EXPLICIT BOUNDS FOR GRAPH MINORS

JIM GEELEN, TONY HUYNH, AND R. BRUCE RICHTER

Abstract

Let Σ be a surface with boundary $\operatorname{bd}(\Sigma), \mathcal{L}$ be a collection of k disjoint $\mathrm{bd}(\Sigma)$-paths in Σ, and P be a non-separating $\mathrm{bd}(\Sigma)$-path in Σ. We prove that there is a homeomorphism $\phi: \Sigma \rightarrow \Sigma$ that fixes each point of $\operatorname{bd}(\Sigma)$ and such that $\phi(\mathcal{L})$ meets P at most $2 k$ times.

With this theorem, we derive explicit constants in the graph minor algorithms of Robertson and Seymour [Graph minors. XIII. The disjoint paths problem. J. Combin. Theory Ser. B, 63(1):65-110, 1995]. We reprove a result concerning redundant vertices for graphs on surfaces, but with explicit bounds. That is, we prove that there exists a computable integer $t:=t(\Sigma, k)$ such that if v is a ' t-protected' vertex in a surface Σ, then v is redundant with respect to any k-linkage.

1. Introduction

In [12], Robertson and Seymour prove the remarkable theorem that every minorclosed property of graphs is characterized by a finite set of excluded minors.

Theorem 1.1. For every minor-closed class of graphs \mathcal{C}, there exists a finite set of graphs $\operatorname{ex}(\mathcal{C})$, such that a graph is in \mathcal{C} if and only if it does not contain a minor isomorphic to a member of $\operatorname{ex}(\mathcal{C})$.

Robertson and Seymour also prove an important algorithmic counterpart to this theorem in 10, 13.

Theorem 1.2. For any fixed graph H, there exists a polynomial-time algorithm to test if an input graph G contains a minor isomorphic to H.

Together, these two theorems imply that there exists a polynomial-time algorithm to test for membership in any minor-closed class of graphs. Of course, the existence of such an algorithm is highly non-constructive as ex (\mathcal{C}) is explicitly known for only a few minor-closed classes \mathcal{C}.

The running time of the algorithm from [10] depends on a function $t(k, \Sigma)$ for irrelevant vertices for k-linkage problems in a surface Σ. Robertson and Seymour clearly state that $t(k, \Sigma)$ is computable, but give no indication how to compute it. In the special case that Σ is the sphere, Adler, Kolliopoulos, Krause, Lokshtanov, Saurabh, and Thilikos [1] do obtain an explicit function (of k).

[^0]In addition, Kawarabayashi and Wollan 3 recently gave a simpler algorithm and shorter proof for the powerful graph minor decomposition theorem in [11. Their approach yields explicit constants for the decomposition algorithm, but again implicitly assumes that $t(k, \Sigma)$ is computable.
In this paper, we show that $t(k, \Sigma)$ is indeed computable, thereby obtaining explicit bounds for graph minors. Before stating our main theorems, we require a few definitions. In this work we use $\Sigma(a, b, c)$ to denote the surface that is the (2dimensional) sphere with a handles, b crosscaps, and c boundary components, which we call holes. We set $g(\Sigma(a, b, c)):=2 a+b$ and holes $(\Sigma(a, b, c))=c$.
A curve γ in a surface Σ is a continuous function $\gamma:[0,1] \rightarrow \Sigma$. A curve γ

- has ends $\gamma(0)$ and $\gamma(1)$;
- is a path if it is injective (or constant);
- is a simple closed curve if $\gamma(0)=\gamma(1)$ and is injective on $(0,1]$;
- is separating if $\Sigma-\gamma([0,1])$ is disconnected and non-separating otherwise. Let $X \subseteq \Sigma$.
- The boundary and interior of X will be denoted $\operatorname{bd}(X)$ and $\operatorname{int}(X)$, respectively.
- A path γ is an X-path if the ends of γ are in X, and γ is otherwise disjoint from X.

We now define linkages in graphs and in surfaces. A pattern Π in a graph G is a collection of pairwise disjoint subsets of $V(G)$, where each set in Π has size 1 or 2 .
Let $\Pi:=\left\{\left\{s_{i}, t_{i}\right\}: i \in[k]\right\}$ be a pattern in G (here $[k]:=\{1, \ldots, k\}$ and we allow $s_{i}=t_{i}$).

- The vertex set of Π is the set $V(\Pi):=\bigcup \Pi$.
- The size of Π is $|\Pi|=k$.
- A Π-linkage in G is a collection $\mathcal{L}:=\left\{L_{1}, \ldots, L_{k}\right\}$ of pairwise disjoint graph-theoretic paths of G where each L_{i} has ends s_{i} and t_{i}.
Note that if $s_{i}=t_{i}$, then L_{i} is necessarily the path consisting of just the single vertex s_{i}.
A vertex $v \in V(G)$ is redundant (with respect to Π), provided that $G-v$ has a Π-linkage if and only if G has a Π-linkage.
We use the same terminology for surfaces. A pattern Π in a surface Σ is a collection of pairwise disjoint subsets of $\operatorname{bd}(\Sigma)$, each of size 1 or 2 . Let $\Pi:=\left\{\left\{s_{i}, t_{i}\right\}: i \in[k]\right\}$ be a pattern in Σ. A topological Π-linkage is a collection $\mathcal{L}:=\left\{L_{1}, \ldots, L_{k}\right\}$ of disjoint $\mathrm{bd}(\Sigma)$-paths in Σ where each L_{i} has ends s_{i} and t_{i}. If Σ contains a Π linkage, we say that Π is topologically feasible.
Given two linkages \mathcal{L} and \mathcal{M} in a surface Σ, our goal is to perturb \mathcal{L} so that it no longer meets \mathcal{M} very often. We will only allow a certain kind of perturbation of \mathcal{L}, which we now define.

Definition 1.1. A homeomorphism $\phi: \Sigma \rightarrow \Sigma$ is called a bd-homeomorphism, if $\phi(x)=x$ for each $x \in \operatorname{bd}(\Sigma)$.

We are now prepared to state our first main theorem.

Theorem 1.3. Let Σ be a surface and let \mathcal{L} and \mathcal{M} be linkages in Σ of sizes k and n respectively. If $\mathcal{L} \cap \mathcal{M} \cap \mathrm{bd}(\Sigma)=\emptyset$ and $\Sigma-\mathcal{M}$ is connected, then there is a bd-homeomorphism $\phi: \Sigma \rightarrow \Sigma$ such that $|\phi(\mathcal{L}) \cap \mathcal{M}| \leq k\left(3^{n}-1\right)$.

The corresponding result for orientable surfaces (without boundary) was proven by Lickorish 4. Recently, Matoušek, Sedgwick, Tancer and Wagner (6] considered essentially the same problem. Using a different approach, they obtain a bound that is polynomial in the size of both linkages, while our bound is exponential in the size of one of the linkages (but linear in the other).

Our proof is shorter than the approach in [6], but as mentioned, yields different bounds. Nonetheless, Theorem 1.3 appears to be of independent interest. The motivation in [6] comes from an embedding problem involving 3-manifolds.

To state our second theorem, we need to define the notion of a protected vertex on a surface. Let G be a graph embedded in a surface Σ and let Π be a pattern in G.

A vertex $v \in V(G)$ is t-protected in Σ (with respect to Π) if

- there are t vertex disjoint cycles C_{1}, \ldots, C_{t} of G, bounding discs $\Delta_{1}, \ldots, \Delta_{t}$ in Σ with $v \in \Delta_{1} \subset \Delta_{2} \subset \cdots \subset \Delta_{t}$, and
- $V(\Pi)$ is disjoint from $\operatorname{int}\left(\Delta_{t}\right)$.

Theorem 1.4. There exists a computable integer $t:=t(\Sigma, k)$ such that for all surfaces Σ and all $k \in \mathbb{N}$, if G is a graph embedded in Σ, Π is a pattern of size k in G, and $v \in V(G)$ is a t-protected vertex in Σ with respect to Π, then v is redundant.

We let tower $\left(a_{1}, \ldots, a_{n}\right)$ be defined inductively as $\operatorname{tower}\left(a_{1}\right)=a_{1}$ and $\operatorname{tower}\left(a_{1}, \ldots, a_{n}\right)=\operatorname{tower}\left(a_{1}, \ldots, a_{n-1}\right)^{a_{n}}$. The proof of Theorem 1.4 shows that we may take $t(\Sigma, k)=$ tower $\left(100,200, \ldots, 100(4 k+3 g(\Sigma)), k 100^{4 k+3 g(\Sigma)}\right)$, although we have not attempted to optimize $t(\Sigma, k)$. Mazoit [7] has since simplified our proof of Theorem 1.4 showing that it suffices to take $t(\Sigma, k)=C^{k+g(\Sigma)}$, for some constant C.
The proofs of both of our main theorems do not rely on any of the results in the graph minors series.

The rest of the paper is organized as follows. Section 2 contains the proof of Theorem 1.3 In Section 4 we derive Theorem 1.4 as a corollary to a slightly different version. We end by proving the alternative version of Theorem 1.4 in Section 5

2. Bounding Intersection Numbers

In this section, we prove Theorem 1.3 Before starting the proof, we make a few more important definitions. Let Σ be a surface and X be a bd (Σ)-path or a simple closed curve in Σ disjoint from $\operatorname{bd}(\Sigma)$. We define $\Sigma s<X$ to be the surface(s) obtained from Σ by cutting out a small tubular neighbourhood $\epsilon(X)$ of X. If X is disjoint from some family of curves \mathcal{C} we are considering, we always assume that $\epsilon(X)$ is also disjoint from \mathcal{C}.
Definition 2.1. Let C be a simple closed curve in Σ disjoint from $\operatorname{bd}(\Sigma)$. We define C to be

- handle-enclosing, if a component of $\Sigma \ll C$ is homeomorphic to $\Sigma(1,0,1)$ (a torus with a hole),
- crosscap-enclosing, if a component of $\Sigma \propto C$ is homeomorphic to $\Sigma(0,1,1)$ (a Möbius band), and
- twisted handle-enclosing, if a component of $\Sigma \propto C$ is homeomorphic to $\Sigma(0,2,1)$ (a Klein bottle with a hole).
Definition 2.2. Two $\operatorname{bd}(\Sigma)$-paths P and P^{\prime} have the same type, denoted $P \sim P^{\prime}$, if there is a bd-homeomorphism ϕ of Σ such that $\phi(P)=P^{\prime}$.

Note that for any distinct $x, y \in \mathrm{bd}(\Sigma), \sim$ is an equivalence relation on the set of all $\mathrm{bd}(\Sigma)$-paths with ends x and y. The important thing to note is that there is only a finite number of types of $\mathrm{bd}(\Sigma)$-paths with ends x and y. This follows from the classification theorem for surfaces with holes.

Definition 2.3. The pseudotype of a $\operatorname{bd}(\Sigma)$-path P is the homeomorphism class of $\Sigma<P$.

We now introduce some convenient notation encoding pseudotypes of nonseparating $\operatorname{bd}(\Sigma)$-paths with ends on the same hole. Let P be such a path. We say that P is 1 -sided if $g(\Sigma<P)=g(\Sigma)-1$ and P is 2 -sided if $g(\Sigma s P)=g(\Sigma)-2$. We define P to be orientable if $\Sigma \propto P$ is orientable, and non-orientable otherwise. There are only four possible pseudotypes for P. These are determined by the number $i \in[2]$ of sides of P and whether or not $\Sigma \propto P$ is orientable. We use the symbols (i, \rightarrow) and (i, \nrightarrow) to denote that P has i sides and $\Sigma \propto P$ is or is not orientable, respectively.
The following four lemmas summarize the relevant topological facts connecting types and pseudotypes. They all follow by cutting along a curve of the prescribed pseudotype and applying the classification theorem for surfaces with boundary.
Lemma 2.1. For every orientable surface Σ, any two non-separating bd (Σ)-paths with the same ends have the same type.
Lemma 2.2. Let Σ be a non-orientable surface and let x and y be distinct points on the same hole of $\mathrm{bd}(\Sigma)$. If P and P^{\prime} are non-separating $\mathrm{bd}(\Sigma)$-paths with ends x and y, then P and P^{\prime} have the same type if and only if P and P^{\prime} have the same pseudotype.
Lemma 2.3. Let Σ be a non-orientable surface and let x and y be points on distinct holes H_{x} and H_{y} of $\operatorname{bd}(\Sigma)$. Let a and b be distinct points on $H_{x}-\{x\}$ and c and d be distinct points on $H_{y}-\{y\}$. Let P_{1} and P_{2} be $\operatorname{bd}(\Sigma)$-paths with ends x and y and let H_{i} be the hole in $\Sigma \ll P_{i}$ such that $\{a, b, c, d\} \subseteq H_{i}$. Then P_{1} and P_{2} have the same type if and only if $\{a, b, c, d\}$ has the same cyclic order in H_{1} and H_{2}.

