TWO-REGULAR SUBGRAPHS OF ODD-UNIFORM HYPERGRAPHS

JIE HAN AND JAEHOON KIM

Abstract

Let $k \geq 3$ be an odd integer and let n be a sufficiently large integer. We prove that the maximum number of edges in an n-vertex k-uniform hypergraph containing no 2 -regular subgraphs is $\binom{n-1}{k-1}+\left\lfloor\frac{n-1}{k}\right\rfloor$, and the equality holds if and only if H is a full k-star with center v together with a maximal matching omitting v. This verifies a conjecture of Mubayi and Verstraëte.

1. Introduction

Turán problems are central in extremal graph theory. In general, Turán-type problems question on the maximum number of edges of a (hyper)graph that does not contain certain subgraph(s). Their generalizations to hypergraphs appear to be extremally hard - for example, despite many existing works, the Turán density of tetrahedron (four triples on four vertices) is still unknown (see [8]).

Erdős [3] asked to determine the maximum size $f_{k}(n)$ of an n-vertex k-uniform hypergraph without any generalized 4 -cycles, i.e., four distinct edges A, B, C, D such that $A \cup B=C \cup D$ and $A \cap B=C \cap D=\emptyset$. For $k=2$, this reduces to a well-known problem of studying the Turán number for the 4 -cycle. It is known that $f_{2}(n)=(1+o(1)) n^{3 / 2}$ [2, 4] and the exact value of $f_{2}(n)$ for infinitely many n is obtained in [6]. For $k \geq 3$, Füredi [7] showed that $\binom{n-1}{k-1}+\left\lfloor\frac{n-1}{k}\right\rfloor \leq f_{k}(n) \leq \frac{7}{2}\binom{n}{k-1}$ and conjectured the following. ${ }^{1}$
Conjecture 1.1. For $k \geq 4$ and $n \in \mathbb{N}$, $f_{k}(n)=\binom{n-1}{k-1}+\left\lfloor\frac{n-1}{k}\right.$.
The lower bound is achieved by a full k-star together with a maximal matching omitting its center. Here a full k-star is a k-uniform n-vertex hypergraph which consists of all $\binom{n-1}{k-1}$ sets of size k containing a given vertex v, and the given vertex v is called the center of the full k star. The most recent result on $f_{k}(n)$ is due to Pikhurko and Verstraëte [13], who showed that $f_{k}(n) \leq \min \{1+2 / \sqrt{k}, 7 / 4\}\binom{n}{k-1}$, and $f_{3}(n) \leq \frac{13}{9}\binom{n}{2}$. This improves a result by Mubayi and Verstraëte [11]. In [9], the second author made a related conjecture about k-uniform hypergraphs containing no r pairs of disjoint sets with the same union when k is sufficiently bigger than r.

Since the generalized 4 -cycles are 2-regular, i.e., each vertex has degree 2 , one way to relax the original problem of Erdős is to consider the maximum size of n-vertex (hyper)graphs without any 2-regular sub(hyper)graphs (or more generally, without any r-regular subgraphs). In fact, the (relaxed) problem has its own interest even for graphs. Although it is trivial for $r=2$, Pyber [14] proved that the largest number of edges in a graph with no r-regular subgraphs is $O(n \log n)$ for any $r \geq 2$, and in [15], Pyber, Rödl and Szemerédi showed that there are graphs with no r-regular subgraphs having $\Omega(n \log \log n)$ edges for any $r \geq 3$.

For non-uniform hypergraphs, it is easy to see that any hypergraph with no r-regular subgraphs has at most $2^{n-1}+r-1$ edges and Kostochka and the second author [10] showed that if $n \geq \max \{425, r+1\}$ then any n-vertex hypergraph with no r-regular subgraphs having the maximum number of edges must contain a vertex of degree 2^{n-1}. For uniform hypergraphs, the

[^0]problem becomes more interesting. One natural candidate for the extremal example of k-uniform hypergraphs with no 2-regular subgraphs is the full k-star. Indeed, Mubayi and Verstraëte [12] proved the following.

Theorem 1.2. 12] For every even integer $k \geq 4$, there exists n_{k} such that the following holds for all $n \geq n_{k}$. If H is an n-vertex k-uniform hypergraph with no 2-regular subgraphs, then $|H| \leq\binom{ n-1}{k-1}$. Moreover, equality holds if and only if H is a full k-star.

In 9 the second author generalized the arguments in $[12]$ and showed similar results for k uniform hypergraphs with no r-regular subgraphs when $r \in\{3,4\}$. Moreover, for odd k, Mubayi and Verstraëte [12] conjectured that $|H| \leq\binom{ n-1}{k-1}+\left\lfloor\frac{n-1}{k}\right\rfloor$, and the only extremal graph is the full k-star plus a matching omitting its center. In this paper, we prove this conjecture.

Theorem 1.3. For every odd integer $k \geq 3$, there exists n_{k} such that the following holds for all $n \geq n_{k}$. If H is an n-vertex k-uniform hypergraph with no 2-regular subgraphs, then

$$
|H| \leq\binom{ n-1}{k-1}+\left\lfloor\frac{n-1}{k}\right\rfloor
$$

Moreover, equality holds if and only if H is a full k-star with center v together with a maximal matching omitting v.

Theorem 1.2 [12] is proved via the stability approach introduced by Erdős and Simonovits [16], which has been widely used in extremal set theory. To prove Theorem 1.3, we also use the stability approach as well as some other ideas from [12]. One advantage when k is even is that there exist 2-regular k-uniform hypergraphs on $3 k / 2$ vertices. In contrast, for odd k, the smallest 2-regular k-uniform hypergraphs have order $2 k$ and thus the analysis is more difficult (this is also the reason why more edges are allowed in the extremal graph for odd k, which makes the structure more complicated). In our proof, we use some new tricks to overcome this difficulty.

2. Preliminaries

For a positive integer N we write $[N]$ to denote the set $\{1, \ldots, N\}$. We write $V(H)$ for the set of vertices, $E(H)$ for the set of edges in a hypergraph H. For a hypergraph H, we view H as a collection of edges, thus sometimes H refers to $E(H)$. We say that H is a k-uniform hypergraph or k-uniform family if every edge of H has size exactly k. Moreover, we always say subgraph instead of subhypergraph. For a hypergraph H and a set $S \subseteq V(H)$,

$$
N_{H}(S):=\{e \backslash S: e \in E(H), S \subseteq e\} \quad \text { and } \quad d_{H}(S)=\left|N_{H}(S)\right|
$$

We say a set S is an s-set if $|S|=s$. For a vertex $x \in V(H)$, we write $N_{H}(x):=N_{H}(\{x\})$ and $d_{H}(x):=d_{H}(\{x\})$. We say $\left\{S, S^{\prime}\right\}$ is an equipartition of a set A if $|S|=\left|S^{\prime}\right|, S \cap S^{\prime}=\emptyset$ and $S \cup S^{\prime}=A$.

In order to prove Theorem 1.3 , we use the following two theorems proved in 12$]$. These theorems give a rough structure of near-extremal hypergraphs.

Theorem 2.1. [12] For given $\varepsilon>0$ and $k \in \mathbb{N}$, there exists $n_{0}=n_{0}(k, \varepsilon)$ such that the following holds for all $n \geq n_{0}$. If H is an n-vertex k-uniform hypergraph with no 2-regular subgraphs, then

$$
|H| \leq(1+\varepsilon)\binom{n-1}{k-1}
$$

Theorem 2.2. [12] For given $\varepsilon>0$ and $k \in \mathbb{N}$, there exists $n_{1}=n_{1}(k, \varepsilon)$ such that the following holds for all $n \geq n_{1}$. If H is an n-vertex k-uniform hypergraph with no 2-regular subgraphs with $|H| \geq\binom{ n-1}{k-1}$, then H contains a vertex v with $d_{H}(v) \geq(1-\varepsilon)\binom{n-1}{k-1}$.

We use the following result of Frankl [5, Theorem 10.3].

