable
Km-decomposition of KN and a resolvable S-decomposition of Km. Note that, with this
additional decomposition layer at hand, we can address the issue raised above more easily.
In fact, we fix a Km-factor of KN and use sufficiently many Km’s of this Km-factor to
host the components of C1, all of which are isomorphic to S by our assumption. The
remaining Km’s of the factor can host the first part of C2. We then “wrap around” and
reuse the Km’s containing copies of S from C1 by selecting a new S-factor inside these Km’s
to host the second part of C2. This way the components of C1 and C2 are packed edge
disjointly and the components of C2 (resp. C1) are in addition vertex disjoint, as required
for a packing. We can continue this process to pack C3, C4, . . . until the fixed Km-factor
of KN is fully used. Then we continue with another Km-factor and so on.

This procedure will work if all components of each Ci are isomorphic to a single S.
Let us note however that in case Ci contains components of different isomorphism types
two layers may not be sufficient. This is because we would have to select S-factors for
different graphs S within Km and there seems to be no obvious way to achieve this in a two
layer decomposition. Instead we will introduce a third layer, which will give us sufficient
flexibility to address this issue.

5.2.3. Three layers. Here we give an outline and describe how a three layer structure can
be used to address the general problem. The details will follow in section 5.4.1. Consider
a resolvable Km-decomposition Dm,N of KN , a resolvable K`-decomposition D `,m of Km,
and resolvable S-decompositions DS,` of K` for every S P S (in fact the last assumption
will never be used in its full strength, we will use Theorem 14 instead). We view resolvable
decompositions as collections of factors. We write Dm,N “ tDm,N

1 , . . . ,Dm,N
N´1
m´1
u, where Dm,N

j

is a Km-factor of KN for j “ 1, . . . , N´1
m´1 .

Suppose now we are given graphs C1, . . . , Ct, Ci “
Ť

SPS νipSq ¨ S. We will proceed
greedily processing the Ci’s one by one. In each step we will work with one fixed Km-factor
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Dm,N
j “ Dm,N

current of KN which will be used repeatedly as long as “sufficiently many” edges
of such factor are available. For example, Dm,N

1 will host C1, C2, . . . , Ca for some a ă t,
then Dm,N

2 will host Ca`1, Ca`2, . . . , Cb for some a ă b ă t, and so on. Once we run out
of available edges in factor Dm,N

current we will move that factor in the set Dm,N
used Ď Dm,N of

factors the edges of which were already assigned to previous Ci’s and select a new factor
Dm,N

current P Dm,N r Dm,N
used which we will continue to work with.

We outline the assignment within a Km of the current Km-factor. For each Km P Dm,N
current

we consider a resolvable decomposition D `,m “ D `,mpKmq of such a Km. Again some
factors in that decomposition might have already been completely used. Among those
which were not completely used yet, we specify σ of such “current” factors D`,m

S , each
ready to be used to embed copies of S in the current particular step. Since K` admits
resolvable S-decompositions for every S P S, each D`,m

S corresponds to p`´1qvpSq
2epSq “ tpSq

S-factors of Km which we may denote by DS,`,m
1 , . . . ,DS,`,m

tpSq . At each step, in every Km we
will only use one of such S-factors, which we denote by DS,`,m

current. A set of components of Ci
that are going to be assigned to an S-factor of a Km will be referred to as a chunk.

With this structure in mind we are able to describe our greedy assignment procedure.
Assume that in the assignment procedure the graphs C1, . . . , Ci´1 were already processed
and that Ci “

Ť

SPS νipSq ¨ S. The assignment of Ci will consist of the following four steps
which we discuss in detail in Section 5.4.1.

(i ) For every isomorphism type S P S, partition the νipSq components into as few as
possible chunks of size at most m

vpSq
.

(ii ) For every S P S, select νipSqvpSq
m

copies of Km from the current Km-factor Dm,N
current

and match each such Km with a chunk of components isomorphic to S.
(iii ) For every S P S and for each chunk of type S, assign the components in the chunk

to the S-factor DS,`,m
current of Km. The copies of S will cover m epSq

vpSq
edges of Km.

(iv ) Prepare for the assignment of the next component graph.