The previous three lemmas completely describe when two non-separating paths are of the same type. The next lemma classifies types of separating paths.
Lemma 2.4. Let Σ be a surface, x and y be distinct points on the same hole H of $\operatorname{bd}(\Sigma)$, and P and P^{\prime} be separating $\operatorname{bd}(\Sigma)$-paths with ends x and y. Then P and P^{\prime} have the same type if and only if there exists an ordering Σ_{1}, Σ_{2} of the components of $\Sigma \propto P$ and an ordering $\Sigma_{1}^{\prime}, \Sigma_{2}^{\prime}$ of the components of $\Sigma<P^{\prime}$ so that for $i=1,2$, $\Sigma_{i} \cong \Sigma_{i}^{\prime}$ and $\Sigma_{i} \cap \mathrm{bd}(\Sigma)=\Sigma_{i}^{\prime} \cap \mathrm{bd}(\Sigma)$.

Definition 2.4. A path P in a surface Σ is contractible if P is a δ-path for some hole δ of Σ and some component of $\Sigma-P$ is an open disk.
Definition 2.5. Two $\operatorname{bd}(\Sigma)$-paths are homotopic if there is a homotopy between them that always has its endpoints on $\operatorname{bd}(\Sigma)$.

The final definition we require concerns intersection numbers of curves.
Definition 2.6. The geometric intersection of a $\mathrm{bd}(\Sigma)$-path P_{1} with a $\mathrm{bd}(\Sigma)$-path P_{2} is defined to be

$$
\#\left(P_{1}, P_{2}\right):=\min \left\{\left|P_{1} \cap P_{2}^{\prime}\right|: P_{2}^{\prime} \text { is of the same type as } P_{2}\right\}
$$

Note that for any two $\mathrm{bd}(\Sigma)$-paths P_{1} and P_{2}, we have $\#\left(P_{1}, P_{2}\right) \leq 2$ by the previous lemmas. Furthermore, in an orientable surface Σ, the type of a nonseparating $\operatorname{bd}(\Sigma)$-path is determined by its pseudotype. Therefore, the following lemma follows by an easy case analysis.

Lemma 2.5. If Σ is an orientable surface and P_{1} and P_{2} are non-separating bdpaths in Σ with $P_{1} \cap P_{2} \cap \mathrm{bd}(\Sigma)=\emptyset$, then $\#\left(P_{1}, P_{2}\right)=0$.

Now that the topological prerequisites are in place, we proceed to prove Theorem 1.3 . We first consider the special case that $|\mathcal{M}|=1$. Theorem 1.3 will then follow by induction.

Theorem 2.6. Let Σ be a surface and let P be a non-separating $\operatorname{bd}(\Sigma)$-path in Σ. For any linkage \mathcal{L} in Σ whose ends are disjoint from P, there is a bdhomeomorphism $\phi: \Sigma \rightarrow \Sigma$ such that each path of $\phi(\mathcal{L})$ intersects P at most twice.

Proof. We define an (\mathcal{L}, P)-shift to be a bd-homeomorphism $\phi: \Sigma \rightarrow \Sigma$ such that each path of $\phi(\mathcal{L})$ intersects P at most twice. Let (Σ, P, \mathcal{L}) be a counterexample with $(g(\Sigma)$, holes $(\Sigma),|\mathcal{L}|)$ lexicographically minimal.
We proceed by establishing a chain of claims. To begin, even though we only care about the theorem when P is non-separating, for inductive purposes it is helpful to note that it holds in the following special case when P is separating.

Claim 2.7. If P is contractible, then there is an (\mathcal{L}, P)-shift.
Subproof. There is an isotopy $\phi: \Sigma \rightarrow \Sigma$ (fixing each point of $\mathrm{bd}(\Sigma)$) that moves P sufficiently close to $\operatorname{bd}(\Sigma)$ so that each $L \in \mathcal{L}$ meets $\phi(P)$ only near an end of L. Therefore, $|\phi(P) \cap L| \leq 2$. In this case, ϕ^{-1} is an (\mathcal{L}, P)-shift.

Similarly, we have the following.
Claim 2.8. No $L \in \mathcal{L}$ is contractible.
Subproof. Suppose \mathcal{L} contains a contractible path. Since the paths in \mathcal{L} are disjoint, there must be a path $L \in \mathcal{L}$ such that one component of $\Sigma \& L$ is an open disk which is disjoint from \mathcal{L}. Consider $\mathcal{L}-L$ in Σ. By minimality, there exists an $(\mathcal{L}-L, P)$-shift ϕ. If $\phi(L)$ also meets P at most twice we are done. Next observe that $\Sigma s<\phi(L)$ has a component $\phi(\Delta)$ such that $\phi(\Delta)$ is an open disk disjoint from $\phi(\mathcal{L})$. Thus, we may apply an isotopy $\alpha: \Sigma \rightarrow \Sigma$ to shift L near $\operatorname{bd}(\Sigma)$ so that $\left|\phi\left(L^{\prime}\right) \cap P\right|=\left|\alpha \phi\left(L^{\prime}\right) \cap P\right|$ for all $L^{\prime} \in \mathcal{L}-L$ and $|\alpha \phi(L) \cap P| \leq 2$.

Claim 2.9. For all $L \in \mathcal{L}, \#(P, L) \neq 0$.
Subproof. Towards a contradiction, assume that $\#\left(P, L^{\prime}\right)=0$ for some $L^{\prime} \in \mathcal{L}$. Let $\phi: \Sigma \rightarrow \Sigma$ be a bd-homeomorphism such that $\phi\left(L^{\prime}\right)$ is disjoint from P. Let Σ^{\prime} be the component of $\Sigma s<\phi\left(L^{\prime}\right)$ that contains P (possibly $\Sigma^{\prime}=\Sigma s<\phi\left(L^{\prime}\right)$). Consider the linkage $\mathcal{L}^{\prime}:=\phi(\mathcal{L}-L) \cap \Sigma^{\prime}$. Since (Σ, P, \mathcal{L}) is a minimal counterexample, there exists an $\left(\mathcal{L}^{\prime}, P\right)$-shift $\alpha: \Sigma^{\prime} \rightarrow \Sigma^{\prime}$. Consider the map $\beta: \Sigma \rightarrow \Sigma$ defined by $\beta(x):=\alpha \phi(x)$ if $x \in \phi^{-1}\left(\Sigma^{\prime}\right)$ and $\beta(x):=\phi(x)$ otherwise. By construction, β is an (\mathcal{L}, P)-shift, which is a contradiction.

Claim 2.10. If $L \in \mathcal{L}$ is separating, then $\#(P, L)=2$.
Proof. Let $L^{\prime} \in \mathcal{L}$ be a separating curve and let Σ_{1} and Σ_{2} be the two components of $\Sigma \propto<L^{\prime}$. By the previous claim, we know that $\#\left(P, L^{\prime}\right) \neq 0$. Towards a contradiction, suppose that $\#\left(P, L^{\prime}\right)=1$. By Lemma 2.1] Lemma 2.2 or Lemma [2.3] we may choose a curve P^{\prime} of the same type as P such that $\left|P^{\prime} \cap L^{\prime}\right|=1$ and for $i \in\{1,2\}$, $P^{\prime} \cap \Sigma_{i}$ is either non-separating or contractible in Σ_{i}.
Let $\phi: \Sigma \rightarrow \Sigma$ be a bd-homeomorphism such that $\phi(P)=P^{\prime}$. Note that $\phi^{-1}\left(L^{\prime}\right)$ only intersects P once. Let Σ_{1}^{\prime} and Σ_{2}^{\prime} be the two components of $\Sigma<\phi^{-1}\left(L^{\prime}\right)$. By Claim 2.7 and induction, there are bd-homeomorphisms $\alpha_{i}: \Sigma_{i}^{\prime} \rightarrow \Sigma_{i}^{\prime}$ such that each path of $\alpha_{i}\left(\phi^{-1}(\mathcal{L}) \cap \Sigma_{i}^{\prime}\right)$ meets $P \cap \Sigma_{i}^{\prime}$ at most twice in Σ_{i}^{\prime}. Thus, by combining $\alpha_{1} \phi^{-1}$ and $\alpha_{2} \phi^{-1}$ appropriately, we obtain an (\mathcal{L}, P)-shift.
Claim 2.11. No path in \mathcal{L} intersects any hole that P intersects.
Subproof. Suppose not and let δ be a hole such that both P and \mathcal{L} meet δ. There must exist a path $L^{\prime} \in \mathcal{L}$ such that one end l of L^{\prime} and one end p of P^{\prime} are consecutive along δ. That is, there is a component of $\delta-\{l, p\}$ that is disjoint from $\mathcal{L} \cup P$. Note that $\#\left(P, L^{\prime}\right)=1$ if L^{\prime} is non-separating, and $\#\left(P, L^{\prime}\right)=2$ if L^{\prime} is separating. We will handle both possibilities simultaneously.
Let $\phi: \Sigma \rightarrow \Sigma$ be a bd-homeomorphism such that $\left|\phi\left(L^{\prime}\right) \cap P\right|=\#\left(P, L^{\prime}\right)$. Let Σ_{1} and Σ_{2} be the components of $\Sigma \propto<\phi\left(L^{\prime}\right)$ (we allow $\Sigma_{2}=\emptyset$, in case L^{\prime} is nonseparating). Consider $P \cap \Sigma_{1}$ and $P \cap \Sigma_{2}$. Relabelling Σ_{1} and Σ_{2} if necessary, we may assume that $P \cap \Sigma_{1}$ consists of two disjoint subpaths P_{1} and P_{1}^{\prime} of P and $P \cap \Sigma_{2}$ is a single (possibly empty) subpath P_{2} of P. Since l and p are consecutive along δ we may also assume that one component Δ of $\Sigma_{1}-P_{1}^{\prime}$ is a disk which is disjoint from $\phi(\mathcal{L})$.
As neither $\left(\Sigma_{1}, P_{1}, \phi\left(\mathcal{L} \cap \Sigma_{1}\right)\right)$ nor $\left(\Sigma_{2}, P_{2}, \phi\left(\mathcal{L} \cap \Sigma_{2}\right)\right)$ are counterexamples, there exist bd-homeomorphisms $\alpha_{i}: \Sigma_{i} \rightarrow \Sigma_{i}$ such that each path of $\alpha_{i}\left(\phi\left(\mathcal{L} \cap \Sigma_{i}\right)\right)$ meets P_{i} at most twice. Note that it is possible that $\alpha_{1}\left(\phi\left(\mathcal{L} \cap \Sigma_{1}\right)\right)$ intersects P_{1}^{\prime}. However, as Δ is disjoint from $\phi(\mathcal{L})$, there is an isotopy $\gamma: \Sigma_{1} \rightarrow \Sigma_{1}$ such that $\gamma \alpha_{1}\left(\phi\left(\mathcal{L} \cap \Sigma_{1}\right)\right)$ does not meet P_{1}^{\prime} and $\left|\gamma(L) \cap P_{1}\right|=\left|L \cap P_{1}\right|$ for all paths $L \in \alpha_{1}\left(\phi\left(\mathcal{L} \cap \Sigma_{1}\right)\right)$. If we now define $\beta: \Sigma \rightarrow \Sigma$ by

$$
\beta(x)= \begin{cases}\gamma \alpha_{1} \phi(x), & \text { if } x \in \phi^{-1}\left(\Sigma_{1}\right) \\ \alpha_{2} \phi(x), & \text { if } x \in \phi^{-1}\left(\Sigma_{2}\right) \\ \phi(x), & \text { otherwise }\end{cases}
$$

we contradict that (Σ, P, \mathcal{L}) is a counterexample.

Claim 2.12. Each $L \in \mathcal{L}$ is non-separating.

