Chromatic index determined by fractional chromatic index

Guantao Chen ${ }^{a}$, Yuping $\mathrm{Gao}^{b, a}$, Ringi Kim^{c}, Luke Postle ${ }^{c}$, Songling Shan ${ }^{d}$
${ }^{a}$ Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303, USA
${ }^{b}$ School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, China
${ }^{c}$ University of Waterloo, Waterloo, ON, N2L 3G1, Canada
${ }^{d}$ Department of Mathematics, Vanderbilt University, Nashville, TN 37240, USA

Abstract

Given a graph G possibly with multiple edges but no loops, denote by Δ the maximum degree, μ the multiplicity, χ^{\prime} the chromatic index and χ_{f}^{\prime} the fractional chromatic index of G, respectively. It is known that $\Delta \leq \chi_{f}^{\prime} \leq \chi^{\prime} \leq \Delta+\mu$, where the upper bound is a classic result of Vizing. While deciding the exact value of χ^{\prime} is a classic NP-complete problem, the computing of χ_{f}^{\prime} is in polynomial time. In fact, it is shown that if $\chi_{f}^{\prime}>\Delta$ then $\chi_{f}^{\prime}=\max \frac{|E(H)|}{|V(H)| / 2 \mid}$, where the maximality is taken over all induced subgraphs H of G. Gupta (1967), Goldberg (1973), Andersen (1977), and Seymour (1979) conjectured that $\chi^{\prime}=\left\lceil\chi_{f}^{\prime}\right\rceil$ if $\chi^{\prime} \geq \Delta+2$, which is commonly referred as Goldberg's conjecture. It has been shown that Goldberg's conjecture is equivalent to the following conjecture of Jakobsen: For any positive integer m with $m \geq 3$, every graph G with $\chi^{\prime}>\frac{m}{m-1} \Delta+\frac{m-3}{m-1}$ satisfies $\chi^{\prime}=\left\lceil\chi_{f}^{\prime}\right\rceil$. Jakobsen's conjecture has been verified for m up to 15 by various researchers in the last four decades. We use an extended form of a Tashkinov tree to show that it is true for $m \leq 23$. With the same technique, we show that if $\chi^{\prime} \geq \Delta+\sqrt[3]{\Delta / 2}$ then $\chi^{\prime}=\left\lceil\chi_{f}^{\prime}\right\rceil$. The previous best known result is for graphs with $\chi^{\prime}>\Delta+\sqrt{\Delta / 2}$ obtained by Scheide, and by Chen, Yu and Zang, independently. Moreover, we show that Goldberg's conjecture holds for graphs G with $\Delta \leq 23$ or $|V(G)| \leq 23$.

Keywords. Edge chromatic index; Fractional chromatic index; Critical graph; Tashkinov tree; Extended Tashkinov tree

1 Introduction

Graphs considered in this paper may contain multiple edges but no loops. Let G be a graph and $\Delta:=\Delta(G)$ be the maximum degree of G. A (proper) k-edge-coloring φ of G is a mapping φ from $E(G)$ to $\{1,2, \cdots, k\}$ (whose elements are called colors) such that no two adjacent edges receive the
same color. The chromatic index $\chi^{\prime}:=\chi^{\prime}(G)$ is the least integer k such that G has a k-edge-coloring. In graph edge-coloring, the central question is to determine the chromatic index χ^{\prime} for graphs. We refer the book [17] of Stiebitz, Scheide, Toft and Favrholdt and the elegant survey [12] of McDonald for literature on the recent progress of graph edge-colorings. Clearly, $\chi^{\prime} \geq \Delta$. Conversely, Vizing showed that $\chi^{\prime} \leq \Delta+\mu$, where $\mu:=\mu(G)$ is the multiplicity of G. However, determining the exact value of χ^{\prime} is a very difficult problem. Holyer [8] showed that the problem is NP-hard even restricted to simple cubic graphs. To estimate χ^{\prime}, the notion of fractional chromatic index is introduced.

A fractional edge coloring of G is a non-negative weighting $w($.$) of the set \mathcal{M}(G)$ of matchings in G such that, for every edge $e \in E(G), \sum_{M \in \mathcal{M}: e \in M} w(M)=1$. Clearly, such a weighting $w($. exists. The fractional chromatic index $\chi_{f}^{\prime}:=\chi_{f}^{\prime}(G)$ is the minimum total weight $\sum_{M \in \mathcal{M}} w(M)$ over all fractional edge colorings of G. By definitions, we have $\chi^{\prime} \geq \chi_{f}^{\prime} \geq \Delta$. It follows from Edmonds' characterization of the matching polytope [3] that χ_{f}^{\prime} can be computed in polynomial time and

$$
\chi_{f}^{\prime}=\max \left\{\frac{|E(H)|}{\lfloor|V(H)| / 2\rfloor}: H \subseteq G \text { with }|V(H)| \geq 3\right\} \text { if } \chi_{f}^{\prime}>\Delta
$$

It is not difficult to show that the above maximality can be restricted to induced subgraphs H with odd number of vertices. So, in the case of $\chi_{f}^{\prime}>\Delta$, we have

$$
\left\lceil\chi_{f}^{\prime}\right\rceil=\max \left\{\left\lceil\frac{2|E(H)|}{|V(H)|-1}\right\rceil: \text { induced subgraphs } H \subseteq G \text { with }|V(H)| \geq 3 \text { and odd }\right\}
$$

A graph G is called elementary if $\chi^{\prime}=\left\lceil\chi_{f}^{\prime}\right\rceil$. Gupta (1967) [7], Goldberg (1973) [5], Ander$\operatorname{sen}(1977)$ [1], and Seymour (1979) [15] independently made the following conjecture, which is commonly referred as Goldberg's conjecture.
Conjecture 1. For any graph G, if $\chi^{\prime} \geq \Delta+2$ then G is elementary.

An immediate consequence of Conjecture 1 is that χ^{\prime} can be computed in polynomial time for graphs with $\chi^{\prime} \geq \Delta+2$. So the NP-complete problem of computing the chromatic indices lies in determining whether $\chi^{\prime}=\Delta, \Delta+1$, or $\geq \Delta+2$, which strengthens Vizing's classic result $\chi^{\prime} \leq \Delta+\mu$ tremendously when μ is big.

Following $\chi^{\prime} \leq \frac{3 \Delta}{2}$ of the classic result of Shannon [16], we can assume that, for every Δ, there exists the least positive number ζ such that if $\chi^{\prime}>\Delta+\zeta$ then G is elementary. Conjecture 1 indicates that $\zeta \leq 1$. Asymptotically, Kahn [10] showed $\zeta=o(\Delta)$. Scheide [14], and Chen, Yu, and Zang [2] independently proved that $\zeta \leq \sqrt{\Delta / 2}$. In this paper, we show that $\zeta \leq \sqrt[3]{\Delta / 2}-1$ as stated below.
Theorem 1.1. For any graph G, if $\chi^{\prime} \geq \Delta+\sqrt[3]{\Delta / 2}$, then G is elementary.

Jakobsen [9] conjectured that $\zeta \leq 1+\frac{\Delta-2}{m-1}$ for every positive integer $m(\geq 3)$, which gives a reformulation of Conjecture 1 as stated below.

Conjecture 2. Let m be an integer with $m \geq 3$ and G be a graph. If $\chi^{\prime}>\frac{m}{m-1} \Delta+\frac{m-3}{m-1}$, then G is elementary.

Since $\frac{m}{m-1} \Delta+\frac{m-3}{m-1}$ decreases as m increases, it is sufficient to prove Jakobsen's conjecture for all odd integers m (in fact, for any infinite sequence of positive integers), which has been confirmed slowly for $m \leq 15$ by a series of papers over the last 40 years:

- $m=5$: Three independent proofs given by Andersen [1] (1977), Goldberg [5] (1973), and Sørensen (unpublished, page 158 in [17]), respectively.
- $m=7$: Two independent proofs given by Andersen [1] (1977) and Sørensen (unpublished, page 158 in [17]), respectively.
- $m=9$: By Goldberg [6] (1984).
- $m=11$: Two independent proofs given by Nishizeki and Kashiwagi [13] (1990) and by Tashkinov [18] (2000), respectively.
- $m=13:$ By Favrholdt, Stiebitz and Toft [4] (2006).
- $m=15:$ By Scheide [14] (2010).

In this paper, we show that Jakobsen's conjecture is true up to $m=23$.
Theorem 1.2. If G is a graph with $\chi^{\prime}>\frac{23}{22} \Delta+\frac{20}{22}$, then G is elementary.
Corollary 1.1. If G is a graph with $\Delta \leq 23$ or $|V(G)| \leq 23$, then $\chi^{\prime} \leq \max \left\{\Delta+1,\left\lceil\chi_{f}^{\prime}\right\rceil\right\}$.

Note that in Corollary 1.1, $|V(G)| \leq 23$ does not imply $\Delta \leq 23$, as G may have multiple edges. The remainder of this paper is organized as follows. In Section 2, we introduce some definitions and notation for edge-colorings, Tashkinov trees, and several known results which are useful for the proofs of Theorems 1.1 and 1.2; in Section 3, we give an extension of Tashkinov trees and prove several properties of the extended Tashkinov trees; and in Section 4, we prove Theorem 1.1, Theorem 1.2 and Corollary 1.1 based on the results in Section 3.

2 Preliminaries

2.1 Basic definitions and notation

Let G be a graph with vertex set V and edge set E. Denote by $|G|$ and $\|G\|$ the number of vertices and the number of edges of G, respectively. For any two sets $X, Y \subseteq V$, denote by $E(X, Y)$ the set of
edges with one end in X and the other one in Y and denote by $\partial(X):=E(X, V-X)$ the boundary edge set of X, that is, the set of edges with exactly one end in X. Moreover, let $E(x, y):=E(\{x\},\{y\})$ and $E(x):=\partial(\{x\})$. Denote by $G[X]$ the subgraph induced by X and $G-X$ the subgraph induced by $V(G)-X$. Moreover, let $G-x=G-\{x\}$. For any subgraph H of G, we let $G[H]=G[V(H)]$ and $\partial(H)=\partial(V(H))$. Let $V(e)$ be the set of the two ends of an edge e.

A path P is usually denoted by an alternating sequence $P=\left(v_{0}, e_{1}, v_{1}, \cdots, e_{p}, v_{p}\right)$ with $V(P)=$ $\left\{v_{0}, \cdots, v_{p}\right\}$ and $E(P)=\left\{e_{1}, \cdots, e_{p}\right\}$ such that $e_{i} \in E_{G}\left(v_{i-1}, v_{i}\right)$ for $1 \leq i \leq p$. The path P defined above is called a $\left(v_{0}, v_{p}\right)$-path. For any two vertices $u, v \in V(P)$, denote by $u P v$ or $v P u$ the unique subpath connecting u and v. If u is an end of P, then we obtain a linear order $\preceq_{(u, P)}$ of the vertices of P in a natural way such that $x \preceq_{(u, P)} y$ if $x \in V(u P y)$.