Theorem 2.3. For integers $t \geq 1$ and $n \geq 2 k$, if an n-vertex k-uniform hypergraph H has more than $t\binom{n-1}{k-1}$ edges, then H has \bar{a} matching of size $t+1$.

We also use the following result of Balogh, Bohman and Mubayi [1]. If an intersecting k-uniform hypergraph is a subgraph of a full k-star, then it is called trivial, otherwise non-trivial. Moreover, we say that a k-uniform hypergraph H is covered by a set $X \subseteq\binom{V(H)}{2}$ of pairs of vertices of H if for every hyperedge e of H, there is a pair $\{x, y\} \in X$ such that $\{x, y\} \subseteq e$.
Lemma 2.4. 1] Let H be a non-trivial intersecting k-uniform hypergraph. Then H can be covered by at most $k^{2}-k+1$ pairs of vertices.

3. Proof of Theorem 1.3

Let $k \geq 3$ be an odd integer. Let $\varepsilon:=\varepsilon(k)>0$ be sufficiently small and let $n(k, \varepsilon)$ be a sufficiently large integer. For $n \geq n(k, \varepsilon)$, let H be an n-vertex k-uniform hypergraph with no 2-regular subgraphs. By removing edges if necessary, we may assume that

$$
\begin{equation*}
|H|=\binom{n-1}{k-1}+\left\lfloor\frac{n-1}{k}\right\rfloor . \tag{3.1}
\end{equation*}
$$

To prove Theorem 1.3 , it is enough to show that H contains a full k-star, because a full k-star with two additional intersecting edges always gives a 2-regular subgraph. To derive a contradiction, we assume that H does not contain any full k-star. Since n is sufficiently large, Theorem 2.2 implies that there is a vertex $v \in V(H)$ such that $d_{H}(v) \geq\binom{ n-1}{k-1}-\varepsilon^{3} n^{k-1}$. Let $V^{\prime}:=V(H) \backslash\{v\}$, $H^{*}:=H\left[V^{\prime}\right]$ and $\tilde{H}:=\{e \backslash\{v\}:|e|=k, v \in e \notin H\}$. Note that any $(k-1)$-set $A \subseteq V^{\prime}$ with $A \notin \tilde{H}$ satisfies that $A \cup\{v\} \in H$. Let

$$
\begin{equation*}
x:=|\tilde{H}|=\binom{n-1}{k-1}-d_{H}(v) \leq \varepsilon^{3} n^{k-1} . \tag{3.2}
\end{equation*}
$$

Since H does not contain a full k-star with center v, we have $x \geq 1$. Then (3.1) and (3.2) imply that

$$
\begin{equation*}
\left|H^{*}\right|=x+\left\lfloor\frac{n-1}{k}\right\rfloor . \tag{3.3}
\end{equation*}
$$

Important idea for the proof is that a pair of two intersecting edges in H^{*} ensures \tilde{H} to contain more ($k-1$)-sets (Claim 3.1). Since $x>0$, there exists a pair of intersecting edges in H^{*} and Claim 3.1 implies that value of $x=|\tilde{H}|$ is larger. However, by (3.3), larger value of x guarantees more pairs of intersecting edges in H^{*} which again implies the value of x is larger. This circulation of logic gives a contradiction as x cannot be too large by (3.2).

To turn this idea into a mathematical proof, we need to prove some technical claims. Here, we give a brief outline of our proof. We start with some simple but useful claims (Subsection 3.1), and in particular, we show that $x \geq n-2 k+1$ (Claim (3.3). Thus together with (3.2), we may assume that there exists an integer $2 \leq \ell \leq k-1$ such that

$$
\varepsilon^{3} n^{\ell-1} \leq x \leq \varepsilon^{3} n^{\ell}
$$

We next find pairwise disjoint $(\ell-1)$-sets $S_{1}, S_{2}, \ldots, S_{2 k} \subseteq V^{\prime}$ such that $d_{\tilde{H}}\left(S_{i}\right) \leq\binom{ k}{\ell-1} x /\binom{n-1}{\ell-1}$ for $i \in[2 k]$, which play an important role in the proof. Let $\mathcal{T}:=\bigcup_{i=1}^{2 k} N_{\tilde{H}}\left(S_{i}\right)$ be a collection of $(k-\ell)$-sets in V^{\prime}. Let $H_{1}:=\left\{e \in H^{*}: \exists T \in \mathcal{T}\right.$ such that $\left.T \subset e\right\}$ and let $H_{0}:=H^{*} \backslash H_{1}$. Our goal is to show that $\left|H_{1}\right| \leq \varepsilon x$ (Subsection 3.2) and $\left|H_{0}\right|<(1-\varepsilon) x+\left\lfloor\frac{n-1}{k}\right\rfloor$ (Subsection 3.3), which together imply that $\left|H^{*}\right|=\left|H_{1}\right|+\left|H_{0}\right|<x+\left\lfloor\frac{n-1}{k}\right\rfloor$, contradicting (3.3). In fact, the technical parts are Subsections 3.2 and 3.3 , in which the essential argument is some clever double counting also used in [12]. However, as mentioned in Section 1, our case is more complicated than that in [12], so we have to proceed a more careful analysis (including introducing ℓ and \mathcal{T}) and use some new tricks (e.g. analyzing the intersecting property of certain family and utilizing Lemma 2.4).
3.1. Preparation. First we prove the following easy claim.

Claim 3.1. Assume we have $e_{1}, e_{2} \in H^{*}, A \subseteq V^{\prime}$ and $\left\{S, S^{\prime}\right\}$ such that

- $A \cap\left(e_{1} \cup e_{2}\right)=\emptyset$,
- $|A|=\left|e_{1} \cap e_{2}\right|-1$,
- $\left\{S, S^{\prime}\right\}$ is an equipartition of $e_{1} \triangle e_{2}$.

Then either $A \cup S \in \tilde{H}$ or $A \cup S^{\prime} \in \tilde{H}$.
Proof. If both $(k-1)$-sets $A \cup S$ and $A \cup S^{\prime}$ are not in \tilde{H}, then

$$
e_{1}, e_{2}, A \cup S \cup\{v\} \text { and } A \cup S^{\prime} \cup\{v\}
$$

form a 2-regular subgraph of H, a contradiction.
Now we prove the following two claims regarding lower bounds on x.
Claim 3.2. Let $t \in[k-1]$. If H^{*} contains two edges e_{1}, e_{2} such that $\left|e_{1} \cap e_{2}\right|=t$, then

$$
x \geq \frac{1}{2}\binom{2 k-2 t}{k-t}\binom{n-2 k+t-1}{t-1} .
$$

Proof. Suppose $e_{1}, e_{2} \in H^{*}$ such that $\left|e_{1} \cap e_{2}\right|=t$. Consider a set $A \in\binom{V^{\prime} \backslash\left(e_{1} \cup e_{2}\right)}{t-1}$ and an equipartition $\left\{S, S^{\prime}\right\}$ of $e_{1} \triangle e_{2}$. For each A and $\left\{S, S^{\prime}\right\}$, Claim 3.1 implies that $A \cup S \in \tilde{H}$ or $A \cup S^{\prime} \in \tilde{H}$. Moreover, distinct choices of $\left(A,\left\{S, S^{\prime}\right\}\right)$ give us distinct ($k-1$)-sets in \tilde{H}.

Since there are $\binom{n-2 k+t-1}{t-1}$ distinct choices of A and $\frac{1}{2}\binom{2 k-2 t}{k-t}$ distinct choices of $\left\{S, S^{\prime}\right\}$, we have $x=|\tilde{H}| \geq \frac{1}{2}\binom{2 k-2 t}{k-t}\binom{n-2 k+t-1}{t-1}$.
Claim 3.3. The hypergraph H^{*} contains two edges e_{1}, e_{2} such that $\left|e_{1} \cap e_{2}\right| \geq 2$. Moreover, $x \geq n-2 k+1$.