Proof. Suppose that $L \in \mathcal{L}$ is separating. By Claim 2.10 $\#(P, L)=2$. In particular, this implies that both ends of P are on the same hole δ. Let $\phi: \Sigma \rightarrow \Sigma$ be a bd-homeomorphism such that $|\phi(L) \cap P|=2$. Let Σ_{1} and Σ_{2} be the two components of $\Sigma>\phi(L)$. We may assume that $\Sigma_{1} \cap P$ consists of two disjoint subpaths P_{1} and P_{1}^{\prime} of P and $\Sigma_{2} \cap P$ is a single subpath P_{2} of P.
By Claim 2.11, δ is disjoint from \mathcal{L}. Therefore, by Lemma 2.4, we may assume that P_{1} and P_{1}^{\prime} connect different holes of Σ_{1} and that P_{1} and P_{1}^{\prime} are homotopic in Σ_{1}.
As neither $\left(\Sigma_{1}, P_{1}, \phi\left(\mathcal{L} \cap \Sigma_{1}\right)\right)$ nor $\left(\Sigma_{2}, P_{2}, \phi\left(\mathcal{L} \cap \Sigma_{2}\right)\right)$ are counterexamples, there exist bd-homeomorphisms $\alpha_{i}: \Sigma_{i} \rightarrow \Sigma_{i}$ such that each path of $\alpha_{1}\left(\phi\left(\mathcal{L} \cap \Sigma_{i}\right)\right.$ meets P_{i} at most twice. If $\alpha_{1}\left(\phi\left(\mathcal{L} \cap \Sigma_{1}\right)\right)$ intersects P_{1}^{\prime} at most twice, then we are done by combining α_{i} and ϕ appropriately. Otherwise, since P_{1} and P_{1}^{\prime} are homotopic in Σ_{1} and \mathcal{L} is disjoint from δ, there is a component Δ of $\Sigma_{1}-\left(P_{1} \cup P_{1}^{\prime}\right)$ that is an open disk disjoint from $\phi(\mathcal{L})$. Therefore, we are done by applying an appropriate isotopy of Σ_{1}.

Claim 2.13. Σ is non-orientable.

Subproof. Arbitrarily choose $L \in \mathcal{L}$. By the previous claim, L is non-separating. If Σ is orientable, then $\#(P, L)=0$, by Lemma 2.5. This contradicts Claim 2.9.

Claim 2.14. No member of $\mathcal{L} \cup\{P\}$ has endpoints on distinct holes of Σ.

Subproof. Arbitrarily choose $L \in \mathcal{L}$. By Claim 2.12 and Claim 2.11, L is nonseparating and neither end of L is on the same hole as an end of P. Therefore, if L or P has endpoints on distinct holes, then $\#(P, L)=0$, a contradiction.

We finish the proof by ruling out all four possibilities for the pseudotype of P. Let $\mathcal{L}:=\left\{L_{1}, \ldots, L_{n}\right\}$, let p_{1} and p_{2} be the ends of P, and let δ_{P} be the hole which contains $\left\{p_{1}, p_{2}\right\}$. By Claim 2.14, each L_{i} is also a δ_{i}-path for some hole δ_{i}. Also, by Claim 2.11, $\delta_{i} \neq \delta_{P}$ for any i.

Claim 2.15. P is not of pseudotype $(2, \nrightarrow)$.

Subproof. Suppose P is of pseudotype $(2, \nrightarrow)$. This implies that $\Sigma \cong \Sigma(0, i, j)$ for some $i \geq 3$. Let C be a separating curve such that one component Σ_{1} of $\Sigma s C$ is homemorphic to $\Sigma(1,0,2)$ and $P \subseteq \Sigma_{1}$. Let Σ_{2} be the other component of $\Sigma ء C$. Note that $\Sigma_{2} \cong \Sigma(0, i-2, j)$. We choose an arbitrary $L \in \mathcal{L}$ and show in every case that we get the contradiction $\#(P, L)=0$.

If L has pseudotype $(1, \rightarrow)$ or $(1, \nrightarrow)$, then there is a path of the same type as L contained in Σ_{2}, and hence disjoint from P. If L has pseudotype $(2, \rightarrow)$, then i is even and at least 4, so again there is a path of the same type as L contained in Σ_{2}. If L is of pseudotype $(2, \nrightarrow)$, then there is a path of the same type as L disjoint from P that meets C exactly twice.

Claim 2.16. P is not of pseudotype $(1, \rightarrow)$.

Subproof. If P is of pseudotype $(1, \rightarrow)$, then $\Sigma \cong \Sigma(i, 1, j)$, for some i, j. Consider an arbitrary $L \in \mathcal{L}$. Since $g(\Sigma)$ is odd, L is not of type $(2, \rightarrow)$. Observe that L cannot be of type $(2, \nrightarrow)$, as otherwise $g(\Sigma) \geq 3$ and $\#(P, L)=0$. Hence, each L_{k} is of pseudotype $(1, \rightarrow)$ or $(1, \nrightarrow)$.
Let $C_{0}, C_{1}, \ldots, C_{i}$ be disjoint closed curves in Σ such that C_{0} is a crosscap-enclosing curve and C_{1}, \ldots, C_{i} are pairwise non-homotopic handle-enclosing curves. Since each path in \mathcal{L} is of pseudotype $(1, \rightarrow)$ or $(1, \nrightarrow)$, each path in \mathcal{L} must intersect C_{0}. By applying an appropriate isotopy, we may assume that each L_{k} intersects C_{0} exactly twice. Thus, we may label the points of $C_{0} \cap \mathcal{L}$ as $x_{1}, x_{1}^{\prime}, \ldots, x_{n}, x_{n}^{\prime}$, where x_{k} and x_{k}^{\prime} are the ends of L_{k}, and the clockwise order of $C_{0} \cap \mathcal{L}$ along C_{0} is $x_{1}, \ldots, x_{n}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}$.
Since each L_{k} is non-separating, there is a path Q in Σ from p_{1} to a point $z \in C_{0}$ that avoids $L_{1} \cup \cdots \cup L_{n} \cup C_{0} \cup C_{1} \cup \cdots \cup C_{i}$ (other than the point z). Let Σ_{0} be the crosscap enclosed by C_{0}. By relabelling if necessary, we may assume that there is a point $z^{\prime} \in C_{0}$ such that the clockwise order of $\left\{z, z^{\prime}, x_{1}, \ldots, x_{n}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right\}$ along C_{0} is $z, x_{1}, \ldots, x_{n}, z^{\prime}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}$. Thus, there is a path R in Σ_{0} such that $R \cap C_{0}:=\left\{z, z^{\prime}\right\}$ and R is disjoint from \mathcal{L}.
We now define a path P^{\prime} with the same ends as P as follows.

- Start at p_{1} and follow Q until reaching z.
- Follow R until reaching z^{\prime}.
- Follow C_{0} clockwise until returning sufficiently close to z.
- Stay sufficiently close to Q until returning sufficiently close to p_{1}.
- Stay sufficiently close to δ_{P} until returning to p_{2}.

Since δ_{P} does not meet any L_{k}, we may choose P^{\prime} so that P^{\prime} meets each L_{k} exactly once. Moreover, we may also assume that P^{\prime} does not meet $C_{1} \cup \cdots \cup C_{i}$. Therefore, by construction, P^{\prime} is of pseudotype $(1, \rightarrow)$. By Lemma 2.2, P^{\prime} is of the same type as P, so we are done.

Claim 2.17. P is not of pseudotype $(1, \nrightarrow)$.
Subproof. Suppose not and consider an arbitrary $L \in \mathcal{L}$. Observe that $\#(P, L)=0$, unless L is of pseudotype $(1, \rightarrow)$ or $(2, \rightarrow)$. Therefore, each path in \mathcal{L} is of pseudotype $(1, \rightarrow)$ if $g(\Sigma)$ is odd, or each path in \mathcal{L} is of pseudotype $(2, \rightarrow)$ if $g(\Sigma)$ is even.
We handle the former possibility first. In this case Σ is homeomorphic to $\Sigma(0,2 i+1, j)$ for some i, j. Let $C_{0}, C_{1}, \ldots, C_{2 i}$ be pairwise disjoint non-homotopic crosscap-enclosing curves in Σ. Since each path in \mathcal{L} is of pseudotype $(1, \rightarrow)$, each path in \mathcal{L} must intersect C_{0}. By applying an appropriate isotopy, we may assume that each L_{k} intersects C_{0} exactly twice. Now as in the proof of Claim 2.16, we can construct a path of the same type as P which meets each curve in \mathcal{L} exactly once.

The remaining case is if each $L \in \mathcal{L}$ is of pseudotype $(2, \rightarrow)$, which implies that $\Sigma \cong \Sigma(i, 2, j)$ for some i, j. Let $C_{0}, C_{1}, \ldots, C_{i}$ be disjoint closed curves in Σ such that C_{0} is a twisted handle-enclosing curve and C_{1}, \ldots, C_{i} are pairwise nonhomotopic handle-enclosing curves. Observe that each path in \mathcal{L} must intersect C_{0}. By applying an appropriate isotopy, we may assume that each L_{k} intersects C_{0} exactly twice. Thus, we may label the points of $C_{0} \cap \mathcal{L}$ as $x_{1}, x_{1}^{\prime}, \ldots, x_{n}, x_{n}^{\prime}$,
where x_{k} and x_{k}^{\prime} are the ends of L_{k}, and the clockwise order of $C_{0} \cap \mathcal{L}$ along C_{0} is $x_{1}, \ldots, x_{n}, x_{n}^{\prime}, \ldots, x_{1}^{\prime}$. Let y and y^{\prime} be points of C_{0} such that the clockwise order of $\left\{y, y^{\prime}\right\} \cup\left(C_{0} \cap \mathcal{L}\right)$ along C_{0} is $x_{1}, \ldots, x_{n}, y, x_{n}^{\prime}, \ldots, x_{1}^{\prime}, y^{\prime}$.
In this case, we start at p_{1} until we get nearly to C_{0} at some point z; follow along C_{0} to y or y^{\prime}, go through the twisted handle, then back alongside C_{0} to near z, and finish as in Claim 2.16.

Claim 2.18. P is not of pseudotype $(2, \rightarrow)$.
Subproof. Suppose not and note $\Sigma \cong \Sigma(i, 2, j)$ for some $i \geq 0$. Observe that L cannot be of pseudotype $(2, \nrightarrow)$ or $(2, \rightarrow)$, otherwise $\#(P, L)=0$. Therefore, each L_{k} is of pseudotype $(1, \nrightarrow)$.

Let $C_{0}, C_{1}, \ldots, C_{i}$ be disjoint closed curves in Σ such that C_{0} is a twisted handleenclosing curve and C_{1}, \ldots, C_{i} are pairwise non-homotopic handle-enclosing curves. Since each path in \mathcal{L} is of pseudotype $(1, \nrightarrow), \mathcal{L}$ must intersect C_{0}. By applying an appropriate isotopy, we may assume that each L_{k} intersects C_{0} exactly twice. Note that some paths of \mathcal{L} go through one of the crosscaps enclosed by C_{0}, and the rest must go through the other crosscap enclosed by C_{0}. Thus, we may label the points of $C_{0} \cap \mathcal{L}$ as $x_{1}, x_{1}^{\prime}, \ldots, x_{n_{1}}, x_{n_{1}}^{\prime}, y_{1}, y_{1}^{\prime} \ldots, y_{n_{2}}, y_{n_{2}}^{\prime}$, where x_{k} and x_{k}^{\prime} are the ends of L_{k}, y_{k} and y_{k}^{\prime} are the ends of $L_{n_{1}+k}, n_{1}+n_{2}=n$, and the clockwise order of $C_{0} \cap \mathcal{L}$ along C_{0} is

$$
x_{1}, \ldots, x_{n_{1}}, x_{1}^{\prime}, \ldots, x_{n_{1}}^{\prime}, y_{1}, \ldots, y_{n_{2}}, y_{1}^{\prime}, \ldots, y_{n_{2}}^{\prime}
$$

Again there is a path from p_{1} to a point $z \in C_{0}$ that avoids $\mathcal{L} \cup C_{1} \cup \cdots \cup C_{i}$. By symmetry we may assume that z is on the clockwise segment of C_{0} from x_{1} to $x_{n_{1}}^{\prime}$. Now let w and w^{\prime} be points of C_{0} such that the clockwise order of $\left\{w, w^{\prime}\right\} \cup\left(\mathcal{L} \cap C_{0}\right)$ along C_{0} is

$$
x_{1}, \ldots, x_{n_{1}}, x_{1}^{\prime}, \ldots, x_{n_{1}}^{\prime}, w, y_{1}, \ldots, y_{n_{2}}, w^{\prime}, y_{1}^{\prime}, \ldots, y_{n_{2}}^{\prime}
$$

In this case, we start at p_{1} until we get nearly to C_{0} at z; go through one of the crosscaps enclosed by C_{0}, then alongside C_{0} to w or w^{\prime}, then through the other crosscap enclosed by C_{0}, then back alongside C_{0} until returning to near z, and finish as in Claim 2.16.

This completes the entire proof.
A simple induction yields Theorem 1.3 which is the form we will use later.
Theorem 1.3. Let Σ be a surface and let \mathcal{L} and \mathcal{M} be linkages in Σ of sizes k and n respectively. If $\mathcal{L} \cap \mathcal{M} \cap \mathrm{bd}(\Sigma)=\emptyset$ and $\Sigma-\mathcal{M}$ is connected, then there is a bd-homeomorphism $\phi: \Sigma \rightarrow \Sigma$ such that $|\phi(\mathcal{L}) \cap \mathcal{M}| \leq k\left(3^{n}-1\right)$.