The set of all k-edge-colorings of a graph G is denoted by $\mathcal{C}^{k}(G)$. Let $\varphi \in \mathcal{C}^{k}(G)$. For any color α, let $E_{\alpha}=\{e \in E: \varphi(e)=\alpha\}$. More generally, for each subgraph $H \subseteq G$, let

$$
E_{\alpha}(H)=\{e \in E(H): \varphi(e)=\alpha\}
$$

For any two distinct colors α and β, denote by $G_{\varphi}(\alpha, \beta)$ the subgraph of G induced by $E_{\alpha} \cup E_{\beta}$. The components of $G_{\varphi}(\alpha, \beta)$ are called (α, β)-chains. Clearly, each (α, β)-chain is either a path or a cycle of edges alternately colored with α and β. For each (α, β)-chain P, let φ / P denote the k-edge-coloring obtained from φ by exchanging colors α and β on P, that is, for each $e \in E$,

$$
\varphi / P(e)= \begin{cases}\varphi(e), & e \notin E(P) \\ \beta, & e \in E(P) \text { and } \varphi(e)=\alpha \\ \alpha, & e \in E(P) \text { and } \varphi(e)=\beta\end{cases}
$$

For any $v \in V$, let $P_{v}(\alpha, \beta, \varphi)$ denote the unique (α, β)-chain containing v. Notice that, for any two vertices $u, v \in V$, either $P_{u}(\alpha, \beta, \varphi)=P_{v}(\alpha, \beta, \varphi)$ or $P_{u}(\alpha, \beta, \varphi) \cap P_{v}(\alpha, \beta, \varphi)=\emptyset$. For any $v \in V$, let $\varphi(v):=\{\varphi(e): e \in E(v)\}$ denote the set of colors presented at v and $\bar{\varphi}(v)$ the set of colors not assigned to any edge incident to v, which are called missing colors at v. For any vertex set $X \subseteq V$, let $\varphi(X)=\cup_{x \in X} \varphi(x)$ and $\bar{\varphi}(X)=\cup_{x \in X} \bar{\varphi}(x)$ be the set of colors presenting and missing at some vertices of X, respectively. For any edge set $F \subseteq E$, let $\varphi(F)=\cup_{e \in F} \varphi(e)$.

2.2 Elementary sets and closed sets

Let G be a graph. An edge $e \in E(G)$ is called critical if $\chi^{\prime}(G-e)<\chi^{\prime}(G)$, and the graph G is called critical if $\chi^{\prime}(H)<\chi^{\prime}(G)$ for any proper subgraph $H \subseteq G$. A graph G is called k-critical if it is critical and $\chi^{\prime}(G)=k+1$. In the proofs, we will consider a graph G with $\chi^{\prime}(G)=k+1 \geq \Delta+2$, a critical edge $e \in E(G)$, and a coloring $\varphi \in \mathcal{C}^{k}(G-e)$. We call them together a k-triple (G, e, φ).

Definition 1. Let G be a graph and $e \in E(G)$ such that $\mathcal{C}^{k}(G-e) \neq \emptyset$ and let $\varphi \in \mathcal{C}^{k}(G-e)$. Let $X \subseteq V(G)$ contain two ends of e.

- We call X elementary (with respect to φ) if all missing color sets $\bar{\varphi}(x)(x \in X)$ are mutually disjoint.
- We call X closed (with respect to φ) if $\varphi(\partial(X)) \cap \bar{\varphi}(X)=\emptyset$, i.e., no missing color of X appears on the edges in $\partial(X)$. If additionally, each color in $\varphi(X)$ appears at most once in $\partial(X)$, we call X strongly closed (with respect to φ).

Moreover, we call a subgraph $H \subseteq G$ elementary, closed, and strongly closed if $V(H)$ is elementary, closed, and strongly closed, respectively. If a vertex set $X \subseteq V(G)$ containing two ends of e is both elementary and strongly closed, then $|X|$ is odd and $k=\frac{2(|E(G[X])|-1)}{|X|-1}$, so $k+1=\left\lceil\frac{2|E(G[X])|}{|X|-1}\right\rceil=\left\lceil\chi_{f}^{\prime}\right\rceil$. Therefore, if $V(G)$ is elementary then G is elementary, i.e., $\chi^{\prime}(G)=k+1=\left\lceil\chi_{f}^{\prime}\right\rceil$.

2.3 Tashkinov trees

Definition 2. A Tashkinov tree of a k-triple (G, e, φ) is a tree T, denoted by $T=\left(e_{1}, e_{2}, \cdots, e_{p}\right)$, induced by a sequence of edges $e_{1}=e, e_{2}, \ldots, e_{p}$ such that for each $i \geq 2, e_{i}$ is a boundary edge of the tree induced by $\left\{e_{1}, e_{2}, \cdots, e_{i-1}\right\}$ and $\varphi\left(e_{i}\right) \in \bar{\varphi}\left(V\left(\bigcup_{j=1}^{i-1} e_{j}\right)\right)$.

For each $e_{j} \in\left\{e_{1}, \cdots, e_{p}\right\}$, we denote by $T e_{j}$ the subtree $T\left[\left\{e_{1}, \cdots, e_{j}\right\}\right]$ and denote by $e_{j} T$ the subgraph induced by $\left\{e_{j}, \cdots, e_{p}\right\}$. For each edge e_{i} with $i \geq 2$, the end of e_{i} in $T e_{i-1}$ is called the in-end of e_{i} and the other one is called the out-end of e_{i}.

Algorithmically, a Tashkinov tree is obtained incrementally from e by adding a boundary edge whose color is missing in the previous tree. Vizing-fans (stars) (used in the proof of Vizing's classic theorem [19]) and Kierstead-paths (used in [11]) are special Tashkinov trees.

Theorem 2.1. [Tashkinov [18]] For any given k-triple (G, e, φ) with $k \geq \Delta+1$, all Tashkinov trees are elementary.

For a graph G, a Tashkinov tree is associated with an edge $e \in E(G)$ and a k-edge-coloring of $G-e$ with $k \geq \Delta+1$. We distinguish the following three different types of maximality.

Definition 3. Let (G, e, φ) be a k-triple with $k \geq \Delta+1$, and T be a Tashkinov tree of (G, e, φ).

- We call $T(e, \varphi)$-maximal if there is no Tashkinov tree T^{*} of (G, e, φ) containing T as a proper subtree, and denote by $\mathcal{T}_{e, \varphi}$ the set of all (e, φ)-maximal Tashkinov trees.
- We call T e-maximal if there is no Tashkinov tree T^{*} of a k-triple $\left(G, e, \varphi^{*}\right)$ containing T as a proper subtree, and denote by \mathcal{T}_{e} the set of all e-maximal Tashkinov trees.
- We call T maximum if $|T|$ is maximum over all Tashkinov trees of G, and denote by \mathcal{T} the set of all maximum Tashkinov trees.

Let T be a Tashkinov tree of a k-triple (G, e, φ). Then, T is (e, φ)-maximal if and only if $V(T)$ is closed. Moreover, the vertex sets are the same for all $T \in \mathcal{T}_{e, \varphi}$. We call colors in $\varphi(E(T))$ used and colors not in $\varphi(E(T))$ unused on T, call an unused missing color in $\bar{\varphi}(V(T))$ a free color of T and denote the set of all free colors of T by $\Gamma^{f}(T)$. For each color α, let $E_{\alpha}(\partial(T))$ denote the set of edges with color α in boundary $\partial(T)$. A color α is called a defective color of T if $\left|E_{\alpha}(\partial(T))\right| \geq 2$. The set of all defective colors of T is denoted by $\Gamma^{d}(T)$. Note that if $T \in \mathcal{T}_{e, \varphi}$, then $V(T)$ is strongly closed if and only if T does not have any defective colors.

The following corollary follows immediately from the fact that a maximal Tashkinov tree is elementary and closed.

Corollary 2.1. For each $T \in \mathcal{T}_{e, \varphi}$, the following properties hold.
(1) $|T| \geq 3$ is odd.
(2) For any two missing colors $\alpha, \beta \in \bar{\varphi}(V(T))$, we have $P_{u}(\alpha, \beta, \varphi)=P_{v}(\alpha, \beta, \varphi)$, where u and v are the two unique vertices in $V(T)$ such that $\alpha \in \bar{\varphi}(u)$ and $\beta \in \bar{\varphi}(v)$, respectively. Furthermore, $V\left(P_{u}(\alpha, \beta, \varphi)\right) \subseteq V(T)$.
(3) For every defective color $\delta \in \Gamma^{d}(T),\left|E_{\delta}(\partial(T))\right| \geq 3$ and is odd.
(4) There are at least four free colors. More specifically,

$$
\left|\Gamma^{f}(T)\right| \geq|T|(k-\Delta)+2-|\varphi(E(T))| \geq|T|+2-(|T|-2) \geq 4
$$

The following lemma was given in [17].
Lemma 2.1. Let $T \in \mathcal{T}_{e}$ be a Tashkinov tree of a k-triple (G, e, φ) with $k \geq \Delta+1$. For any free color $\gamma \in \Gamma^{f}(T)$ and any $\delta \notin \bar{\varphi}(V(T))$, the (γ, δ)-chain $P_{u}(\gamma, \delta, \varphi)$ contains all edges in $E_{\delta}(\partial(T))$, where u is the unique vertex of T missing color γ.

Proof. Otherwise, consider the coloring $\varphi_{1}=\varphi / P_{u}(\gamma, \delta, \varphi)$. Since δ and γ are both unused on T with respect to φ, T is still a Tashkinov tree and δ is a missing color with respect to φ_{1}. But $E_{\delta}(\partial(T)) \neq \emptyset$, which gives a contradiction to T being an e-maximal tree.

Following the notation in Lemma 2.1, we consider the case of δ being a defective color. Then $P:=P_{u}(\gamma, \delta, \varphi)$ is a path with u as one end. Since u is the unique vertex in T missing γ by Theorem 2.1, the other end of P is not in T. In the linear order $\preceq_{(u, P)}$, the last vertex v with $v \in V(T) \cap V(P)$ is called an exit vertex of T. Applying Lemma 2.1, Scheide [14] obtained the following result.

Lemma 2.2. Let $T \in \mathcal{T}_{e}$ be a Tashkinov tree of a k-triple (G, e, φ) with $k \geq \Delta+1$. If v is an exit vertex of T, then every missing color in $\bar{\varphi}(v)$ must be used on T.

Let $T \in \mathcal{T}_{e, \varphi}$ be a Tashkinov tree of (G, e, φ) and $V(e)=\{x, y\}$. By keeping odd number of vertices in each step of growing a Tashkinov tree from e, Scheide [14] showed that there is another $T^{*} \in \mathcal{T}_{e, \varphi}$, named a balanced Tashkinov tree, such that $V\left(T^{*}\right)=V(T)$ constructed incrementally from e by the following steps:

- Adding a path: Pick two missing colors α and β with $\alpha \in \bar{\varphi}(x)$ and $\beta \in \bar{\varphi}(y)$, and let $T^{*}:=\{e\} \cup\left(P_{x}(\alpha, \beta, \varphi)-y\right)$ where $P_{x}(\alpha, \beta, \varphi)$ is the (α, β)-chain containing both x and y.
- Adding edges by pairs: Repeatedly pick two boundary edges f_{1} and f_{2} of T^{*} with $\varphi\left(f_{1}\right)=$ $\varphi\left(f_{2}\right) \in \bar{\varphi}\left(V\left(T^{*}\right)\right)$ and redefine $T^{*}:=T^{*} \cup\left\{f_{1}, f_{2}\right\}$ until T^{*} is closed.

The path $P_{x}(\alpha, \beta, \varphi)$ in the above definition is called the trunk of T^{*} and $h\left(T^{*}\right):=\left|V\left(P_{x}(\alpha, \beta, \varphi)\right)\right|$ is called the height of T^{*}.

Lemma 2.3. [Scheide [14]] Let G be a k-critical graph with $k \geq \Delta+1$ and $T \in \mathcal{T}$ be a balanced Tashkinov tree of a k-triple (G, e, φ) with $h(T)$ being maximum. Then, $h(T) \geq 3$ is odd. Moreover, if $h(T)=3$ then G is elementary.

Corollary 2.2. Let G be a non-elementary k-critical graph with $k \geq \Delta+1$ and $T \in \mathcal{T}$ be a balanced Tashkinov tree of a k-triple (G, e, φ) with $h(T)$ being maximum. Then $|T| \geq 2(k-\Delta)+1$.

