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EXPLICIT BOUNDS FOR GRAPH MINORS

JIM GEELEN, TONY HUYNH, AND R. BRUCE RICHTER

Abstract. Let Σ be a surface with boundary bd(Σ), L be a collection of k
disjoint bd(Σ)-paths in Σ, and P be a non-separating bd(Σ)-path in Σ. We
prove that there is a homeomorphism φ : Σ → Σ that fixes each point of bd(Σ)
and such that φ(L) meets P at most 2k times.

With this theorem, we derive explicit constants in the graph minor
algorithms of Robertson and Seymour [Graph minors. XIII. The disjoint paths
problem. J. Combin. Theory Ser. B, 63(1):65–110, 1995]. We reprove a result
concerning redundant vertices for graphs on surfaces, but with explicit bounds.
That is, we prove that there exists a computable integer t := t(Σ, k) such that
if v is a ‘t-protected’ vertex in a surface Σ, then v is redundant with respect
to any k-linkage.

1. Introduction

In [12], Robertson and Seymour prove the remarkable theorem that every minor-
closed property of graphs is characterized by a finite set of excluded minors.

Theorem 1.1. For every minor-closed class of graphs C, there exists a finite set
of graphs ex(C), such that a graph is in C if and only if it does not contain a minor
isomorphic to a member of ex(C).

Robertson and Seymour also prove an important algorithmic counterpart to this
theorem in [10, 13].

Theorem 1.2. For any fixed graph H, there exists a polynomial-time algorithm to
test if an input graph G contains a minor isomorphic to H.

Together, these two theorems imply that there exists a polynomial-time algorithm
to test for membership in any minor-closed class of graphs. Of course, the existence
of such an algorithm is highly non-constructive as ex(C) is explicitly known for only
a few minor-closed classes C.

The running time of the algorithm from [10] depends on a function t(k,Σ) for
irrelevant vertices for k-linkage problems in a surface Σ. Robertson and Seymour
clearly state that t(k,Σ) is computable, but give no indication how to compute it.
In the special case that Σ is the sphere, Adler, Kolliopoulos, Krause, Lokshtanov,
Saurabh, and Thilikos [1] do obtain an explicit function (of k).
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In addition, Kawarabayashi and Wollan [3] recently gave a simpler algorithm and
shorter proof for the powerful graph minor decomposition theorem in [11]. Their
approach yields explicit constants for the decomposition algorithm, but again
implicitly assumes that t(k,Σ) is computable.

In this paper, we show that t(k,Σ) is indeed computable, thereby obtaining explicit
bounds for graph minors. Before stating our main theorems, we require a few
definitions. In this work we use Σ(a, b, c) to denote the surface that is the (2-
dimensional) sphere with a handles, b crosscaps, and c boundary components, which
we call holes. We set g(Σ(a, b, c)) := 2a+ b and holes(Σ(a, b, c)) = c.

A curve γ in a surface Σ is a continuous function γ : [0, 1] → Σ. A curve γ

• has ends γ(0) and γ(1);
• is a path if it is injective (or constant);
• is a simple closed curve if γ(0) = γ(1) and is injective on (0, 1];
• is separating if Σ− γ([0, 1]) is disconnected and non-separating otherwise.

Let X ⊆ Σ.

• The boundary and interior of X will be denoted bd(X) and int(X),
respectively.

• A path γ is an X-path if the ends of γ are in X , and γ is otherwise disjoint
from X .

We now define linkages in graphs and in surfaces. A pattern Π in a graph G is a
collection of pairwise disjoint subsets of V (G), where each set in Π has size 1 or 2.

Let Π := {{si, ti} : i ∈ [k]} be a pattern in G (here [k] := {1, . . . , k} and we allow
si = ti).

• The vertex set of Π is the set V (Π) :=
⋃

Π.
• The size of Π is |Π| = k.
• A Π-linkage in G is a collection L := {L1, . . . , Lk} of pairwise disjoint
graph-theoretic paths of G where each Li has ends si and ti.

Note that if si = ti, then Li is necessarily the path consisting of just the single
vertex si.

A vertex v ∈ V (G) is redundant (with respect to Π), provided that G − v has a
Π-linkage if and only if G has a Π-linkage.

We use the same terminology for surfaces. A pattern Π in a surface Σ is a collection
of pairwise disjoint subsets of bd(Σ), each of size 1 or 2. Let Π := {{si, ti} : i ∈ [k]}
be a pattern in Σ. A topological Π-linkage is a collection L := {L1, . . . , Lk} of
disjoint bd(Σ)-paths in Σ where each Li has ends si and ti. If Σ contains a Π-
linkage, we say that Π is topologically feasible.

Given two linkages L and M in a surface Σ, our goal is to perturb L so that it no
longer meets M very often. We will only allow a certain kind of perturbation of L,
which we now define.

Definition 1.1. A homeomorphism φ : Σ → Σ is called a bd-homeomorphism, if
φ(x) = x for each x ∈ bd(Σ).

We are now prepared to state our first main theorem.



EXPLICIT BOUNDS FOR GRAPH MINORS 3

Theorem 1.3. Let Σ be a surface and let L and M be linkages in Σ of sizes k
and n respectively. If L ∩M∩ bd(Σ) = ∅ and Σ−M is connected, then there is a
bd-homeomorphism φ : Σ → Σ such that |φ(L) ∩M| ≤ k(3n − 1).

The corresponding result for orientable surfaces (without boundary) was proven
by Lickorish [4]. Recently, Matoušek, Sedgwick, Tancer and Wagner [6] considered
essentially the same problem. Using a different approach, they obtain a bound that
is polynomial in the size of both linkages, while our bound is exponential in the size
of one of the linkages (but linear in the other).

Our proof is shorter than the approach in [6], but as mentioned, yields different
bounds. Nonetheless, Theorem 1.3 appears to be of independent interest. The
motivation in [6] comes from an embedding problem involving 3-manifolds.

To state our second theorem, we need to define the notion of a protected vertex on
a surface. Let G be a graph embedded in a surface Σ and let Π be a pattern in G.

A vertex v ∈ V (G) is t-protected in Σ (with respect to Π) if

• there are t vertex disjoint cycles C1, . . . , Ct of G, bounding discs ∆1, . . . ,∆t

in Σ with v ∈ ∆1 ⊂ ∆2 ⊂ · · · ⊂ ∆t, and
• V (Π) is disjoint from int(∆t).

Theorem 1.4. There exists a computable integer t := t(Σ, k) such that for all
surfaces Σ and all k ∈ N, if G is a graph embedded in Σ, Π is a pattern of size k in
G, and v ∈ V (G) is a t-protected vertex in Σ with respect to Π, then v is redundant.

We let tower(a1, . . . , an) be defined inductively as tower(a1) = a1 and
tower(a1, . . . , an) = tower(a1, . . . , an−1)

an . The proof of Theorem 1.4 shows that we
may take t(Σ, k) = tower(100, 200, . . . , 100(4k+3g(Σ)), k1004k+3g(Σ)), although we
have not attempted to optimize t(Σ, k). Mazoit [7] has since simplified our proof of
Theorem 1.4, showing that it suffices to take t(Σ, k) = Ck+g(Σ), for some constant
C.

The proofs of both of our main theorems do not rely on any of the results in the
graph minors series.

The rest of the paper is organized as follows. Section 2 contains the proof of
Theorem 1.3. In Section 4 we derive Theorem 1.4 as a corollary to a slightly
different version. We end by proving the alternative version of Theorem 1.4 in
Section 5.

2. Bounding Intersection Numbers

In this section, we prove Theorem 1.3. Before starting the proof, we make a few
more important definitions. Let Σ be a surface and X be a bd(Σ)-path or a simple
closed curve in Σ disjoint from bd(Σ). We define ΣQX to be the surface(s) obtained
from Σ by cutting out a small tubular neighbourhood ǫ(X) of X . If X is disjoint
from some family of curves C we are considering, we always assume that ǫ(X) is
also disjoint from C.

Definition 2.1. Let C be a simple closed curve in Σ disjoint from bd(Σ). We
define C to be
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• handle-enclosing, if a component of ΣQC is homeomorphic to Σ(1, 0, 1) (a
torus with a hole),

• crosscap-enclosing, if a component of ΣQC is homeomorphic to Σ(0, 1, 1)
(a Möbius band), and

• twisted handle-enclosing, if a component of ΣQC is homeomorphic to
Σ(0, 2, 1) (a Klein bottle with a hole).

Definition 2.2. Two bd(Σ)-paths P and P ′ have the same type, denoted P ∼ P ′,
if there is a bd-homeomorphism φ of Σ such that φ(P ) = P ′.

Note that for any distinct x, y ∈ bd(Σ), ∼ is an equivalence relation on the set of
all bd(Σ)-paths with ends x and y. The important thing to note is that there is
only a finite number of types of bd(Σ)-paths with ends x and y. This follows from
the classification theorem for surfaces with holes.

Definition 2.3. The pseudotype of a bd(Σ)-path P is the homeomorphism class
of ΣQP .