Proof. Assume H^{*} does not contain such two edges. Then for any $u \in V^{\prime}$ and $S, S^{\prime} \in N_{H^{*}}(u)$, we have $S \cap S^{\prime}=\emptyset$. If there are two $(k-1)$-sets $S, S^{\prime} \in N_{H^{*}}(u)$ such that $S, S^{\prime} \notin \tilde{H}$, then

$$
S \cup\{u\}, S^{\prime} \cup\{u\}, S \cup\{v\} \text { and } S^{\prime} \cup\{v\}
$$

form a 2-regular subgraph of H, a contradiction. Thus for any $u \in V^{\prime}$, we have $\left|N_{H^{*}}(u) \cap \tilde{H}\right| \geq$ $\left|N_{H^{*}}(u)\right|-1$. Moreover, by our assumption, we have $N_{H^{*}}(u) \cap N_{H^{*}}\left(u^{\prime}\right)=\emptyset$ for any distinct $u, u^{\prime} \in V^{\prime}$. Thus

$$
x=|\tilde{H}| \geq \sum_{u \in V^{\prime}}\left|N_{H^{*}}(u) \cap \tilde{H}\right| \geq \sum_{u \in V^{\prime}}\left(d_{H^{*}}(u)-1\right)=k\left|H^{*}\right|-(n-1) \stackrel{(3.3)}{\geq} k x-(k-1) .
$$

Since $k \geq 3$, we get $x \leq 1$. However, the assumption that $x \geq 1$ and (3.3) imply that there are two edges $e_{1}, e_{2} \in H^{*}$ with $\left|e_{1} \cap e_{2}\right| \geq 1$. So by Claim 3.2, we have $x \geq \frac{1}{2}\binom{2 k-2}{k-1}\binom{n-2 k}{0} \geq 3$, a contradiction. Thus H^{*} contains two edges e_{1}, e_{2} with $\left|e_{1} \cap e_{2}\right| \geq 2$. Hence Claim 3.2 implies that $x \geq \frac{1}{2}\binom{2 k-4}{k-2}\binom{n-2 k+1}{1} \geq n-2 k+1$.

By (3.2) and Claim 3.3, there exists an integer ℓ such that

$$
\begin{equation*}
\varepsilon^{3} n^{\ell-1} \leq x \leq \varepsilon^{3} n^{\ell} \tag{3.4}
\end{equation*}
$$

and $2 \leq \ell \leq k-1$. Throughout the rest of the paper, ℓ denotes such integer satisfying (3.4).
The following claim finds $2 k$ pairwise disjoint $(\ell-1)$-sets which have low degree in H.
Claim 3.4. There are pairwise disjoint $(\ell-1)$-sets $S_{1}, S_{2}, \ldots, S_{2 k} \subseteq V^{\prime}$ such that $d_{\tilde{H}}\left(S_{i}\right) \leq$ $\binom{k}{\ell-1} x /\binom{n-1}{\ell-1}$ for $i \in[2 k]$.

Proof. Let $F:=\left\{S \in\binom{V^{\prime}}{\ell-1}: d_{\tilde{H}}(S) \leq\binom{ k}{\ell-1} x /\binom{n-1}{\ell-1}\right\}$ and $F^{\prime}:=\binom{V^{\prime}}{\ell-1} \backslash F$. So it suffices to find a matching of size $2 k$ in F. Then

$$
\binom{k-1}{\ell-1} x=\sum_{S \in\binom{V^{\prime}}{\ell-1}} d_{\tilde{H}}(S) \geq 0 \cdot|F|+\frac{\binom{k}{\ell-1} x}{\binom{n-1}{\ell-1}}\left|F^{\prime}\right| .
$$

So we have

$$
\left|F^{\prime}\right| \leq \frac{\binom{k-1}{\ell-1}}{\binom{k}{\ell-1}}\binom{n-1}{\ell-1}=\frac{k-\ell+1}{k}\binom{n-1}{\ell-1} \leq \frac{k-1}{k}\binom{n-1}{\ell-1},
$$

as $\ell \geq 2$. Since $|F|+\left|F^{\prime}\right|=\binom{n-1}{\ell-1}$, we have $|F| \geq \frac{1}{k}\binom{n-1}{\ell-1}>2 k\binom{\left|V^{\prime}\right|-1}{\ell-2}$. Then by Theorem 2.3, F contains a matching $\left\{S_{1}, \ldots, S_{2 k}\right\}$ of size $2 k$ as desired.

Let $S_{1}, \ldots, S_{2 k}$ be pairwise disjoint $(\ell-1)$-sets as in Claim 3.4. Let $\mathcal{T}:=\bigcup_{i=1}^{2 k} N_{\tilde{H}}\left(S_{i}\right)$ be a collection of $(k-\ell)$-sets in V^{\prime}. So we have

$$
\begin{equation*}
|\mathcal{T}| \leq \sum_{i=1}^{2 k}\left|N_{\tilde{H}}\left(S_{i}\right)\right| \leq \frac{2 k\binom{k}{\ell-1} x}{\binom{n-1}{\ell-1}} \leq 2 k^{k+1} n^{1-\ell} x . \tag{3.5}
\end{equation*}
$$

Note that for any $(k-\ell)$-set $T \notin \mathcal{T}$, we have $T \cup S_{i} \cup\{v\} \in H$ if $T \cap S_{i}=\emptyset$. Let $W=\bigcup_{T \in \mathcal{T}} T$, then

$$
\begin{equation*}
|W| \leq(k-\ell)|\mathcal{T}| \stackrel{\sqrt{3.5}}{\leq} 2 k^{k+2} n^{1-\ell} x \stackrel{(3.4)}{\leq} \varepsilon^{2} n . \tag{3.6}
\end{equation*}
$$

Let $H_{1}:=\left\{e \in H^{*}: \exists T \in \mathcal{T}\right.$ such that $\left.T \subset e\right\}$ and let $H_{0}:=H^{*} \backslash H_{1}$.
We finish this subsection with an essential claim that bounds the degrees of vertex sets of size at most ℓ from above.

Claim 3.5. Any ℓ-set $L \subseteq V^{\prime}$ satisfies that $\left|N_{H^{*}}(L) \backslash \mathcal{T}\right| \leq 1$. Moreover, for any set $B \subseteq V^{\prime}$ with $|B|=b \leq \ell$, it satisfies

$$
d_{H_{0}}(B) \leq\binom{ n-1-b}{\ell-b} \text { and } d_{H^{*}}(B) \leq\binom{ n-1-b}{\ell-b}(1+|\mathcal{T}|) .
$$

Proof. Suppose that there exists an ℓ-set $L \subseteq V^{\prime}$ such that $\left|N_{H^{*}}(L) \backslash \mathcal{T}\right| \geq 2$. Then there are two distinct $(k-\ell)$-sets $E_{1}, E_{2} \in N_{H^{*}}(L) \backslash \mathcal{T}$. Since $2 \leq \ell \leq k-1$, there exists $i \in[2 k]$ such that S_{i} is disjoint from $E_{1} \cup E_{2} \cup L$. Also we choose a (possibly empty) set $A \subseteq V^{\prime} \backslash W$ such that $|A|=\left|E_{1} \cap E_{2}\right|$ and $A \cap\left(E_{1} \cup E_{2} \cup L \cup S_{i}\right)=\emptyset$. This choice is possible since

$$
\left|V^{\prime} \backslash\left(W \cup E_{1} \cup E_{2} \cup L \cup S_{i}\right)\right| \stackrel{(3.6 \mid}{\geq}(n-1)-\varepsilon^{2} n-2 k+\ell-(\ell-1) \geq k .
$$

