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k-regular subgraphs near the k-core threshold of a random graph
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Abstract

We prove that Gn,p=c/n w.h.p. has a k-regular subgraph if c is at least e−Θ(k) above the
threshold for the appearance of a subgraph with minimum degree at least k; i.e. an non-empty
k-core. In particular, this pins down the threshold for the appearance of a k-regular subgraph
to a window of size e−Θ(k).

In this paper, we study the threshold for the Erdős-Rényi random graph model Gn,p=c/n to
have a k-regular subgraph where k is fixed. This problem was first studied by Bollobás, Kim and
Verstraëte [5] who proved, amongst other things, that Gn,p=c/n w.h.p.1 has a k-regular subgraph
when c is at least roughly 4k. Letzter [10] proved that this threshold is sharp2.

This problem is reminiscent of the k-core, a maximal subgraph with minimum degree at least
k. Pittel, Spencer and Wormald [14] established the threshold for Gn,p to have a non-empty k-core
to be a specific constant ck = k + o(k) (we specify ck more precisely in (4) below). This provides a
lower bound on the threshold for a k-regular subgraph, and it is natural to ask:

Question: Is the threshold for a k-regular subgraph equal to the k-core threshold?

Bollobás, Kim and Verstraëte [5] proved that the answer is “No” for k = 3 and conjectured that
it is “No” for all k ≥ 4. On the other hand, Pretti and Weigt [16] provided a non-rigorous analysis
and claimed that it indicates the answer is “Yes” for k ≥ 4.

Pra lat, Verstraëte, and Wormald [15] proved that w.h.p. the (k + 2)-core of Gn,p (if it is non-
empty) contains a k-regular spanning subgraph. Chan and Molloy [6] proved the same for the
(k + 1)-core. So the k-regular subgraph threshold is at most ck+1 ≈ ck + 1. We will reduce this
bound to within an exponentially small distance (as a function of k) from ck:

Theorem 1. For k a sufficiently large constant, and for any c ≥ ck + e−k/300, Gn,p=c/n w.h.p.
contains a k-regular subgraph.

∗Universite de Nice Sophia-Antipolis, Nice, France.
†Department of Computer Science, University of Toronto, Toronto, ON, Canada.
‡Department of Mathematics, Ryerson University, Toronto, ON, Canada.
1A property is said to hold with high probability (w.h.p.) if it holds with probability tending to one as n → ∞.
2Meaning that there is a function ρk(n) such that for any ǫ > 0, Gn,p=c/n w.h.p. has no k-regular subgraph for

c = ρk(n)− ǫ and w.h.p. has a k-regular subgraph for c = ρk(n) + ǫ.
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It is not hard to see that the k-core cannot have a k-regular spanning subgraph; for example
w.h.p. it has many vertices of degree k + 1 whose neighbours all have degree k. Our approach is to
start with the k-core and repeatedly remove such vertices, along with other problematic vertices.
We will then apply a classic theorem of Tutte to show that what remains has a spanning k-regular
subgraph. The aforementioned papers [15, 6] applied Tutte’s theorem to the (k+2)- and (k+1)-core.

The k-core is well known to have size (1−ok(1))n, and we will show that we only remove ok(1)n
vertices (see Remark 25). So the k-regular subgraph that we obtain will have size (1 − ok(1))n.

The new arguments required in this work are (i) stripping the k-core down to something to which
Tutte’s theorem can be applied and (ii) applying Tutte’s theorem to it. The first part requires a
delicate variant of the configuration model (see the discussion at the beginning of Section 3.1),
whereas the presence of degree k vertices brings new challenges to the second part.

The number of problematic vertices, as described above, is linear in n. Furthermore, removing
them from the k-core will cause a linear number of vertices to have their degrees drop below k. It
is not surprising that if c is too close to ck, then w.h.p. what remains will have an empty k-core,
and so this argument will not work unless c is bounded away from ck. Fortunately, when k is large,
the number of problematic vertices is very small (but linear in n): e−Θ(k)n. So we only need c to
be bounded away from ck by an exponentially small distance (in terms of k). Furthermore, the
subgraph that we show to have a k-factor consists of all but e−Θ(k)n vertices of the k-core (see
Remark 25). This is consistent with a result of Gao [8] who proved that any k-regular subgraph
must contain all but at most ǫkn vertices of the k-core where ǫk → 0 as k grows.

Organization of the paper: We begin, in section 1, by presenting Tutte’s condition. Section 2
contains some brief probabilistic tools. The stripping procedure to find our subgraph is given and
analyzed in section 3; this is most of the work. Finally, in section 4, we show how to prove that
the subgraph satisfies Tutte’s condition and thus has a spanning k-regular subgraph.