Proof. Since G is not elementary, T is not strongly closed with respect to φ. There is an exit vertex v by Lemma 2.1, so $\bar{\varphi}(v) \subseteq \varphi(E(T))$ by Lemma 2.2. Since T is balanced and $h(T) \geq 5$ by Lemma 2.3, each used color is assigned to at least two edges of $E(T)$. Thus,

$$
|T|=\|T\|+1 \geq 2|\bar{\varphi}(v)|+1 \geq 2(k-\Delta)+1
$$

Working on balanced Tashkinov trees, Scheide proved the following result.

Lemma 2.4. [Scheide [14]] Let G be a k-critical graph with $k \geq \Delta+1$. If $|T|<11$ for all Tashkinov trees T, then G is elementary.

3 An extension of Tashkinov trees

3.1 Definitions and basic properties

In this section, we always assume that G is a non-elementary k-critical graph with $k \geq \Delta+1$ and $T_{0} \in \mathcal{T}$ is a maximum Tashkinov tree of G. Moreover, we assume that T_{0} is a Tashkinov tree of the k-triple (G, e, φ).
Definition 4. Let $\varphi_{1}, \varphi_{2} \in \mathcal{C}^{k}(G-e)$ and $H \subseteq G$ such that $e \in E(H)$. We say that H is $\left(\varphi_{1}, \varphi_{2}\right)$ stable if $\varphi_{1}(f)=\varphi_{2}(f)$ for every $f \in E(G[V(H)]) \cup \partial(H)$, that is, $\varphi_{1}(f) \neq \varphi_{2}(f)$ implies that $f \in E(G-V(H))$.

Following the definition, if a Tashkinov tree T_{0} of $\left(G, e, \varphi_{1}\right)$ is $\left(\varphi_{1}, \varphi_{2}\right)$-stable, then it is also a Tashkinov tree of $\left(G, e, \varphi_{2}\right)$. Moreover, the sets of missing colors of T_{0}, used colors of T_{0}, and free colors of T_{0} are the same in both colorings φ_{1} and φ_{2}.

The following definition of connecting edges will play a critical role in our extension based on a maximum Tashkinov tree.

Definition 5. Let $H \subseteq G$ be a subgraph such that $T_{0} \subseteq H$. A color δ is called a defective color of H if H is closed, $\delta \notin \bar{\varphi}(V(H))$ and $\left|E_{\delta}(\partial(H))\right| \geq 2$. Moreover, an edge $f \in \partial(H)$ is called a connecting edge if $\delta:=\varphi(f)$ is a defective color of H and there is a missing color $\gamma \in \bar{\varphi}\left(V\left(T_{0}\right)\right)-\varphi(E(H))$ of T_{0} such that the following two properties hold.

- The (γ, δ)-chain $P_{u}(\delta, \gamma, \varphi)$ contains all edges in $E_{\delta}(\partial(H))$, where u is the unique vertex in $V\left(T_{0}\right)$ such that $\gamma \in \bar{\varphi}(u)$;
- Along the linear order $\preceq_{\left(u, P_{u}(\gamma, \delta, \varphi)\right)}$, f is the first boundary edge on $P_{u}(\gamma, \delta, \varphi)$ with color δ.

In the above definition, we call the successor f^{s} of f along $\preceq_{\left(u, P_{u}(\gamma, \delta, \varphi)\right)}$ the companion of f, $\left(f, f^{s}\right)$ a connecting edge pair and (δ, γ) a connecting color pair. Since $P_{u}(\gamma, \delta, \varphi)$ contains all edges in $E_{\delta}(\partial(H))$, we have that f^{s} is not incident to any vertex in H and $\varphi\left(f^{s}\right)=\gamma$.

Definition 6. We call a tree T an Extension of a Tashkinov Tree (ETT) of (G, e, φ) based on T_{0} if T is incrementally obtained from $T:=T_{0}$ by repeatedly adding edges to T according to the following two operations subject to $\Gamma^{f}\left(T_{0}\right)-\varphi(E(T)) \neq \emptyset$:

- ETO: If T is closed, add a connecting edge pair $\left(f, f^{s}\right)$, where $\varphi(f)$ is a defective color and $\varphi\left(f^{s}\right) \in \Gamma^{f}\left(T_{0}\right)-\varphi(E(T))$, and rename $T:=T \cup\left\{f, f^{s}\right\}$.
- ET1: Otherwise, add an edge $f \in \partial(T)$ with $\varphi(f) \in \bar{\varphi}(V(T))$ being a missing color of T, and rename $T:=T \cup\{f\}$.

Note that the above extension algorithm ends with $\Gamma^{f}\left(T_{0}\right) \subseteq \varphi(E(T))$. Let T be an ETT of (G, e, φ). Since T is defined incrementally from T_{0}, the edges added to T follow a linear order \prec_{ℓ}. Along the linear order \prec_{ℓ}, for any initial subsequence S of $E(T), T_{0} \cup S$ induces a tree; we call it a premier segment of T provided that when a connecting edge is in S, its companion must be in S. Let $f_{1}, f_{2}, \ldots, f_{m+1}$ be all connecting edges with $f_{1} \prec_{\ell} f_{2} \prec_{\ell} \cdots \prec_{\ell} f_{m+1}$. For each $1 \leq i \leq m+1$, let T_{i-1} be the premier subtree induced by T_{0} and edges before f_{i} in the ordering \prec_{ℓ}. Clearly, we have $T_{0} \subset T_{1} \subset T_{2} \subset \cdots \subset T_{m} \subset T$. We call T_{i} a closed segment of T for each $0 \leq i \leq m$, $T_{0} \subset T_{1} \subset T_{2} \subset \cdots \subset T_{m} \subset T$ the ladder of T, and T an $E T T$ with m-rungs. We use $m(T)$ to denote the number of rungs of T. For each edge $f \in E(T)$ with $f \neq e$, following the linear order \prec_{ℓ}, the end of f is called the $i n$-end if it is in T before f and the other one is called the out-end of f. For any edge $f \in E(T)$, the subtree induced by T_{0}, f and all its predecessors is called an f-segment and denoted by $T f$.

Let \mathbb{T} denote the set of all ETTs based on T_{0}. We now define a binary relation \prec_{t} of \mathbb{T} such that for two $T, T^{*} \in \mathbb{T}$, we call $T \prec_{t} T^{*}$ if either $T=T^{*}$ or there exists s with $1 \leq s \leq \min \left\{m+1, m^{*}+1\right\}$ such that $T_{h}=T_{h}^{*}$ for every $0 \leq h<s$ and $T_{s} \subsetneq T_{s}^{*}$, where $T_{0} \subset T_{1} \subset \cdots \subset T_{s} \subset \cdots \subset T_{m} \subset T_{m+1}(=T)$ and $T_{0}^{*}\left(=T_{0}\right) \subset T_{1}^{*} \subset \cdots \subset T_{s}^{*} \subset \cdots \subset T_{m^{*}+1}^{*}\left(=T^{*}\right)$ are the ladders of T and T^{*}, respectively. Notice that in this definition, we only consider the relations of T_{h} and T_{h}^{*} for $h \leq s$. Clearly, for any three ETTs T, T^{\prime} and $T^{*}, T \prec_{t} T^{\prime}$ and $T^{\prime} \prec_{t} T^{*}$ give $T \prec_{t} T^{*}$. So, \mathbb{T} together with \prec_{t} forms a poset, which is denoted by (\mathbb{T}, \prec_{t}).

Lemma 3.1. In the poset $\left(\mathbb{T}, \prec_{t}\right)$, if T is a maximal tree over all ETTs with at most $|T|$ vertices, then any premier segment T^{\prime} of T is also a maximal tree over all ETTs with at most $\left|T^{\prime}\right|$ vertices.

Proof. Suppose on the contrary: there is a premier segment T^{\prime} of T and an ETT T* with $\left|T^{*}\right| \leq\left|T^{\prime}\right|$ and $T^{\prime} \prec_{t} T^{*}$. We assume that $T^{\prime} \neq T^{*}$. Let $T_{0} \subset T_{1} \subset \cdots \subset T_{m^{\prime}} \subset T^{\prime}$ and $T_{0} \subset T_{1}^{*} \subset$ $\cdots \subset T_{m^{*}}^{*} \subset T^{*}$ be the ladders of T^{\prime} and T^{*}, respectively. Since $T^{\prime} \prec_{t} T^{*}$, there exists s with $1 \leq s \leq \min \left\{m^{\prime}+1, m^{*}+1\right\}$ such that $T_{j}=T_{j}^{*}$ for each $0 \leq j \leq s-1$ and $T_{s} \subsetneq T_{s}^{*}$, where $T_{m^{\prime}+1}^{\prime}=T^{\prime}$ and $T_{m^{*}+1}^{*}=T^{*}$. Since $\left|T^{*}\right| \leq\left|T^{\prime}\right|$, we have $s<m^{\prime}+1$. Since T^{\prime} is a premier segment of $T, T_{0} \subset T_{1} \subset \cdots \subset T_{m^{\prime}}$ is a part of the ladder of T. So, we have $T \prec_{t} T^{*}$, giving a contradiction to the maximality of T.
Lemma 3.2. Let T be a maximal ETT in $\left(\mathbb{T}, \prec_{t}\right)$ over all ETTs with at most $|T|$ vertices, and let $T_{0} \subset T_{1} \subset \cdots \subset T_{m} \subset T$ be the ladder of T. Suppose T is an ETT of $\left(G, e, \varphi_{1}\right)$. Then for every
$\varphi_{2} \in \mathcal{C}^{k}(G-e)$ such that T_{m} is $\left(\varphi_{1}, \varphi_{2}\right)$-stable, T_{m} is an ETT of $\left(G, e, \varphi_{2}\right)$. Furthermore, if T_{m} is elementary, then for every $\gamma \in \Gamma^{f}\left(T_{0}\right)-\varphi_{1}\left(E\left(T_{m}\right)\right)$ and $\delta \notin \bar{\varphi}_{1}\left(V\left(T_{m}\right)\right), P_{u}\left(\gamma, \delta, \varphi_{2}\right) \supseteq \partial_{\delta}\left(T_{m}\right)$ where $u \in V\left(T_{0}\right)$ such that $\gamma \in \bar{\varphi}_{1}(u)$.

Proof. Suppose on the contrary: let T be a counterexample to Lemma 3.2 with minimum number of vertices. Let $T_{0} \subset \cdots \subset T_{m} \subset T$ be the ladder of T and let $\varphi_{1}, \varphi_{2} \in \mathcal{C}^{k}(G-e)$ be two edge colorings such that T is an ETT of $\left(G, e, \varphi_{1}\right), T_{m}$ is $\left(\varphi_{1}, \varphi_{2}\right)$-stable and either
(1) T_{m} is not an ETT of $\left(G, e, \varphi_{2}\right)$ or
(2) T_{m} is elementary and there exist $\gamma \in \Gamma^{f}\left(T_{0}\right)-\varphi_{1}\left(E\left(T_{m}\right)\right)$ and $\delta \notin \bar{\varphi}_{1}\left(V\left(T_{m}\right)\right)$ such that $P_{u}\left(\gamma, \delta, \varphi_{2}\right) \nsupseteq \partial_{\delta}\left(T_{m}\right)$ where $u \in V\left(T_{0}\right)$ such that $\gamma \in \bar{\varphi}_{1}(u)$.

By the minimality of T, we observe that $|T|=\left|T_{m}\right|+2$. Furthermore, since $T_{0} \in \mathcal{T}$ is a maximum Tashkinov tree of G, it follows that $m \geq 1$ by Lemma 2.1.