We now introduce some convenient notation encoding pseudotypes of non-
separating bd(Σ)-paths with ends on the same hole. Let P be such a path. We say
that P is 1-sided if g(ΣQP ) = g(Σ)− 1 and P is 2-sided if g(ΣQP ) = g(Σ)− 2. We
define P to be orientable if ΣQP is orientable, and non-orientable otherwise. There
are only four possible pseudotypes for P . These are determined by the number
i ∈ [2] of sides of P and whether or not ΣQP is orientable. We use the symbols
(i,→) and (i, 6→) to denote that P has i sides and ΣQP is or is not orientable,
respectively.

The following four lemmas summarize the relevant topological facts connecting
types and pseudotypes. They all follow by cutting along a curve of the prescribed
pseudotype and applying the classification theorem for surfaces with boundary.

Lemma 2.1. For every orientable surface Σ, any two non-separating bd(Σ)-paths
with the same ends have the same type.

Lemma 2.2. Let Σ be a non-orientable surface and let x and y be distinct points
on the same hole of bd(Σ). If P and P ′ are non-separating bd(Σ)-paths with ends
x and y, then P and P ′ have the same type if and only if P and P ′ have the same
pseudotype.

Lemma 2.3. Let Σ be a non-orientable surface and let x and y be points on distinct
holes Hx and Hy of bd(Σ). Let a and b be distinct points on Hx − {x} and c and
d be distinct points on Hy − {y}. Let P1 and P2 be bd(Σ)-paths with ends x and y
and let Hi be the hole in ΣQPi such that {a, b, c, d} ⊆ Hi. Then P1 and P2 have
the same type if and only if {a, b, c, d} has the same cyclic order in H1 and H2.

The previous three lemmas completely describe when two non-separating paths are
of the same type. The next lemma classifies types of separating paths.

Lemma 2.4. Let Σ be a surface, x and y be distinct points on the same hole H of
bd(Σ), and P and P ′ be separating bd(Σ)-paths with ends x and y. Then P and P ′

have the same type if and only if there exists an ordering Σ1,Σ2 of the components
of ΣQP and an ordering Σ′

1,Σ
′
2 of the components of ΣQP ′ so that for i = 1, 2,

Σi
∼= Σ′

i and Σi ∩ bd(Σ) = Σ′
i ∩ bd(Σ).
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Definition 2.4. A path P in a surface Σ is contractible if P is a δ-path for some
hole δ of Σ and some component of Σ− P is an open disk.

Definition 2.5. Two bd(Σ)-paths are homotopic if there is a homotopy between
them that always has its endpoints on bd(Σ).

The final definition we require concerns intersection numbers of curves.

Definition 2.6. The geometric intersection of a bd(Σ)-path P1 with a bd(Σ)-path
P2 is defined to be

#(P1, P2) := min{|P1 ∩ P ′
2| : P

′
2 is of the same type as P2}.

Note that for any two bd(Σ)-paths P1 and P2, we have #(P1, P2) ≤ 2 by the
previous lemmas. Furthermore, in an orientable surface Σ, the type of a non-
separating bd(Σ)-path is determined by its pseudotype. Therefore, the following
lemma follows by an easy case analysis.

Lemma 2.5. If Σ is an orientable surface and P1 and P2 are non-separating bd-
paths in Σ with P1 ∩ P2 ∩ bd(Σ) = ∅, then #(P1, P2) = 0.

Now that the topological prerequisites are in place, we proceed to prove
Theorem 1.3. We first consider the special case that |M| = 1. Theorem 1.3 will
then follow by induction.

Theorem 2.6. Let Σ be a surface and let P be a non-separating bd(Σ)-path
in Σ. For any linkage L in Σ whose ends are disjoint from P , there is a bd-
homeomorphism φ : Σ → Σ such that each path of φ(L) intersects P at most twice.

Proof. We define an (L, P )-shift to be a bd-homeomorphism φ : Σ → Σ such that
each path of φ(L) intersects P at most twice. Let (Σ, P,L) be a counterexample
with (g(Σ), holes(Σ), |L|) lexicographically minimal.

We proceed by establishing a chain of claims. To begin, even though we only care
about the theorem when P is non-separating, for inductive purposes it is helpful to
note that it holds in the following special case when P is separating.

Claim 2.7. If P is contractible, then there is an (L, P )-shift.

Subproof. There is an isotopy φ : Σ → Σ (fixing each point of bd(Σ)) that moves
P sufficiently close to bd(Σ) so that each L ∈ L meets φ(P ) only near an end of L.
Therefore, |φ(P ) ∩ L| ≤ 2. In this case, φ−1 is an (L, P )-shift. �

Similarly, we have the following.

Claim 2.8. No L ∈ L is contractible.

Subproof. Suppose L contains a contractible path. Since the paths in L are disjoint,
there must be a path L ∈ L such that one component of ΣQL is an open disk
which is disjoint from L. Consider L − L in Σ. By minimality, there exists an
(L − L, P )-shift φ. If φ(L) also meets P at most twice we are done. Next observe
that ΣQφ(L) has a component φ(∆) such that φ(∆) is an open disk disjoint from
φ(L). Thus, we may apply an isotopy α : Σ → Σ to shift L near bd(Σ) so that
|φ(L′) ∩ P | = |αφ(L′) ∩ P | for all L′ ∈ L − L and |αφ(L) ∩ P | ≤ 2. �
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Claim 2.9. For all L ∈ L,#(P,L) 6= 0.

Subproof. Towards a contradiction, assume that #(P,L′) = 0 for some L′ ∈ L. Let
φ : Σ → Σ be a bd-homeomorphism such that φ(L′) is disjoint from P . Let Σ′

be the component of ΣQφ(L′) that contains P (possibly Σ′ = ΣQφ(L′)). Consider
the linkage L′ := φ(L − L) ∩ Σ′. Since (Σ, P,L) is a minimal counterexample,
there exists an (L′, P )-shift α : Σ′ → Σ′. Consider the map β : Σ → Σ defined by
β(x) := αφ(x) if x ∈ φ−1(Σ′) and β(x) := φ(x) otherwise. By construction, β is an
(L, P )-shift, which is a contradiction. �

Claim 2.10. If L ∈ L is separating, then #(P,L) = 2.

Proof. Let L′ ∈ L be a separating curve and let Σ1 and Σ2 be the two components of
ΣQL′. By the previous claim, we know that #(P,L′) 6= 0. Towards a contradiction,
suppose that #(P,L′) = 1. By Lemma 2.1, Lemma 2.2 or Lemma 2.3, we may
choose a curve P ′ of the same type as P such that |P ′ ∩ L′| = 1 and for i ∈ {1, 2},
P ′ ∩ Σi is either non-separating or contractible in Σi.

Let φ : Σ → Σ be a bd-homeomorphism such that φ(P ) = P ′. Note that φ−1(L′)
only intersects P once. Let Σ′

1 and Σ′
2 be the two components of ΣQφ−1(L′). By

Claim 2.7 and induction, there are bd-homeomorphisms αi : Σ′
i → Σ′

i such that
each path of αi(φ

−1(L)∩Σ′
i) meets P ∩Σ′

i at most twice in Σ′
i. Thus, by combining

α1φ
−1 and α2φ

−1 appropriately, we obtain an (L, P )-shift. �

Claim 2.11. No path in L intersects any hole that P intersects.

Subproof. Suppose not and let δ be a hole such that both P and L meet δ. There
must exist a path L′ ∈ L such that one end l of L′ and one end p of P ′ are
consecutive along δ. That is, there is a component of δ−{l, p} that is disjoint from
L ∪ P . Note that #(P,L′) = 1 if L′ is non-separating, and #(P,L′) = 2 if L′ is
separating. We will handle both possibilities simultaneously.

Let φ : Σ → Σ be a bd-homeomorphism such that |φ(L′) ∩ P | = #(P,L′). Let
Σ1 and Σ2 be the components of ΣQφ(L′) (we allow Σ2 = ∅, in case L′ is non-
separating). Consider P ∩ Σ1 and P ∩ Σ2. Relabelling Σ1 and Σ2 if necessary,
we may assume that P ∩ Σ1 consists of two disjoint subpaths P1 and P ′

1 of P and
P ∩Σ2 is a single (possibly empty) subpath P2 of P . Since l and p are consecutive
along δ we may also assume that one component ∆ of Σ1 − P ′

1 is a disk which is
disjoint from φ(L).

As neither (Σ1, P1, φ(L ∩ Σ1)) nor (Σ2, P2, φ(L ∩ Σ2)) are counterexamples, there
exist bd-homeomorphisms αi : Σi → Σi such that each path of αi(φ(L∩Σi)) meets
Pi at most twice. Note that it is possible that α1(φ(L∩Σ1)) intersects P

′
1. However,

as ∆ is disjoint from φ(L), there is an isotopy γ : Σ1 → Σ1 such that γα1(φ(L∩Σ1))
does not meet P ′

1 and |γ(L)∩P1| = |L∩P1| for all paths L ∈ α1(φ(L∩Σ1)). If we
now define β : Σ → Σ by

β(x) =











γα1φ(x), if x ∈ φ−1(Σ1)

α2φ(x), if x ∈ φ−1(Σ2)

φ(x), otherwise

we contradict that (Σ, P,L) is a counterexample. �
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Claim 2.12. Each L ∈ L is non-separating.