This procedure leads to a packing of tCiuiPrts into KN if we do not run out of Km-factors
during the process, and in the proof we shall verify this. Assuming this for the moment,
the procedure above yields a preliminary packing which can be encoded by functions
f “ tfiuiPrts, with fi : V pCiq Ñ V pKNq.

5.3. Outline of the balancing phase. In this section we will outline how the preliminary
packing f obtained in the assignment phase is used to realize a pξnq-balanced packing
of tCiuiPrts into KN . Further detail will be given in Section 5.4.2.

Note that so far we did not consider the boundary degrees of the vertices of KN and, in
fact, f is not guaranteed to be balanced. However, the layered structure of the assignment
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will allow us to fix this by using the following degrees of freedom. Firstly, the N
m
Km’s in

any of the N´1
m´1 Km-factors from Dm,N can be permuted independently for each Km-factor.

Since any component graph is assigned to a single Km-factor, the resulting mappings
remain injective and the embedding of the Ci’s stays pairwise edge disjoint. Secondly,
each Km can be embedded into KN in m! possible ways by permuting its vertices. There
are

ˆˆ

N

m

˙

!ˆ pm!qN
m

˙
N´1
m´1

such choices in total and each of them leads to a packing of the component graphs tCiuiPrts.
We will pick one of such choices uniformly at random, and show that with positive

probability each vertex of KN is used as a boundary vertex approximately the same number
of times. Since the sum of the boundary degrees is at most ∆δn2 ď ξn2{2 (see (1)), this
leads to a pξnq-balanced packing g of tCiuiPrts into KN .

5.4. Proof of Lemma 10. Given ξ and ∆, set

δ “
ξ

2∆ (4)

and let G be a pδ, sq-separable family, for some s P N. We apply Theorem 14 with

η “ ξ{8 (5)

and fix an integer ` ą s2 satisfying that for every S P S there exists an pS, ηq-factorization
of K`. Let m P N such that

m ą 16σ`{ξ (6)

and there exists a resolvable K`-decomposition of Km (see Theorem 12). Similarly, let

n0 ą max
 

4m2
{ξ, 22m( (7)

such that for any n ě n0 satisfying the necessary congruence property there exists a
resolvable Km-decomposition of Kn. Having defined n0, we are given a pG, n,∆q-sequence
F “ pF1, . . . , Ftq for some n ě n0. We show that there exists a pξnq-balanced packing of
the family of component graphs tCiuiPrts into KN , for any N with p1` ξ

2qn ď N ď p1` ξqn
such that KN admits a Km-decomposition. Since n ě n0 ě

4m2

ξ
, such N indeed exist.

5.4.1. The assignment phase. Next we elaborate on the outline given in Sections 5.1 and
5.2. First we describe the auxiliary structure we are going to use followed by the actual
assignment procedure.

The auxiliary structure. For each S P S let DS,` be a fixed pS, ηq-factorization
of K` (see Definition 13). Let D `,m be an arbitrarily chosen resolvable K`-decomposition



12 SILVIA MESSUTI, VOJTĚCH RÖDL, AND MATHIAS SCHACHT

of Km. Similarly, for the given N , denote by Dm,N an arbitrarily chosen resolvable
Km-decomposition of KN .

At each point of time in the assignment procedure we will work with one Km-factor which
we refer to as the current Km-factor Dm,N

current P Dm,N . Each Km of the current Km-factor
is decomposed into K`-factors using D `,m. Moreover, in every Km, for every S P S we pick
a K`-factor which we denote by D`,m

S . We refer to D`,m
S as the current K`-factor for S. We

then apply Theorem 14 to all K`’s in such a K`-factor and obtain pS, ηq-factorizations for
every K` in D`,m

S . Note that we can arbitrarily fix an S-matching in each K` of D`,m
S and

obtain an S-matching of Km of size at least

p1´ ηq `

vpSq

m

`
“ p1´ ηq m

vpSq
. (8)

This way we set up tpSq edge disjoint S-matchings of Km contained in D`,m
S , for

p1´ ηqp`´ 1qvpSq
2epSq ď tpSq ď

p`´ 1qvpSq
2epSq ,

which we denote by DS,`,m
1 , . . . ,DS,`,m

tpSq . Each of these S-matchings cover at least p1´ηqm
`

`

`
2

˘

edges of the K`’s in D`,m
S .