1 Tutte’s condition

We begin by presenting Tutte’s theorem for establishing that a graph has a k-regular spanning
subgraph. Recall that a k-regular spanning subgraph is called a k-factor. Let Γ be a graph with
minimum degree at least k.

Definition 2. L = L(Γ) is the set of low vertices of Γ, i.e. the vertices v with dΓ(v) = k, and
H = H(Γ) is the set of high vertices of G, i.e. the vertices v with dΓ(v) ≥ k + 1. For any set of
vertices Z, we use ZL, ZH to denote Z ∩ L, respectively Z ∩H.

Notation: For any S ⊆ V (Γ) we use e(S) to denote the number of edges of Γ with both
endpoints in S. For any disjoint S, T ⊆ V (Γ), we use e(S, T ) to denote the number of edges of
G from S to T and q(S, T ) to denote the number of components Q of Γ \ (S ∪ T ) such that k|Q|
and e(Q,T ) have different parity. Throughout the paper, we use dA(v) to denote the number of
neighbours that v, a vertex, has in A, a subset of the vertices. Furthermore, we refer to the total
degree of S as the sum of degrees of the vertices in S.

Theorem 3 ([18]). A graph Γ with minimum degree at least k ≥ 1 has a k-factor if and only if for
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every pair of disjoint sets S, T ⊆ V (Γ),

k|S| ≥ q(S, T ) + k|T | −
∑

v∈T
dΓ\S(v).

Corollary 4. A graph Γ with minimum degree at least k ≥ 1 has a k-factor if and only if for every
pair of disjoint sets S, T ⊆ V (Γ),

k|S| +
∑

v∈TH

(dΓ(v) − k) ≥ q(S, T ) + e(S, T ). (1)

Proof. Rearranging the terms in Theorem 3, we obtain that the condition given there for
the existence of a k-factor is equivalent to every pair of disjoint sets S, T ⊆ V (Γ) satisfying:

∑

v∈T
dΓ(v) + k|S| ≥ q(S, T ) + k|T | + e(S, T )

i.e.
∑

v∈T
(dΓ(v) − k) + k|S| ≥ q(S, T ) + e(S, T )

which is equivalent to (1) since dΓ(v) = k for all v ∈ TL. �

In all but one case, we will in fact show that S, T satisfy the stronger condition, which implies (1)
since dΓ(v) ≥ k + 1 for all v ∈ TH :

k|S| + |TH | ≥ q(S, T ) + e(S, T ). (2)

Remark: In previous papers [6, 15] Theorem 3 was applied to subgraphs with minimum degree
at least k + 1, specifically the (k + 1)-core [6] and the (k + 2)-core [15]. So it sufficed to prove the
weaker bound k|S| + |T | ≥ q(S, T ) + e(S, T ).

We begin by showing that in Corollary 4 we may assume that S ⊆ H and every component
counted by q(S, T ) has a high vertex:

Lemma 5. A graph Γ with minimum degree k ≥ 1 has a k-factor if and only if (1) holds for every
pair of disjoint sets S, T ⊆ V (Γ) satisfying:

(M1) S ⊆ H; and

(M2) every component Q counted by q(S, T ) satisfies QH 6= ∅.

Proof. We will prove that if (1) holds for every S, T satisfying (M1) and (M2) then (1)
holds for every S, T . So Corollary 4 implies that Γ has a k-factor. To do this, we show that if S, T
violate (1) and violate either (M1) or (M2) then we can modify S, T so that (M1) and (M2) both
hold but (1) is still violated. This proves our lemma.

Suppose there exist two disjoint sets S, T ⊆ V (Γ) that violate both (1) and (M1). So there
exists some u ∈ SL. We will show that after moving u to V (Γ) \ (S ∪ T ), (1) will still fail for
the new pair of sets. By applying this procedure iteratively for every u ∈ SL, we obtain two sets
violating (1) and satisfying (M1).
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Let S′ := S \ {u}. Note first that k|S′| = k|S| − k and e(S′, T ) = e(S, T ) − dT (u). Now, since
dΓ(u) = k, there are at most (k − dT (u)) neighbours of u in V (Γ) \ (S ∪ T ) (observe that some
neighbours of u might be in S). In the worst case, all neighbours of u in V (Γ) \ (S ∪ T ) belong to
different components all contributing to q(S, T ); moreover, after moving u to V (Γ) \ (S ∪ T ), they
form one connected component of V (Γ) \ (S ∪T ), and so do not contribute to q(S′, T ) anymore. In
any case, q(S′, T ) ≥ q(S, T ) − (k− dT (u)). Since |TH | is left unchanged by switching from S to S′,
we have

k|S′| +
∑

v∈TH

(dΓ(v) − k) = k|S| +
∑

v∈TH

(dΓ(v) − k) − k

< q(S, T ) + e(S, T ) − k

≤ q(S′, T ) + (k − dT (u)) + e(S′, T ) + dT (u) − k

= q(S′, T ) + e(S′, T ),

and hence (1) still fails.