Proof. We proceed by induction on n. The case $n=1$ follows by the previous theorem. Let $P \in \mathcal{M}$. By the previous theorem, there is a bd-homeomorphism $\phi_{1}: \Sigma \rightarrow \Sigma$ such that each path of $\phi_{1}(\mathcal{L})$ intersects P at most twice. Let Σ^{\prime} and \mathcal{L}^{\prime} be the surface and linkage obtained from Σ and $\phi_{1}(\mathcal{L})$ by cutting out a small tubular neighbourhood of P. Thus, \mathcal{L}^{\prime} is a linkage in Σ^{\prime} of size at most $3 k$. By induction, there is a bd-homeomorphism $\phi_{2}: \Sigma^{\prime} \rightarrow \Sigma^{\prime}$ such that $\left|\phi_{2}\left(\mathcal{L}^{\prime}\right) \cap(\mathcal{M} \backslash\{P\})\right| \leq(3 k)\left(3^{n-1}-1\right)$. Thus, there is a bd-homeomorphism $\phi: \Sigma \rightarrow \Sigma$ such that $|\phi(\mathcal{L}) \cap \mathcal{M}| \leq(3 k)\left(3^{n-1}-1\right)+2 k=k\left(3^{n}-1\right)$.

We conjecture that Theorem 1.3 holds without the assumption that $\Sigma-\mathcal{M}$ is connected.

Conjecture 2.19. Let Σ be a surface and let \mathcal{L} and \mathcal{M} be linkages in Σ of sizes k and n respectively. If $\mathcal{L} \cap \mathcal{M} \cap \mathrm{bd}(\Sigma)=\emptyset$, then there is a bd-homeomorphism $\phi: \Sigma \rightarrow \Sigma$ such that $|\phi(\mathcal{L}) \cap \mathcal{M}| \leq k\left(3^{n}-1\right)$.

We end the section by connecting Theorem 1.3 to a constant $w(\Sigma, k, n)$ that appears in Graph Minors VII 9]. A near-linkage in a surface Σ is a collection of internally disjoint $\operatorname{bd}(\Sigma)$-paths. If Σ is a cylinder, then a small subset of the proofs of Theorems 2.6 and 1.3 yields the following.

Theorem 2.20. Let \mathcal{L} be a near-linkage of size k and \mathcal{M} be a linkage of size n in a cylinder Σ. Then there is a bd-homeomorphism $\phi: \Sigma \rightarrow \Sigma$ such that $|\phi(\mathcal{L}) \cap \mathcal{M}| \leq k\left(3^{n}-1\right)$.

Note that in the cylinder, we do not require the hypotheses $\mathcal{L} \cap \mathcal{M} \cap b d(\Sigma)=\emptyset$ nor $\Sigma-\mathcal{M}$ connected. The latter follows easily since every separating bd-path P in the cylinder is contractible, and we know that Theorem 2.6 holds if P is contractible. We now extend Theorem 1.3 to the case that \mathcal{L} is a near-linkage.

Theorem 2.21. Let Σ be a surface, \mathcal{L} be a near-linkage of size k in Σ, and \mathcal{M} be a linkage of size n in Σ. If $\Sigma-\mathcal{M}$ is connected, then there is a bd-homeomorphism $\phi: \Sigma \rightarrow \Sigma$ such that $|\phi(\mathcal{L}) \cap \mathcal{M}| \leq k 3^{2 n+1}$.

Proof. Let $\Sigma^{\prime}, \mathcal{L}^{\prime}$, and \mathcal{M}^{\prime} be obtained from Σ, \mathcal{L}, and \mathcal{M} by cutting a slightly larger hole δ_{i}^{\prime} around each hole δ_{i} of Σ. We may assume that each $P \in \mathcal{L} \cup \mathcal{M}$ meets each δ_{i}^{\prime} at most twice and that $\mathcal{L} \cap \mathcal{M} \cap \delta_{i}^{\prime}=\emptyset$. By Theorem 1.3, there is a bd-homeomorphism $\phi^{\prime}: \Sigma^{\prime} \rightarrow \Sigma^{\prime}$ such that $\left|\phi^{\prime}\left(\mathcal{L}^{\prime}\right) \cap \mathcal{M}^{\prime}\right| \leq k\left(3^{n}-1\right)$.
For each hole δ_{i} we let Σ_{i} be the cylinder between δ_{i}^{\prime} and δ_{i}. Let $\mathcal{L}_{i}=\mathcal{L} \cap \Sigma_{i}$ and $\mathcal{M}_{i}=\mathcal{M} \cap \Sigma_{i}$. Note that $\bigcup_{i}\left|\mathcal{L}_{i}\right| \leq 2 k$ and $\bigcup_{i}\left|\mathcal{M}_{i}\right| \leq 2 n$. By applying Theorem 2.20 to each \mathcal{L}_{i} and \mathcal{M}_{i} in Σ_{i}, and then extending ϕ^{\prime} accordingly, there is a bdhomeomorphism $\phi: \Sigma \rightarrow \Sigma$ such that $|\phi(\mathcal{L}) \cap \mathcal{M}| \leq k\left(3^{n}-1\right)+2 k\left(3^{2 n}-1\right) \leq$ $k 3^{2 n+1}$.

We now further extend Theorem 1.3 to bound the intersection number between a forest and a linkage. Let F_{1} and F_{2} be two forests embedded in Σ. Robertson and Seymour [9 define F_{1} and F_{2} to be homotopic if

- $V\left(F_{1}\right) \cap \mathrm{bd}(\Sigma)=V\left(F_{2}\right) \cap \mathrm{bd}(\Sigma)$,
- for all $s, t \in V\left(F_{1}\right) \cap \mathrm{bd}(\Sigma)$, there is a path from s to t in F_{1} if and only if there is a path from s to t in F_{2}, and
- for all $s, t \in V\left(F_{1}\right) \cap \mathrm{bd}(\Sigma)$, the s - t path in F_{1} (if it exists) is homotopic to the s - t path in F_{2} (if it exists).

Two forests F_{1} and F_{2} are homoplastic if there is a bd-homeomorphism ϕ such that $\phi\left(F_{1}\right)$ is homotopic to F_{2}.

Theorem 2.22. For all $k, n \in \mathbb{N}$ and all surfaces Σ, if F is a forest in Σ with $|V(F) \cap \mathrm{bd}(\Sigma)| \leq k, \mathcal{M}$ is an n-linkage in Σ, and $\Sigma-\mathcal{M}$ is connected, then there is a forest F^{\prime} in Σ such that F^{\prime} is homoplastic to F and $\left|F^{\prime} \cap \mathcal{M}\right| \leq 4 k\left(3^{2 n+1}\right)$.

Proof. Let (Σ, \mathcal{M}, F) be a counterexample with $|V(F)|$ minimum. Since $|V(F)|$ is minimum, all degree 2 vertices of F must be on $\operatorname{bd}(\Sigma)$. Next suppose there is an edge $x y \in E(F)$ such that x has degree 1 in F, and $x \notin \mathrm{bd}(\Sigma)$. Note that contracting e produces a smaller counterexample. Thus, all leaf vertices of F are on $\operatorname{bd}(\Sigma)$. Let $V_{\geq 3}$ be the vertices of F of degree at least $3, V_{1}$ be the leaves of F, and X be the vertices of F not contained on $\operatorname{bd}(\Sigma)$. Since $X \subseteq V_{\geq 3}$ and all leaves of F are on $\operatorname{bd}(\Sigma)$ we have

$$
\sum_{v \in X} d_{F}(v) \leq \sum_{v \in V_{\geq 3}} d_{F}(v)<3\left|V_{1}\right| \leq 3|V(F) \cap \mathrm{bd}(\Sigma)|,
$$

where the second to last inequality follows since a forest has average degree less than 2.

By applying an isotopy we may assume that \mathcal{M} is disjoint from X. For each $x \in X$, let Δ_{x} be a small open disk such that Δ_{x} is disjoint from \mathcal{M}. Let $\Sigma^{\prime}:=\Sigma-\bigcup_{x \in X} \Delta_{x}$. We transform F into a near-linkage $\mathcal{L}(F)$ on Σ^{\prime} as follows. For each $x \in X$, we split x into $d_{F}(x)$ copies on Δ_{x} according to the clockwise order of the edges around x in F. Let \mathcal{M}^{\prime} be the image of \mathcal{M} in Σ^{\prime}. Now apply Corollary 2.21 to $\mathcal{L}(F)$ and \mathcal{M}^{\prime} in Σ^{\prime}. Since $\sum_{v \in X} d_{F}(v) \leq 3|V(F) \cap \operatorname{bd}(\Sigma)|$, it follows that $|V(\mathcal{L}(F))| \leq 4|V(F) \cap \mathrm{bd}(\Sigma)|$. Therefore, there is a bd-homeomorphism $\phi^{\prime}: \Sigma^{\prime} \rightarrow \Sigma^{\prime}$ such that $\left|\phi^{\prime}(\mathcal{L}(F)) \cap \mathcal{M}^{\prime}\right| \leq 4 k\left(3^{2 n+1}\right)$. By gluing back each Δ_{x} and then contracting each Δ_{x} to a point, we obtain a forest F^{\prime} in Σ such that $\left|F^{\prime} \cap \mathcal{M}\right| \leq 4 k\left(3^{2 n+1}\right)$ and F^{\prime} is homoplastic to F.

Theorem 2.22 is essentially a computable version of [9, (3.6)], with an explicit value for the constant $w(\Sigma, k, n)$. Unfortunately, we have the additional hypothesis that $\Sigma-\mathcal{M}$ is connected. In the last paragraph of [10, it is stated, without proof, that $w(\Sigma, k, n)$ from [9] is computable. Note that the bound $4 k\left(3^{2 n+1}\right)$ in Theorem 2.22 is independent of Σ. We conjecture we should also be able to take $w(\Sigma, k, n)=4 k\left(3^{2 n+1}\right)$, which would follow from Conjecture 2.19. However, it is important to point out that our proof of Theorem 1.4 does not rely on the fact that $w(\Sigma, k, n)$ is computable. We will derive Theorem 1.4 from Theorem 1.3 .

3. Linkages on a Cylinder

The purpose of this section is to establish two lemmas regarding linkages on a cylinder. Both these lemmas will be used in the proof of Theorem 1.4.

It is convenient for us to describe our first lemma in terms of independence in a certain matroid, which we now define. In general, if V_{1} and V_{2} are sets of vertices in a graph G, then, for each $A \subseteq V_{1}$, the maximum number of disjoint $A-V_{2}$ paths in G is the rank function of a matroid on V_{1}. We denote the rank function of this matroid as $\kappa_{V_{1}, V_{2}}$.

We will later apply Edmonds' Matroid Intersection Theorem [2] to two copies of this matroid. No other knowledge of matroid theory is required, but the interested reader may refer to Oxley [8].
Our first lemma is a technical assertion about when we can route paths across a cylinder given the presence of many other paths.

Lemma 3.1. Let G be a graph embedded on a cylinder Σ with holes δ_{1} and δ_{2}. Let $V_{1}:=V(G) \cap \delta_{1}, V_{2}:=V(G) \cap \delta_{2}$, and M be the matroid on V_{1} with rank function $\kappa_{V_{1}, V_{2}}$. Let $A_{1}, B_{1}, A_{2}, B_{2}, \ldots, A_{n}, B_{n}$ be a cyclically contiguous partition of V_{1}. If for all $i \in[n], A_{i}$ is M-independent and $r_{M}\left(B_{i}\right) \geq 2 \sum_{j=1}^{n}\left|A_{j}\right|$, then $\bigcup_{j=1}^{n} A_{j}$ is M-independent.

Proof. By hypothesis, for each $i \in[n]$, there exists a collection \mathcal{A}_{i} of $\left|A_{i}\right|$ disjoint $A_{i}-V_{2}$ paths. If the paths in $\mathcal{A}:=\bigcup_{i=1}^{n} \mathcal{A}_{i}$ are disjoint, we are done. Otherwise, let $B:=\bigcup_{i=1}^{n} B_{i}$. Since $r_{M}\left(B_{i}\right) \geq 2 \sum_{j=1}^{n}\left|A_{j}\right|$ for each i, by iteratively augmenting M-independent sets, there exists a collection \mathcal{B} of disjoint $B-V_{2}$ paths such that

- $|\mathcal{B}|=2 \sum_{i=1}^{n}\left|A_{i}\right|$, and
- For each i, \mathcal{B} contains exactly $\left|A_{i}\right|+\left|A_{i+1}\right|$ paths with an endpoint in B_{i} (indices are read modulo n).