Every such structure will be used until it is considered full according to the following
definition.

Definition 15. A K`-factor D`,m
S is full when all its S-matchings have been used. A Km

is full when there exists an isomorphism type S P S such that D`,m
S is full and any other

K`-factor is either full or reserved to another isomorphism type. A Km-factor is full when
one of its Km’s is full.

The assignment procedure. We now give the details of the four steps outlined in
Section 5.2.3 for the assignment for the graph Ci “

Ť

SPS νipSq ¨ S.
We assume that the graphs C1, . . . , Ci´1 have already been assigned and that the current

Km-factor Dm,N
current “ Dm,N

j is not full.

(i ) For each isomorphism type S P S we group the νipSq copies of S into as few as
possible chunks of size at most p1´ ηq m

vpSq
(note that this matches the size of an S-

matching of Km, as given in (8)) The correction factor p1´ηq here addresses the fact
that we deal with pS, ηq-factorizations and not with resolvable S-decompositions.
The number µipSq of chunks required for the νipSq components of type S is hence
given by

µipSq “

R

νipSq ¨ vpSq

p1´ ηqm

V

. (9)
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(ii ) We order the Km’s in the current Km-factor Dm,N
current according to the number of

edges that have already been assigned to it. We start with the one in which the
least number of edges have been used. We then assign the µipS1q chunks of type S1

to the first µipS1q Km’s in that order and continue in the natural way, that is,
the µipS2q chunks of type S2 are assigned to the next µipS2q Km’s, and so on.
Since the members of S are ordered non-increasingly according to their densities
(see (2)), this way we will ensure that the Km’s in the current Km-factor are used
in a balanced way, which is essential to leave only little waste.

(iii ) Once we have determined which chunk goes to which Km, we have to assign
the components S of the chunk to their copies in the corresponding Km. In the
chosen Km we assign the components of the chunk to DS,`,m

current. Such a matching
exists because we assumed that the current Km-factor Dm,N

j is not full. Note that,
independently of the precise number of components in the chunk, we use an entire
S-matching in all the K`’s of the current K`-factor for S for the assignment of this
chunk.

(iv ) After we have assigned the components of Ci we prepare for the assignment of Ci`1.
In each Km, for every isomorphism type S, we check whether the current K`-factor
for S is full. If it is, two cases may arise. In the first case there exists another
K`-factor in the Km that has not been reserved for any S P S yet. Then, we apply
Theorem 14 with S and η to all copies of K` in such a K`-factor and this factor
becomes the current K`-factor for S, i.e., D`,m

S in that Km. In the second case,
all K`-factors are either full or have been reserved for some S 1 P S with S 1 ‰ S,
hence we cannot set up a new K`-factor for S. This implies that the Km and the
Km-factor are full (see Definition 15). Since we assigned the components of Ci to
the least used Km’s in the Km-factor, we are ensured that at this point all the Km’s
in Dm,N

current are almost completely used. At this point we add Dm,N
current to Dm,N

used and
set Dm,N

current “ Dm,N
j`1 .

The assignment phase yields a packing. We shall verify that the procedure yields a
correct assignment. For that we have to show that any component graph Ci “fits” into KN ,
and that we do not run out of Km-factors while iterating the four steps for all graphs
in tCiuiPrts.

We first show that every Ci fits into one Km-factor. Recall that in Step (i ) the copies
isomorphic to some S P S are split into chunks of size at most p1´ ηq m

vpSq
and each chunk

is assigned to an S-matching of D`,m
S . At this point some vertices may not be used for one

of the following two reasons:
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(V1) We always reserve a whole S-matching DS,`,m
current for each chunk, even though some

chunks may contain only a few copies of S. In the worst case where only one
copy of S is contained in the chunk we may waste m´ vpSq ď m vertices and in
principle this could happen for every isomorphism type S P S. However, since such
a “rounding error” occurs at most once for each isomorphism type, we may waste
at most σm vertices for this reason.