Proof. Suppose that L ∈ L is separating. By Claim 2.10, #(P,L) = 2. In
particular, this implies that both ends of P are on the same hole δ. Let φ : Σ → Σ
be a bd-homeomorphism such that |φ(L) ∩ P | = 2. Let Σ1 and Σ2 be the two
components of ΣQφ(L). We may assume that Σ1 ∩ P consists of two disjoint
subpaths P1 and P ′

1 of P and Σ2 ∩ P is a single subpath P2 of P .

By Claim 2.11, δ is disjoint from L. Therefore, by Lemma 2.4, we may assume that
P1 and P ′

1 connect different holes of Σ1 and that P1 and P ′
1 are homotopic in Σ1.

As neither (Σ1, P1, φ(L ∩ Σ1)) nor (Σ2, P2, φ(L ∩ Σ2)) are counterexamples, there
exist bd-homeomorphisms αi : Σi → Σi such that each path of α1(φ(L ∩Σi) meets
Pi at most twice. If α1(φ(L ∩ Σ1)) intersects P ′

1 at most twice, then we are done
by combining αi and φ appropriately. Otherwise, since P1 and P ′

1 are homotopic
in Σ1 and L is disjoint from δ, there is a component ∆ of Σ1 − (P1 ∪P ′

1) that is an
open disk disjoint from φ(L). Therefore, we are done by applying an appropriate
isotopy of Σ1. �

Claim 2.13. Σ is non-orientable.

Subproof. Arbitrarily choose L ∈ L. By the previous claim, L is non-separating. If
Σ is orientable, then #(P,L) = 0, by Lemma 2.5. This contradicts Claim 2.9. �

Claim 2.14. No member of L ∪ {P} has endpoints on distinct holes of Σ.

Subproof. Arbitrarily choose L ∈ L. By Claim 2.12 and Claim 2.11, L is non-
separating and neither end of L is on the same hole as an end of P . Therefore, if
L or P has endpoints on distinct holes, then #(P,L) = 0, a contradiction. �

We finish the proof by ruling out all four possibilities for the pseudotype of P . Let
L := {L1, . . . , Ln}, let p1 and p2 be the ends of P , and let δP be the hole which
contains {p1, p2}. By Claim 2.14, each Li is also a δi-path for some hole δi. Also,
by Claim 2.11, δi 6= δP for any i.

Claim 2.15. P is not of pseudotype (2, 6→).

Subproof. Suppose P is of pseudotype (2, 6→). This implies that Σ ∼= Σ(0, i, j) for
some i ≥ 3. Let C be a separating curve such that one component Σ1 of ΣQC is
homemorphic to Σ(1, 0, 2) and P ⊆ Σ1. Let Σ2 be the other component of ΣQC.
Note that Σ2

∼= Σ(0, i − 2, j). We choose an arbitrary L ∈ L and show in every
case that we get the contradiction #(P,L) = 0.

If L has pseudotype (1,→) or (1, 6→), then there is a path of the same type as L
contained in Σ2, and hence disjoint from P . If L has pseudotype (2,→), then i is
even and at least 4, so again there is a path of the same type as L contained in Σ2.
If L is of pseudotype (2, 6→), then there is a path of the same type as L disjoint
from P that meets C exactly twice. �

Claim 2.16. P is not of pseudotype (1,→).
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Subproof. If P is of pseudotype (1,→), then Σ ∼= Σ(i, 1, j), for some i, j. Consider
an arbitrary L ∈ L. Since g(Σ) is odd, L is not of type (2,→). Observe that L
cannot be of type (2, 6→), as otherwise g(Σ) ≥ 3 and #(P,L) = 0. Hence, each Lk

is of pseudotype (1,→) or (1, 6→).

Let C0, C1, . . . , Ci be disjoint closed curves in Σ such that C0 is a crosscap-enclosing
curve and C1, . . . , Ci are pairwise non-homotopic handle-enclosing curves. Since
each path in L is of pseudotype (1,→) or (1, 6→), each path in L must intersect
C0. By applying an appropriate isotopy, we may assume that each Lk intersects
C0 exactly twice. Thus, we may label the points of C0 ∩ L as x1, x

′
1, . . . , xn, x

′
n,

where xk and x′
k are the ends of Lk, and the clockwise order of C0 ∩ L along C0 is

x1, . . . , xn, x
′
1, . . . , x

′
n.

Since each Lk is non-separating, there is a path Q in Σ from p1 to a point z ∈ C0

that avoids L1 ∪ · · · ∪ Ln ∪ C0 ∪ C1 ∪ · · · ∪ Ci (other than the point z). Let Σ0 be
the crosscap enclosed by C0. By relabelling if necessary, we may assume that there
is a point z′ ∈ C0 such that the clockwise order of {z, z′, x1, . . . , xn, x

′
1, . . . , x

′
n}

along C0 is z, x1, . . . , xn, z
′, x′

1, . . . , x
′
n. Thus, there is a path R in Σ0 such that

R ∩ C0 := {z, z′} and R is disjoint from L.

We now define a path P ′ with the same ends as P as follows.

• Start at p1 and follow Q until reaching z.
• Follow R until reaching z′.
• Follow C0 clockwise until returning sufficiently close to z.
• Stay sufficiently close to Q until returning sufficiently close to p1.
• Stay sufficiently close to δP until returning to p2.

Since δP does not meet any Lk, we may choose P ′ so that P ′ meets each Lk exactly
once. Moreover, we may also assume that P ′ does not meet C1∪· · ·∪Ci. Therefore,
by construction, P ′ is of pseudotype (1,→). By Lemma 2.2, P ′ is of the same type
as P , so we are done. �

Claim 2.17. P is not of pseudotype (1, 6→).

Subproof. Suppose not and consider an arbitrary L ∈ L. Observe that #(P,L) = 0,
unless L is of pseudotype (1,→) or (2,→). Therefore, each path in L is of
pseudotype (1,→) if g(Σ) is odd, or each path in L is of pseudotype (2,→) if
g(Σ) is even.

We handle the former possibility first. In this case Σ is homeomorphic to
Σ(0, 2i+ 1, j) for some i, j. Let C0, C1, . . . , C2i be pairwise disjoint non-homotopic
crosscap-enclosing curves in Σ. Since each path in L is of pseudotype (1,→), each
path in L must intersect C0. By applying an appropriate isotopy, we may assume
that each Lk intersects C0 exactly twice. Now as in the proof of Claim 2.16, we can
construct a path of the same type as P which meets each curve in L exactly once.

The remaining case is if each L ∈ L is of pseudotype (2,→), which implies that
Σ ∼= Σ(i, 2, j) for some i, j. Let C0, C1, . . . , Ci be disjoint closed curves in Σ
such that C0 is a twisted handle-enclosing curve and C1, . . . , Ci are pairwise non-
homotopic handle-enclosing curves. Observe that each path in L must intersect
C0. By applying an appropriate isotopy, we may assume that each Lk intersects
C0 exactly twice. Thus, we may label the points of C0 ∩ L as x1, x

′
1, . . . , xn, x

′
n,
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where xk and x′
k are the ends of Lk, and the clockwise order of C0 ∩ L along C0 is

x1, . . . , xn, x
′
n, . . . , x

′
1. Let y and y′ be points of C0 such that the clockwise order

of {y, y′} ∪ (C0 ∩ L) along C0 is x1, . . . , xn, y, x
′
n, . . . , x

′
1, y

′.

In this case, we start at p1 until we get nearly to C0 at some point z; follow along
C0 to y or y′, go through the twisted handle, then back alongside C0 to near z, and
finish as in Claim 2.16. �

Claim 2.18. P is not of pseudotype (2,→).

Subproof. Suppose not and note Σ ∼= Σ(i, 2, j) for some i ≥ 0. Observe that L
cannot be of pseudotype (2, 6→) or (2,→), otherwise #(P,L) = 0. Therefore, each
Lk is of pseudotype (1, 6→).

Let C0, C1, . . . , Ci be disjoint closed curves in Σ such that C0 is a twisted handle-
enclosing curve and C1, . . . , Ci are pairwise non-homotopic handle-enclosing curves.
Since each path in L is of pseudotype (1, 6→), L must intersect C0. By applying an
appropriate isotopy, we may assume that each Lk intersects C0 exactly twice. Note
that some paths of L go through one of the crosscaps enclosed by C0, and the rest
must go through the other crosscap enclosed by C0. Thus, we may label the points
of C0 ∩ L as x1, x

′
1, . . . , xn1

, x′
n1
, y1, y

′
1 . . . , yn2

, y′n2
, where xk and x′

k are the ends
of Lk, yk and y′k are the ends of Ln1+k, n1 + n2 = n, and the clockwise order of
C0 ∩ L along C0 is

x1, . . . , xn1
, x′

1, . . . , x
′
n1
, y1, . . . , yn2

, y′1, . . . , y
′
n2
.