The idea is to use the paths in \mathcal{B} to reroute the paths in \mathcal{A}. Let \mathcal{B}_{i} be the paths in \mathcal{B} with an endpoint in B_{i} and let $m_{i}:=\left|A_{i}\right|$.

Label the paths of \mathcal{A}_{1} as $P_{1}, \ldots, P_{m_{1}}$ clockwise. Label the paths of \mathcal{B}_{1} as $R_{1}, \ldots, R_{m_{1}+m_{2}}$ clockwise. Label the paths of \mathcal{B}_{n} as $Q_{1}, \ldots, Q_{m_{n}+m_{1}}$ counterclockwise. For walks P and Q that intersect, the product of P with Q is the walk $P Q:=P x Q$, where x is the first vertex of P also in Q. By convention, if P and Q are disjoint $A-V_{2}$ paths, the region between P and Q is the (closed) clockwise region in Σ from P to Q.

We will reroute the paths in \mathcal{A}_{1} so that they are between $Q_{m_{1}}$ and $R_{m_{1}}$. Suppose that some path of \mathcal{A}_{1} is not between $Q_{m_{1}}$ and $R_{m_{1}}$. The crux of the proof is the following claim.

Claim 3.2. Either

- $P_{1} \cap Q_{m_{1}} \neq \emptyset$ and $P_{1} Q_{m_{1}} \cap R_{m_{1}}=\emptyset$, or
- $P_{m_{1}} \cap R_{m_{1}} \neq \emptyset$ and $P_{m_{1}} R_{m_{1}} \cap Q_{m_{1}}=\emptyset$.

Subproof. If P_{1} and $P_{m_{1}}$ are both between $Q_{m_{1}}$ and $R_{m_{1}}$, then by planarity, all paths of \mathcal{A}_{1} would also be, which is a contradiction. So certainly, P_{1} or $P_{m_{1}}$ must intersect $Q_{m_{1}}$ or $R_{m_{1}}$. By symmetry let us assume P_{1} intersects $Q_{m_{1}}$ or $R_{m_{1}}$. Suppose P_{1} intersects $Q_{m_{1}}$. Then we are done unless

$$
P_{1} Q_{m_{1}} \cap R_{m_{1}} \neq \emptyset
$$

However, this implies that P_{1} also intersects $R_{m_{1}}$, and that in fact P_{1} intersects $R_{m_{1}}$ before $Q_{m_{1}}$. It follows that $P_{m_{1}} \cap R_{m_{1}} \neq \emptyset$ and $P_{m_{1}} R_{m_{1}} \cap Q_{m_{1}}=\emptyset$, as required.

The remaining case is that P_{1} intersects $R_{m_{1}}$, but not $Q_{m_{1}}$. Again we have $P_{m_{1}} \cap R_{m_{1}} \neq \emptyset$ and $P_{m_{1}} R_{m_{1}} \cap Q_{m_{1}}=\emptyset$.

So all paths of \mathcal{A}_{1} are indeed between $Q_{m_{1}}$ and $R_{m_{1}}$ unless

- $P_{1} \cap Q_{m_{1}} \neq \emptyset$ and $P_{1} Q_{m_{1}} \cap R_{m_{1}}=\emptyset$, or
- $P_{m_{1}} \cap R_{m_{1}} \neq \emptyset$ and $P_{m_{1}} R_{m_{1}} \cap Q_{m_{1}}=\emptyset$.

By symmetry, we may assume $P_{1} \cap Q_{m_{1}} \neq \emptyset$ and $P_{1} Q_{m_{1}} \cap R_{m_{1}}=\emptyset$. We replace P_{1} by $P_{1} Q_{m_{1}}$. Now, if $P_{2}, \ldots, P_{m_{1}}$ are all between $Q_{m_{1}-1}$ and $R_{m_{1}}$ then we are done. Otherwise, by the above claim

- $P_{2} \cap Q_{m_{1}-1} \neq \emptyset$ and $P_{2} Q_{m_{1}-1} \cap R_{m_{1}}=\emptyset$, or
- $P_{m_{1}} \cap R_{m_{1}} \neq \emptyset$ and $P_{m_{1}} R_{m_{1}} \cap Q_{m_{1}-1}=\emptyset$.

In the former, we replace P_{2} by $P_{2} Q_{m_{1}-1}$. In the latter, we replace $P_{m_{1}}$ by $P_{m_{1}} R_{m_{1}}$. Note that in both cases the rerouted path is disjoint from $P_{1} Q_{m_{1}}$. Therefore, we can continue re-routing inductively, until all paths in \mathcal{A}_{1} are between $Q_{m_{1}}$ and $R_{m_{1}}$.

By repeating the above argument, for each $i \in[n]$ we obtain a family \mathcal{A}_{i}^{\prime} of disjoint $A_{i}-V_{2}$ paths such that, for all i,

- $\left|\mathcal{A}_{i}^{\prime}\right|=\left|A_{i}\right|$, and
- The paths in \mathcal{A}_{i}^{\prime} intersect at most $\left|A_{i}\right|$ paths of \mathcal{B}_{i} and at most $\left|A_{i}\right|$ paths of \mathcal{B}_{i-1}.

It immediately follows that the family $\mathcal{A}^{\prime}:=\bigcup_{i=1}^{n} \mathcal{A}_{i}^{\prime}$ is disjoint, since $\left|\mathcal{B}_{i}\right| \geq$ $\left|A_{i}\right|+\left|A_{i+1}\right|$ for each i.

We end this section by proving a lemma for linkages in cylindrical grids. Let C_{m} be a cycle of length m and P_{n} be a path with n vertices. The (m, n)-cylindrical grid is the Cartesian product $C_{m} \square P_{n}$. The two cycles of length m in $C_{m} \square P_{n}$ that pass through only degree 3 vertices are called the boundary cycles.

Suppose that the vertices of a pattern Π are contained in a cyclically ordered set (such as a cycle in a graph). We say that Π is cross-free, if there do not exist distinct $a, b, c, d \in V(\Pi)$ such that $\{a, b\},\{c, d\} \in \Pi$ and the cyclic ordering of $\{a, b, c, d\}$ is a, c, b, d or a, d, b, c. Note that a pattern on a disk is topologically feasible if and only if it is cross-free.

Our second lemma gives sufficient conditions for finding linkages in cylindrical grids.
Lemma 3.3. Let G be a (m, n)-cylindrical grid and let Π be a pattern of size k with $V(\Pi)$ contained in a boundary cycle of G. If Π is cross-free and $n \geq k$, then Π is realizable in G.

Proof. If Π contains a singleton $\{s\}$, then we can delete s from G and contract the remaining vertices of Π one step into the cylinder. The resulting graph has a $C_{m-1} \square P_{n-1}$ minor with $V(\Pi)-\{s\}$ still contained in one of the boundary cycles. By induction on k, we are done.

Otherwise, since Π is cross-free, we can find an element $\{s, t\} \in \Pi$ and an s - t path P of a boundary cycle such that no internal vertex of P is in $V(\Pi)$. We delete the ends of P and contract the other vertices of Π one step into the cylinder. The resulting graph has a $C_{m-2} \square P_{n-1}$ minor with $V(\Pi)-\{s, t\}$ still contained in one of the boundary cycles. By induction, we can realize $\Pi-\{\{s, t\}\}$ in $G-\{s, t\}$, and hence we can realize Π in G.

4. Redundant Vertices on Surfaces

In this section we prove Theorem 1.4 Let G be a graph embedded in a surface Σ and let Π be a pattern in G. Recall that a vertex $v \in V(G)$ is t-protected in Σ (with respect to Π) if

- there are t vertex disjoint cycles C_{1}, \ldots, C_{t} of G, bounding discs $\Delta_{1}, \ldots, \Delta_{t}$ in Σ with $v \in \Delta_{1} \subset \Delta_{2} \subset \cdots \subset \Delta_{t}$, and
- $V(\Pi)$ is disjoint from $\operatorname{int}\left(\Delta_{t}\right)$.

We refer to C_{1}, \ldots, C_{t} as the cycles protecting v.
To apply induction, it turns out to be useful to work with a special kind of surface. To this end, we introduce a 'disk with strips'.
A strip S is a homeomorph of $[0,1] \times[0,10]$. The:

- ends of S are the images of $[0,1] \times\{0\}$ and $[0,1] \times\{10\}$;
- equator of S is the image of $[0,1] \times\{5\}$;
- corners of S are images of $(0,0),(0,10),(1,0)$, and $(1,10)$.

A disk with n strips is a surface $\Omega:=\Delta \cup S_{1} \cup \cdots \cup S_{n}$, where Δ is a disk and for all distinct $i, j \in[n]$,

- S_{i} is a strip.
- $S_{i} \cap \Delta$ is the union of the ends of S_{i}.
- S_{i} and S_{j} are disjoint, except possibly at corners.

For example, up to homeomorphism, the only disks with 1 strip are the cylinder and the Möbius band. If $\Omega=\Delta \cup S_{1} \cup \cdots \cup S_{n}$ is a disk with n strips, then we say S_{1}, \ldots, S_{n} are the strips of Ω and that $\Delta(\Omega):=\Delta$ is the disk of Ω.
Let Ω be a disk with strips, G be a graph embedded in Ω, and Π be a pattern in G. We say that a vertex $v \in V(G)$ is t-insulated in Ω (with respect to Π) if:

- there are t vertex disjoint cycles C_{1}, \ldots, C_{t} of G, bounding discs $\Delta_{1}, \ldots, \Delta_{t}$ in $\Delta(\Omega)$ with $v \in \Delta_{1} \subset \Delta_{2} \subset \cdots \subset \Delta_{t}=\Delta(\Omega) ;$
- $V(\Pi)$ is disjoint from $\operatorname{int}\left(\Delta_{t}\right)$; and
- each C_{i} is an induced subgraph of $G \cap \Delta(\Omega)$.

In particular, if we regard Ω as a surface, then a t-insulated vertex is a t-protected vertex, but not necessarily vice versa.
We prove Theorem 1.4 as a corollary of the following theorem.
Theorem 4.1. For all $k, n \in \mathbb{N}$, there exists a computable constant $\theta:=\theta(k, n) \in \mathbb{N}$ such that if G is a graph embedded in a disk with n strips Ω, Π is a pattern in G of size $k, v \in V(G)$ is a $\theta(k, n)$-insulated vertex in $\Delta(\Omega)$ with respect to Π, and $V(\Pi) \subseteq \mathrm{bd}(\Omega) \cap \Delta(\Omega)$, then v is redundant.

We also require the following easy lemma which follows from Euler's Formula. See [5. Proposition 3.6] for a proof.

Lemma 4.2. Let \mathcal{C} be a family of non-contractible simple closed curves in a surface Σ. If, for all $C_{1}, C_{2} \in \mathcal{C}, C_{1} \cap C_{2}=\{b\}$ and the curves in \mathcal{C} are pairwise nonhomotopic (relative to the fixed basepoint b), then $|\mathcal{C}| \leq 3 g(\Sigma)$.

The proof of Theorem 4.1 is rather lengthy, so we defer it until the next section. It is however, relatively straightforward to derive Theorem 1.4 from Theorem 4.1 which we now proceed to do.
Theorem 1.4, For all surfaces without boundary Σ and all $k \in \mathbb{N}$, there exists a computable constant $t:=t(\Sigma, k) \in \mathbb{N}$ such that if G is a graph embedded in Σ, Π is a k-pattern in G, and $v \in V(G)$ is a t-protected vertex in Σ with respect to Π, then v is redundant.

Proof. For all surfaces without boundary Σ and all $k \in \mathbb{N}$, define $t(\Sigma, k)$ to be $\theta(k, 4 k+3 g(\Sigma))$, where θ is the function from Theorem 4.1. We will define θ explicitly in the proof of Theorem 4.1, so t is also explicit.
Let (G, Σ, Π, v) be a counterexample with $|V(G)|+|E(G)|$ minimal. That is, G is a graph embedded in a surface Σ, Π is a pattern of size k in G, and $v \in V(G)$ is a t-protected $(t:=t(\Sigma, k))$ vertex in Σ with respect to Π, yet v is essential.

Let C_{1}, \ldots, C_{t} be cycles protecting v, bounding disks $\Delta_{1} \subset \cdots \subset \Delta_{t}$ in Σ such that $\sum_{i \in[t]}\left|V\left(C_{i}\right)\right|$ is minimum. Let \mathcal{L} be a Π-linkage in G, and let $H=C_{1} \cup \cdots \cup C_{t}$.

Claim 4.3. $V(G)=V(H)$.
Subproof. Suppose not. First note that $V(\mathcal{L}) \cup V(H)=V(G)$, otherwise we could delete a vertex of G not in $V(\mathcal{L}) \cup V(H)$ to obtain a smaller counterexample. Next observe that if $e=x y \in E(\mathcal{L})$ and $y \notin V(H)$, then we can contract e onto x to obtain a smaller counterexample.