(V2) We cannot guarantee that the S-matchings which we are using are perfect S-factors.
However, from Theorem 14 it follows that each matching covers at least

p1´ ηq m

vpSq
vpSq “ p1´ ηqm

vertices of Km. Therefore the number of uncovered vertices in the Km-factor due
to this imperfection is at most ηmN

m
“ ηN .

Hence Ci fits into one Km-factor if we ensure that vpCiq ` σm ` ηN ď N , which follows
from

vpCiq ` σm` ηN ď n` σm` ηN ď p1` ξ

2qn ď N,

due to (5), (6), and (7).
It is left to show that N´1

m´1 Km-factors are sufficient to host all the graphs from tCiuiPrts.
For that, we shall bound the number of unused edges in each Km-factor. At the point
when a Km becomes full, all its K`-factors, except for the current K`-factors D`,m

S for each
isomorphism type S P S, have been used in the assignment. This leads to the following
cases.

(E1) The current K`-factor D `,m
S for a given isomorphism type S may not have been

used at all and hence all its
`

`
2

˘

m
`
edges are not used in the assignment.

(E2) Owing to Theorem 14, in a used K`-factor, up to at most η
`

`
2

˘

m
`
edges are not

covered by the S-matchings.

Hence the total number of edges that are not used in a full Km can be bounded by
ˆ

σ ` η
m´ 1
`´ 1

˙ˆ

`

2

˙

m

`
.

It is left to establish a similar estimate for the other Km’s in the Km-factor. Recall that we
declared the whole Km-factor to be full as soon as one Km was full. Since all components
of any Ci Ď Fi have bounded maximum degree ∆, in each step up to at most m∆

2 edges are
reserved in any Km of the current Km-factor. Owing to the balanced selection of the Km’s
within the current Km-factor (see Step (ii )) we have that the number of used edges over
all Km’s in Dm,N

current differs by at most m∆
2 . Consequently, the number of unused edges in
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any Km at the point when the Km-factor is declared full is at most
ˆ

σ ` η
m´ 1
`´ 1

˙ˆ

`

2

˙

m

`
`
m∆

2 .

Using this estimate for all
`

N
2

˘

{
`

m
2

˘

of the Km in the Km-decomposition of KN leads to a
total of unused edges of at most

ˆ

σ
`´ 1
m´ 1 ` η `

∆
m´ 1

˙ˆ

N

2

˙

ă 2η
ˆ

N

2

˙

,

where we used (5), (6), and ∆ ă σ. Furthermore, since by N ě p1` ξ
2qn we have

ˆ

n

2

˙

` 2η
ˆ

N

2

˙

ď

ˆ

N

2

˙

,

we have shown that we do not run out of Km-factors and, hence, the assignment procedure
yields a preliminary packing of tCiuiPrts.

For the proof of Lemma 10 we have to show not only that there exists such a packing
but also that there is a balanced one. This will be the focus of the next phase.

5.4.2. The balancing phase. In the assignment phase we have constructed a preliminary
packing f of tCiuiPrts into the Km-factors of KN as described in Section 5.1. We now
construct a pξnq-balanced packing h by the following random process consisting of two
parts. Firstly, we randomly permute the N

m
Km’s in each Km-factor independently and

we will denote the resulting packing by g. Secondly, for each Km, we pick a random
permutation of its vertices. As we already noted in Section 5.3, any such permutation
yields a packing of tCiuiPrts into KN .

It is left to show that with positive probability each vertex v of KN has boundary degree
with respect to h bounded by ξn. Recall from Definition 9 that the boundary degree with
respect to f of a vertex v is defined by

dBf pvq “ |ti P rts : f´1
i pvq P BCiu|.

For a Km of the Km-decomposition of KN and a vertex v of Km we consider the relative
boundary degree

dBf pv,Kmq “ |ti P rts : fi assigns some components of Ci to Km and f´1
i pvq P BCiu|

Clearly,
ř

dBf pv,Kmq “ dBf pvq, where the sum runs over all Km from the Km-decomposition
of KN that contain v. For each Km we define its label as the monotone sequence of the
relative boundary degrees of its vertices. Since these labels of the Km’s consist of relative
boundary degrees, such a label is invariant under permutations of the vertices of a Km and
it is invariant under permutations of the Km’s within its Km-factor. Moreover, the label of
a Km is determined by the isomorphism types S P S it hosts, because each type S consists
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of a labelled graph R with a set of boundary vertices B. Since in the assignment phase
we assigned an isomorphism type to a whole K`-factor, the number of possible labels is
bounded by |S|pm´1q{p`´1q “ σpm´1q{p`´1q ă 2m (see (3) and the choice of ` ą s2).