We claim that both $S_{i} \cup A \cup\left(E_{1} \backslash E_{2}\right)$ and $S_{i} \cup A \cup\left(E_{2} \backslash E_{1}\right)$ are not in \tilde{H}. Indeed, if $A=\emptyset$, then $E_{j} \backslash E_{3-j}=E_{j}$ for $j \in[2]$. Since $E_{j} \notin \mathcal{T}=\bigcup_{i=1}^{2 k} N_{\tilde{H}}\left(S_{i}\right)$, we obtain $S_{i} \cup E_{j}=S_{i} \cup\left(E_{j} \backslash E_{3-j}\right) \notin \tilde{H}$ for $j \in[2]$. If $A \neq \emptyset$, then since $A \cap W=\emptyset$, we have for $j \in[2], A \cup\left(E_{j} \backslash E_{3-j}\right) \nsubseteq W$. So $A \cup\left(E_{j} \backslash E_{3-j}\right) \notin \mathcal{T}$ and thus $S_{i} \cup A \cup\left(E_{j} \backslash E_{3-j}\right) \notin \tilde{H}$ for $j \in[2]$. Thus

$$
L \cup E_{1}, L \cup E_{2},\{v\} \cup S_{i} \cup A \cup\left(E_{1} \backslash E_{2}\right) \text { and }\{v\} \cup S_{i} \cup A \cup\left(E_{2} \backslash E_{1}\right)
$$

form a 2-regular subgraph of H, a contradiction. Thus the first part of the claim holds.
For any $B \subseteq V^{\prime}$ with $|B|=b \leq \ell$,

$$
d_{H_{0}}(B) \leq \sum_{B \subseteq L,|L|=\ell} d_{H_{0}}(L) \leq \sum_{B \subseteq L,|L|=\ell}\left|N_{H^{*}}(L) \backslash \mathcal{T}\right| \leq \sum_{B \subseteq L,|L|=\ell} 1=\binom{n-1-b}{\ell-b} .
$$

Since $d_{H^{*}}(L) \leq\left|N_{H^{*}}(L) \backslash \mathcal{T}\right|+|\mathcal{T}| \leq 1+|\mathcal{T}|$ for any ℓ-set L, we also have

$$
d_{H^{*}}(B) \leq \sum_{B \subseteq L,|L|=\ell} d_{H^{*}}(L) \leq \sum_{B \subseteq L,|L|=\ell}(1+|\mathcal{T}|)=\binom{n-1-b}{\ell-b}(1+|\mathcal{T}|) .
$$

In the next two subsections, we show that $\left|H_{1}\right| \leq \varepsilon x$ (Subsection 3.2) and $\left|H_{0}\right|<(1-\varepsilon) x+\left\lfloor\frac{n-1}{k}\right\rfloor$ (Subsection 3.3), which together imply that $\left|H^{*}\right|=\left|H_{1}\right|+\left|H_{0}\right|<x+\left\lfloor\frac{n-1}{k}\right\rfloor$. This contradicts (3.3) and thus completes the proof of Theorem 1.3,
3.2. Size of H_{1}. In this subsection, we show that $\left|H_{1}\right| \leq \varepsilon x$. We first consider the case $\ell \leq k-2$.

Claim 3.6. If $\ell \leq k-2$, then $\left|H_{1}\right| \leq \varepsilon x$.
Proof. We first claim that we may assume that $|\mathcal{T}|>0,\left|H_{1}\right| \geq 3|\mathcal{T}|$ and $\ell \geq(k+1) / 2$. Indeed, since $|\mathcal{T}|=0$ implies $\left|H_{1}\right|=0 \leq \varepsilon x$, we may assume that $|\mathcal{T}|>0$. If $\left|H_{1}\right|<3|\mathcal{T}|$, then by (3.5), $\left|H_{1}\right| \leq 6 k^{k+1} n^{1-\ell} x \leq \varepsilon x$ because $\ell \geq 2$ and n is sufficiently large. Thus we may assume that $\left|H_{1}\right| \geq 3|\mathcal{T}|$. Finally, since $\left|H_{1}\right| \geq 3|\mathcal{T}|>|\mathcal{T}|$, there is a $(k-\ell)$-set $T \in \mathcal{T}$ which is a subset of two distinct edges e_{1}, e_{2} of H_{1}. Since $\left|e_{1} \cap e_{2}\right| \geq|T| \geq k-\ell$, Claim 3.2 and (3.4) implies that

$$
\frac{1}{2}\binom{2 \ell}{\ell}\binom{n-k-\ell-1}{k-\ell-1} \leq x \stackrel{(3.4)}{\leq} \varepsilon^{3} n^{\ell} .
$$

Since n is sufficiently large and ε is small, this implies that $\ell>k-\ell-1$. Thus we have $\ell \geq(k+1) / 2$ since k is odd.

Let p be the number of tuples $\left(T,\left\{e_{1}, e_{2}\right\}, f\right)$ with the following properties.
(P.1.1) $T \in \mathcal{T},\left\{e_{1}, e_{2}\right\} \in\binom{H_{1}}{2}$ and $f \in \tilde{H}$,
(P.1.2) $T \subseteq e_{1} \cap e_{2}$,
(P.1.3) $f \cap\left(e_{1} \cap e_{2}\right)=\emptyset$ and $\left\{\left|f \cap e_{1}\right|,\left|f \cap e_{2}\right|\right\}=\left\{1,\left|e_{2} \backslash e_{1}\right|-1\right\}$.

First we find a lower bound on p. Fix a $(k-\ell)$-set T in \mathcal{T} and a pair $\left\{e_{1}, e_{2}\right\} \in P(T)$, where $P(T):=\left\{\left\{e_{1}, e_{2}\right\} \in\binom{H_{1}}{2}: T \subseteq e_{1} \cap e_{2}\right\}$. Let A be an arbitrary set of size $\left|e_{1} \cap e_{2}\right|-1$ in $V^{\prime} \backslash\left(e_{1} \cup e_{2}\right)$ and let $\left\{S, S^{\prime}\right\}$ be an equipartition of $e_{1} \triangle e_{2}$ such that $\left|S \cap e_{1}\right|=1$. Then Claim 3.1implies that one of $A \cup S$ and $A \cup S^{\prime}$ belongs to $\tilde{\tilde{H}}$ and it satisfies (P.1.3). Note that distinct choices of ($A,\left\{S, S^{\prime}\right\}$) give us distinct $(k-1)$-sets in \tilde{H}.

Note that $\left|e_{1} \cap e_{2}\right| \geq|T|=k-\ell$. Since there are at least $\binom{n-2 k}{\left|e_{1} \cap e_{2}\right|-1} \geq\binom{ n-2 k}{k-\ell-1}$ distinct choices of A and at least one choice of equipartition $\left\{S, S^{\prime}\right\}$ with $\left|S \cap e_{1}\right|=1$, we obtain

$$
\left.\begin{array}{rl}
p & \geq \sum_{T \in \mathcal{T}} \sum_{\left\{e_{1}, e_{2}\right\} \in P(T)}\binom{n-2 k}{k-\ell-1}=\binom{n-2 k}{k-\ell-1} \sum_{T \in \mathcal{T}}\binom{d_{H_{1}}(T)}{2} \\
& \geq\binom{ n-2 k}{k-\ell-1}|\mathcal{T}|\left(\frac{1}{|\mathcal{T}|} \sum_{T \in \mathcal{T}} d_{H_{1}}(T)\right. \\
2
\end{array}\right) \geq\binom{ n-2 k}{k-\ell-1}|\mathcal{T}|\binom{\left|H_{1}\right| /|\mathcal{T}|}{2} . . ~ .
$$

Note that we get the penultimate inequality from the convexity of the real function $f(z)=\binom{z}{2}=$ $z(z-1) / 2$. Since $\left|H_{1}\right| \geq 3|\mathcal{T}|$, we have that $\left(\underset{2}{\left|H_{1}\right| /|\mathcal{T}|}\right) \geq\left|H_{1}\right|^{2} /\left(3|\mathcal{T}|^{2}\right)$ and thus

$$
\begin{equation*}
p \geq \frac{1}{3}\binom{n-2 k}{k-\ell-1} \frac{\left|H_{1}\right|^{2}}{|\mathcal{T}|} . \tag{3.7}
\end{equation*}
$$

Now we find an upper bound of p. Clearly there are at most $x=|\tilde{H}|$ choices for the $(k-1)$-set f and there are at most $|\mathcal{T}|$ choices for $T \in \mathcal{T}$. For given f, we choose two disjoint subsets $S_{1}, S_{2} \subseteq f$ with $\left|S_{1}\right|=1$. There are at most $(k-1) 2^{k-2}$ ways to choose S_{1} and S_{2}.