Again there is a path from p1 to a point z ∈ C0 that avoids L ∪ C1 ∪ · · · ∪ Ci. By
symmetry we may assume that z is on the clockwise segment of C0 from x1 to x′

n1
.

Now let w and w′ be points of C0 such that the clockwise order of {w,w′}∪(L∩C0)
along C0 is

x1, . . . , xn1
, x′

1, . . . , x
′
n1
, w, y1, . . . , yn2

, w′, y′1, . . . , y
′
n2
.

In this case, we start at p1 until we get nearly to C0 at z; go through one of the
crosscaps enclosed by C0, then alongside C0 to w or w′, then through the other
crosscap enclosed by C0, then back alongside C0 until returning to near z, and
finish as in Claim 2.16. �

This completes the entire proof. �

A simple induction yields Theorem 1.3, which is the form we will use later.

Theorem 1.3. Let Σ be a surface and let L and M be linkages in Σ of sizes k
and n respectively. If L ∩M∩ bd(Σ) = ∅ and Σ−M is connected, then there is a
bd-homeomorphism φ : Σ → Σ such that |φ(L) ∩M| ≤ k(3n − 1).

Proof. We proceed by induction on n. The case n = 1 follows by the previous
theorem. Let P ∈ M. By the previous theorem, there is a bd-homeomorphism
φ1 : Σ → Σ such that each path of φ1(L) intersects P at most twice. Let
Σ′ and L′ be the surface and linkage obtained from Σ and φ1(L) by cutting
out a small tubular neighbourhood of P . Thus, L′ is a linkage in Σ′ of size at
most 3k. By induction, there is a bd-homeomorphism φ2 : Σ′ → Σ′ such that
|φ2(L′) ∩ (M \ {P})| ≤ (3k)(3n−1 − 1). Thus, there is a bd-homeomorphism
φ : Σ → Σ such that |φ(L) ∩M| ≤ (3k)(3n−1 − 1) + 2k = k(3n − 1). �
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We conjecture that Theorem 1.3 holds without the assumption that Σ − M is
connected.

Conjecture 2.19. Let Σ be a surface and let L and M be linkages in Σ of sizes
k and n respectively. If L ∩ M ∩ bd(Σ) = ∅, then there is a bd-homeomorphism
φ : Σ → Σ such that |φ(L) ∩M| ≤ k(3n − 1).

We end the section by connecting Theorem 1.3 to a constant w(Σ, k, n) that appears
in Graph Minors VII [9]. A near-linkage in a surface Σ is a collection of internally
disjoint bd(Σ)-paths. If Σ is a cylinder, then a small subset of the proofs of
Theorems 2.6 and 1.3 yields the following.

Theorem 2.20. Let L be a near-linkage of size k and M be a linkage of size
n in a cylinder Σ. Then there is a bd-homeomorphism φ : Σ → Σ such that
|φ(L) ∩M| ≤ k(3n − 1).

Note that in the cylinder, we do not require the hypotheses L∩M∩bd(Σ) = ∅ nor
Σ−M connected. The latter follows easily since every separating bd-path P in the
cylinder is contractible, and we know that Theorem 2.6 holds if P is contractible.
We now extend Theorem 1.3 to the case that L is a near-linkage.

Theorem 2.21. Let Σ be a surface, L be a near-linkage of size k in Σ, and M be
a linkage of size n in Σ. If Σ−M is connected, then there is a bd-homeomorphism
φ : Σ → Σ such that |φ(L) ∩M| ≤ k32n+1.

Proof. Let Σ′,L′, and M′ be obtained from Σ,L, and M by cutting a slightly
larger hole δ′i around each hole δi of Σ. We may assume that each P ∈ L ∪ M
meets each δ′i at most twice and that L ∩M∩ δ′i = ∅. By Theorem 1.3, there is a
bd-homeomorphism φ′ : Σ′ → Σ′ such that |φ′(L′) ∩M′| ≤ k(3n − 1).

For each hole δi we let Σi be the cylinder between δ′i and δi. Let Li = L ∩ Σi and
Mi = M∩ Σi. Note that

⋃

i |Li| ≤ 2k and
⋃

i |Mi| ≤ 2n. By applying Theorem
2.20 to each Li and Mi in Σi, and then extending φ′ accordingly, there is a bd-
homeomorphism φ : Σ → Σ such that |φ(L) ∩ M| ≤ k(3n − 1) + 2k(32n − 1) ≤
k32n+1. �

We now further extend Theorem 1.3 to bound the intersection number between a
forest and a linkage. Let F1 and F2 be two forests embedded in Σ. Robertson and
Seymour [9] define F1 and F2 to be homotopic if

• V (F1) ∩ bd(Σ) = V (F2) ∩ bd(Σ),
• for all s, t ∈ V (F1) ∩ bd(Σ), there is a path from s to t in F1 if and only if
there is a path from s to t in F2, and

• for all s, t ∈ V (F1) ∩ bd(Σ), the s-t path in F1 (if it exists) is homotopic to
the s-t path in F2 (if it exists).

Two forests F1 and F2 are homoplastic if there is a bd-homeomorphism φ such that
φ(F1) is homotopic to F2.

Theorem 2.22. For all k, n ∈ N and all surfaces Σ, if F is a forest in Σ with
|V (F ) ∩ bd(Σ)| ≤ k, M is an n-linkage in Σ, and Σ−M is connected, then there
is a forest F ′ in Σ such that F ′ is homoplastic to F and |F ′ ∩M| ≤ 4k(32n+1).
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Proof. Let (Σ,M, F ) be a counterexample with |V (F )| minimum. Since |V (F )|
is minimum, all degree 2 vertices of F must be on bd(Σ). Next suppose there is
an edge xy ∈ E(F ) such that x has degree 1 in F , and x /∈ bd(Σ). Note that
contracting e produces a smaller counterexample. Thus, all leaf vertices of F are
on bd(Σ). Let V≥3 be the vertices of F of degree at least 3, V1 be the leaves of F ,
and X be the vertices of F not contained on bd(Σ). Since X ⊆ V≥3 and all leaves
of F are on bd(Σ) we have

∑

v∈X

dF (v) ≤
∑

v∈V≥3

dF (v) < 3|V1| ≤ 3|V (F ) ∩ bd(Σ)|,

where the second to last inequality follows since a forest has average degree less
than 2.

By applying an isotopy we may assume that M is disjoint from X . For each
x ∈ X , let ∆x be a small open disk such that ∆x is disjoint from M. Let
Σ′ := Σ −

⋃

x∈X ∆x. We transform F into a near-linkage L(F ) on Σ′ as follows.
For each x ∈ X , we split x into dF (x) copies on ∆x according to the clockwise
order of the edges around x in F . Let M′ be the image of M in Σ′. Now apply
Corollary 2.21 to L(F ) and M′ in Σ′. Since

∑

v∈X dF (v) ≤ 3|V (F ) ∩ bd(Σ)|, it
follows that |V (L(F ))| ≤ 4|V (F )∩bd(Σ)|. Therefore, there is a bd-homeomorphism
φ′ : Σ′ → Σ′ such that |φ′(L(F )) ∩ M′| ≤ 4k(32n+1). By gluing back each ∆x

and then contracting each ∆x to a point, we obtain a forest F ′ in Σ such that
|F ′ ∩M| ≤ 4k(32n+1) and F ′ is homoplastic to F . �

Theorem 2.22 is essentially a computable version of [9, (3.6)], with an explicit
value for the constant w(Σ, k, n). Unfortunately, we have the additional hypothesis
that Σ − M is connected. In the last paragraph of [10], it is stated, without
proof, that w(Σ, k, n) from [9] is computable. Note that the bound 4k(32n+1) in
Theorem 2.22 is independent of Σ. We conjecture we should also be able to take
w(Σ, k, n) = 4k(32n+1), which would follow from Conjecture 2.19. However, it is
important to point out that our proof of Theorem 1.4 does not rely on the fact that
w(Σ, k, n) is computable. We will derive Theorem 1.4 from Theorem 1.3.

3. Linkages on a Cylinder

The purpose of this section is to establish two lemmas regarding linkages on a
cylinder. Both these lemmas will be used in the proof of Theorem 1.4.

It is convenient for us to describe our first lemma in terms of independence in a
certain matroid, which we now define. In general, if V1 and V2 are sets of vertices
in a graph G, then, for each A ⊆ V1, the maximum number of disjoint A-V2 paths
in G is the rank function of a matroid on V1. We denote the rank function of this
matroid as κV1,V2

.

We will later apply Edmonds’ Matroid Intersection Theorem [2] to two copies of
this matroid. No other knowledge of matroid theory is required, but the interested
reader may refer to Oxley [8].