First, we show that (1) does not hold, in other words, T_{m} is an ETT of $\left(G, e, \varphi_{2}\right)$. Since colors for edges incident to vertices in T_{m} are the same in both φ_{1} and φ_{2}, we only need to show that each connecting edge pair in coloring φ_{1} is still a connecting edge pair in coloring φ_{2}. For $0 \leq j \leq m-1$ let $\left(f_{j}, f_{j}^{s}\right)$ be the connecting edge pair of T_{j} and let $\left(\delta_{j}, \gamma_{j}\right)$ be the corresponding connecting color pair with respect to φ_{1}. Since T_{j+1} is $\left(\varphi_{1}, \varphi_{2}\right)$-stable and an ETT of $\left(G, e, \varphi_{1}\right)$ and $T_{j+1} \subsetneq T$, by the minimality of T, it follows that $P_{u_{j}}\left(\gamma_{j}, \delta_{j}, \varphi_{2}\right)$ contains $\partial_{\delta_{j}}\left(T_{j}\right)$ where u_{j} is the unique vertex in $V\left(T_{0}\right)$ with $\gamma_{j} \in \bar{\varphi}_{1}\left(u_{j}\right)$. Moreover, since T_{j+1} is $\left(\varphi_{1}, \varphi_{2}\right)$-stable, it follows that f_{j} is the first boundary edge on $P_{u_{j}}\left(\gamma_{j}, \delta_{j}, \varphi_{2}\right)$ with color δ_{j} and f_{j}^{s} being its companion. So $\left(f_{j}, f_{j}^{s}\right)$ is still a connecting edge pair in φ_{2}. We point out that $P_{u_{j}}\left(\gamma_{j}, \delta_{j}, \varphi_{1}\right)$ and $P_{u_{j}}\left(\gamma_{j}, \delta_{j}, \varphi_{2}\right)$ may be different in $\left(G, e, \varphi_{1}\right)$ and $\left(G, e, \varphi_{2}\right)$.

Thus (2) holds and there exist $\gamma \in \Gamma^{f}\left(T_{0}\right)-\varphi_{1}\left(E\left(T_{m}\right)\right)$ and $\delta \notin \bar{\varphi}_{1}\left(V\left(T_{m}\right)\right)$ such that $P_{u}\left(\gamma, \delta, \varphi_{2}\right) \nsupseteq$ $\partial_{\delta}\left(T_{m}\right)$. Let $P=P_{u}\left(\gamma, \delta, \varphi_{2}\right)$. Since T_{m} is both elementary and closed and u is one of the two ends of P, the other end of P must be in $V \backslash V\left(T_{m}\right)$. So, $E(P) \cap E_{\delta}\left(\partial\left(T_{m}\right)\right) \neq \emptyset$. Let Q be another (γ, δ)-chain such that $E(Q) \cap E_{\delta}\left(\partial\left(T_{m}\right)\right) \neq \emptyset$. Let $\varphi_{3}:=\varphi_{2} / Q$ be a coloring of $G-e$ obtained from φ_{2} by interchanging colors assigned on $E(Q)$.

Let $\left(f, f^{s}\right)$ be the connecting edge pair of T_{m-1}, and $T^{\prime}=T_{m-1} \cup\left\{f, f^{s}\right\}$. We claim that $E\left(T^{\prime}\right) \cap$ $E(Q)=\emptyset$. By the minimality of T, P contains every edge of $E_{\delta}\left(\partial\left(T_{m-1}\right)\right)$, and so $E\left(T_{m-1}\right) \cap E(Q)=\emptyset$. If $\varphi_{2}(f) \neq \delta$ then $f \notin E(Q)$ and if $\varphi_{2}(f)=\delta$ then $f \in E(P)$ so $f \notin E(Q)$. Thus $f \notin E(Q)$. Lastly, $\varphi_{2}\left(f^{s}\right) \neq \delta$ since $\delta \in \bar{\varphi}_{2}\left(V\left(T_{m}\right)\right)$ and $\varphi_{2}\left(f^{s}\right) \neq \gamma$ since $\gamma \notin \varphi_{2}\left(E\left(T_{m}\right)\right)$, so $f^{s} \notin E(Q)$.

Observe that T^{\prime} is an ETT of $\left(G, e, \varphi_{1}\right)$ with ladder $T_{0} \subset \cdots \subset T_{m-1}$ and is $\left(\varphi_{1}, \varphi_{3}\right)$-stable. Moreover $\left|T^{\prime}\right| \leq\left|T_{m}\right|<|T|$. Therefore, by the minimality of T, T_{m-1} is an ETT of $\left(G, e, \varphi_{3}\right)$, and
because we do not use any edge in Q when we extend T_{m-1} to T_{m}, T_{m} is also an ETT of (G, e, φ_{3}) which is not closed. However, it is a contradiction that T is a maximal ETT.

In Lemma 3.2, by taking $\varphi_{1}=\varphi_{2}$, we easily obtain the following lemma.
Lemma 3.3. Let T be a maximal ETT in $\left(\mathbb{T}, \prec_{t}\right)$ over all ETTs with at most $|T|$ vertices, and let $T_{0} \subset T_{1} \subset \cdots \subset T_{m} \subset T$ be the ladder of T. Suppose T is an ETT of (G, e, φ). If T_{m} is elementary and $\Gamma^{f}\left(T_{0}\right)-\varphi(E(T)) \neq \emptyset$, then for any $\gamma \in \Gamma^{f}\left(T_{0}\right)-\varphi(E(T))$ and $\delta \notin \bar{\varphi}\left(V\left(T_{m}\right)\right)$, $P_{u}(\gamma, \delta, \varphi) \supset E_{\delta}\left(\partial\left(T_{i}\right)\right)$ for every i with $0 \leq i \leq m$, where $u \in V\left(T_{0}\right)$ such that $\gamma \in \bar{\varphi}(u)$.
Lemma 3.4. For every ETTT of (G, e, φ) based on T_{0}, if T is elementary such that $\left|\Gamma^{f}\left(T_{0}\right)\right|>m(T)$ and $\left|E(T)-E\left(T_{0}\right)\right|-m(T)<\left|\bar{\varphi}\left(V\left(T_{0}\right)\right)\right|$, then there exists an ETT T^{*} containing T as a premier segment.

Proof. Let T be an ETT of (G, e, φ) and $m=m(T)$. Since $\varphi\left(f_{i}\right) \notin \bar{\varphi}\left(V\left(T_{0}\right)\right)$ for each connecting edge f_{i}, where $i \in\{1,2, \cdots, m\}$, we have $\left|\varphi\left(E(T)-E\left(T_{0}\right)\right) \cap \bar{\varphi}\left(V\left(T_{0}\right)\right)\right| \leq\left|E(T)-E\left(T_{0}\right)\right|-m<\left|\bar{\varphi}\left(V\left(T_{0}\right)\right)\right|$. So, $\bar{\varphi}\left(V\left(T_{0}\right)\right)-\varphi\left(E(T)-E\left(T_{0}\right)\right) \neq \emptyset$. Let $\gamma \in \bar{\varphi}\left(V\left(T_{0}\right)\right)-\varphi\left(E(T)-E\left(T_{0}\right)\right)$.

We may assume $\gamma \notin \varphi\left(E\left(T_{0}\right)\right)$, i.e., $\gamma \in \Gamma^{f}\left(T_{0}\right)$. Since $m<\left|\Gamma^{f}\left(T_{0}\right)\right|$, there exists a color $\beta \in$ $\Gamma^{f}\left(T_{0}\right)-\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{m}\right\}$. Since T_{0} is closed, a (β, γ)-chain is either in $G\left[V\left(T_{0}\right)\right]$ or vertex disjoint from T_{0}. Let φ_{1} be obtained from φ by interchanging β and γ for edges in $E_{\beta}\left(G-V\left(T_{0}\right)\right) \cup E_{\gamma}\left(G-V\left(T_{0}\right)\right)$. Clearly, T_{0} is $\left(\varphi, \varphi_{1}\right)$-stable. So, T is also an ETT of $\left(G, e, \varphi_{1}\right)$. Since $\gamma \notin \varphi\left(E(T)-E\left(T_{0}\right)\right)$, we have $\beta \notin \varphi_{1}(E(T))$, so the claim holds.

We can apply ET0 and ET1 to extend T to a larger tree T^{*} unless T is closed and does not have a connecting edge. In this case, T is both elementary and closed. Since G itself is not elementary, T is not strongly closed. Thus, T has a defective color δ. Since T does not have a connecting edge, $P_{v}(\gamma, \delta, \varphi)$ does not contain all edges of $E_{\delta}(\partial(T))$, where $v \in V\left(T_{0}\right)$ is the unique vertex with $\gamma \in \bar{\varphi}(v)$. Let Q be another (γ, δ)-chain containing some edges in $E_{\delta}(\partial(T))$ and let $\varphi_{2}=\varphi / Q$. By Lemma 3.3, Q is disjoint from T_{m}, where T_{m} is the largest closed segment of T. So, T_{m} is $\left(\varphi, \varphi_{2}\right)$-stable. By Lemma 3.2, T_{m} is an ETT of $\left(G, e, \varphi_{2}\right)$, which in turn gives that T is also an ETT of $\left(G, e, \varphi_{2}\right)$. Applying ET1, we extend T to a larger ETT T^{*}, which contains T as a premier segment.

3.2 The major result

The following result is fundamental for both Theorems 1.1 and 1.2.
Theorem 3.1. Let G be a k-critical graph with $k \geq \Delta+1$ and T be a maximal ETT over all ETTs with at most $|T|$ vertices in the poset $\left(\mathbb{T}, \prec_{t}\right)$. Suppose T is an ETT of (G, e, φ). If $\left|E(T)-E\left(T_{0}\right)\right|-m(T)<$ $\left|\bar{\varphi}\left(V\left(T_{0}\right)\right)\right|-1$ and $m(T)<\left|\Gamma^{f}\left(T_{0}\right)\right|-1$, then T is elementary.

Proof. Suppose on the contrary: let T be a counterexample to Theorem 3.1 with minimum number of vertices. And we assume that (G, e, φ) is the triple in which T is an ETT.

By Theorem 2.1, we have $T \supsetneq T_{0}$. For any premier segment T^{\prime} of T, by Lemma 3.1, T^{\prime} is maximal over all ETTs with at most $\left|T^{\prime}\right|$ vertices. Additionally, following the definition, we can verify that $\left|E\left(T^{\prime}\right)-E\left(T_{0}\right)\right|-m\left(T^{\prime}\right) \leq\left|E(T)-E\left(T_{0}\right)\right|-m(T)$ and $m\left(T^{\prime}\right) \leq m(T)$. So, every premier segment of T satisfies the conditions of Theorem 3.1. Hence, Theorem 3.1 holds for all premier segments of T which are proper subtrees of T. Let $T_{0} \subset T_{1} \subset \cdots \subset T_{m} \subset T$ be the ladder of T.

Let v_{1}, v_{2} be two distinct vertices in T such that there is a color $\alpha \in \bar{\varphi}\left(v_{1}\right) \cap \bar{\varphi}\left(v_{2}\right)$. For each connecting edge f_{i} with $1 \leq i \leq m$, let $\left(\delta_{i}, \gamma_{\delta_{i}}\right)$ denote the corresponding color pair, where $\varphi\left(f_{i}\right)=\delta_{i}$. According to the definition of ETT, $\gamma_{\delta_{1}}, \gamma_{\delta_{2}}, \ldots, \gamma_{\delta_{m}}$ are pairwise distinct while $\delta_{1}, \delta_{2}, \ldots, \delta_{m}$ may not be. Let $L=\left\{\gamma_{\delta_{1}}, \gamma_{\delta_{2}}, \ldots, \gamma_{\delta_{m}}\right\}$. In the paper [2] by Chen et al., the condition $\bar{\varphi}(v) \nsubseteq L$ is needed for any $v \in V(T)-V\left(T_{0}\right)$. In the following proof, we overcome this constraint. We make the following assumption.

Assumption 1: We assume that over all colorings in $\mathcal{C}^{k}(G-e)$ such that T is a minimum counterexample, the coloring $\varphi \in \mathcal{C}^{k}(G-e)$ is one such that $\left|\bar{\varphi}\left(V\left(T_{0}\right)\right)-\left(\varphi\left(E(T)-E\left(T_{0}\right)\right) \cup\{\alpha\}\right)\right|$ is minimum.

The following claim states that we can use other missing colors of T_{0} before using free colors of T_{0} except those in L.