Observe that the claim implies that $V(\Pi) \subseteq V\left(C_{t}\right)$.
Claim 4.4. Each C_{i} is an induced subgraph of $G \cap \Delta_{t}$.
Subproof. Towards a contradiction, suppose that $e \subseteq \Delta_{t}, e \notin E(H)$, and e has both of its ends on C_{j} for some $j \in[t]$. Note that by minimality, G is simple. So, there is a cycle $C_{j}^{\prime} \subseteq C_{j} \cup e$ with length strictly less than C_{j}. Replacing C_{j} by C_{j}^{\prime} contradicts that $\sum_{i \in[t]}\left|V\left(C_{i}\right)\right|$ is minimum.

We now consider edges e of G not contained in Δ_{t}. We say that such an edge e is contractible if e and a subpath of C_{t} bounds a disk in Σ. Otherwise, e is noncontractible. We say that two paths in Σ are homotopic (relative to $\operatorname{bd}\left(\Delta_{t}\right)$) if there is a homotopy between them that always has its endpoints on $\operatorname{bd}\left(\Delta_{t}\right)$.

Claim 4.5. There are at most $2 k$ homotopy classes of contractible edges.
Subproof. For each contractible edge e, let P_{e} be a subpath of C_{t} such that $P_{e} \cup e$ bounds a disk in Σ. Observe that e and f are homotopic if and only if $P_{e} \subseteq P_{f}$ or $P_{f} \subseteq P_{e}$. Now let \mathcal{E} be a collection of contractible edges that are pairwise nonhomotopic. It follows that $\mathcal{P}:=\left\{P_{e}: e \in \mathcal{E}\right\}$ is a collection of pairwise internally disjoint paths of C_{t}. Also, each P_{e} must contain an internal vertex which is in $V(\Pi)$, for otherwise we could replace C_{t} in H by a shorter cycle. So

$$
|\mathcal{E}|=|\mathcal{P}| \leq|V(\Pi)|=2 k
$$

Claim 4.6. There are at most $3 g(\Sigma)$ homotopy classes of non-contractible edges.

Subproof. Let \mathcal{N} be a collection of non-contractible edges that are pairwise nonhomotopic. Contract the disk Δ_{t} to a point in b in Σ, and let \mathcal{N}^{*} be the resulting family of curves. Note that \mathcal{N}^{*} is now a collection of simple non-contractible closed curves on Σ, each containing b but otherwise pairwise disjoint. Furthermore, the curves in \mathcal{N}^{*} are pairwise non-homotopic (relative to the base point b). By Lemma 4.2 there are at most $3 g(\Sigma)$ such curves.

By regarding each homotopy class as passing through a distinct strip, we can view G as being embedded on a disk with at most $2 k+3 g(\Sigma)$ strips, Ω, where $\Delta(\Omega)=\Delta_{t}$. Unfortunately, to apply Theorem 4.1 we require $V(\Pi)$ to be on $\operatorname{bd}(\Omega) \cap \Delta(\Omega)$. However, if $x \in V(\Pi)$ is not on a corner of a strip of Ω, then we may split a strip in half, and place x at a corner of one of the new strips. Note that we only need to apply this operation at most $2 k$ times. So, we have shown the following.

Claim 4.7. G is a graph embedded in a disk with at most $4 k+3 g(\Sigma)$ strips Ω^{\prime}, Π is a pattern in G of size $k, v \in V(G)$ is a $\theta(k, 4 k+3 g(\Sigma))$-insulated vertex in $\Delta\left(\Omega^{\prime}\right)$ with respect to Π, and $V(\Pi) \subseteq \operatorname{bd}\left(\Omega^{\prime}\right) \cap \Delta\left(\Omega^{\prime}\right)$.

By definition of the function θ, we have that v is indeed redundant for Π.

5. Redundant Vertices on Disks with Strips

In this section we prove Theorem 4.1 which we restate for convenience. Our proof is based on an unpublished proof of Carl Johnson and Paul Seymour presented at the Workshop on Graph Theory in Oberwolfach, 1999.

Theorem 4.1. For all $k, n \in \mathbb{N}$, there exists $\theta:=\theta(k, n) \in \mathbb{N}$ such that if G is a graph embedded in a disk with n strips Ω, Π is a pattern in G of size $k, v \in V(G)$ is a θ-insulated vertex in $\Delta(\Omega)$ with respect to Π, and $V(\Pi) \subseteq \operatorname{bd}(\Omega) \cap \Delta(\Omega)$, then v is redundant.

Proof. Let $\theta(k, n)=\operatorname{tower}\left(100,200, \ldots, 100 n, k 100^{n}\right)$ and let $m(k, n)=(4 n+$ 1) $k 3^{n}+8 k$. Note that $\theta(k, 0)=k$ for all k. Also, for all $n>0$, an easy induction gives

$$
\theta(k, n) \geq \theta\left(k+4 m(k, n)(2 n+1)^{4 n m(k, n)}, n-1\right)+2 k+n k 3^{n}
$$

These are the only two properties of $\theta(k, n)$ that we will use. Note that $\theta(k, n)$ does not depend on G.
Let (G, Ω, Π, v) be a counterexample with $|E(G)|$ minimal. Let n be the number of strips in Ω, k the size of Π, and $\theta=\theta(n, k)$. Then v is θ-insulated in Ω with respect to $\Pi, V(\Pi) \subseteq \operatorname{bd}(\Omega) \cap \Delta(\Omega)$, and yet v is essential.

Let $\Omega:=\Delta \cup S_{1} \cup \cdots \cup S_{n}$, and let $C_{1}, \ldots, C_{\theta}$ be cycles insulating v, bounding disks $\Delta_{1} \subset \cdots \subset \Delta_{\theta}=\Delta$. Let \mathcal{L} be a Π-linkage in G and let $H=C_{1} \cup \cdots \cup C_{\theta}$. Notice that we may assume $\operatorname{bd}(\Omega)-\Delta_{\theta}$ is disjoint from G.
Claim 5.1. $E(H) \cap E(\mathcal{L})=\emptyset$ and $E(H) \cup E(\mathcal{L})=E(G)$.
Subproof. Contracting any edges in $E(H) \cap E(\mathcal{L})$ or deleting any edges not in $E(H) \cup E(\mathcal{L})$ would both yield smaller counterexamples.

Claim 5.2. $V(G)=V(H)$.

Subproof. Let $x y$ be an edge with $y \notin V(H)$. Since $y \notin V(H), y \notin V\left(C_{\theta}\right)$, and, therefore $y \notin \operatorname{bd}(\Omega)$. Thus, $G / x y$ is a smaller counterexample.

We now examine how \mathcal{L} passes through Ω. The level $\ell(x)$ of a vertex x in C_{j} is defined to be j. Let P be a path with ends a and b. We call P a hill if

- $\ell(a)=\ell(b)$,
- $\ell(c)>\ell(a)$ for all internal vertices c of P, and
- P and a subpath of $C_{\ell(a)}$ bounds a disk in Ω.

Note that if a path P satisfies the first two bullet points and $P \subseteq \Delta$, then P will automatically satisfy the third bullet point. However, there may be hills not contained in Δ. For example, an edge $x y$ contained in a strip S is a hill if and only if x and y are both on a same end of S.
The sea level $\ell(P)$ of a hill P is defined to be the level of either of its ends. Observe there is a subpath K_{P} of $C_{\ell(P)}$ so that $P \cup K_{P}$ bounds a disc whose interior is disjoint from the insulated vertex v.

Claim 5.3. \mathcal{L} (as a subgraph) does not contain a hill.
Subproof. Suppose that \mathcal{L} contains a hill. Let σ be the lowest sea level of all hills of \mathcal{L}. Among all hills of \mathcal{L} at sea level σ, choose J such that the length of K_{J} is minimal. By choice of J we have that \mathcal{L} does not use any internal vertex of K_{J}. Therefore, $(\mathcal{L} \backslash E(J)) \cup E\left(K_{J}\right)$ is a Π-linkage. Letting e be any edge of J, we conclude that $G \backslash e$ is a smaller counterexample, a contradiction.

A path $P=x_{0} \ldots x_{q}$ of G is decreasing if $P \subseteq \Delta$ and $\ell\left(x_{0}\right) \leq \cdots \leq \ell\left(x_{q}\right)$. We will require the following claim later.

Claim 5.4. Let $A \subseteq V\left(C_{\theta}\right)$, and let $i \in[\theta]$. If there exist $|A|$ disjoint $A-C_{i}$ paths in $G \cap \Delta$, then there exist $|A|$ disjoint decreasing $A-C_{i}$ paths in $G \cap \Delta$.

Subproof. The proof is similar to the proof of the previous claim. Let \mathcal{A} be a collection of $|A|$ disjoint $A-Z$ paths in $G \cap \Delta$ with the minimum number of hills. We claim that \mathcal{A} is a family of decreasing paths. Suppose not and let σ be the lowest sea level among all hills in \mathcal{A}. Among all hills of \mathcal{A} at sea level σ, choose J such that the length of K_{J} is minimal. By choice of J we have that \mathcal{A} does not use any internal vertex of K_{J}. Re-routing \mathcal{A} through K_{J} contradicts the choice of \mathcal{A}.

Let Y_{1}, \ldots, Y_{ℓ} be the components of $C_{\theta}-\left(\bigcup_{i=1}^{n} \operatorname{int}\left(\operatorname{ends}\left(S_{i}\right)\right)\right.$. Define $X_{i}:=Y_{i} \cap V(\Pi)$ and observe that X_{1}, \ldots, X_{ℓ} is a partition \mathbb{P} of $V(\Pi)$ (possibly some X_{i} are empty). We say that a path P of G is a nibble if $P \subseteq \Delta$ and the ends of P are in the same part of the partition \mathbb{P}.
Claim 5.5. No path of \mathcal{L} is a nibble.
Subproof. Suppose not, and choose a nibble $L \in \mathcal{L}$ such that $\min \left\{i: L \cap C_{i} \neq \emptyset\right\}$ is maximum. By choice of L and planarity, there is a path K of C_{θ} with the same ends as L such that no path of \mathcal{L} uses an internal vertex of K. By replacing \mathcal{L} by $(\mathcal{L}-\{L\}) \cup\{K\}$ and deleting any edge of L from G, we contradict that G is a minimal counterexample.

By orienting C_{θ} clockwise, we may view each part of the partition \mathbb{P} as a linearly ordered set. For distinct $a, b \in C_{\theta}$, we let $[a, b]$ be the clockwise subpath of C_{θ} from a to b. Let $\left\{x_{1}, \ldots, x_{p}\right\}$ be one of the parts of the partition (labelled in increasing order). The key point to keep in mind is that $\left[x_{1}, x_{p}\right]$ is disjoint from all strips of Ω (except possibly at corners). For each x_{i}, let $\mathcal{L}\left(x_{i}\right)$ be the (unique) member of \mathcal{L} starting from x_{i}. Define $\omega\left(x_{i}\right)$ to be the number of protective cycles that $\mathcal{L}\left(x_{i}\right)$ intersects before it uses an edge outside of Δ.

Claim 5.6. For each $i \in[p], \omega\left(x_{i}\right) \geq \min \{i, p-i+1\}$.
Subproof. We proceed by induction on $\min \{i, p-i+1\}$. Clearly the claim holds for $i \in\{1, p\}$. Consider an arbitrary x_{i}. By symmetry we may assume that $i \leq \frac{p}{2}$ and we inductively assume that $\omega\left(x_{i-1}\right) \geq i-1$ and $\omega\left(x_{p-i+2}\right) \geq i-1$.
Towards a contradiction assume that $\omega\left(x_{i}\right) \leq i-1$. Let a be the second vertex of $\mathcal{L}\left(x_{i}\right)$ that is on C_{θ} (x_{i} is the first). Let Q be the subpath of $\mathcal{L}\left(x_{i}\right)$ from x_{i} to a. Note that $Q \cup\left[x_{i}, a\right]$ and $Q \cup\left[a, x_{i}\right]$ both bound disks in Δ. We denote them as Δ_{1} and Δ_{2}, respectively. We say that a region in Δ is small if it does not contain v (the insulated vertex). Because $\omega\left(x_{i}\right) \leq i-1, v$ is not in $\mathcal{L}\left(x_{i}\right)$. Therefore, exactly one of Δ_{1} or Δ_{2} is small. There are various cases depending where a lies on C_{θ} and which of Δ_{1} or Δ_{2} is small.
Subclaim 1. Δ_{1} is not small.
Subproof. Towards a contradiction assume Δ_{1} is small. If $a \in\left[x_{i}, x_{p}\right]$, then \mathcal{L} contains a nibble, a contradiction. Thus, $a \in\left[x_{p}, x_{i}\right]$. Note that $\omega\left(x_{p-i+2}\right) \geq i-1$ by induction. Since $\omega\left(x_{i}\right) \leq i-1$, the only way to avoid a contradiction is if \mathcal{L} connects x_{i} to x_{p-i+2} inside Δ. However, this path of \mathcal{L} is a nibble, which is also impossible.