Assume that f, T, S_{1} and S_{2} are fixed, and we count the number of pairs of distinct edges $e_{1}, e_{2} \in H_{1}$ such that $T \subseteq e_{1} \cap e_{2}, e_{1} \cap f=S_{1}, e_{2} \cap f=S_{2}$, and $\left|e_{2} \backslash e_{1}\right|-1=\left|e_{2} \cap f\right|=\left|S_{2}\right|$. We choose $e_{1} \in H_{1}$ with $T \cup S_{1} \subseteq e_{1}$, and a set $B \subseteq e_{1} \backslash\left(T \cup S_{1}\right)$ with $|B|=k-|T|-\left|S_{2}\right|-1$. By

Claim 3.5, there are $d_{H_{1}}\left(T \cup S_{1}\right) \leq\binom{ n}{2 \ell-k-1}(|\mathcal{T}|+1)$ ways to choose such an edge e_{1} and there are at most 2^{k} ways to choose such a set B. Then we choose $e_{2} \in H_{1}$ such that $T \cup B \cup S_{2} \subseteq e_{2}$ and $e_{1} \cap e_{2}=T \cup B$. There are at most $d_{H_{1}}\left(T \cup B \cup S_{2}\right) \leq 1$ way to choose such a set e_{2} by Claim 3.5., Thus for fixed f, T, S_{1}, S_{2}, the number of choices of e_{1}, e_{2} is at most $2^{k}(\underset{2 \ell-k-1}{n})(|\mathcal{T}|+1)$. Thus we obtain

$$
\begin{align*}
p & \leq \sum_{f \in \tilde{H}} \sum_{T \in \mathcal{T}} \sum_{S_{1}, S_{2}} 2^{k}\binom{n}{2 \ell-k-1}(|\mathcal{T}|+1) \\
& \leq x|\mathcal{T}|(k-1) 2^{k-2} \cdot 2^{k}\binom{n}{2 \ell-k-1}(|\mathcal{T}|+1) \leq k 2^{2 k}\binom{n}{2 \ell-k-1}|\mathcal{T}|^{2} x . \tag{3.8}
\end{align*}
$$

Note that the third sum is over S_{1}, S_{2} satisfying $\left|S_{1}\right|=1, S_{1} \subseteq f, S_{2} \subseteq f \backslash S_{1}$. From (3.7) and (3.8), we get

$$
\left|H_{1}\right|^{2} \leq 3 k 2^{2 k}\binom{n}{2 \ell-k-1}\binom{n-2 k}{k-\ell-1}^{-1}|\mathcal{T}|^{3} x \leq k^{5 k} n^{3 \ell-2 k}|\mathcal{T}|^{3} x \stackrel{\text { (3.5) }}{\leq} k^{10 k} n^{3-2 k} x^{4}
$$

Thus, we get

$$
\left|H_{1}\right| \leq k^{5 k} n^{3 / 2-k} x^{2} \stackrel{(3.4)}{\leq} k^{5 k} \varepsilon^{3} n^{\ell+3 / 2-k} x \leq \varepsilon x,
$$

because $\ell \leq k-2$.
Now assume that $\ell=k-1$. In this case \mathcal{T} is a collection of singletons, any vertex in W belongs to \mathcal{T} and $|W|=|\mathcal{T}|$. We partition $H_{1}=G_{1} \cup G_{2} \cup \cdots \cup G_{k}$, where $G_{i}=\left\{e \in H_{1}| | e \cap W \mid=i\right\}$ for each $i \in[k]$. Since $\ell=k-1$, the fact that ε is small and (3.5) imply

$$
\begin{equation*}
3|W|^{k-1} \leq 3\left(2 k^{k+1} n^{2-k} x\right)^{k-1} \leq k^{2 k^{2}}\left(x n^{1-k}\right)^{k-2} x \stackrel{(3.44}{\leq} k^{2 k^{2}}\left(\varepsilon^{3}\right)^{k-2} x \leq \varepsilon x / k . \tag{3.9}
\end{equation*}
$$

Now we show that $\left|G_{i}\right| \leq \varepsilon x / k$ for all $i \in[k]$ which together imply that $\left|H_{1}\right| \leq \varepsilon x$.
Claim 3.7. $\left|G_{k}\right| \leq \varepsilon x / k$ and $\left|G_{k-1}\right| \leq \varepsilon x / k$.
Proof. First, since G_{k} does not contain any 2-regular subgraphs, by Theorem 2.1, there exists $n_{0}=n_{0}(k, 2)$ such that if $|W| \geq n_{0}$ then $\left|G_{k}\right| \leq 3\binom{|W|}{k-1}$. If $|W| \leq n_{0}$, then by (3.4) we have $\left|G_{k}\right| \leq n_{0}^{k}<\varepsilon x / k$ since n is large enough and $x \geq n-2 k+1$ by Claim 3.3. Otherwise $|W|>n_{0}$, then $\left|G_{k}\right| \leq 3\binom{|W|}{k-1} \leq \varepsilon x / k$ by (3.9). Second, since $\ell=k-1$ we have

Now we estimate $\left|G_{i}\right|$ for $1 \leq i \leq k-2$.
Claim 3.8. $\left|G_{i}\right| \leq \varepsilon x / k$ for $i \in[k-2]$.
Proof. Assume $\left|G_{i}\right|>\varepsilon x / k$ for some $i \in[k-2]$, then (3.9) implies that $\left|G_{i}\right| \geq 3|W|^{k-1}$. Let p_{i} be the number of the tuples $\left(S,\left\{e_{1}, e_{2}\right\}, f\right)$ with the following properties.
(P.2.1) $e_{1}, e_{2} \in G_{i}$ and $f \in \tilde{H}$,
(P.2.2) $S \in\binom{W}{i}$ and $S \subseteq e_{1} \cap e_{2}$,
(P.2.3) $f \cap\left(e_{1} \cap e_{2}\right)=\emptyset$, and $\left\{\left|f \cap e_{1}\right|,\left|f \cap e_{2}\right|\right\}=\left\{1,\left|e_{1} \backslash e_{2}\right|-1\right\}$.

Let $P_{i}(S):=\left\{\left\{e_{1}, e_{2}\right\} \in\binom{G_{i}}{2}: S \subseteq e_{1} \cap e_{2}\right\}$. By convexity, we have

$$
\begin{equation*}
\sum_{S \in\binom{W}{i}} \sum_{\left\{e_{1}, e_{2}\right\} \in P_{i}(S)} 1 \geq \sum_{S \in\binom{W}{i}}\binom{d_{G_{i}}(S)}{2} \geq\binom{|W|}{i}\binom{\left|G_{i}\right| /\binom{|W|}{i}}{2} \geq \frac{\left|G_{i}\right|^{2}}{3\binom{W \mid}{ i}}, \tag{3.10}
\end{equation*}
$$

where we used $\sum_{S \in\binom{W}{i}} d_{G_{i}}(S)=\left|G_{i}\right|$ and $\left|G_{i}\right| \geq 3|W|^{k-1} \geq 3\binom{W}{i}$.
Consider a set $S \subseteq W$ of size i, and a pair $\left\{e_{1}, e_{2}\right\} \in P_{i}(S)$. Let A be an arbitrary set of size $\left|e_{1} \cap e_{2}\right|-1$ in $V^{\prime} \backslash\left(e_{1} \cup e_{2}\right)$, and let A_{1}, A_{2} be a partition of $e_{1} \triangle e_{2}$ such that $\left|A_{1}\right|=1$. The number of ways to choose A is at least $\binom{n-2 k}{\left|e_{1} \cap e_{2}\right|-1} \geq\binom{ n-2 k}{i-1}$ and the number of ways to choose A_{1}, A_{2} is at least one. By Claim [3.1, at least one of $A \cup A_{1} \in \tilde{H}$ and $A \cup A_{2} \in \tilde{H}$ holds. Then either $\left(S,\left\{e_{1}, e_{2}\right\}, A \cup A_{1}\right.$) or ($S,\left\{e_{1}, e_{2}\right\}, A \cup A_{2}$) satisfies (P.2.1)-(P.2.3). Since distinct choices of $\left(S,\left\{e_{1}, e_{2}\right\}, A,\left\{A_{1}, A_{2}\right\}\right)$ give us distinct tuples, we have

$$
\begin{equation*}
p_{i} \geq \sum_{S \in\binom{W}{i}} \sum_{\left\{e_{1}, e_{2}\right\} \in P_{i}(S)} \sum_{A} \sum_{A_{1}, A_{2}} 1 \geq \sum_{S \in\binom{W}{i}} \sum_{\left\{e_{1}, e_{2}\right\} \in P_{i}(S)}\binom{n-2 k}{i-1} \stackrel{\sqrt{3.10]}}{\geq}\binom{n-2 k}{i-1} \frac{\left|G_{i}\right|^{2}}{3\binom{W \mid}{ i}} . \tag{3.11}
\end{equation*}
$$