Claim 3.1. We may assume that if $\varphi\left(E(T)-E\left(T_{0}\right)\right) \cap\left(\Gamma^{f}\left(T_{0}\right)-(L \cup\{\alpha\})\right) \neq \emptyset$, then $\varphi(E(T)-$ $\left.E\left(T_{0}\right)\right) \supset \bar{\varphi}\left(V\left(T_{0}\right)\right)-\Gamma^{f}\left(T_{0}\right)$.

Proof. Assume that there is a color $\gamma \in \varphi\left(E(T)-E\left(T_{0}\right)\right) \cap\left(\Gamma^{f}\left(T_{0}\right)-(L \cup\{\alpha\})\right)$ and there is a color $\beta \in\left(\bar{\varphi}\left(V\left(T_{0}\right)\right)-\Gamma^{f}\left(T_{0}\right)\right)-\varphi\left(E(T)-E\left(T_{0}\right)\right)$. Since T_{0} is closed, a (β, γ)-chain is either in $G\left[V\left(T_{0}\right)\right]$ or disjoint from $V\left(T_{0}\right)$. Let φ_{1} be obtained from φ by interchanging colors β and γ on all (β, γ) chains disjoint from $V\left(T_{0}\right)$. It is readily seen that T_{0} is $\left(\varphi, \varphi_{1}\right)$-stable. Since both γ and β are in $\bar{\varphi}\left(V\left(T_{0}\right)\right)-L, T$ is also an ETT of $\left(G, e, \varphi_{1}\right)$. In coloring φ_{1}, we still have $\gamma \in \Gamma^{f}\left(T_{0}\right)-(L \cup\{\alpha\})$ and $\beta \in \bar{\varphi}_{1}\left(V\left(T_{0}\right)\right)-\Gamma^{f}\left(T_{0}\right)$. However, γ is not used on $T-T_{0}$ while β is used. Additionally, Assumption 1 holds since $\left|\bar{\varphi}\left(V\left(T_{0}\right)\right)-\left(\varphi\left(E(T)-E\left(T_{0}\right)\right) \cup\{\alpha\}\right)\right|=\left|\bar{\varphi}_{1}\left(V\left(T_{0}\right)\right)-\left(\varphi_{1}\left(E(T)-E\left(T_{0}\right)\right) \cup\{\alpha\}\right)\right|$. By repeatedly applying this argument, we show that Claim 3.1 holds.

Since $m(T)<\left|\Gamma^{f}\left(T_{0}\right)\right|-1$, we have $\Gamma^{f}\left(T_{0}\right)-(L \cup\{\alpha\}) \neq \emptyset$. Since $\left|E(T)-E\left(T_{0}\right)\right|-m(T)<$ $\left|\bar{\varphi}\left(V\left(T_{0}\right)\right)\right|-1$, we have $\bar{\varphi}\left(V\left(T_{0}\right)\right)-\left(\varphi\left(E(T)-E\left(T_{0}\right)\right) \cup\{\alpha\}\right) \neq \emptyset$. By Claim 3.1, we have the following claim.

Claim 3.2. We may assume that $\Gamma^{f}\left(T_{0}\right)-(\varphi(E(T)) \cup\{\alpha\}) \neq \emptyset$.

We consider two cases to complete the proof according to the type of the last operation in adding edge(s) to extend T_{0} to T.

Case 1: The last operation is ET0, i.e., the two edges in the connecting edge pair $\left(f, f^{s}\right)$ are the last two edges in T following the linear order \prec_{ℓ}.

Let x be the in-end of f, y be the out-end of f (in-end of f^{s}), and z be the out-end of f^{s}. In this case, we have $V(T)=V\left(T_{m}\right) \cup\{y, z\}$, i.e., $T^{\prime}=T_{m}$. Let $\delta=\varphi(f)$ be the defective color and $\gamma_{\delta} \in \Gamma^{f}\left(T_{0}\right)-\varphi\left(E\left(T_{m}\right)\right)$ such that f is the first edge in $\partial\left(E\left(T_{m}\right)\right)$ along $P:=P_{u}\left(\gamma_{\delta}, \delta, \varphi\right)$ with color δ, where $u \in V\left(T_{0}\right)$ such that $\gamma_{\delta} \in \bar{\varphi}(u)$. Recall that v_{1} and v_{2} are the two vertices in T such that $\alpha \in \bar{\varphi}\left(v_{1}\right) \cap \bar{\varphi}\left(v_{2}\right)$. We have $\left\{v_{1}, v_{2}\right\} \cap\{y, z\} \neq \emptyset$. We consider the following three subcases to lead a contradiction.

Subcase 1.1: $\left\{v_{1}, v_{2}\right\}=\{y, z\}$.
Assume, without loss of generality, $y=v_{1}$ and $z=v_{2}$. Since f^{s} is the successor of f along the linear order $\preceq_{(u, P)}, \varphi\left(f^{s}\right)=\gamma_{\delta}$. So, f^{s} is an $\left(\alpha, \gamma_{\delta}\right)$-chain. Let $\varphi_{1}=\varphi / f^{s}$, a coloring obtained from φ by changing color on f^{s} from γ_{δ} to α. Then T_{m} is $\left(\varphi, \varphi_{1}\right)$-stable. By Lemma 3.2, T_{m} is an ETT of $\left(G, e, \varphi_{1}\right)$ and γ_{δ} is missing at y in φ_{1}, which in turn gives that $P_{u}\left(\gamma_{\delta}, \delta, \varphi_{1}\right):=u P y$ only contains one edge $f \in E_{\delta}\left(\partial\left(T_{m}\right)\right)$, giving a contradiction to Lemma 3.3.

Subcase 1.2: $\alpha \in(\bar{\varphi}(y)-\bar{\varphi}(z)) \cap \bar{\varphi}\left(V\left(T_{m}\right)\right)$.
Since $\delta, \gamma_{\delta} \in \varphi(y)$ and $\alpha \in \bar{\varphi}(y), \alpha \notin\left\{\delta, \gamma_{\delta}\right\}$. We may assume that $\alpha \in \Gamma^{f}\left(T_{0}\right)-\varphi(E(T))$. Otherwise, let $\beta \in \Gamma^{f}\left(T_{0}\right)-\varphi(E(T))$ and consider the (α, β)-chain $P_{1}:=P_{y}(\alpha, \beta, \varphi)$. Since $\alpha, \beta \in$ $\bar{\varphi}\left(V\left(T_{m}\right)\right)$ and $V\left(T_{m}\right)$ is closed with respect to φ by the assumption, we have $V\left(P_{1}\right) \cap V\left(T_{m}\right)=\emptyset$. Let $\varphi_{1}=\varphi / P_{1}$. Since $\{\alpha, \beta\} \cap\left\{\delta, \gamma_{\delta}\right\}=\emptyset$, we have $f^{s} \notin E\left(P_{1}\right)$. Hence T_{m} is $\left(\varphi, \varphi_{1}\right)$-stable, which gives that T_{m} is an ETT of $\left(G, e, \varphi_{1}\right)$, so is T. The claim follows from $\beta \in \bar{\varphi}_{1}(y) \cap\left(\Gamma^{f}\left(T_{0}\right)-\varphi_{1}(E(T))\right)$.

Consider the $\left(\alpha, \gamma_{\delta}\right)$-chain $P_{2}:=P_{y}\left(\alpha, \gamma_{\delta}, \varphi\right)$. Since $\alpha, \gamma_{\delta} \in \bar{\varphi}\left(V\left(T_{0}\right)\right)$ and T_{m} is closed, $V\left(P_{2}\right) \cap$ $V\left(T_{m}\right)=\emptyset$. Let $\varphi_{2}=\varphi / P_{2}$. Clearly, T_{m} is $\left(\varphi, \varphi_{2}\right)$-stable. By Lemma 3.2, T_{m} is an ETT of $\left(G, e, \varphi_{2}\right)$, so is T. Then $P_{u}\left(\gamma_{\delta}, \delta, \varphi_{2}\right)$ is the subpath of $P_{u}\left(\gamma_{\delta}, \delta, \varphi\right)$ from u to y. So, it does not contain all edges in $E_{\delta}\left(\partial\left(T_{m}\right)\right)$, which gives a contradiction to Lemma 3.3.

Subcase 1.3: $\alpha \in(\bar{\varphi}(z)-\bar{\varphi}(y)) \cap \bar{\varphi}\left(V\left(T_{m}\right)\right)$.
Since $P_{u}\left(\gamma_{\delta}, \delta, \varphi\right)$ contains all the edges in $E_{\delta}\left(\partial\left(T_{m}\right)\right)$ and $\alpha \in \bar{\varphi}(z)$, we have $\alpha \notin\left\{\delta, \gamma_{\delta}\right\}$. Following a similar argument given in Subcase 1.2, we may assume that $\alpha \in \Gamma^{f}\left(T_{0}\right)-\varphi(E(T))$. Let v be the unique vertex in $V\left(T_{0}\right)$ with $\alpha \in \bar{\varphi}(v)$. Let $\beta \in \bar{\varphi}(y), P_{v}:=P_{v}(\alpha, \beta, \varphi), P_{y}:=P_{y}(\alpha, \beta, \varphi)$ and $P_{z}:=P_{z}(\alpha, \beta, \varphi)$. We claim that $P_{v}=P_{y}$. Suppose, on the contrary, that $P_{v} \neq P_{y}$. By Lemma 3.3,
$E\left(P_{v}\right) \supset E_{\beta}\left(\partial\left(T_{m}\right)\right)$. Therefore, $V\left(P_{y}\right) \cap V\left(T_{m}\right)=\emptyset$. Let $\varphi_{1}=\varphi / P_{y}$. In $\left(G, e, \varphi_{1}\right), T$ is an ETT and $\alpha \in \bar{\varphi}_{1}(y) \cap \bar{\varphi}_{1}\left(V\left(T_{0}\right)\right)$. This leads back to either Subcase 1.1 or Subcase 1.2. Hence, $P_{v}=P_{y}$ and it is vertex disjoint with P_{z}. Let $\varphi_{2}=\varphi / P_{z}$. By Lemma 3.3, $E\left(P_{v}\right) \supset E_{\beta}\left(\partial\left(T_{m}\right)\right)$. So, $V\left(P_{z}\right) \cap V\left(T_{m}\right)=\emptyset$, which in turn gives that T is an ETT of $\left(G, e, \varphi_{2}\right)$ and $\beta \in \bar{\varphi}_{2}(y) \cap \bar{\varphi}_{2}(z)$. This leads back to Subcase 1.1.

Case 2: The last edge f is added to T by ET1.
Let y and z be the in-end and out-end of f, respectively, and let $T^{\prime}=T-z$. Clearly, T^{\prime} is a premier segment of T and $T_{m} \subsetneq T^{\prime}$. In this case, we assume that $z=v_{2}$, i.e., $\alpha \in \bar{\varphi}(z) \cap \bar{\varphi}\left(v_{1}\right)$ and $v_{1} \in V\left(T^{\prime}\right)$. Recall that v_{1} and v_{2} are the two vertices in T such that $\alpha \in \bar{\varphi}\left(v_{1}\right) \cap \bar{\varphi}\left(v_{2}\right)$.

Claim 3.3. For any color $\gamma \in \Gamma^{f}\left(T_{0}\right)$ and any color $\beta \in \bar{\varphi}\left(V\left(T^{\prime}\right)\right)$, let $u \in V\left(T_{0}\right)$ such that $\gamma \in \bar{\varphi}(u)$ and $v \in V\left(T^{\prime}\right)$ such that $\beta \in \bar{\varphi}(v)$. Denote by $e_{v} \in E(T)$ the edge containing v as the out-end and $e_{v} \prec_{\ell} e^{*}$ for every $e^{*} \in E(T)$ with $\varphi\left(e^{*}\right)=\gamma$, then u and v are on the same (β, γ)-chain.