Our first lemma is a technical assertion about when we can route paths across a
cylinder given the presence of many other paths.
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Lemma 3.1. Let G be a graph embedded on a cylinder Σ with holes δ1 and δ2. Let
V1 := V (G) ∩ δ1, V2 := V (G) ∩ δ2, and M be the matroid on V1 with rank function
κV1,V2

. Let A1, B1, A2, B2, . . . , An, Bn be a cyclically contiguous partition of V1. If
for all i ∈ [n], Ai is M -independent and rM (Bi) ≥ 2

∑n
j=1 |Aj |, then

⋃n
j=1 Aj is

M -independent.

Proof. By hypothesis, for each i ∈ [n], there exists a collection Ai of |Ai| disjoint
Ai-V2 paths. If the paths in A :=

⋃n
i=1 Ai are disjoint, we are done. Otherwise, let

B :=
⋃n

i=1 Bi. Since rM (Bi) ≥ 2
∑n

j=1 |Aj | for each i, by iteratively augmenting
M -independent sets, there exists a collection B of disjoint B-V2 paths such that

• |B| = 2
∑n

i=1 |Ai|, and
• For each i, B contains exactly |Ai| + |Ai+1| paths with an endpoint in Bi

(indices are read modulo n).

The idea is to use the paths in B to reroute the paths in A. Let Bi be the paths in
B with an endpoint in Bi and let mi := |Ai|.

Label the paths of A1 as P1, . . . , Pm1
clockwise. Label the paths of B1 as

R1, . . . , Rm1+m2
clockwise. Label the paths of Bn as Q1, . . . , Qmn+m1

counter-
clockwise. For walks P and Q that intersect, the product of P with Q is the walk
PQ := PxQ, where x is the first vertex of P also in Q. By convention, if P and Q
are disjoint A-V2 paths, the region between P and Q is the (closed) clockwise region
in Σ from P to Q.

We will reroute the paths in A1 so that they are between Qm1
and Rm1

. Suppose
that some path of A1 is not between Qm1

and Rm1
. The crux of the proof is the

following claim.

Claim 3.2. Either

• P1 ∩Qm1
6= ∅ and P1Qm1

∩Rm1
= ∅, or

• Pm1
∩Rm1

6= ∅ and Pm1
Rm1

∩Qm1
= ∅.

Subproof. If P1 and Pm1
are both between Qm1

and Rm1
, then by planarity, all

paths of A1 would also be, which is a contradiction. So certainly, P1 or Pm1
must

intersect Qm1
or Rm1

. By symmetry let us assume P1 intersects Qm1
or Rm1

.
Suppose P1 intersects Qm1

. Then we are done unless

P1Qm1
∩Rm1

6= ∅.

However, this implies that P1 also intersects Rm1
, and that in fact P1 intersects

Rm1
before Qm1

. It follows that Pm1
∩ Rm1

6= ∅ and Pm1
Rm1

∩ Qm1
= ∅, as

required.

The remaining case is that P1 intersects Rm1
, but not Qm1

. Again we have
Pm1

∩Rm1
6= ∅ and Pm1

Rm1
∩Qm1

= ∅. �

So all paths of A1 are indeed between Qm1
and Rm1

unless

• P1 ∩Qm1
6= ∅ and P1Qm1

∩Rm1
= ∅, or

• Pm1
∩Rm1

6= ∅ and Pm1
Rm1

∩Qm1
= ∅.
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By symmetry, we may assume P1 ∩Qm1
6= ∅ and P1Qm1

∩Rm1
= ∅. We replace P1

by P1Qm1
. Now, if P2, . . . , Pm1

are all between Qm1−1 and Rm1
then we are done.

Otherwise, by the above claim

• P2 ∩Qm1−1 6= ∅ and P2Qm1−1 ∩Rm1
= ∅, or

• Pm1
∩Rm1

6= ∅ and Pm1
Rm1

∩Qm1−1 = ∅.

In the former, we replace P2 by P2Qm1−1. In the latter, we replace Pm1
by Pm1

Rm1
.

Note that in both cases the rerouted path is disjoint from P1Qm1
. Therefore, we

can continue re-routing inductively, until all paths in A1 are between Qm1
and Rm1

.

By repeating the above argument, for each i ∈ [n] we obtain a family A′
i of disjoint

Ai-V2 paths such that, for all i,

• |A′
i| = |Ai|, and

• The paths in A′
i intersect at most |Ai| paths of Bi and at most |Ai| paths

of Bi−1.

It immediately follows that the family A′ :=
⋃n

i=1 A
′
i is disjoint, since |Bi| ≥

|Ai|+ |Ai+1| for each i. �

We end this section by proving a lemma for linkages in cylindrical grids. Let Cm be
a cycle of length m and Pn be a path with n vertices. The (m,n)-cylindrical grid is
the Cartesian product Cm �Pn. The two cycles of length m in Cm �Pn that pass
through only degree 3 vertices are called the boundary cycles.

Suppose that the vertices of a pattern Π are contained in a cyclically ordered set
(such as a cycle in a graph). We say that Π is cross-free, if there do not exist distinct
a, b, c, d ∈ V (Π) such that {a, b}, {c, d} ∈ Π and the cyclic ordering of {a, b, c, d} is
a, c, b, d or a, d, b, c. Note that a pattern on a disk is topologically feasible if and
only if it is cross-free.

Our second lemma gives sufficient conditions for finding linkages in cylindrical grids.

Lemma 3.3. Let G be a (m,n)-cylindrical grid and let Π be a pattern of size k
with V (Π) contained in a boundary cycle of G. If Π is cross-free and n ≥ k, then
Π is realizable in G.

Proof. If Π contains a singleton {s}, then we can delete s from G and contract
the remaining vertices of Π one step into the cylinder. The resulting graph has a
Cm−1 �Pn−1 minor with V (Π)−{s} still contained in one of the boundary cycles.
By induction on k, we are done.

Otherwise, since Π is cross-free, we can find an element {s, t} ∈ Π and an s-t path
P of a boundary cycle such that no internal vertex of P is in V (Π). We delete
the ends of P and contract the other vertices of Π one step into the cylinder. The
resulting graph has a Cm−2 �Pn−1 minor with V (Π)− {s, t} still contained in one
of the boundary cycles. By induction, we can realize Π−{{s, t}} in G−{s, t}, and
hence we can realize Π in G. �
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4. Redundant Vertices on Surfaces

In this section we prove Theorem 1.4. Let G be a graph embedded in a surface
Σ and let Π be a pattern in G. Recall that a vertex v ∈ V (G) is t-protected in Σ
(with respect to Π) if

• there are t vertex disjoint cycles C1, . . . , Ct of G, bounding discs ∆1, . . . ,∆t

in Σ with v ∈ ∆1 ⊂ ∆2 ⊂ · · · ⊂ ∆t, and
• V (Π) is disjoint from int(∆t).

We refer to C1, . . . , Ct as the cycles protecting v.

To apply induction, it turns out to be useful to work with a special kind of surface.
To this end, we introduce a ‘disk with strips’.

A strip S is a homeomorph of [0, 1]× [0, 10]. The:

• ends of S are the images of [0, 1]× {0} and [0, 1]× {10};
• equator of S is the image of [0, 1]× {5};
• corners of S are images of (0, 0), (0, 10), (1, 0), and (1, 10).

A disk with n strips is a surface Ω := ∆ ∪ S1 ∪ · · · ∪ Sn, where ∆ is a disk and for
all distinct i, j ∈ [n],

• Si is a strip.
• Si ∩∆ is the union of the ends of Si.
• Si and Sj are disjoint, except possibly at corners.

For example, up to homeomorphism, the only disks with 1 strip are the cylinder
and the Möbius band. If Ω = ∆ ∪ S1 ∪ · · · ∪ Sn is a disk with n strips, then we say
S1, . . . , Sn are the strips of Ω and that ∆(Ω) := ∆ is the disk of Ω.

Let Ω be a disk with strips, G be a graph embedded in Ω, and Π be a pattern in
G. We say that a vertex v ∈ V (G) is t-insulated in Ω (with respect to Π) if:

• there are t vertex disjoint cycles C1, . . . , Ct of G, bounding discs ∆1, . . . ,∆t

in ∆(Ω) with v ∈ ∆1 ⊂ ∆2 ⊂ · · · ⊂ ∆t = ∆(Ω);
• V (Π) is disjoint from int(∆t); and
• each Ci is an induced subgraph of G ∩∆(Ω).

In particular, if we regard Ω as a surface, then a t-insulated vertex is a t-protected
vertex, but not necessarily vice versa.

We prove Theorem 1.4 as a corollary of the following theorem.

Theorem 4.1. For all k, n ∈ N, there exists a computable constant θ := θ(k, n) ∈ N

such that if G is a graph embedded in a disk with n strips Ω, Π is a pattern in G
of size k, v ∈ V (G) is a θ(k, n)-insulated vertex in ∆(Ω) with respect to Π, and
V (Π) ⊆ bd(Ω) ∩∆(Ω), then v is redundant.

We also require the following easy lemma which follows from Euler’s Formula. See
[5, Proposition 3.6] for a proof.