Subclaim 2. Δ_{2} is not small.
Subproof. Towards a contradiction assume Δ_{2} is small. If $a \in\left[x_{i-1}, x_{i}\right]$, then \mathcal{L} does not use any internal vertex of $\left[a, x_{i}\right]$. Therefore, we can reroute $\mathcal{L}\left(x_{i}\right)$ through $\left[a, x_{i}\right]$, which contradicts that G is a minimal counterexample. So, $x_{i-1} \in\left[a, x_{i}\right]$. Since $\omega\left(x_{i-1}\right) \geq i-1$, the only way to avoid a contradiction is if $\mathcal{L}\left(x_{i}\right)$ actually connects x_{i} to x_{i-1} within Δ. But then $\mathcal{L}\left(x_{i}\right)$ is a nibble, which is also impossible.

This completes the proof of the claim, since one of Δ_{1} or Δ_{2} must be small. Thus, $w\left(x_{i}\right) \geq \min \{i, p-i+1\}$, as required.

We now analyze the edges of G not contained in Δ. For each strip S let $E(S)$ be the edges of G contained in S.

Claim 5.7. For each strip $S, E(S)$ is a matching with each edge on different ends of S.

Subproof. If $e \in E(S)$ has both ends on a same end of S, then e is a hill, which is a contradiction. If another edge $f \in E(G)$ shares an end with e, then $\{e, f\}$ and a subpath P of C_{θ} bounds a disk in Ω. If P is just an edge, we may reroute \mathcal{L} through P. If P contains an internal vertex, then \mathcal{L} must contain a hill at sea level $\theta-1$, contradicting Claim 5.3 .

If we regard Π as a pattern in Ω instead of a pattern in G, then evidently there is a topological realization of Π in Ω, since there is a realization of Π in G. Let \mathcal{M} be the topological linkage of size n, consisting of the equators of the strips of Ω. By Theorem 1.3, there is a topological Π-linkage \mathcal{L}^{\prime} such that $\left|\mathcal{L}^{\prime} \cap \mathcal{M}\right| \leq k 3^{n}$. The pivotal idea is to try and realize \mathcal{L}^{\prime} in G.
Let $m:=(4 n+1) k 3^{n}+8 k$ and $N:=\theta\left(k+4 m(2 n+1)^{4 n m}, n-1\right)$. Observe that $\theta(k, n)=N+2 k+n k 3^{n}$. We set M to be the matroid on $V\left(C_{\theta}\right)$ with rank function $\kappa_{V\left(C_{\theta}\right), V\left(C_{N}\right)}$.
For each strip S of Ω, we let $V(S)$ be the vertices covered by $E(S)$. By Claim 5.7 we may partition $V(S)$ as $V_{0}(S) \cup V_{1}(S)$, according to the end of S a vertex belongs to. For $i=0,1$, we let $M_{i}(S)$ be the restriction of M to $V_{i}(S)$ respectively. We may use the matching $E(S)$ to identify a vertex in $V_{0}(S)$ with a vertex in $V_{1}(S)$; in this way, we may regard $M_{0}(S)$ and $M_{1}(S)$ as matroids on the same ground set. For $X \subseteq V_{0}(S)$ we let copy (X) be the copy of X in $V_{1}(S)$.
Recall that $m=(4 n+1) k 3^{n}+8 k$. We first consider the case when $M_{0}(S)$ and $M_{1}(S)$ have a large common independent set, for each strip S of Ω.

Case 1. For each strip S of $\Omega, M_{0}(S)$ and $M_{1}(S)$ have a common independent set of size m.

Claim 5.8. Each part of the partition \mathbb{P} of $V(\Pi)$ is independent in M.

Subproof. Label the vertices of an arbitrary part X of \mathbb{P} as x_{1}, \ldots, x_{p} (clockwise). Choose an arbitrary strip S, and let I be an $M_{0}(S)$-independent subset of size p. By Claim 5.4, there is a family \mathcal{Q} of p disjoint decreasing $I-C_{N}$ paths. Label these paths as Q_{1}, \ldots, Q_{p} (counter-clockwise). We will use \mathcal{Q} to construct p disjoint $X-C_{N}$ paths in $G \cap \Delta$. By Claim 5.6, for each $i \in[p], w\left(x_{i}\right) \geq \min \{i, p-i+1\}$.
So for each $i \in\{1, \ldots,\lceil p / 2\rceil\}$ we can define a path $\mathcal{P}\left(x_{i}\right)$ as follows:

- Follow $\mathcal{L}\left(x_{i}\right)$ until it intersects $C_{\theta-(i-1)}$.
- Follow $C_{\theta-(i-1)}$ (counter-clockwise) until intersecting $Q_{\lceil p / 2\rceil-(i-1)}$.
- Follow $Q_{\lceil p / 2\rceil-(i-1)}$ until reaching C_{N}.

For $i \in\{p, p-1, \ldots,\lceil p / 2\rceil+1\}$ we define $\mathcal{P}\left(x_{i}\right)$ as follows:

- Follow $\mathcal{L}\left(x_{i}\right)$ until it intersects $C_{\theta-p+i}$.
- Follow $C_{\theta-p+i}$ (clockwise) until intersecting $Q_{\lceil p / 2\rceil+p-i+1}$.
- Follow $Q_{\lceil p / 2\rceil+p-i+1}$ until reaching C_{N}.

Since all three portions of these paths are decreasing, it follows that

$$
\mathcal{P}:=\left\{\mathcal{P}\left(x_{i}\right): i \in[p]\right\}
$$

is a family of disjoint $X-C_{N}$ paths.
Next we show that $V(\Pi)$ is actually M-independent. In fact, we prove the following much stronger claim.

Claim 5.9. For each strip S_{i} of Ω there exists a subset K_{i} of $V_{0}\left(S_{i}\right)$ of size $k 3^{n}$ such that $V(\Pi) \cup \bigcup_{i \in[n]}\left(K_{i} \cup \operatorname{copy}\left(K_{i}\right)\right)$ is independent in M.

Subproof. Of course we are in the case when $M_{0}\left(S_{i}\right)$ and $M_{1}\left(S_{i}\right)$ have a large common independent set for each strip S_{i} of Ω. So, for each $i \in[n]$ let J_{i} be an independent set of size $(4 n+1) k 3^{n}+8 k$ in $M_{0}\left(S_{i}\right)$, such that $\operatorname{copy}\left(J_{i}\right)$ is also independent in $M_{1}\left(S_{i}\right)$. We partition J_{i} into three sets J_{i}^{1}, J_{i}^{2} and J_{i}^{3} where J_{i}^{1} are the first $2\left(n k 3^{n}+2 k\right)$ points, J_{i}^{2} are the middle $k 3^{n}$ points and J_{i}^{3} are the last $2\left(n k 3^{n}+2 k\right)$ points. We will apply Lemma 3.1 to the two collections of sets

$$
\mathcal{A}:=\left\{J_{i}^{2}: i \in[n]\right\} \cup\left\{\operatorname{copy}\left(J_{i}^{2}\right): i \in[n]\right\} \cup\left\{X_{i}: i \in[l]\right\},
$$

and

$$
\mathcal{B}:=\left\{J_{i}^{k}: i \in[n], k \in\{1,3\}\right\} \cup\left\{\operatorname{copy}\left(J_{i}^{k}\right): i \in[n], k \in\{1,3\}\right\} .
$$

Observe that each set in \mathcal{A} is indeed M-independent, and that for any $B \in \mathcal{B}$ we have

$$
r_{M}(B)=2\left(n k 3^{n}+2 k\right)=2 \sum_{A \in \mathcal{A}}|A| .
$$

Therefore, by Lemma 3.1, we conclude that $\bigcup_{A \in \mathcal{A}} A$ is M-independent. Setting $K_{i}=J_{i}^{2}$ for each $i \in[n]$ gives the result.

We can now attempt to realize the topological linkage \mathcal{L}^{\prime} in G. We may assume that \mathcal{L}^{\prime} intersects $\operatorname{bd}(\Delta)$ only at vertices in \mathcal{A}. Let $G^{\prime}:=G-\operatorname{int}\left(\Delta_{N}\right)$. By removing all the strips from Ω and keeping track of how the paths in \mathcal{L}^{\prime} pass through the strips, we are left with a Π^{\prime}-linkage problem in the disk Δ, where $V\left(\Pi^{\prime}\right) \subseteq V(\mathcal{A})$.

By Claim 5.9, we have that $V(\mathcal{A})$ is M-independent. Therefore, by Claim 5.4 there exists a family of $|V(\mathcal{A})|$ disjoint decreasing $V(\mathcal{A})-C_{N}$ paths in G^{\prime}. These decreasing paths, together with the protective circuits $C_{\theta}, C_{\theta-1}, \ldots, C_{N}$ form a large cylindrical-grid minor H^{\prime} in $G^{\prime} \cap \Delta$. Since

$$
\theta-N \geq 2 k+n k 3^{n}=|V(\mathcal{A})| \geq\left|\Pi^{\prime}\right|
$$

Lemma 3.3 implies that $G^{\prime} \cap \Delta$ actually has a Π^{\prime}-linkage. It follows that G^{\prime} has a Π-linkage, and that v is redundant for Π in G since $v \notin V\left(G^{\prime}\right)$, completing the proof in Case 1.
The remaining case is if $M_{0}(S)$ and $M_{1}(S)$ do not have a large common independent set, for some strip S of Ω. By re-indexing, we may assume that $S=S_{1}$.

Case 2. $M_{0}\left(S_{1}\right)$ and $M_{1}\left(S_{1}\right)$ do not have a common independent set of size m.
The idea in this case is to reduce the number of strips. Since $M_{0}\left(S_{1}\right)$ and $M_{1}\left(S_{1}\right)$ do not have a common independent set of size m, by the Matroid Intersection Theorem [2], there is a partition $\{A, B\}$ of $V_{0}\left(S_{1}\right)$ such that

$$
r_{M_{0}\left(S_{1}\right)}(A)+r_{M_{1}\left(S_{1}\right)}(\operatorname{copy}(B))<m
$$

That is, there exist subsets T and U of $V(G \cap \Delta)$ such that

- T separates A from $V\left(C_{N}\right)$ in $G \cap \Delta$,
- U separates copy (B) from $V\left(C_{N}\right)$ in $G \cap \Delta$, and
- $|T|+|U|<m$.

We choose such a T and U with $|T \cup U|$ minimum. We then choose an index $\gamma \in\{\theta-1, \ldots, \theta-m\}$ such that $T \cup U$ is disjoint from C_{γ}. Recall that the level of a vertex $x \in G \cap \Delta$ is the unique index j such that $x \in V\left(C_{j}\right)$.

A path is a Δ_{γ}-path if both its ends belong on Δ_{γ}, and it is otherwise disjoint from Δ_{γ}. Evidently, a Δ_{γ}-path must have both of its ends on C_{γ}. For each path P of \mathcal{L}, we define $\mathcal{U}(P)$ to be the family of maximal Δ_{γ}-subpaths of P. We then define $\mathcal{U}(\mathcal{L}):=\bigcup_{P \in \mathcal{L}} \mathcal{U}(P)$.
Claim 5.10. There are at most $(2 n+1)^{4 n m}$ homotopy classes of paths in $\mathcal{U}(\mathcal{L})$.

Subproof. Let $Q \in \mathcal{U}(\mathcal{L})$. Since Q does not contain any hills, there is no subpath K of C_{γ} such that $Q \cup K$ bounds a disk in Ω. In particular, this implies that Q must use an edge outside of Δ and that the homotopy class of Q is determined by how Q passes through the strips of Ω. Let \mathcal{A} be the alphabet $\left\{S_{1}, \ldots, S_{n}, S_{1}^{-1}, \ldots, S_{n}^{-1}\right\}$. If we orient each strip of Ω, then the homotopy class of Q, denoted $\mathcal{H}(Q)$, is then naturally encoded by a string of letters from \mathcal{A}. We make the convention that if $S_{i} S_{i}^{-1}$ or $S_{i}^{-1} S_{i}$ appears in $\mathcal{H}(Q)$ for some $i \in[n]$, then we cancel it. With this convention, we prove that each letter of \mathcal{A} appears at most $2 m$ times in $\mathcal{H}(Q)$, from which the claim follows.