Proof. Since T_{m} is both elementary and closed, u and v are on the same (β, γ)-chain if $v \in V\left(T_{m}\right)$. Suppose $v \in V(T)-V\left(T_{m}\right)$ and, on the contrary, $P_{u}:=P_{u}(\gamma, \beta, \varphi)$ and $P_{v}:=P_{v}(\gamma, \beta, \varphi)$ are vertex disjoint. By Lemma 3.3, $E\left(P_{u}\right) \supset E_{\beta}\left(\partial\left(T_{m}\right)\right)$, so $V\left(P_{v}\right) \cap V\left(T_{m}\right)=\emptyset$. Let $\varphi_{1}=\varphi / P_{v}$ be the coloring obtained by interchanging the colors β and γ on $P_{v}(\gamma, \beta, \varphi)$. Clearly, T_{m} is $\left(\varphi, \varphi_{1}\right)$-stable. By Lemma 3.2, T_{m} is an ETT of $\left(G, e, \varphi_{1}\right)$. As $e_{v} \prec_{\ell} e^{*}$ for every $e^{*} \in E(T)$ with $\varphi\left(e^{*}\right)=\gamma$, we can extend T_{m} to $T e_{v}$ such that $T e_{v}$ is still an ETT of $\left(G, e, \varphi_{1}\right)$. But, in the coloring $\varphi_{1}, \gamma \in \bar{\varphi}_{1}(u) \cap \bar{\varphi}_{1}(v)$, which gives a contradiction to the minimality of $|T|$.
Claim 3.4. We may assume $\alpha \in \Gamma^{f}\left(T_{0}\right)-\varphi\left(E\left(T_{m}\right)\right)$.

Proof. Otherwise, by Claim 3.2, let $\gamma \in \Gamma^{f}\left(T_{0}\right)-(\varphi(E(T)) \cup\{\alpha\})$. Let φ_{1} be obtained from φ by interchanging colors α and γ for edges in $E_{\alpha}\left(G-V\left(T_{m}\right)\right) \cup E_{\gamma}\left(G-V\left(T_{m}\right)\right)$. Since T_{m} is closed, φ_{1} exists. Clearly, T_{m} is $\left(\varphi, \varphi_{1}\right)$-stable. By Lemma 3.2, T_{m} is an ETT of $\left(G, e, \varphi_{1}\right)$, so is T. In the coloring $\varphi_{1}, \gamma \in \bar{\varphi}_{1}(z)$ but is not used on T_{m}.

Applying Claim 3.2 again if it is necessary, we assume both Claim 3.2 and Claim 3.4 hold. Recall that z is the out-end of f and y is the in-end of f, and $\alpha \in \bar{\varphi}\left(v_{1}\right) \cap \bar{\varphi}(z)$.

Subcase 2.1: $y \in V\left(T^{\prime}\right)-V\left(T_{m}\right)$, i.e., $f \notin \partial\left(T_{m}\right)$.
Claim 3.5. Color α is used in $E\left(T-T_{m}\right)$, i.e., $\alpha \in \varphi\left(E\left(T-T_{m}\right)\right)$.

Proof. Suppose on the contrary that $\alpha \notin \varphi\left(E\left(T-T_{m}\right)\right)$. By Claim 3.4, we may assume that $\alpha \notin$ $\varphi\left(E\left(T_{m}\right)\right.$), so $\alpha \notin \varphi(E(T))$. Let $\varphi(f)=\theta$ and $\beta \in \bar{\varphi}(y)$ be a missing color of y. We consider the
following two cases according to whether y is the last vertex of $T^{\prime}=T-z$.
We first assume that y is the last vertex of T^{\prime}. Let $P_{v_{1}}:=P_{v_{1}}(\alpha, \beta, \varphi), P_{y}:=P_{y}(\alpha, \beta, \varphi)$ and $P_{z}:=P_{z}(\alpha, \beta, \varphi)$ be (α, β)-chains containing vertices v_{1}, y and z, respectively. By Claim 3.3, we have $P_{v_{1}}=P_{y}$, so it is disjoint from P_{z}. By Lemma 3.3, $E\left(P_{v_{1}}\right) \supset E_{\beta}\left(\partial\left(T_{m}\right)\right)$, so $V\left(P_{z}\right) \cap V\left(T_{m}\right)=\emptyset$. Let $\varphi_{1}=\varphi / P_{z}$ be the coloring obtained from φ by interchanging colors α and β on P_{z}. Since $\alpha \notin \varphi\left(E\left(T-T_{m}\right)\right)$ and $\beta \in \bar{\varphi}(y)-\bar{\varphi}\left(V\left(T^{\prime}\right)\right), \beta \notin \varphi_{1}\left(E\left(T-T_{m}\right)\right)$. Clearly, T_{m} is $\left(\varphi, \varphi_{1}\right)$-stable. By Lemma 3.2, T_{m} is an ETT of $\left(G, e, \varphi_{1}\right)$, so is T. In the coloring $\varphi_{1}, \theta=\varphi_{1}(f)$ and f itself is a (β, θ)-chain. Let $\varphi_{2}=\varphi_{1} / f$ be the coloring obtained from φ_{1} by changing color θ to β on f. Since f is disjoint from T_{m}, we can verify that T is an ETT of $\left(G, e, \varphi_{2}\right)$ by applying Lemma 3.2. Since f is not a connecting edge, $\theta \in \bar{\varphi}\left(V\left(T^{\prime}\right)\right)$, which in turn shows that T^{\prime} is not elementary with respect to φ_{2}, giving a contradiction to the minimality of $|T|$.

We now assume that y is not the last vertex of T^{\prime}; and let x be the last one. Recall $\theta=\varphi(f)$. If $\theta \in \varphi(x)$ then $T-x$ is not an elementary ETT of (G, e, φ), which contradicts the minimality of $|T|$. Hence we assume $\theta \in \bar{\varphi}(x)$. Clearly $\alpha \in \varphi(x)$. Let $P_{v_{1}}:=P_{v_{1}}(\alpha, \theta, \varphi), P_{x}:=P_{x}(\alpha, \theta, \varphi)$ and $P_{z}:=P_{z}(\alpha, \theta, \varphi)$ be (α, θ)-chains containing vertices v_{1}, x and z, respectively. By Claim 3.3 we have $P_{v_{1}}=P_{x}$ which is disjoint with P_{z}. Furthermore Lemma 3.3 implies that $E\left(P_{v_{1}}\right) \supset E_{\theta}\left(\partial\left(T_{m}\right)\right)$, together with the assumption that $\alpha \in \Gamma^{f}\left(T_{0}\right)$, we get $V\left(P_{z}\right) \cap V\left(T_{m}\right)=\emptyset$. Let $\varphi_{1}=\varphi / P_{z}$ be the coloring obtained from φ by interchanging colors α and θ along P_{z}. Observe that θ is only used on f for $E\left(T-\left(T_{m} \cup \partial\left(T_{m}\right)\right)\right)$ since $\theta \in \bar{\varphi}(x), f$ is colored by α in φ_{1}. Clearly T_{m} is $\left(\varphi, \varphi_{1}\right)$ stable. By Lemma 3.2, T_{m} is an ETT of $\left(G, e, \varphi_{1}\right)$, so is T. By Claim 3.2, let $\gamma \in \Gamma^{f}\left(T_{0}\right)-\left(\varphi_{1}(E(T)) \cup\{\theta\}\right)$. Say $\gamma \in \bar{\varphi}\left(v_{2}\right)$ for $v_{2} \in V\left(T_{0}\right)$. By Claim 3.3 the (γ, θ)-chain $P_{v_{2}}^{\prime}:=P_{v_{2}}\left(\gamma, \theta, \varphi_{1}\right)$ is the same with $P_{x}^{\prime}:=P_{x}\left(\gamma, \theta, \varphi_{1}\right)$, hence it is disjoint with $P_{z}^{\prime}:=P_{z}\left(\gamma, \theta, \varphi_{1}\right)$. Now we consider $T_{z x}$ obtained from T by switching the order of adding vertices x and z. Clearly $T_{z x}$ is an ETT of $\left(G, e, \varphi_{1}\right)$ since f is colored by α in φ_{1}. Similarly by Claim 3.3 the (γ, θ)-chain $P_{v_{2}}^{\prime}:=P_{v_{2}}\left(\gamma, \theta, \varphi_{1}\right)$ is the same with $P_{z}^{\prime}:=P_{z}\left(\gamma, \theta, \varphi_{1}\right)$. Now we reach a contradiction.

We now prove the following claim which gives a contradiction to Assumption 1 and completes the proof of this subcase.
Claim 3.6. There is a coloring $\varphi_{1} \in \mathcal{C}^{k}(G-e)$ such that T is a non-elementary ETT of $\left(G, e, \varphi_{1}\right)$, T_{m} is $\left(\varphi, \varphi_{1}\right)$-stable, and $\left|\bar{\varphi}_{1}\left(V\left(T_{0}\right)\right) \cap \varphi_{1}\left(E(T)-E\left(T_{0}\right)\right)\right|>\left|\bar{\varphi}\left(V\left(T_{0}\right)\right) \cap \varphi\left(E(T)-E\left(T_{0}\right)\right)\right|$.

Proof. Following the linear order \prec_{ℓ}, let e_{1} be the first edge in $E\left(T-T_{m}\right)$ with $\varphi\left(e_{1}\right)=\alpha$, and let y_{1} be the in-end of e_{1}. Pick a missing color $\beta_{1} \in \bar{\varphi}\left(y_{1}\right)$. Note that, since $\varphi\left(e_{1}\right)=\alpha$ and $\alpha \in \Gamma^{f}\left(T_{0}\right)-\varphi\left(E\left(T_{m}\right)\right), e_{1} \notin \partial\left(T_{m}\right)$. Hence $y_{1} \in V(T)-V\left(T_{m}\right)$. Let $P_{v_{1}}:=P_{v_{1}}\left(\alpha, \beta_{1}, \varphi\right), P_{y_{1}}:=$ $P_{y_{1}}\left(\alpha, \beta_{1}, \varphi\right)$, and $P_{z}:=P_{z}\left(\alpha, \beta_{1}, \varphi\right)$ be $\left(\alpha, \beta_{1}\right)$-chains containing v_{1}, y_{1} and z, respectively. By Claim 3.3, $P_{v_{1}}=P_{y_{1}}$, which in turn shows that it is disjoint from P_{z}. By Lemma 3.3, $E\left(P_{v_{1}}\right)$
$E_{\beta_{1}}\left(\partial\left(T_{m}\right)\right)$, so $V\left(P_{z}\right) \cap V\left(T_{m}\right)=\emptyset$.
Consider the coloring $\varphi_{1}=\varphi / P_{z}$. Since $V\left(P_{z}\right) \cap V\left(T_{m}\right)=\emptyset, T_{m}$ is $\left(\varphi, \varphi_{1}\right)$-stable. By Lemma 3.2, T_{m} is an ETT of $\left(G, e, \varphi_{1}\right)$. Since e_{1} is the first edge colored with α along \prec_{ℓ}, we have that $e_{1} \prec_{\ell} e^{*}$ for all edges e^{*} colored with β_{1}. So, T is an ETT of $\left(G, e, \varphi_{1}\right)$. Note that $e_{1} \in E\left(P_{y_{1}}\right)=E\left(P_{v_{1}}\right)$, which in turn gives $\varphi_{1}\left(e_{1}\right)=\alpha$. We also note that $\beta_{1} \in \bar{\varphi}_{1}(z) \cap \bar{\varphi}_{1}\left(y_{1}\right)$.