Lemma 4.2. Let C be a family of non-contractible simple closed curves in a surface
Σ. If, for all C1, C2 ∈ C, C1 ∩ C2 = {b} and the curves in C are pairwise non-
homotopic (relative to the fixed basepoint b), then |C| ≤ 3g(Σ).
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The proof of Theorem 4.1 is rather lengthy, so we defer it until the next section.
It is however, relatively straightforward to derive Theorem 1.4 from Theorem 4.1,
which we now proceed to do.

Theorem 1.4. For all surfaces without boundary Σ and all k ∈ N, there exists a
computable constant t := t(Σ, k) ∈ N such that if G is a graph embedded in Σ, Π is
a k-pattern in G, and v ∈ V (G) is a t-protected vertex in Σ with respect to Π, then
v is redundant.

Proof. For all surfaces without boundary Σ and all k ∈ N, define t(Σ, k) to be
θ(k, 4k + 3g(Σ)), where θ is the function from Theorem 4.1. We will define θ
explicitly in the proof of Theorem 4.1, so t is also explicit.

Let (G,Σ,Π, v) be a counterexample with |V (G)|+ |E(G)| minimal. That is, G is
a graph embedded in a surface Σ, Π is a pattern of size k in G, and v ∈ V (G) is a
t-protected (t := t(Σ, k)) vertex in Σ with respect to Π, yet v is essential.

Let C1, . . . , Ct be cycles protecting v, bounding disks ∆1 ⊂ · · · ⊂ ∆t in Σ such that
∑

i∈[t] |V (Ci)| is minimum. Let L be a Π-linkage in G, and let H = C1 ∪ · · · ∪ Ct.

Claim 4.3. V (G) = V (H).

Subproof. Suppose not. First note that V (L) ∪ V (H) = V (G), otherwise we could
delete a vertex of G not in V (L)∪V (H) to obtain a smaller counterexample. Next
observe that if e = xy ∈ E(L) and y /∈ V (H), then we can contract e onto x to
obtain a smaller counterexample. �

Observe that the claim implies that V (Π) ⊆ V (Ct).

Claim 4.4. Each Ci is an induced subgraph of G ∩∆t.

Subproof. Towards a contradiction, suppose that e ⊆ ∆t, e /∈ E(H), and e has
both of its ends on Cj for some j ∈ [t]. Note that by minimality, G is simple. So,
there is a cycle C′

j ⊆ Cj ∪ e with length strictly less than Cj . Replacing Cj by C′
j

contradicts that
∑

i∈[t] |V (Ci)| is minimum. �

We now consider edges e of G not contained in ∆t. We say that such an edge e
is contractible if e and a subpath of Ct bounds a disk in Σ. Otherwise, e is non-
contractible. We say that two paths in Σ are homotopic (relative to bd(∆t)) if there
is a homotopy between them that always has its endpoints on bd(∆t).

Claim 4.5. There are at most 2k homotopy classes of contractible edges.

Subproof. For each contractible edge e, let Pe be a subpath of Ct such that Pe ∪ e
bounds a disk in Σ. Observe that e and f are homotopic if and only if Pe ⊆ Pf

or Pf ⊆ Pe. Now let E be a collection of contractible edges that are pairwise non-
homotopic. It follows that P := {Pe : e ∈ E} is a collection of pairwise internally
disjoint paths of Ct. Also, each Pe must contain an internal vertex which is in
V (Π), for otherwise we could replace Ct in H by a shorter cycle. So

|E| = |P| ≤ |V (Π)| = 2k. �

Claim 4.6. There are at most 3g(Σ) homotopy classes of non-contractible edges.
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Subproof. Let N be a collection of non-contractible edges that are pairwise non-
homotopic. Contract the disk ∆t to a point in b in Σ, and let N ∗ be the resulting
family of curves. Note that N ∗ is now a collection of simple non-contractible
closed curves on Σ, each containing b but otherwise pairwise disjoint. Furthermore,
the curves in N ∗ are pairwise non-homotopic (relative to the base point b). By
Lemma 4.2, there are at most 3g(Σ) such curves. �

By regarding each homotopy class as passing through a distinct strip, we can view G
as being embedded on a disk with at most 2k+3g(Σ) strips, Ω, where ∆(Ω) = ∆t.
Unfortunately, to apply Theorem 4.1, we require V (Π) to be on bd(Ω) ∩ ∆(Ω).
However, if x ∈ V (Π) is not on a corner of a strip of Ω, then we may split a strip
in half, and place x at a corner of one of the new strips. Note that we only need to
apply this operation at most 2k times. So, we have shown the following.

Claim 4.7. G is a graph embedded in a disk with at most 4k + 3g(Σ) strips Ω′,
Π is a pattern in G of size k, v ∈ V (G) is a θ(k, 4k + 3g(Σ))-insulated vertex in
∆(Ω′) with respect to Π, and V (Π) ⊆ bd(Ω′) ∩∆(Ω′).

By definition of the function θ, we have that v is indeed redundant for Π. �

5. Redundant Vertices on Disks with Strips

In this section we prove Theorem 4.1, which we restate for convenience. Our proof
is based on an unpublished proof of Carl Johnson and Paul Seymour presented at
the Workshop on Graph Theory in Oberwolfach, 1999.

Theorem 4.1. For all k, n ∈ N, there exists θ := θ(k, n) ∈ N such that if G is a
graph embedded in a disk with n strips Ω, Π is a pattern in G of size k, v ∈ V (G)
is a θ-insulated vertex in ∆(Ω) with respect to Π, and V (Π) ⊆ bd(Ω) ∩∆(Ω), then
v is redundant.

Proof. Let θ(k, n) = tower(100, 200, . . . , 100n, k100n) and let m(k, n) = (4n +
1)k3n + 8k. Note that θ(k, 0) = k for all k. Also, for all n > 0, an easy induction
gives

θ(k, n) ≥ θ(k + 4m(k, n)(2n+ 1)4nm(k,n), n− 1) + 2k + nk3n.

These are the only two properties of θ(k, n) that we will use. Note that θ(k, n) does
not depend on G.

Let (G,Ω,Π, v) be a counterexample with |E(G)| minimal. Let n be the number
of strips in Ω, k the size of Π, and θ = θ(n, k). Then v is θ-insulated in Ω with
respect to Π, V (Π) ⊆ bd(Ω) ∩∆(Ω), and yet v is essential.

Let Ω := ∆∪S1∪· · ·∪Sn, and let C1, . . . , Cθ be cycles insulating v, bounding disks
∆1 ⊂ · · · ⊂ ∆θ = ∆. Let L be a Π-linkage in G and let H = C1 ∪ · · · ∪ Cθ. Notice
that we may assume bd(Ω)−∆θ is disjoint from G.

Claim 5.1. E(H) ∩ E(L) = ∅ and E(H) ∪ E(L) = E(G).

Subproof. Contracting any edges in E(H) ∩ E(L) or deleting any edges not in
E(H) ∪ E(L) would both yield smaller counterexamples. �

Claim 5.2. V (G) = V (H).
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Subproof. Let xy be an edge with y /∈ V (H). Since y /∈ V (H), y /∈ V (Cθ), and,
therefore y /∈ bd(Ω). Thus, G/xy is a smaller counterexample. �

We now examine how L passes through Ω. The level ℓ(x) of a vertex x in Cj is
defined to be j. Let P be a path with ends a and b. We call P a hill if

• ℓ(a) = ℓ(b),
• ℓ(c) > ℓ(a) for all internal vertices c of P , and
• P and a subpath of Cℓ(a) bounds a disk in Ω.

Note that if a path P satisfies the first two bullet points and P ⊆ ∆, then P
will automatically satisfy the third bullet point. However, there may be hills not
contained in ∆. For example, an edge xy contained in a strip S is a hill if and only
if x and y are both on a same end of S.

The sea level ℓ(P ) of a hill P is defined to be the level of either of its ends. Observe
there is a subpath KP of Cℓ(P ) so that P ∪ KP bounds a disc whose interior is
disjoint from the insulated vertex v.

Claim 5.3. L (as a subgraph) does not contain a hill.

Subproof. Suppose that L contains a hill. Let σ be the lowest sea level of all hills
of L. Among all hills of L at sea level σ, choose J such that the length of KJ

is minimal. By choice of J we have that L does not use any internal vertex of
KJ . Therefore, (L\E(J)) ∪ E(KJ) is a Π-linkage. Letting e be any edge of J , we
conclude that G\e is a smaller counterexample, a contradiction. �

A path P = x0 . . . xq of G is decreasing if P ⊆ ∆ and ℓ(x0) ≤ · · · ≤ ℓ(xq). We will
require the following claim later.

Claim 5.4. Let A ⊆ V (Cθ), and let i ∈ [θ]. If there exist |A| disjoint A-Ci paths
in G ∩∆, then there exist |A| disjoint decreasing A-Ci paths in G ∩∆.