For every Km-factor Dm,N
j , let αjpAq be the number of Km’s with label A in Dm,N

j and
define

αpAq “

N´1
m´1
ÿ

j“1
αjpAq.

We call a label common if αpAq ě η
2m

NpN´1q
mpm´1q and rare otherwise. Note that the total

number of Km’s having a rare label is bounded by ηNpN´1q
mpm´1q , therefore

ÿ

A common
αpAq ě p1´ ηqNpN ´ 1q

mpm´ 1q . (10)

We use these labels to show that each vertex in KN hosts roughly the same amount
of boundary vertices. For that we first prove that an arbitrary vertex is contained in
approximately the expected number of Km’s of a given common label. For a vertex v of KN

and a common label A we denote by Xv,A the number of Km’s containing v that have
label A. Note that Xv,A is the sum of N´1

m´1 indicator variables Xv,A
j , where Xv,A

j “ 1 if
the Km from the Km-factor Dm,N

j adjacent to v has label A. The probability that this
happens is then given by αjpAq

N{m
. By applying Chernoff’s inequality ((2.9) in [8]) we obtain

P
`

|Xv,A
´ EXv,A

| ą ηEXv,A
˘

ă 2 exp
ˆ

´
η2EXv,A

3

˙

ă 2 exp
ˆ

´
η2

3
m

N
αpAq

˙

.

Consequently, the probability that one of the common labels appears too many or too few
times among the Km’s containing some vertex is bounded by

ÿ

vPV pKN q

ÿ

A common
2 exp

ˆ

´
η2

3
m

N
αpAq

˙

ă N2m`1 exp
ˆ

´
η3pN ´ 1q

2m ¨ 3pm´ 1q

˙

ă 1 ,

where we used that common labels A are defined through αpAq ě η
2m

NpN´1q
mpm´1q in the first

inequality. Therefore, with positive probability, all vertices are balanced in the sense that
the occurrences of every common label among the Km’s incident to each vertex roughly
agree in proportion with the occurrences of that label in the decomposition.

We fix such permutation of the Km’s and the corresponding numbers Xv,A for every
vertex v and every label A. Let g be the corresponding packing of tCiuiPrts into KN . As
a consequence, we get that for every vertex v the number of Km’s with common labels
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attached to it satisfies
ÿ

A common
Xv,A

ě
ÿ

A common
p1´ ηqm

N
αpAq “ p1´ ηqm

N

ÿ

A common
αpAq

(10)
ě p1´ ηqm

N
p1´ ηqNpN ´ 1q

mpm´ 1q “ p1´ ηq
2N ´ 1
m´ 1 ě p1´ 2ηqN ´ 1

m´ 1 .

We also obtain an upper bound on the number of Km’s with rare labels for every vertex v
ÿ

A rare
Xv,A

“
N ´ 1
m´ 1 ´

ÿ

A common
Xv,A

ď 2η N ´ 1
m´ 1 . (11)

Next we show that randomly permuting the vertices of each Km in the Km-decomposition
of KN for the random packing g ensures that the boundary degrees in each Km are evenly
distributed. Let dBhpv, Aq be the sum of the boundary degrees of the vertex v within
the Km’s labelled by A and containing v. Clearly,

dBhpvq “
ÿ

A

dBhpv,Aq.