Now we find an upper bound of p_{i}. Clearly there are at most $x=|\tilde{H}|$ choices of $f \in \tilde{H}$ and at most $\binom{|W|}{i}$ choices of $S \in\binom{W}{i}$ with $S \cap f=\emptyset$. For given f and S, we choose two disjoint sets $A_{1}, A_{2} \subseteq f$ with $\left|A_{1}\right|=1$. There are at most $(k-1) 2^{k-2}$ ways to choose such A_{1} and A_{2}.

Assume f, S, A_{1}, A_{2} are given, and we count the number of pairs $\left\{e_{1}, e_{2}\right\} \in P_{i}(S)$ such that $e_{1} \cap f=A_{1}, e_{2} \cap f=A_{2}$ and $\left|e_{2} \backslash e_{1}\right|-1=\left|e_{2} \cap f\right|=\left|A_{2}\right|$. We choose $e_{1} \in G_{i}$ such that $S \cup A_{1} \subseteq e_{1}$ and $e_{1} \backslash\left(S \cup A_{1}\right) \subseteq V^{\prime} \backslash W$, and the number of ways to choose such e_{1} is at most

$$
\sum_{S \cup A_{1} \subseteq L \in\binom{\left.V^{\prime}\right)}{k-1}}\left|N_{H^{*}}(L) \backslash W\right| \stackrel{\text { Claim }}{\leq} \sum_{S \cup A_{1} \subseteq L \in\binom{V^{\prime}}{k-1}} 1=\binom{n-i-2}{k-i-2} .
$$

We also choose a set $B \subseteq e_{1} \backslash\left(S \cup A_{1}\right)$ with $|B|=k-|S|-\left|A_{2}\right|-1$. There are at most 2^{k} ways to choose such a set B. Then we choose $e_{2} \in G_{i}$ such that $S \cup B \cup A_{2} \subseteq e_{2}, e_{1} \cap e_{2}=$ $S \cup B$ and $e_{2} \backslash\left(S \cup B \cup A_{2}\right) \subseteq V^{\prime} \backslash W$, and the number of ways to choose such e_{2} is at most $\left|N_{H^{*}}\left(S \cup B \cup A_{2}\right) \backslash W\right| \leq 1$ by Claim 3.5. Overall, for fixed f, S, A_{1}, A_{2}, the number of choices of e_{1}, e_{2} is at most $2^{k}\binom{n-i-2}{k-i-2}$. Thus we obtain

$$
\begin{align*}
p_{i} & \leq \sum_{f \in \tilde{H}} \sum_{S \in\binom{W}{i}} \sum_{A_{1}, A_{2}} 2^{k}\binom{n}{k-i-2} \\
& \leq x\binom{|W|}{i}(k-1) 2^{k-2} \cdot 2^{k}\binom{n}{k-i-2} \leq k 2^{2 k} x\binom{|W|}{i}\binom{n}{k-i-2} . \tag{3.12}
\end{align*}
$$

Note that the third sum is over A_{1}, A_{2} satisfying $\left|A_{1}\right|=1, A_{1} \subseteq f, A_{2} \subseteq f \backslash A_{1}$.
From (3.11) and (3.12) and the fact that $|W|=|\mathcal{T}|$, we obtain

$$
\begin{aligned}
\left|G_{i}\right|^{2} & \leq 3 k 2^{2 k}\binom{|W|}{i}^{2}\binom{n}{k-i-2}\binom{n-2 k}{i-1}^{-1} x \\
& \stackrel{\text { (3.5) }}{\leq} k^{3 k}\left(2 k^{k+1} n^{2-k} x\right)^{2 i} n^{k-2 i-1} x \\
& \leq k^{10 k^{2}} n^{-(2 i-1)(k-1)} x^{2 i+1} \\
& \stackrel{(3.4)}{\leq} k^{10 k^{2}} n^{-(2 i-1)(k-1)}\left(\varepsilon^{3} n^{k-1}\right)^{2 i-1} x^{2} \leq k^{10 k^{2}} \varepsilon^{3} x^{2}<\varepsilon^{2} x^{2} / k^{2} .
\end{aligned}
$$

This contradicts that $\left|G_{i}\right|>\varepsilon x / k$. Thus the claim holds.
3.3. Size of H_{0}. At last we show that $\left|H_{0}\right|<(1-\varepsilon) x+\left\lfloor\frac{n-1}{k}\right\rfloor$. Assume to the contrary, that

$$
\begin{equation*}
\left|H_{0}\right| \geq(1-\varepsilon) x+\left\lfloor\frac{n-1}{k}\right\rfloor \tag{3.13}
\end{equation*}
$$

For any $u \in V^{\prime}$, let $F_{u}:=N_{H_{0}}(u) \backslash \tilde{H}$. We first observe that F_{u} is an intersecting family.

Claim 3.9. For any $u \in V^{\prime}, F_{u}$ forms an intersecting family.
Proof. If not, then there are two disjoint $(k-1)$-sets $A, A^{\prime} \in F_{u}=N_{H_{0}}(u) \backslash \tilde{H}$. Since $A, A^{\prime} \notin \tilde{H}$,

$$
A \cup\{u\}, A^{\prime} \cup\{u\}, A \cup\{v\} \text { and } A^{\prime} \cup\{v\}
$$

form a 2-regular subgraph of H, a contradiction.
If $f \in \tilde{H}$ belongs to $N_{H_{0}}(u) \cap N_{H_{0}}\left(u^{\prime}\right)$ for distinct $u, u^{\prime} \in V^{\prime}$, then fix any $L \in\binom{f}{\ell}$, we have $d_{H_{0}}(L) \geq 2$, contradicting Claim 3.5. Thus $f \in \tilde{H}$ belongs to $N_{H_{0}}(u)$ for at most one $u \in V^{\prime}$, which implies that

$$
\begin{equation*}
x=|\tilde{H}| \geq \sum_{u \in V^{\prime}}\left|N_{H_{0}}(u) \cap \tilde{H}\right|=\sum_{u \in V^{\prime}}\left(d_{H_{0}}(u)-\left|F_{u}\right|\right) . \tag{3.14}
\end{equation*}
$$

Note that this implies that $\ell \geq 3$ and $k \geq 5$. In fact, if $\ell=2$, then Claim 3.5 implies that $d_{H_{0}}\left(\left\{u, u^{\prime}\right\}\right) \leq 1$ for any two distinct vertices $u, u^{\prime} \in V^{\prime}$, i.e., any two edges in H_{0} share at most one vertex. Thus $N_{H_{0}}(u)$ forms a matching. By Claim [3.9, $\left|F_{u}\right| \leq 1$ as F_{u} is an intersecting subfamily of a matching. By (3.14),

$$
x \geq \sum_{u \in V^{\prime}}\left(d_{H_{0}}(u)-1\right)=k\left|H_{0}\right|-(n-1) \stackrel{\left(\frac{(3.13)}{\geq}\right.}{\geq} k(1-\varepsilon) x-(k-1) .
$$

Thus $x \leq 1$, contradicting (3.4). Thus $\ell \geq 3$. Since $3 \leq \ell \leq k-1$ by (3.4) and k is odd, we have $k \geq 5$.