Subproof. The proof is similar to the proof of the previous claim. Let A be a
collection of |A| disjoint A-Z paths in G ∩ ∆ with the minimum number of hills.
We claim that A is a family of decreasing paths. Suppose not and let σ be the
lowest sea level among all hills in A. Among all hills of A at sea level σ, choose J
such that the length of KJ is minimal. By choice of J we have that A does not
use any internal vertex of KJ . Re-routing A through KJ contradicts the choice of
A. �

Let Y1, . . . , Yℓ be the components of Cθ−(
⋃n

i=1 int(ends(Si)). DefineXi := Yi∩V (Π)
and observe that X1, . . . , Xℓ is a partition P of V (Π) (possibly some Xi are empty).
We say that a path P of G is a nibble if P ⊆ ∆ and the ends of P are in the same
part of the partition P.

Claim 5.5. No path of L is a nibble.

Subproof. Suppose not, and choose a nibble L ∈ L such that min{i : L ∩ Ci 6= ∅}
is maximum. By choice of L and planarity, there is a path K of Cθ with the same
ends as L such that no path of L uses an internal vertex of K. By replacing L
by (L − {L}) ∪ {K} and deleting any edge of L from G, we contradict that G is a
minimal counterexample. �
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By orienting Cθ clockwise, we may view each part of the partition P as a linearly
ordered set. For distinct a, b ∈ Cθ, we let [a, b] be the clockwise subpath of Cθ from
a to b. Let {x1, . . . , xp} be one of the parts of the partition (labelled in increasing
order). The key point to keep in mind is that [x1, xp] is disjoint from all strips of
Ω (except possibly at corners). For each xi, let L(xi) be the (unique) member of
L starting from xi. Define ω(xi) to be the number of protective cycles that L(xi)
intersects before it uses an edge outside of ∆.

Claim 5.6. For each i ∈ [p], ω(xi) ≥ min{i, p− i+ 1}.

Subproof. We proceed by induction on min{i, p − i + 1}. Clearly the claim holds
for i ∈ {1, p}. Consider an arbitrary xi. By symmetry we may assume that i ≤ p

2
and we inductively assume that ω(xi−1) ≥ i− 1 and ω(xp−i+2) ≥ i− 1.

Towards a contradiction assume that ω(xi) ≤ i − 1. Let a be the second vertex of
L(xi) that is on Cθ (xi is the first). Let Q be the subpath of L(xi) from xi to a.
Note that Q∪ [xi, a] and Q∪ [a, xi] both bound disks in ∆. We denote them as ∆1

and ∆2, respectively. We say that a region in ∆ is small if it does not contain v
(the insulated vertex). Because ω(xi) ≤ i− 1, v is not in L(xi). Therefore, exactly
one of ∆1 or ∆2 is small. There are various cases depending where a lies on Cθ and
which of ∆1 or ∆2 is small.

Subclaim 1. ∆1 is not small.

Subproof. Towards a contradiction assume ∆1 is small. If a ∈ [xi, xp], then L
contains a nibble, a contradiction. Thus, a ∈ [xp, xi]. Note that ω(xp−i+2) ≥ i − 1
by induction. Since ω(xi) ≤ i − 1, the only way to avoid a contradiction is if L
connects xi to xp−i+2 inside ∆. However, this path of L is a nibble, which is also
impossible. �

Subclaim 2. ∆2 is not small.

Subproof. Towards a contradiction assume ∆2 is small. If a ∈ [xi−1, xi], then L does
not use any internal vertex of [a, xi]. Therefore, we can reroute L(xi) through [a, xi],
which contradicts that G is a minimal counterexample. So, xi−1 ∈ [a, xi]. Since
ω(xi−1) ≥ i− 1, the only way to avoid a contradiction is if L(xi) actually connects
xi to xi−1 within ∆. But then L(xi) is a nibble, which is also impossible. �

This completes the proof of the claim, since one of ∆1 or ∆2 must be small. Thus,
w(xi) ≥ min{i, p− i+ 1}, as required. �

We now analyze the edges of G not contained in ∆. For each strip S let E(S) be
the edges of G contained in S.

Claim 5.7. For each strip S, E(S) is a matching with each edge on different ends
of S.

Subproof. If e ∈ E(S) has both ends on a same end of S, then e is a hill, which is
a contradiction. If another edge f ∈ E(G) shares an end with e, then {e, f} and
a subpath P of Cθ bounds a disk in Ω. If P is just an edge, we may reroute L
through P . If P contains an internal vertex, then L must contain a hill at sea level
θ − 1, contradicting Claim 5.3. �
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If we regard Π as a pattern in Ω instead of a pattern in G, then evidently there is
a topological realization of Π in Ω, since there is a realization of Π in G. Let M be
the topological linkage of size n, consisting of the equators of the strips of Ω. By
Theorem 1.3, there is a topological Π-linkage L′ such that |L′ ∩ M| ≤ k3n. The
pivotal idea is to try and realize L′ in G.

Let m := (4n+ 1)k3n + 8k and N := θ(k + 4m(2n + 1)4nm, n − 1). Observe that
θ(k, n) = N+2k+nk3n. We set M to be the matroid on V (Cθ) with rank function
κV (Cθ),V (CN ).

For each strip S of Ω, we let V (S) be the vertices covered by E(S). By Claim 5.7,
we may partition V (S) as V0(S)∪V1(S), according to the end of S a vertex belongs
to. For i = 0, 1, we let Mi(S) be the restriction of M to Vi(S) respectively. We
may use the matching E(S) to identify a vertex in V0(S) with a vertex in V1(S);
in this way, we may regard M0(S) and M1(S) as matroids on the same ground set.
For X ⊆ V0(S) we let copy(X) be the copy of X in V1(S).

Recall that m = (4n + 1)k3n + 8k. We first consider the case when M0(S) and
M1(S) have a large common independent set, for each strip S of Ω.

Case 1. For each strip S of Ω, M0(S) and M1(S) have a common independent set
of size m.

Claim 5.8. Each part of the partition P of V (Π) is independent in M .

Subproof. Label the vertices of an arbitrary part X of P as x1, . . . , xp (clockwise).
Choose an arbitrary strip S, and let I be an M0(S)-independent subset of size p.
By Claim 5.4, there is a family Q of p disjoint decreasing I-CN paths. Label these
paths as Q1, . . . , Qp (counter-clockwise). We will use Q to construct p disjoint
X-CN paths in G ∩∆. By Claim 5.6, for each i ∈ [p], w(xi) ≥ min{i, p− i+ 1}.

So for each i ∈ {1, . . . , ⌈p/2⌉} we can define a path P(xi) as follows:

• Follow L(xi) until it intersects Cθ−(i−1).
• Follow Cθ−(i−1) (counter-clockwise) until intersecting Q⌈p/2⌉−(i−1).
• Follow Q⌈p/2⌉−(i−1) until reaching CN .

For i ∈ {p, p− 1, . . . , ⌈p/2⌉+ 1} we define P(xi) as follows:

• Follow L(xi) until it intersects Cθ−p+i.
• Follow Cθ−p+i (clockwise) until intersecting Q⌈p/2⌉+p−i+1.
• Follow Q⌈p/2⌉+p−i+1 until reaching CN .

Since all three portions of these paths are decreasing, it follows that

P := {P(xi) : i ∈ [p]}

is a family of disjoint X-CN paths. �

Next we show that V (Π) is actually M -independent. In fact, we prove the following
much stronger claim.

Claim 5.9. For each strip Si of Ω there exists a subset Ki of V0(Si) of size k3n

such that V (Π) ∪
⋃

i∈[n](Ki ∪ copy(Ki)) is independent in M .
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Subproof. Of course we are in the case when M0(Si) and M1(Si) have a large
common independent set for each strip Si of Ω. So, for each i ∈ [n] let Ji be
an independent set of size (4n + 1)k3n + 8k in M0(Si), such that copy(Ji) is also
independent in M1(Si). We partition Ji into three sets J1

i , J
2
i and J3

i where J1
i

are the first 2(nk3n + 2k) points, J2
i are the middle k3n points and J3

i are the last
2(nk3n + 2k) points. We will apply Lemma 3.1 to the two collections of sets

A := {J2
i : i ∈ [n]} ∪ {copy(J2

i ) : i ∈ [n]} ∪ {Xi : i ∈ [l]},

and

B := {Jk
i : i ∈ [n], k ∈ {1, 3}} ∪ {copy(Jk

i ) : i ∈ [n], k ∈ {1, 3}}.

Observe that each set in A is indeed M -independent, and that for any B ∈ B we
have

rM (B) = 2(nk3n + 2k) = 2
∑

A∈A

|A|.

Therefore, by Lemma 3.1, we conclude that
⋃

A∈A A is M -independent. Setting

Ki = J2
i for each i ∈ [n] gives the result. �

We can now attempt to realize the topological linkage L′ in G. We may assume
that L′ intersects bd(∆) only at vertices in A. Let G′ := G− int(∆N ). By removing
all the strips from Ω and keeping track of how the paths in L′ pass through the
strips, we are left with a Π′-linkage problem in the disk ∆, where V (Π′) ⊆ V (A).