We denote by Apjq the j-th element of the degree sequence A and set βpAq “ 1
m

řm
j“1Apjq

as the average degree in A. Since αpAq is the number of Km’s with label A in the Km-
decomposition of KN and mβpAq “

řm
j“1Apjq is the sum of the relative boundary degrees

of the vertices of such a Km, for later reference we note

ÿ

A

mβpAqαpAq “
ÿ

A

αpAq
m
ÿ

j“1
Apjq “

t
ÿ

i“1
|BCi|. (12)

For a moment we ignore the Km’s with rare labels, since owing to (11) their contribution
will be negligible, and consider only those that have a common label. We first show that
for a vertex v of KN and a common label A, dBhpv,Aq is in the range p1˘ ηqβpAqXv,A with
high probability. Let Y v,A

j be the number of Km’s labelled by A in which v gets boundary
degree Apjq. By applying Chernoff’s inequality we obtain

P

ˆ
ˇ

ˇ

ˇ

ˇ

Y v,A
j ´

Xv,A

m

ˇ

ˇ

ˇ

ˇ

ą η
Xv,A

m

˙

ă 2 exp
ˆ

´
η2

3
Xv,A

m

˙

for every j P rms. This implies that with probability 1´ 2m exp
´

´
η2

3
Xv,A

m

¯

we have

dBhpv, Aq “
m
ÿ

j“1
ApjqY v,A

j “

m
ÿ

j“1
Apjqp1˘ ηqX

v,A

m
“ p1˘ ηqβpAqXv,A.

By summing over all common labels, we have that with positive probability there exist
permutations for every Km of the Km-decomposition of KN for which all vertices have



18 SILVIA MESSUTI, VOJTĚCH RÖDL, AND MATHIAS SCHACHT

roughly the expected boundary degree. More precisely, the probability that there exists a
misbehaving vertex is bounded by

ÿ

vPV pKN q

ÿ

A common
2m exp

ˆ

´
η2

3
Xv,A

m

˙

ă N2m`1m exp
ˆ

´
η2

3 p1´ ηq
αpAq

N

˙

ď N2m`1m exp
ˆ

´
η3

2m ¨ 3p1´ ηq
N ´ 1

mpm´ 1q

˙

ă 1 ,

where the first inequality follows from g being a packing in which Xv,A is close to its
expected value for every v P V pKnq and the second inequality follows from the definition
of common labels. Therefore, the contribution of the Km’s with common labels for each
vertex v is at most

ÿ

A common
dBhpv,Aq ď

ÿ

A common
p1` ηqβpAqXv,A

ď
ÿ

A common
p1` ηq

”

βpAqp1` ηqm
N
αpAq

ı

“ p1` ηq2 1
N

ÿ

A common
pmβpAqαpAqq

(12)
ď p1` ηq2 1

N

t
ÿ

i“1
|BCi|

(1),(4)
ď p1` ηq2 1

N

ξ

2n
2.

Owing to (11), a vertex can be incident to at most 2ηN´1
m´1 Km’s with rare labels. Since

no component of any Ci consists of a single isolated vertex (see (ii ) in Definition 5), the
largest relative boundary degree of any vertex in such a Km can be at most m´ 1 and we
infer that

dBhpvq ď p1` ηq2
1
N

ξ

2n
2
` 2ηN ´ 1

m´ 1 pm´ 1q ă
ˆ

p1` ηq2
1` ξ{2

ξ

2 ` 2ηp1` ξq
˙

n
(5)
ă ξn (13)

for every v P V pKNq, thus proving Lemma 10. �

§6. Packing the separators

In this section we prove Lemma 11. The Lemma asserts that a balanced packing
of tCiuiPrts into Kp1`ξqn can be extended to a packing of tFiuiPrts in Kp1`εq. For that we
have to show that we can embed the separators tUiuiPrts in an appropriate way. Roughly
speaking, we will show that a simple greedy strategy will work in here.

6.1. Proof of Lemma 11. Given ε and ∆, set

ξ “
ε

12∆2 and δ “
ε2

72∆2 .

Let s P N and let G be a pδ, sq-separable family. For sufficiently large n let F “ pF1, . . . , Ftq

be a pG, n,∆q-sequence and suppose that there exists a pξnq-balanced packing of the
component graphs tCiuiPrts into a clique of order p1 ` ξqn. Fix a partition X 9YY of the
vertex set of Kp1`εqn, where |X| “ p1`ξqn, and denote by KX , KY , and KX,Y the complete



PACKING MINOR-CLOSED FAMILIES OF GRAPHS INTO COMPLETE GRAPHS 19

subgraphs induced on X and on Y , and the complete bipartite subgraph between X and Y ,
respectively. Let h “ thiuiPrts with

hi : V pCiq Ñ X

be a pξnq-balanced packing of tCiuiPrts into KX . We shall use KY to embed tUiuiPrts,
and KX,Y for the necessary connections. It is easy to see that if the following conditions
are satisfied then the resulting map is a packing of F into Kp1`εqn:

(P1) for every i P rts, the vertices of Ui are mapped injectively into Y ;
(P2) each edge in KX,Y is used at most once;
(P3) each edge in KY is used at most once.