Let

$$
X:=\left\{u \in V^{\prime}: F_{u} \text { is a trivial intersecting family }\right\}
$$

and for $u \in X$, let $p(u)$ be a vertex in V^{\prime} such that every $(k-1)$-set in F_{u} contains $p(u)$. We claim that

$$
\begin{equation*}
\sum_{u \in X}\left|F_{u}\right| \geq(1-\varepsilon)(k-1)\left|H_{0}\right| . \tag{3.15}
\end{equation*}
$$

We first show that for $u \notin X,\left|F_{u}\right| \leq k^{2} n^{\ell-3}$. Indeed, since $u \notin X, F_{u}$ is a non-trivial intersecting ($k-1$)-uniform family. By Lemma [2.4, there are pairs of vertices $w_{1} w_{1}^{\prime}, \ldots, w_{t} w_{t}^{\prime}$ with $t \leq(k-$ $1)^{2}-(k-1)+1 \leq k^{2}$ which together cover all $(k-1)$-sets in F_{u}. Since $\ell \geq 3$, Claim 3.5 implies

$$
\left|F_{u}\right| \leq \sum_{i=1}^{t} d_{H_{0}}\left(\left\{u, w_{i}, w_{i}^{\prime}\right\}\right) \leq k^{2}\binom{n-4}{\ell-3} \leq k^{2} n^{\ell-3}
$$

Then note that $\sum_{u \in V^{\prime}} d_{H_{0}}(u)=k\left|H_{0}\right|$. From (3.14), we get

$$
\begin{aligned}
x & \geq \sum_{u \in V^{\prime}}\left(d_{H_{0}}(u)-\left|F_{u}\right|\right) \geq \sum_{u \in V^{\prime}} d_{H_{0}}(u)-\sum_{u \in X}\left|F_{u}\right|-\sum_{u \in V^{\prime} \backslash X}\left|F_{u}\right| \\
& \geq k\left|H_{0}\right|-\sum_{u \in X}\left|F_{u}\right|-\sum_{u \in V^{\prime} \backslash X} k^{2} n^{\ell-3} \geq k\left|H_{0}\right|-\sum_{u \in X}\left|F_{u}\right|-k^{2} n^{\ell-2} .
\end{aligned}
$$

Since n is sufficiently large, (3.4) implies that $k^{2} n^{\ell-2} \leq \varepsilon^{4} n^{\ell-1} \leq \varepsilon x$. Thus we get

$$
\sum_{u \in X}\left|F_{u}\right| \geq k\left|H_{0}\right|-x-\varepsilon x \stackrel{(3.13)}{\geq} k\left|H_{0}\right|-\frac{(1+\varepsilon)\left|H_{0}\right|}{1-\varepsilon} \geq(1-\varepsilon)(k-1)\left|H_{0}\right|
$$

as $k \geq 5$. So (3.15) is proved.
For $t \in[k-1]$, let q_{t} be the number of the tuples $\left(u,\left\{e_{1}, e_{2}\right\}, f\right)$ with the following properties. $(\mathrm{Q} 1)_{t} u \in X, e_{i} \backslash\{u\} \in F_{u}$ for $i \in[2]$ and $\left|e_{1} \cap e_{2}\right|=t$,
(Q2) $f \in \tilde{H}, f \cap\left(e_{1} \cap e_{2}\right)=\emptyset$,
(Q3) $\left\{\left|f \cap e_{1}\right|,\left|f \cap e_{2}\right|\right\}=\left\{1,\left|e_{1} \backslash e_{2}\right|-1\right\}$.

For $u \in X$ and $t \in[k-1]$, we let

$$
F_{u}^{t}:=\left\{\left\{e_{1}, e_{2}\right\}: e_{i} \backslash\{u\} \in F_{u} \text { for } i \in[2],\left|e_{1} \cap e_{2}\right|=t\right\},
$$

and

$$
P^{t}:=\left\{\left(u,\left\{e_{1}, e_{2}\right\}\right): u \in X,\left\{e_{1}, e_{2}\right\} \in F_{u}^{t}\right\} .
$$

Note that $F_{u}^{1}=\emptyset$ for any $u \in X$ since F_{u} is an intersecting family. Since $u \in X$, we have $\{u, p(u)\} \subseteq e_{1} \cap e_{2}$ for $\left(u,\left\{e_{1}, e_{2}\right\}\right) \in P^{t}$. By convexity of function $f(z)=\binom{z}{2}=\frac{z(z-1)}{2}$, we have

$$
\begin{align*}
\sum_{t=2}^{k-1}\left|P^{t}\right| & =\sum_{u \in X}\binom{\left|F_{u}\right|}{2} \geq|X|\binom{\frac{1}{|X|} \sum_{u \in X}\left|F_{u}\right|}{2} \\
& \stackrel{\text { (3.15) }}{\geq} \quad \frac{(1-\varepsilon)^{2}(k-1)^{2}\left|H_{0}\right|^{2}}{2 n}-\frac{1}{2}(1-\varepsilon)(k-1)\left|H_{0}\right| \geq \frac{(1-2 \varepsilon)(k-1)^{2}\left|H_{0}\right|^{2}}{2 n} . \tag{3.16}
\end{align*}
$$

Here, we get the last inequality since we have $\varepsilon^{2}\left|H_{0}\right| \geq \varepsilon^{2} x \geq \varepsilon^{5} n^{2}>2 n$ from (3.4), the fact that $\ell \geq 3$ and n is large.

Now we find a lower bound of q_{t}. Note that $q_{1}=0$ since F_{u} is an intersecting family for any $u \in X$. For $2 \leq t \leq k-1$, first fix a vertex $u \in X$ and let $\left\{e_{1}, e_{2}\right\} \in F_{u}^{t}$. We choose a set $A \subseteq V^{\prime} \backslash\left(e_{1} \cup e_{2}\right)$ of size $t-1$. We also choose an equipartition $\left\{S, S^{\prime}\right\}$ of $e_{1} \triangle e_{2}$ such that $\left|S \cap e_{1}\right|=1$. The number of choices of such $\left\{S, S^{\prime}\right\}$ is $(k-t)^{2}$. Then Claim 3.1 implies that either $A \cup S$ or $A \cup S^{\prime}$ belongs to \tilde{H} and it satisfies (Q3) as it plays the role of f. Note that for distinct choices of $\left(A,\left\{S, S^{\prime}\right\}\right)$, we get distinct $(k-1)$-sets f in \tilde{H}.

So for $2 \leq t \leq k-1$,

$$
q_{t} \geq \sum_{u \in X} \sum_{\left\{e_{1}, e_{2}\right\} \in F_{u}^{t}}(k-t)^{2}\binom{n-2 k}{t-1}=(k-t)^{2}\binom{n-2 k}{t-1}\left|P^{t}\right| .
$$

Since $k \geq 5$ and n is large, $(k-t)^{2}\binom{n-2 k}{t-1} \geq n(n-2 k)$ for $t \geq 3$. Thus we obtain

$$
\begin{equation*}
q_{2} \geq(k-2)^{2}(n-2 k)\left|P^{2}\right| \quad \text { and } \quad q_{t} \geq n(n-2 k)\left|P^{t}\right| \text { for } 3 \leq t \leq k-1 . \tag{3.17}
\end{equation*}
$$