By Claim 5.9, we have that V (A) is M -independent. Therefore, by Claim 5.4,
there exists a family of |V (A)| disjoint decreasing V (A)-CN paths in G′. These
decreasing paths, together with the protective circuits Cθ, Cθ−1, . . . , CN form a
large cylindrical-grid minor H ′ in G′ ∩∆. Since

θ −N ≥ 2k + nk3n = |V (A)| ≥ |Π′|,

Lemma 3.3 implies that G′ ∩ ∆ actually has a Π′-linkage. It follows that G′ has
a Π-linkage, and that v is redundant for Π in G since v /∈ V (G′), completing the
proof in Case 1.

The remaining case is ifM0(S) and M1(S) do not have a large common independent
set, for some strip S of Ω. By re-indexing, we may assume that S = S1.

Case 2. M0(S1) and M1(S1) do not have a common independent set of size m.

The idea in this case is to reduce the number of strips. Since M0(S1) and M1(S1)
do not have a common independent set of size m, by the Matroid Intersection
Theorem [2], there is a partition {A,B} of V0(S1) such that

rM0(S1)(A) + rM1(S1)(copy(B)) < m.

That is, there exist subsets T and U of V (G ∩∆) such that

• T separates A from V (CN ) in G ∩∆,
• U separates copy(B) from V (CN ) in G ∩∆, and
• |T |+ |U | < m.

We choose such a T and U with |T ∪ U | minimum. We then choose an index
γ ∈ {θ− 1, . . . , θ−m} such that T ∪U is disjoint from Cγ . Recall that the level of
a vertex x ∈ G ∩∆ is the unique index j such that x ∈ V (Cj).



EXPLICIT BOUNDS FOR GRAPH MINORS 21

A path is a ∆γ-path if both its ends belong on ∆γ , and it is otherwise disjoint from
∆γ . Evidently, a ∆γ-path must have both of its ends on Cγ . For each path P of
L, we define U(P ) to be the family of maximal ∆γ-subpaths of P . We then define
U(L) :=

⋃

P∈L U(P ).

Claim 5.10. There are at most (2n+ 1)4nm homotopy classes of paths in U(L).

Subproof. Let Q ∈ U(L). Since Q does not contain any hills, there is no subpath K
of Cγ such that Q∪K bounds a disk in Ω. In particular, this implies that Q must
use an edge outside of ∆ and that the homotopy class of Q is determined by how Q
passes through the strips of Ω. Let A be the alphabet {S1, . . . , Sn, S

−1
1 , . . . , S−1

n }.
If we orient each strip of Ω, then the homotopy class of Q, denoted H(Q), is then
naturally encoded by a string of letters from A. We make the convention that if
SiS

−1
i or S−1

i Si appears in H(Q) for some i ∈ [n], then we cancel it. With this
convention, we prove that each letter of A appears at most 2m times in H(Q), from
which the claim follows.

Towards a contradiction assume that some letter α appears at least 2m+ 1 times
in H(Q). By reversing the direction of Q if necessary, we may assume α = S, for
some strip S. Let e1, . . . , e2m+1 be edges of Q corresponding to the occurrences of
S in H(Q). Let ei = wixi so that Q traverses ei from wi to xi and so that this
traversal is consistent with the orientation of S. By cancellation, the next edge of
Q after ei that is outside ∆ cannot pass through S in the backward direction. We
re-index so that x1, . . . , x2m+1 occur clockwise along one end of the strip S (this is
not necessarily their order in Q).

Either xm+1 occurs before xm+2 along Q or vice versa. By symmetry, we assume
the former. Let Q′ := xm+1Q and let y be the first vertex of Q′ such that the
next edge of Q′ after y passes through a strip. By cancellation, it follows that
y ∈ [x2m+1, x1].

Recall that a region R in ∆ is small if it does not contain the insulated vertex v.
Clearly, either Q′y ∪ [y, xm+1] bounds a small region, or Q′y ∪ [xm+1, y] bounds a
small region R. So, we either have {x1, . . . , xm+1} ⊆ R or {xm+1, . . . , x2m+1} ⊆ R.
In either case we get a contradiction, since Q′y intersects at most θ − γ ≤ m
insulating cycles. �

We call a homotopy class of U(L) thin if it has size at most 4m, otherwise it is
thick.

Claim 5.11. Either there are at most n− 1 thick homotopy classes of U(L) (up to
inversion), or T ∪ U separates V (Cθ) from V (CN ).

Subproof. Let H be a thick homotopy class, represented as a string of letters from
{S1, . . . , Sn, S

−1
1 , . . . , S−1

n }. Note that H is not the empty string since L has no
hills. Suppose H is of length at least 2. Consider an arbitrary path Q ∈ H and let
e1 and e2 be the edges of Q that correspond to the first two letters of the homotopy
class of Q. For i ∈ [2], let ei = xiyi, so that Q traverses ei from xi to yi. Finally,
let Q′ be the subpath of Q from y1 to x2. If H is not thin, then the collection
H′ := {Q′ : Q ∈ H} has size at least 4m + 1. Therefore, there exists J ∈ H′ and
some subpath K of Cθ such that J ∪K bounds a small region that contains at least
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2m members of H. This is a contradiction, as each path in H′ intersects at most
θ − γ ≤ m insulating cycles.

Thus, if H is thick, it must be a string of length 1. Up to inversion, this implies
that H = S, for some strip S, leaving at most n possibilities for H. However,
consider the homotopy class H1 represented by the string S1. If H1 is not thick we
are done, so assume that H1 contains more than 4m paths. Therefore, H1 contains
a collection of at least 2m vertex-disjoint paths. Observe that each of these paths
must pass through V0(S1) and V1(S1). Therefore, there is a subset X of V0(S1) of
size 2m such that

κG∩∆(X,V (Cγ)) = 2m = κG∩∆(copy(X), V (Cγ)).

Note that, for the partition {A,B} of V0(S1), we have that |X ∩ A| ≥ m or
|X ∩ B| ≥ m. By symmetry, we assume the former. Since |T | < m, we conclude
that A is still connected to V (Cγ) in (G∩∆)−T . Since V (Cγ) contains no vertices
of T , and T separates A from V (CN ) in G∩∆, it follows that T ∩∆γ must separate
V (Cγ) from V (CN ) in G ∩∆γ . By the minimality of |T ∪ U | it follows that U = ∅
and that T ∩∆γ = T . This completes the proof of the claim. �

We handle the first possibility of Claim 5.11 first.

Subcase 1. There are at most n − 1 thick homotopy classes of U(L) (up to
inversion).

Let G′ := (G∩∆γ)∪U(L). By Claim 5.10 we can regard G′ as embedded in a disk
with at most β := (2n+ 1)4m strips

We describe how to reduce the Π-linkage problem in G to a Π′-linkage problem in
G′. Let P ∈ L. If P has a vertex in Cγ , then let x be the first such vertex and let
y be the last. If they exist, place {x, y} into Π′ and repeat for all paths in L. By
splitting strips if necessary, we may assume that G′ is embedded in a disk with at
most β′ ≤ β + 2k strips

Ω′ := ∆γ ∪ S′
1 ∪ . . . S′

β′ ,

and with V (Π′) ⊆ bd(Ω′).

At first glance it seems as if we have increased the complexity of our problem,
since we have more strips than we began with. However, at most n − 1 of the
strips S′

1, . . . , S
′
β′ are thick. By re-indexing, we may assume that S′

n, . . . , S
′
β′ are

all thin. By deleting all the edges contained in S′
n ∪ · · · ∪ S′

β′ , and keeping track

of how the paths in L pass through S′
n ∪ · · · ∪ S′

β′ , we reduce to a Π′′-linkage in

Ω′′ := ∆γ∪S′
1∪· · ·∪S

′
n−1, where |Π

′′| ≤ k+4m(2n+1)4nm. Since v is a γ-insulated

vertex with respect to Π′′, and γ ≥ θ(k + 4m(2n+ 1)4nm, n− 1), it follows that v
is redundant for Π′′, and hence also for Π. This completes the subcase.

We now handle the remaining subcase.

Subcase 2. T ∪ U separates V (Cθ) from V (CN ) in G ∩∆.

We will reduce the Π-linkage problem in G to a Π′-linkage problem in G∩∆N . We
do this by proving that |V (L) ∩ V (CN )| is small. So, let x ∈ V (L) ∩ V (CN ), and
suppose x ∈ V (P ) for P ∈ L. We define next(x) to be the next vertex of P that
is also in T ∪ U (we allow next(x) = x). The first thing to observe is that next(x)
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does exist. This follows since T ∪ U separates V (Cθ) from V (CN ). Secondly, since
L contains no hills, the map x 7→ next(x) is injective. So,

|V (L) ∩ V (CN )| ≤ |T ∪ U | < m.

By keeping track of how the paths in L enter and leave ∆N , we reduce to a Π′-
linkage problem in G ∩∆N , where |Π′| < m. Since N ≥ θ(m, 0), we have that v is
redundant for Π′ in G ∩∆N , and hence redundant for Π in G.

This completes the subcase, and hence the entire proof. �
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