By Claim 3.2, there is a color $\gamma \in \Gamma^{f}\left(T_{0}\right)-\varphi(E(T))$. Let $u \in V\left(T_{0}\right)$ such that $\gamma \in \bar{\varphi}(u)$. Let $Q_{u}:=P_{u}\left(\gamma, \beta_{1}, \varphi_{1}\right), Q_{y_{1}}:=P_{y_{1}}\left(\gamma, \beta_{1}, \varphi_{1}\right)$ and $Q_{z}:=P_{z}\left(\gamma, \beta_{1}, \varphi_{1}\right)$ be $\left(\gamma, \beta_{1}\right)$-chains containing u, y_{1} and z, respectively. By Claim 3.3, $Q_{u}=Q_{y_{1}}$, so Q_{u} and Q_{z} are disjoint. By Lemma 3.3, $E\left(Q_{u}\right) \supset E_{\beta_{1}}\left(\partial\left(T_{m}\right)\right)$, so $V\left(Q_{z}\right) \cap V\left(T_{m}\right)=\emptyset$. Let $\varphi_{2}=\varphi_{1} / Q_{z}$ be a coloring obtained from φ_{1} by interchanging colors on Q_{z}. Since $V\left(Q_{u}\right) \cap V\left(T_{m}\right)=\emptyset, T_{m}$ is an ETT of $\left(G, e, \varphi_{2}\right)$. Since $\gamma \in \bar{\varphi}\left(V\left(T_{0}\right)\right)-\varphi(E(T)), T_{m}$ can be extended to T as an ETT in φ_{2}. Since $\gamma \in \bar{\varphi}_{2}(z) \cap \bar{\varphi}_{2}(u)$, by Claim 3.5, we have $\gamma \in \varphi_{2}\left(E\left(T-T_{m}\right)\right)$. Since $e_{1} \in Q_{y_{1}}=Q_{u}$, the color α assigned to e_{1} is unchanged. Thus,

$$
\bar{\varphi}_{2}\left(V\left(T_{0}\right)\right) \cap \varphi_{2}\left(E(T)-E\left(T_{0}\right)\right) \supseteq\left(\bar{\varphi}\left(V\left(T_{0}\right)\right) \cap \varphi\left(E(T)-E\left(T_{0}\right)\right)\right) \cup\{\gamma\}
$$

and $\alpha \in \bar{\varphi}\left(V\left(T_{0}\right)\right) \cap \varphi(E(T))$. So, Claim 3.6 holds.
Subcase 2.2: $y \in V\left(T_{m}\right)$, i.e. $f \in \partial\left(T_{m}\right)$.
The following two claims are similar to Claims 3.5 and 3.6 in Subcase 2.1, which lead to a contradiction to Assumption 1. Their proofs respectively are similar to those of the previous two claims. However, for the completeness, we still give the details.

Claim 3.7. Color α is used in $E\left(T-T_{m}\right)$, i.e., $\alpha \in \varphi\left(E\left(T-T_{m}\right)\right)$.

Proof. Suppose on the contrary $\alpha \notin \varphi\left(E\left(T-T_{m}\right)\right)$. By Claim 3.4, we assume that $\alpha \notin \varphi\left(E\left(T_{m}\right)\right)$, so $\alpha \notin \varphi(E(T))$. Let $\varphi(f)=\theta$. As $f \in \partial\left(T_{m}\right)$ is not a connecting edge and T_{m} is closed, we know that there exists $w \in V\left(T-T_{m}\right)$ such that $\theta \in \bar{\varphi}(w)$. Consider the (α, θ)-chain $P_{v_{1}}:=P_{v_{1}}(\alpha, \theta, \varphi)$. By Lemma 3.3, $E\left(P_{v_{1}}\right) \supset E_{\theta}\left(\partial\left(T_{m}\right)\right)$. So, $f \in E\left(P_{v_{1}}\right)$ and z is the other end of $P_{v_{1}}$. Then, $P_{w}:=$ $P_{w}(\alpha, \theta, \varphi)$ is disjoint from $P_{v_{1}}$, which in turn shows $V\left(P_{w}\right) \cap V\left(T_{m}\right)=\emptyset$. Let $\varphi_{1}=\varphi / P_{w}$. Since $V\left(P_{w}\right) \cap V\left(T_{m}\right)=\emptyset, T_{m}$ is $\left(\varphi, \varphi_{1}\right)$-stable. By Lemma 3.2, T_{m} is an ETT of $\left(G, e, \varphi_{1}\right)$. Since α is not used in $T-T_{m}, T_{m}$ can be extended to T^{\prime} as an ETT of $\left(G, e, \varphi_{1}\right)$. Note that $\alpha \in \bar{\varphi}_{1}\left(v_{1}\right) \cap \bar{\varphi}_{1}(w)$. So, T^{\prime} is not elementary, which gives a contradiction to the minimality of $|T|$.

Claim 3.8. There is a coloring $\varphi_{1} \in \mathcal{C}^{k}(G-e)$ such that T is a non-elementary ETT of $\left(G, e, \varphi_{1}\right)$, T_{m} is $\left(\varphi, \varphi_{1}\right)$-stable, and $\left|\bar{\varphi}_{1}\left(V\left(T_{0}\right)\right) \cap \varphi_{1}\left(E(T)-E\left(T_{0}\right)\right)\right|>\left|\bar{\varphi}\left(V\left(T_{0}\right)\right) \cap \varphi\left(E(T)-E\left(T_{0}\right)\right)\right|$.

Proof. Following the linear order \prec_{ℓ}, let e_{1} be the first edge in $E\left(T-T_{m}\right)$ with $\varphi\left(e_{1}\right)=\alpha$, and let y_{1} be the in-end of e_{1}. Pick a missing color $\beta_{1} \in \bar{\varphi}\left(y_{1}\right)$. Since $\varphi\left(e_{1}\right)=\alpha \in \bar{\varphi}\left(V\left(T_{0}\right)\right)$ and T_{m} is closed,
$e_{1} \notin \partial\left(T_{m}\right)$. Hence, $y_{1} \in V(T)-V\left(T_{m}\right)$. Let $P_{v_{1}}:=P_{v_{1}}\left(\alpha, \beta_{1}, \varphi\right), P_{y_{1}}:=P_{y_{1}}\left(\alpha, \beta_{1}, \varphi\right)$, and $P_{z}:=$ $P_{z}\left(\alpha, \beta_{1}, \varphi\right)$ be $\left(\alpha, \beta_{1}\right)$-chains containing v_{1}, y_{1} and z, respectively. By Claim 3.3, $P_{v_{1}}=P_{y_{1}}$, which in turn shows that it is disjoint from P_{z}. By Lemma 3.3, $E\left(P_{v_{1}}\right) \supset E_{\beta_{1}}\left(\partial\left(T_{m}\right)\right)$, so $V\left(P_{z}\right) \cap V\left(T_{m}\right)=\emptyset$.

Consider the coloring $\varphi_{1}=\varphi / P_{z}$. Since $V\left(P_{z}\right) \cap V\left(T_{m}\right)=\emptyset, T_{m}$ is $\left(\varphi, \varphi_{1}\right)$-stable. By Lemma 3.2, T_{m} is an ETT of $\left(G, e, \varphi_{1}\right)$. Since e_{1} is the first edge colored with α along \prec_{ℓ}, we have that $e_{1} \prec_{\ell} e^{*}$ for all edges e^{*} with $\varphi_{1}\left(e^{*}\right)=\beta_{1}$. So, T is an ETT of $\left(G, e, \varphi_{1}\right)$. Note that $e_{1} \in E\left(P_{y_{1}}\right)=E\left(P_{v_{1}}\right)$, which in turn gives $\varphi_{1}\left(e_{1}\right)=\alpha$. We also note that $\beta_{1} \in \bar{\varphi}_{1}(z) \cap \bar{\varphi}_{1}\left(y_{1}\right)$.

By Claim 3.2, there is a color $\gamma \in \Gamma^{f}\left(T_{0}\right)-\varphi(E(T))$. Let $u \in V\left(T_{0}\right)$ such that $\gamma \in \bar{\varphi}(u)$. Let $Q_{u}:=P_{u}\left(\gamma, \beta_{1}, \varphi_{1}\right), Q_{y_{1}}:=P_{y_{1}}\left(\gamma, \beta_{1}, \varphi_{1}\right)$ and $Q_{z}:=P_{z}\left(\gamma, \beta_{1}, \varphi_{1}\right)$ be $\left(\gamma, \beta_{1}\right)$-chains containing u, y_{1} and z, respectively. By Claim 3.3, $Q_{u}=Q_{y_{1}}$, so Q_{u} and Q_{z} are disjoint. By Lemma 3.3, $E\left(Q_{u}\right) \supset E_{\beta_{1}}\left(\partial\left(T_{m}\right)\right)$, so $V\left(Q_{z}\right) \cap V\left(T_{m}\right)=\emptyset$. Let $\varphi_{2}=\varphi_{1} / Q_{z}$ be the coloring obtained from φ_{1} by interchanging colors on Q_{z}. Since $V\left(Q_{u}\right) \cap V\left(T_{m}\right)=\emptyset, T_{m}$ is an ETT of $\left(G, e, \varphi_{2}\right)$. Since $\gamma \in \bar{\varphi}\left(V\left(T_{0}\right)\right)-\varphi(E(T)), T_{m}$ can be extended to T as an ETT in φ_{2}. Since $\gamma \in \bar{\varphi}_{2}(z) \cap \bar{\varphi}_{2}(u)$, by Claim 3.5, we have $\gamma \in \varphi_{2}\left(E\left(T-T_{m}\right)\right)$. Since $e_{1} \in Q_{y_{1}}=Q_{u}, \varphi_{1}\left(e_{1}\right)=\varphi\left(e_{1}\right)=\alpha$. Thus,

$$
\bar{\varphi}_{2}\left(V\left(T_{0}\right)\right) \cap \varphi_{2}\left(E(T)-E\left(T_{0}\right)\right) \supseteq\left(\bar{\varphi}\left(V\left(T_{0}\right)\right) \cap \varphi\left(E(T)-E\left(T_{0}\right)\right)\right) \cup\{\gamma\}
$$

and $\alpha \in \bar{\varphi}\left(V\left(T_{0}\right)\right) \cap \varphi(E(T)$. So, Claim 3.8 holds.
We now complete the proof of Theorem 3.1.
Combining Theorem 3.1 and Lemma 3.4, we obtain the following result.
Corollary 3.1. Let G be a k-critical graph with $k \geq \Delta+1$. If G is not elementary, then there is an ETT T based on $T_{0} \in \mathcal{T}$ with m-rungs such that T is elementary and

$$
|T| \geq\left|T_{0}\right|-2+\min \left\{m+\left|\bar{\varphi}\left(V\left(T_{0}\right)\right)\right|, 2\left(\left|\Gamma^{f}\left(T_{0}\right)\right|-1\right)\right\}
$$

4 Proofs of Theorems 1.1 and 1.2

4.1 Proof of Theorem 1.1

Clearly, we only need to prove Theorem 1.1 for critical graphs.
Theorem 4.1. If G is a k-critical graph with $k \geq \Delta+\sqrt[3]{\Delta / 2}$, then G is elementary.