Next we find an upper bound of q_{t}. Clearly there are at most $x=|\tilde{H}|$ choices for $f \in \tilde{H}$. We choose two disjoint sets $A_{1}, A_{2} \subseteq f$ such that $\left|A_{1}\right|=1,\left|A_{2}\right|=k-t-1$. The number of such choices is at most $(k-1)\binom{k-2}{k-t-1}$. Now we choose e_{1} in H_{0} containing A_{1}. The number of choices for e_{1} is at most $\left|H_{0}\right|$. Once e_{1} is chosen, we choose $u \in X \cap\left(e_{1} \backslash A_{1}\right)$ such that $\{u, p(u)\} \subseteq e_{1}$. There are at most $k-1$ such choices for u. Now we choose a $(t-2)$-subset $B \subseteq e_{1} \backslash\left(A_{1} \cup\{u, p(u)\}\right)$, and there are $\binom{k-3}{t-2}$ ways to choose such B. For given A_{2}, B, u, we choose e_{2} such that $A_{2} \cup B \cup\{u, p(u)\} \subseteq e_{2}$. Since $\left|A_{2} \cup B \cup\{u, p(u)\}\right|=k-1$, it contains a subset L of size ℓ, thus Claim [3.5 implies that $d_{H_{0}}\left(A_{2} \cup B \cup\{u, p(u)\}\right) \leq d_{H_{0}}(L) \leq 1$. Thus the number of choices of e_{2} is at most 1 . Thus we get

$$
\begin{equation*}
q_{t} \leq x(k-1)\binom{k-2}{k-t-1}\left|H_{0}\right|(k-1)\binom{k-3}{t-2} . \tag{3.18}
\end{equation*}
$$

Thus we obtain

$$
\begin{aligned}
(k-2)^{2} n(n-2 k) \sum_{t=2}^{k-1}\left|P^{t}\right| & \stackrel{(3.17)}{\leq} n q_{2}+(k-2)^{2} \sum_{t=3}^{k-1} q_{t} \\
& \stackrel{(3.18)}{\leq}(k-1)^{2}(k-2) x n\left|H_{0}\right|+\sum_{t=3}^{k-1}(k-1)^{4}\binom{k-2}{k-t-1}\binom{k-3}{t-2} x\left|H_{0}\right| \\
& \leq(1+\varepsilon)(k-1)^{2}(k-2) x n\left|H_{0}\right| .
\end{aligned}
$$

Note that we get the last inequality since n is sufficiently lage. By (3.16), we get
$\frac{1}{2}(1-2 \varepsilon)(k-2)^{2}(k-1)^{2}\left|H_{0}\right|^{2}(n-2 k) \leq(k-2)^{2} n(n-2 k) \sum_{t=2}^{k-1}\left|P^{t}\right| \leq(1+\varepsilon)(k-1)^{2}(k-2) x n\left|H_{0}\right|$.
Since $\left|H_{0}\right|>0$, dividing both sides by $(k-2)(k-1)^{2}\left|H_{0}\right| / 2$ gives

$$
(1-2 \varepsilon)(k-2)\left|H_{0}\right|(n-2 k) \leq 2(1+\varepsilon) x n .
$$

Since we have $(1-\varepsilon) x \leq\left|H_{0}\right|$ from (3.13),

$$
(1-2 \varepsilon)(k-2)(1-\varepsilon) x(n-2 k) \leq 2(1+\varepsilon) x n .
$$

Since $x \geq 1$, we get $(1-3 \varepsilon)(k-2)(n-2 k) \leq 2(1+\varepsilon) n$, which is a contradiction since $k \geq 5, \varepsilon$ is small and n is large enough. So (3.13) does not hold and we are done.

4. Concluding Remarks

In our proof of Theorem 1.3, except the use of Theorems 2.1] and 2.2, we only use the assumption that H does not contain any 2 -regular subgraphs on $2 k$ vertices. This motivates the following conjecture.

Conjecture 4.1. For every integer $k \geq 3$, there exists n_{k} such that the following holds for all $n \geq n_{k}$. If H is an n-vertex k-uniform hypergraph with no 2-regular subgraphs on $2 k$ vertices, then

$$
|H| \leq\binom{ n-1}{k-1}+\left\lfloor\frac{n-1}{k}\right\rfloor .
$$

Moreover, equality holds if and only if H is a full k-star with center v together with a maximal matching omitting v.

For $k \geq 4$, Conjecture 1.1 implies Conjecture 4.1. Note that Conjecture 4.1 stands betweenConjecture 1.1 and the result on forbidding 2 -regular subgraphs. In some sense it is more close to Conjecture 1.1- because only finitely many (independent of n) configurations are forbidden (in contrast, by forbidding all 2-regular subgraphs, the number of instances forbidden is related to n). By our proof, to show Conjecture 4.1 for odd integers k, it suffices to prove an asymptotical result and a stability result.

In this paper we focused on forbidding 2-regular subgraphs. It is natural to consider hypergraphs without r-regular subgraphs for $r \geq 3$ (see Question 6.9 in 9). We remark that Construction 6.8 in [9] gives a lower bound on the maximum number of edges in such a hypergraph.

References

[1] J. Balogh, T. Bohman and D. Mubayi, Erdős-Ko-Rado in random hypergraphs, Combin. Probab. Comput. 18 (2009), 629-646.
[2] W. G. Brown, On graphs that do not contain a Thomsen graph, Canad. Math. Bull. 9 (1966), 281-285.
[3] P. Erdős, Problems and results in combinatorial analysis, In Proceedings of the Eighth Southeastern Conference on Combinatorics, Graph Theory and Computing (Louisiana State Univ., Baton Rouge, La., 1977), pages 3-12. Congressus Numerantium, No. XIX. Utilitas Math., Winnipeg, Man., 1977.
[4] P. Erdős, A. Rényi and V. T. Sós, On a problem of graph theory, Studia Sci. Math. Hungar. 1 (1966), 215-235.
[5] P. Frankl, The shifting techniques in extremal set theory, in: Surveys in Combinatorics, Lond. Math. Soc. Lect. Note Ser. 123 (1987), 81-110.
[6] Z. Füredi, Graphs without quadrilaterals, J. Combin. Theory Ser. B 34 (1983), 187-190.
[7] Z. Füredi, Hypergraphs in which all disjoint pairs have distinct unions, Combinatorica 4 (1984), 161-168.
[8] P. Keevash, Hypergraph Turán problems, In Surveys in combinatorics 2011, volume 392 of London Math. Soc. Lecture Note Ser., pages 83-139. Cambridge Univ. Press, Cambridge, 2011.
[9] J. Kim, Regular subgraphs of uniform hypergraphs, J. Combin. Theory. Ser. B 119 (2016), 214-236.
[10] J. Kim and A.V. Kostochka, Maximum hypergraphs without regular subgraphs, Discuss. Math. Graph Theory 34 (2014), 151-166.
[11] D. Mubayi and J. Verstraëte, A hypergraph extension of the bipartite Turán problem, J. Combin. Theory Ser. A 106 (2004), 237-253.
[12] D. Mubayi and J. Verstraëte, Two-regular subgraphs of hypergraphs, J. Combin. Theory. Ser. B 99 (2009), 643-655.
[13] O. Pikhurko and J. Verstraëte, The maximum size of hypergraphs without generalized 4-cycles, J. Combin. Theory. Ser. A 116 (2009), 637-649.
[14] L. Pyber, Regular subgraphs of dense graphs, Combinatorica 5 (1985), 347-349.
[15] L. Pyber, V. Rödl and E. Szemerédi, Dense graphs without 3-regular subgraphs, J. Combin. Theory. Ser. B 63 (1995), 41-54.
[16] M. Simonovits, A method for solving extremal problems in graph theory, stability problems, In Theory of Graphs (Proc. Colloq., Tihany, 1966), pages 279-319. Academic Press, New York, 1968.

School of Mathematics, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United KingDOM

E-mail address: J.Han@bham.ac.uk, j.kim.3@bham.ac.uk

[^0]: The first author is supported by FAPESP (2013/03447-6, 2014/18641-5, 2015/07869-8). The second author is supported by the European Research Council under the European Union's Seventh Framework Programme (FP/20072013) / ERC Grant Agreements no. 306349 (J. Kim).
 ${ }^{1}$ In fact, Füredi 7 found a slightly better lower bound for $k=3$, namely, $f_{3}(n) \geq\binom{ n}{2}$ for $n \equiv 1$ or $5 \bmod 20$.