Note that we will embed
ř

iPrts |Ui| ď δn2 vertices into Y , therefore some vertices in Y will
be used at least

ř

iPrns |Ui|

|Y |
ď δn2

|Y |
times. However, we will ensure that each vertex in Y is

used at most 3 δn2

|Y |
times. The packing of F into Kp1`εqn will be expressed by a family of

functions h “ thiuiPrts with

hi : V pFiq Ñ X 9YY

where hi extends hi from V pCiq to V pFiq. For a vertex v P V pCiq, we set hipvq “ hipvq P X

for any i P rns. For the vertices in the separators tUiuiPrts we will fix their image hipvq in Y
one by one in a greedy way, starting with vertices of U1.

At each step we embed a vertex u P Ui into Y , assuming that all vertices of Uj with j ă i

and possibly some (at most |Ui|´1 ă δn) vertices of Ui were already embedded. Let NCi
puq

be the neighbourhood of u in Ci, and NUi
puq the neighbourhood of u in Ui both of size at

most ∆. Suppose so far we made sure that every vertex in Y was used at most 3 δn2

|Y |
times.

We will embed u in such a way that (P1), (P2), and (P3) are obeyed (see (P11), (P21),
and (P31) below), and afterwards each vertex of Y is still used at most 3 δn2

|Y |
times. This

will show that h can be extended to a packing h of F and conclude the proof. Having this
in mind we note:

(P11) The vertices of Ui have to be embedded injectively into Y and, hence, up to at
most |Ui| ´ 1 ă δn vertices of Y may not be used for the embedding of u.

(P21) Since every edge in KX,Y can be used at most once, we require hipuq ‰ hjpu
1q

for every vertex u1 P Uj with hjpNCj
pu1qq X hipNCi

puqq ‰ ∅. Let x P hipNCi
puqq.

Owing to the pξnq-balancedness of the packing thiuiPrts, x hosts at most ξn vertices
from

Ť

kPrts BCk and each of them has at most ∆ neighbours in some Uk for k P rts.
Assuming that all of them have already been embedded into Y , we obtain at
most ∆ξn forbidden vertices for each of the up to at most ∆ neighbours of u in Ci.
Hence, the total number of forbidden options for hipuq in Y is at most ∆2ξn.
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(P31) Note that KY also hosts the edges contained in the separator Ui and every edge
of KY may be used at most once. Suppose that there exists a vertex u1 from Uj

with j ă i such that hipNUi
puqq X hjpNUj

pu1qq ‰ ∅. Then hipuq must avoid hjpu1q
for any such u1, because at least one edge between this vertex and the image of
the neighbours of u is already used. Since by our assumption every vertex in the
set hipNUi

puqq hosts at most 3 δn2

|Y |
vertices embedded so far, and since ∆pFjq ď ∆,

there are at most ∆ ¨ 3 δn2

|Y |
|NUi

puq| ď 3∆2δn2{|Y | such restrictions.

Since up to now every vertex y P Y was used at most 3 δn2

|Y |
times for the embedding, by

denoting with Yu Ď Y the set of candidates for the embedding of u, we obtain

|Yu| ě |Y | ´
´

δn`∆2ξn` 3∆2 δn
2

|Y |

¯

ě |Y | ´
ε

4n ą
|Y |

2 .

Since we have to embed at most
ř

iPrts |Ui| ď δn2 vertices in total, at any time some vertex
y P Yu was used at most

δn2

|Y |{2 ă 3δn
2

|Y |
´ 1

times, and this vertex we choose for hipuq. We have thus shown that at each round we can
always pick one vertex in Y such that all the edges needed to connect the vertex we want
to embed to all its neighbour are available and it was used before at most 3 δn2

|Y |
´ 1 times.

This completes the proof of the lemma. �
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