Proof. Suppose on the contrary that G is not elementary. By Corollary 3.1, let T be an ETT of a k-triple (G, e, φ) based on $T_{0} \in \mathcal{T}$ with m-rungs such that $V(T)$ is elementary and

$$
|T| \geq\left|T_{0}\right|-2+\min \left\{m+\left|\bar{\varphi}\left(V\left(T_{0}\right)\right)\right|, 2\left(\left|\Gamma^{f}\left(T_{0}\right)\right|-1\right)\right\}
$$

Since $m \geq 1$ and $\left|\bar{\varphi}\left(V\left(T_{0}\right)\right)\right| \geq(k-\Delta)\left|T_{0}\right|+2$, we have $\left|T_{0}\right|-2+m+\left|\bar{\varphi}\left(V\left(T_{0}\right)\right)\right| \geq(k-\Delta+1)\left|T_{0}\right|+1$. Following Scheide [14], we may assume that T_{0} is a balanced Tashkinov tree with height $h\left(T_{0}\right) \geq 5$. So, $\left|\varphi\left(E\left(T_{0}\right)\right)\right| \leq \frac{\left|T_{0}\right|-1}{2}$, which in turn gives

$$
\left|\Gamma^{f}\left(T_{0}\right)\right|=\left|\bar{\varphi}\left(V\left(T_{0}\right)\right)\right|-\left|\varphi\left(E\left(T_{0}\right)\right)\right| \geq\left(k-\Delta-\frac{1}{2}\right)\left|T_{0}\right|+\frac{5}{2}
$$

Hence

$$
\left|T_{0}\right|-2+2\left(\left|\Gamma^{f}\left(T_{0}\right)\right|-1\right) \geq 2(k-\Delta)\left|T_{0}\right|+1 \geq(k-\Delta+1)\left|T_{0}\right|+1
$$

Therefore, in any case, we have the following inequality

$$
\begin{equation*}
|T| \geq(k-\Delta+1)\left|T_{0}\right|+1 \tag{1}
\end{equation*}
$$

By Corollary 2.2, $\left|T_{0}\right| \geq 2(k-\Delta)+1$. Following (1), we get the inequality below.

$$
\begin{equation*}
|T| \geq(k-\Delta+1)(2(k-\Delta)+1)+1=2(k-\Delta)^{2}+3(k-\Delta)+2 \tag{2}
\end{equation*}
$$

Since T is elementary, we have $k \geq|\bar{\varphi}(V(T))| \geq(k-\Delta)|T|+2$. Plugging into (2), we get the following inequality.

$$
k \geq 2(k-\Delta)^{3}+3(k-\Delta)^{2}+2(k-\Delta)+2
$$

Solving the above inequality, we obtain that $k<\Delta+\sqrt[3]{\Delta / 2}$, giving a contradiction to $k \geq \Delta+$ $\lceil\sqrt[3]{\Delta / 2}\rceil$.

4.2 Proofs of Theorem 1.2 and Corollary 1.1

We will need the following observation from [17]. For completeness, we give its proof here.
Lemma 4.1. Let $s \geq 2$ be a positive integer and G be a k-critical graph with $k>\frac{s}{s-1} \Delta+\frac{s-3}{s-1}$. For any edge $e \in E(G)$, if $X \subseteq V(G)$ is an elementary set with respect to a coloring $\varphi \in \mathcal{C}^{k}(G-e)$ such that $V(e) \subseteq X$, then $|X| \leq s-1$.

Proof. Otherwise, assume $|X| \geq s$. Since X is elementary, $k \geq|\bar{\varphi}(X)| \geq(k-\Delta)|X|+2 \geq s(k-\Delta)+2$, which in turn gives

$$
\Delta \geq(s-1)(k-\Delta)+2>(\Delta+(s-3))+2=\Delta+s-1>\Delta
$$

a contradiction.
Clearly, to prove Theorem 1.2, it is sufficient to restrict our consideration to critical graphs.
Theorem 4.2. If G is a k-critical graph with $k>\frac{23}{22} \Delta+\frac{20}{22}$, then G is elementary.

Proof. Suppose, on the contrary, G is not elementary. By Corollary 3.1, let T be an ETT of a k-triple (G, e, φ) based on $T_{0} \in \mathcal{T}$ with m-rungs such that $V(T)$ is elementary and

$$
|T| \geq\left|T_{0}\right|-2+\min \left\{m+\left|\bar{\varphi}\left(V\left(T_{0}\right)\right)\right|, 2\left(\left|\Gamma^{f}\left(T_{0}\right)\right|-1\right)\right\}
$$

By Lemma 4.1, $|T| \leq 22$. We will show that $|T| \geq 23$ to lead a contradiction. By Lemma 2.4, we have $\left|T_{0}\right| \geq 11$. Since G is not elementary, $V\left(T_{0}\right)$ is not strongly closed, so $T \supsetneq T_{0}$. In particular, we have $m \geq 1$. Since $e \in E\left(T_{0}\right)$, we have $\left|\bar{\varphi}\left(V\left(T_{0}\right)\right)\right| \geq\left|T_{0}\right|+2$. Thus,

$$
\begin{equation*}
\left|T_{0}\right|-2+m+\left|\bar{\varphi}\left(V\left(T_{0}\right)\right)\right| \geq 2\left|T_{0}\right|+1 \geq 2 \times 11+1=23 \tag{3}
\end{equation*}
$$

Following Scheide [14], we may assume that T_{0} is a balanced Tashkinov tree with height $h\left(T_{0}\right) \geq 5$, which in turn gives $\left|\varphi\left(E\left(T_{0}\right)\right)\right| \leq\left(\left|T_{0}\right|-1\right) / 2$. So, $\left|\Gamma^{f}\left(T_{0}\right)\right| \geq\left|T_{0}\right|+2-\left(\left|T_{0}\right|-1\right) / 2 \geq\left(\left|T_{0}\right|+5\right) / 2$. Thus,

$$
\begin{equation*}
\left|T_{0}\right|-2+2\left(\left|\Gamma^{f}\left(T_{0}\right)\right|-1\right) \geq 2\left|T_{0}\right|+1 \geq 23 \tag{4}
\end{equation*}
$$

Combining (3) and (4), we get $|T| \geq 23$, giving a contradiction.
We now give a proof of Corollary 1.1 and recall that Corollary 1.1 is stated as follows.
Corollary 4.1. If G is a graph with $\Delta \leq 23$ or $|G| \leq 23$, then $\chi^{\prime} \leq \max \left\{\Delta+1,\left\lceil\chi_{f}^{\prime}\right\rceil\right\}$.

Proof. We assume that G is critical. Otherwise, we prove the corollary for a critical subgraph of G instead. If $\Delta \leq 23$, then $\left\lfloor\frac{23}{22} \Delta+\frac{20}{22}\right\rfloor=\left\lfloor\Delta+\frac{\Delta+20}{22}\right\rfloor \leq \Delta+1$. If $\chi^{\prime} \leq \Delta+1$, we are done. Otherwise, we assume that $\chi^{\prime} \geq \Delta+2 \geq \frac{23}{22} \Delta+\frac{20}{22}$. By Theorem 1.2, we have $\chi^{\prime}=\left\lceil\chi_{f}^{\prime}\right\rceil$.

Assume that $|G| \leq 23$. If $\chi^{\prime} \leq \Delta+1$, then we are done. Otherwise, $\chi^{\prime}=k+1$ for some integer $k \geq \Delta+1$. By Corollary 3.1, let T be an ETT of a k-triple (G, e, φ) based on $T_{0} \in \mathcal{T}$ with m-rungs such that $V(T)$ is elementary and

$$
|T| \geq\left|T_{0}\right|-2+\min \left\{m+\left|\bar{\varphi}\left(V\left(T_{0}\right)\right)\right|, 2\left(\left|\Gamma^{f}\left(T_{0}\right)\right|-1\right)\right\}
$$

By Lemma 2.4, we have $\left|T_{0}\right| \geq 11$. Suppose that G is not elementary, then $V\left(T_{0}\right)$ is not strongly closed, so $T \supsetneq T_{0}$. In particular, we have $m \geq 1$. Since $e \in E\left(T_{0}\right)$, we have $\left|\bar{\varphi}\left(V\left(T_{0}\right)\right)\right| \geq\left|T_{0}\right|+2$. Thus,

$$
\begin{equation*}
\left|T_{0}\right|-2+m+\left|\bar{\varphi}\left(V\left(T_{0}\right)\right)\right| \geq 2\left|T_{0}\right|+1 \geq 2 \times 11+1=23 \tag{5}
\end{equation*}
$$

Following Scheide [14], we may assume that T_{0} is a balanced Tashkinov tree with height $h\left(T_{0}\right) \geq 5$, which in turn gives $\left|\varphi\left(E\left(T_{0}\right)\right)\right| \leq\left(\left|T_{0}\right|-1\right) / 2$. So, $\left|\Gamma^{f}\left(T_{0}\right)\right| \geq\left|T_{0}\right|+2-\left(\left|T_{0}\right|-1\right) / 2 \geq\left(\left|T_{0}\right|+5\right) / 2$. Thus,

$$
\begin{equation*}
\left|T_{0}\right|-2+2\left(\left|\Gamma^{f}\left(T_{0}\right)\right|-1\right) \geq 2\left|T_{0}\right|+1 \geq 23 \tag{6}
\end{equation*}
$$

Combining (5) and (6), we get $|T| \geq 23$. Then $|G| \geq|T| \geq 23$. Therefore, $|G|=23$ and G is elementary, giving a contradiction.

5 Acknowledgement

We thank Guangming Jing for comments that greatly improved the manuscript.

References

[1] Lars Døvling Andersen. On edge-colourings of graphs. Math. Scand., 40(2):161-175, 1977.
[2] Guantao Chen, Xingxing Yu, and Wen'an Zang. Approximating the chromatic index of multigraphs. J. Comb. Optim., 21(2):219-246, 2011.
[3] Jack Edmonds. Maximum matching and a polyhedron with 0,1-vertices. J. Res. Nat. Bur. Standards Sect. B, 69B:125-130, 1965.
[4] Lene Monrad Favrholdt, Michael Stiebitz, and Bjarne Toft. Graph edge coloring: Vizing's theorem and goldberg's conjecture. Preprint DMF-2006-10-003, IMADA-PP-2006-20, University of Southern Demark, 2006.
[5] Mark K. Goldberg. On multigraphs of almost maximal chromatic class (russian). Discret. Analiz., 23:3-7, 1973.
[6] Mark K. Goldberg. Edge-coloring of multigraphs: recoloring technique. J. Graph Theory, 8(1):123-137, 1984.
[7] Ram Prakash Gupta. Studies in the Theory of Graphs. 1967. Thesis (Ph.D.)-Tata Institute of Fundamental Research, Bombay.
[8] Ian Holyer. The NP-completeness of edge-coloring. SIAM J. Comput., 10(4):718-720, 1981.
[9] Ivan Tafteberg Jakobsen. Some remarks on the chromatic index of a graph. Arch. Math. (Basel), 24:440-448, 1973.
[10] Jeff Kahn. Asymptotics of the chromatic index for multigraphs. J. Combin. Theory Ser. B, 68(2):233-254, 1996.
[11] Henry Andrew Kierstead. On the chromatic index of multigraphs without large triangles. J. Combin. Theory Ser. B, 36(2):156-160, 1984.
[12] Jessica McDonald. Edge-colourings. In L. W. Beineke and R.J. Wilson, editors, Topics in topological graph theory, pages 94-113. Cambridge University Press, 2015.
[13] Takao Nishizeki and Kenichi Kashiwagi. On the 1.1 edge-coloring of multigraphs. SIAM J. Discrete Math., 3(3):391-410, 1990.
[14] Diego Scheide. Graph edge colouring: Tashkinov trees and Goldberg's conjecture. J. Combin. Theory Ser. B, 100(1):68-96, 2010.
[15] Paul Seymour. On multicolourings of cubic graphs, and conjectures of Fulkerson and Tutte. Proc. London Math. Soc. (3), 38(3):423-460, 1979.
[16] Claude Elwood Shannon. A theorem on coloring the lines of a network. J. Math. Physics, 28:148-151, 1949.
[17] Michael Stiebitz, Diego Scheide, Bjarne Toft, and Lene Monrad Favrholdt. Graph edge coloring. Wiley Series in Discrete Mathematics and Optimization. John Wiley \& Sons, Inc., Hoboken, NJ, 2012. Vizing's theorem and Goldberg's conjecture, With a preface by Stiebitz and Toft.
[18] Vladimir Aleksandrovich Tashkinov. On an algorithm for the edge coloring of multigraphs. Diskretn. Anal. Issled. Oper. Ser. 1, 7(3):72-85, 100, 2000.
[19] Vadim Georgievich Vizing. On an estimate of the chromatic class of a p-graph. Diskret. Analiz No., 3:25-30, 1964.