Towards a contradiction assume that some letter α appears at least $2 m+1$ times in $\mathcal{H}(Q)$. By reversing the direction of Q if necessary, we may assume $\alpha=S$, for some strip S. Let $e_{1}, \ldots, e_{2 m+1}$ be edges of Q corresponding to the occurrences of S in $\mathcal{H}(Q)$. Let $e_{i}=w_{i} x_{i}$ so that Q traverses e_{i} from w_{i} to x_{i} and so that this traversal is consistent with the orientation of S. By cancellation, the next edge of Q after e_{i} that is outside Δ cannot pass through S in the backward direction. We re-index so that $x_{1}, \ldots, x_{2 m+1}$ occur clockwise along one end of the strip S (this is not necessarily their order in Q).

Either x_{m+1} occurs before x_{m+2} along Q or vice versa. By symmetry, we assume the former. Let $Q^{\prime}:=x_{m+1} Q$ and let y be the first vertex of Q^{\prime} such that the next edge of Q^{\prime} after y passes through a strip. By cancellation, it follows that $y \in\left[x_{2 m+1}, x_{1}\right]$.
Recall that a region \mathcal{R} in Δ is small if it does not contain the insulated vertex v. Clearly, either $Q^{\prime} y \cup\left[y, x_{m+1}\right]$ bounds a small region, or $Q^{\prime} y \cup\left[x_{m+1}, y\right]$ bounds a small region \mathcal{R}. So, we either have $\left\{x_{1}, \ldots, x_{m+1}\right\} \subseteq \mathcal{R}$ or $\left\{x_{m+1}, \ldots, x_{2 m+1}\right\} \subseteq \mathcal{R}$. In either case we get a contradiction, since $Q^{\prime} y$ intersects at most $\theta-\gamma \leq m$ insulating cycles.

We call a homotopy class of $\mathcal{U}(\mathcal{L})$ thin if it has size at most $4 m$, otherwise it is thick.

Claim 5.11. Either there are at most $n-1$ thick homotopy classes of $\mathcal{U}(\mathcal{L})$ (up to inversion), or $T \cup U$ separates $V\left(C_{\theta}\right)$ from $V\left(C_{N}\right)$.

Subproof. Let \mathcal{H} be a thick homotopy class, represented as a string of letters from $\left\{S_{1}, \ldots, S_{n}, S_{1}^{-1}, \ldots, S_{n}^{-1}\right\}$. Note that \mathcal{H} is not the empty string since \mathcal{L} has no hills. Suppose \mathcal{H} is of length at least 2. Consider an arbitrary path $Q \in \mathcal{H}$ and let e_{1} and e_{2} be the edges of Q that correspond to the first two letters of the homotopy class of Q. For $i \in[2]$, let $e_{i}=x_{i} y_{i}$, so that Q traverses e_{i} from x_{i} to y_{i}. Finally, let Q^{\prime} be the subpath of Q from y_{1} to x_{2}. If \mathcal{H} is not thin, then the collection $\mathcal{H}^{\prime}:=\left\{Q^{\prime}: Q \in \mathcal{H}\right\}$ has size at least $4 m+1$. Therefore, there exists $J \in \mathcal{H}^{\prime}$ and some subpath K of C_{θ} such that $J \cup K$ bounds a small region that contains at least
$2 m$ members of \mathcal{H}. This is a contradiction, as each path in \mathcal{H}^{\prime} intersects at most $\theta-\gamma \leq m$ insulating cycles.
Thus, if \mathcal{H} is thick, it must be a string of length 1 . Up to inversion, this implies that $\mathcal{H}=S$, for some strip S, leaving at most n possibilities for \mathcal{H}. However, consider the homotopy class \mathcal{H}_{1} represented by the string S_{1}. If \mathcal{H}_{1} is not thick we are done, so assume that \mathcal{H}_{1} contains more than $4 m$ paths. Therefore, \mathcal{H}_{1} contains a collection of at least $2 m$ vertex-disjoint paths. Observe that each of these paths must pass through $V_{0}\left(S_{1}\right)$ and $V_{1}\left(S_{1}\right)$. Therefore, there is a subset X of $V_{0}\left(S_{1}\right)$ of size $2 m$ such that

$$
\kappa_{G \cap \Delta}\left(X, V\left(C_{\gamma}\right)\right)=2 m=\kappa_{G \cap \Delta}\left(\operatorname{copy}(X), V\left(C_{\gamma}\right)\right)
$$

Note that, for the partition $\{A, B\}$ of $V_{0}\left(S_{1}\right)$, we have that $|X \cap A| \geq m$ or $|X \cap B| \geq m$. By symmetry, we assume the former. Since $|T|<m$, we conclude that A is still connected to $V\left(C_{\gamma}\right)$ in $(G \cap \Delta)-T$. Since $V\left(C_{\gamma}\right)$ contains no vertices of T, and T separates A from $V\left(C_{N}\right)$ in $G \cap \Delta$, it follows that $T \cap \Delta_{\gamma}$ must separate $V\left(C_{\gamma}\right)$ from $V\left(C_{N}\right)$ in $G \cap \Delta_{\gamma}$. By the minimality of $|T \cup U|$ it follows that $U=\emptyset$ and that $T \cap \Delta_{\gamma}=T$. This completes the proof of the claim.

We handle the first possibility of Claim 5.11 first.
Subcase 1. There are at most $n-1$ thick homotopy classes of $\mathcal{U}(\mathcal{L})$ (up to inversion).

Let $G^{\prime}:=\left(G \cap \Delta_{\gamma}\right) \cup \mathcal{U}(\mathcal{L})$. By Claim 5.10 we can regard G^{\prime} as embedded in a disk with at most $\beta:=(2 n+1)^{4 m}$ strips
We describe how to reduce the Π-linkage problem in G to a Π^{\prime}-linkage problem in G^{\prime}. Let $P \in \mathcal{L}$. If P has a vertex in C_{γ}, then let x be the first such vertex and let y be the last. If they exist, place $\{x, y\}$ into Π^{\prime} and repeat for all paths in \mathcal{L}. By splitting strips if necessary, we may assume that G^{\prime} is embedded in a disk with at most $\beta^{\prime} \leq \beta+2 k$ strips

$$
\Omega^{\prime}:=\Delta_{\gamma} \cup S_{1}^{\prime} \cup \ldots S_{\beta^{\prime}}^{\prime}
$$

and with $V\left(\Pi^{\prime}\right) \subseteq \operatorname{bd}\left(\Omega^{\prime}\right)$.
At first glance it seems as if we have increased the complexity of our problem, since we have more strips than we began with. However, at most $n-1$ of the strips $S_{1}^{\prime}, \ldots, S_{\beta^{\prime}}^{\prime}$ are thick. By re-indexing, we may assume that $S_{n}^{\prime}, \ldots, S_{\beta^{\prime}}^{\prime}$ are all thin. By deleting all the edges contained in $S_{n}^{\prime} \cup \cdots \cup S_{\beta^{\prime}}^{\prime}$, and keeping track of how the paths in \mathcal{L} pass through $S_{n}^{\prime} \cup \cdots \cup S_{\beta^{\prime}}^{\prime}$, we reduce to a $\Pi^{\prime \prime}$-linkage in $\Omega^{\prime \prime}:=\Delta_{\gamma} \cup S_{1}^{\prime} \cup \cdots \cup S_{n-1}^{\prime}$, where $\left|\Pi^{\prime \prime}\right| \leq k+4 m(2 n+1)^{4 n m}$. Since v is a γ-insulated vertex with respect to $\Pi^{\prime \prime}$, and $\gamma \geq \theta\left(k+4 m(2 n+1)^{4 n m}, n-1\right)$, it follows that v is redundant for $\Pi^{\prime \prime}$, and hence also for Π. This completes the subcase.

We now handle the remaining subcase.
Subcase 2. $T \cup U$ separates $V\left(C_{\theta}\right)$ from $V\left(C_{N}\right)$ in $G \cap \Delta$.
We will reduce the Π-linkage problem in G to a Π^{\prime}-linkage problem in $G \cap \Delta_{N}$. We do this by proving that $\left|V(\mathcal{L}) \cap V\left(C_{N}\right)\right|$ is small. So, let $x \in V(\mathcal{L}) \cap V\left(C_{N}\right)$, and suppose $x \in V(P)$ for $P \in \mathcal{L}$. We define next (x) to be the next vertex of P that is also in $T \cup U$ (we allow $\operatorname{next}(x)=x$). The first thing to observe is that $\operatorname{next}(x)$
does exist. This follows since $T \cup U$ separates $V\left(C_{\theta}\right)$ from $V\left(C_{N}\right)$. Secondly, since \mathcal{L} contains no hills, the map $x \mapsto \operatorname{next}(x)$ is injective. So,

$$
\left|V(\mathcal{L}) \cap V\left(C_{N}\right)\right| \leq|T \cup U|<m .
$$

By keeping track of how the paths in \mathcal{L} enter and leave Δ_{N}, we reduce to a Π^{\prime} linkage problem in $G \cap \Delta_{N}$, where $\left|\Pi^{\prime}\right|<m$. Since $N \geq \theta(m, 0)$, we have that v is redundant for Π^{\prime} in $G \cap \Delta_{N}$, and hence redundant for Π in G.

This completes the subcase, and hence the entire proof.

Acknowledgements. We would like to thank Jiří Matoušek, Eric Sedgwick, Martin Tancer, and Uli Wagner for making an early version of 6 available to us.

References

[1] Isolde Adler, Stavros G. Kolliopoulos, Philipp Klaus Krause, Daniel Lokshtanov, Saket Saurabh, and Dimitrios Thilikos. Tight bounds for linkages in planar graphs. In Automata, languages and programming. Part I, volume 6755 of Lecture Notes in Comput. Sci., pages 110-121. Springer, Heidelberg, 2011.
[2] Jack Edmonds. Submodular functions, matroids, and certain polyhedra. In Combinatorial Structures and their Applications (Proc. Calgary Internat. Conf., Calgary, Alta., 1969), pages 69-87. Gordon and Breach, New York, 1970.
[3] Ken-ichi Kawarabayashi and Paul Wollan. A simpler algorithm and shorter proof for the graph minor decomposition [extended abstract]. In STOC'11-Proceedings of the 43rd ACM Symposium on Theory of Computing, pages 451-458. ACM, New York, 2011.
[4] W. B. R. Lickorish. A finite set of generators for the homeotopy group of a 2-manifold. Proc. Cambridge Philos. Soc., 60:769-778, 1964.
[5] Aleksander Malnič and Bojan Mohar. Generating locally cyclic triangulations of surfaces. J. Combin. Theory Ser. B, 56(2):147-164, 1992.
[6] Jiří Matoušek, Eric Sedgwick, Martin Tancer, and Uli Wagner. Untangling two systems of noncrossing curves. In Graph drawing, volume 8242 of Lecture Notes in Comput. Sci., pages 472-483. Springer, Cham, 2013.
[7] Frédéric Mazoit. A single exponential bound for the redundant vertex theorem on surfaces. arXiv preprint arXiv:1309.7820, 2013.
[8] James Oxley. Matroid theory, volume 21 of Oxford Graduate Texts in Mathematics. Oxford University Press, Oxford, second edition, 2011.
[9] Neil Robertson and P. D. Seymour. Graph minors. VII. Disjoint paths on a surface. J. Combin. Theory Ser. B, 45(2):212-254, 1988.
[10] Neil Robertson and P. D. Seymour. Graph minors. XIII. The disjoint paths problem. J. Combin. Theory Ser. B, 63(1):65-110, 1995.
[11] Neil Robertson and P. D. Seymour. Graph minors. XVI. Excluding a non-planar graph. J. Combin. Theory Ser. B, 89(1):43-76, 2003.
[12] Neil Robertson and P. D. Seymour. Graph minors. XX. Wagner's conjecture. J. Combin. Theory Ser. B, 92(2):325-357, 2004.
[13] Neil Robertson and Paul Seymour. Graph minors. XXII. Irrelevant vertices in linkage problems. J. Combin. Theory Ser. B, 102(2):530-563, 2012.
(Jim Geelen and R. Bruce Richter) Department of Combinatorics and Optimization, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
(Tony Huynh) Department of Mathematics, Université Libre de Bruxelles, Avenue Franklin Roosevelt 50, 1050 Brussels, Belgium

E-mail address: jfgeelen@uwaterloo.ca
E-mail address: tony.bourbaki@gmail.com
E-mail address: brichter@uwaterloo.ca

[^0]: Key words and phrases. graphs, surfaces, linkages, minors.
 This research was partially supported by grants from the Natural Sciences and Engineering Research Council of Canada. Tony Huynh was also supported by the NWO (The Netherlands Organization for Scientific Research) free competition project "Matroid Structure - for Efficiency" led by Bert Gerards.