Now suppose there exist two disjoint S, T ⊆ V (Γ) violating (1) and which satisfy (M1) but not
(M2). Let Q be a component of Γ\(S∪T ) such that k|Q| and e(Q,T ) have different parity and with
QH = ∅. Note that e(Q,V (Γ)\Q) = e(Q,S ∪ T ) has the same parity as

∑

u∈Q d(u) = k|Q| since
QH = ∅. So e(Q,V (Γ)\Q) has a different parity than e(Q,T ) and thus e(Q,S) 6= 0. Now we move Q
into T ; i.e. we set T ′ = T ∪Q. Since Q ⊆ L, we have T ′

H = TH . Since Q is a component of Γ\(S∪T ),
this move does not affect whether any other component counts towards q; i.e. q(S, T ′) = q(S, T )−1.
Moreover, as we argued above, e(Q,S) > 0 and so e(S, T ′) ≥ e(S, T ) + 1. Combining this with
k|S|+∑v∈TH

(dΓ(v) − k) < q(S, T )+e(S, T ) yields k|S|+∑v∈T ′
H

(dΓ(v) − k) < q(S, T ′)+e(S, T ′) and

hence (1) still fails. Clearly, S has not changed and hence (M1) still holds. Repeated applications
result in a pair S, T that violates (1) and satisfies (M1) and (M2). �

2 Probabilistic preliminaries

We use Bin(ℓ, p) to denote the binomial random variable with ℓ trials and success probability p.
We use Po(x) to denote the Poisson variable with mean x.

Pittel, Spencer and Wormald [14] established the k-core threshold to be:

ck = min
x>0

x

1 − e−x
∑k−2

i=0
xi

i!

. (3)

In [15] the asymptotic value of ck is determined up to an additive O(1/ log k) =ok(·) term. Setting
qk = log k − log(2π), we have

ck = k + (kqk)1/2 +

(

k

qk

)1/2

+
qk − 1

3
+ O

(

1

log k

)

. (4)

We will use the following well-known bounds on tail probabilities known as Chernoff’s bound
(see, for example, [9], Theorem 2.1). Let X be distributed as Bin(ℓ, p), so E[X] = µ = pℓ. Then,

Pr (X ≤ µ− t) ≤ exp

(

− t2

2µ

)

(5)
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and

Pr (X ≥ µ + t) ≤ exp

(

− t2

2(µ + t/3)

)

. (6)

In addition, all of the above bounds hold for the general case in which X =
∑ℓ

i=1Xi and Xi is the
Bernoulli random variable with parameter pi with (possibly) different pi’s.

The Azuma-Hoeffding inequality can be generalized to include random variables close to mar-
tingales. One of our proofs, proof of Lemma 21, will use the supermartingale method of Pittel et
al. [14], as described in [20, Corollary 4.1]. Let G0, G1, . . . , Gℓ be a random process and let Xi be
a random variable determined by G0, G1, . . . , Gi, 0 ≤ i ≤ ℓ. Suppose that for some real constant b
and real positive constants c1, . . . , cℓ,

E(Xi −Xi−1|G0, G1, . . . , Gi−1) < b and |Xi −Xi−1| ≤ ci

for each 1 ≤ i ≤ ℓ. Then, for every α > 0,

Pr [For some i with 0 ≤ i ≤ ℓ : Xi −X0 ≥ ib + α] ≤ exp

(

− α2

2
∑

j c
2
j

)

. (7)

Throughout the paper, we often omit floor and ceiling signs.

3 Finding the subgraph

Let k ∈ N and set
β = e−k/200. (8)

We begin with a random graph G = Gn,p with p = c/n for some constant c satisfying

ck + k10β =: cmin ≤ c ≤ cmax := ck + k−1/2, (9)

where ck is the threshold of the emergence of the k-core. Our goal is to find (for k sufficiently large)
a subgraph K of the k-core with certain properties, which will ensure that it has a k-factor.

Our first property is simply a degree requirement. Of course, K must have minimum degree
at least k; for technical reasons, it will help if the maximum degree is bounded by a constant; we
arbitrarily chose this to be 2k. In the introduction, we noted that K cannot have any vertex of
degree greater than k whose neighbours all have degree k. It is not hard to build similar problematic
local structures; it turns out that we can eliminate all of them by not allowing any vertex of degree
greater than k that has many neighbours of degree k; our second property enforces this. Our third
property simply says that K has linear size. Our final property is a trivial necessary condition for
having a k-factor.

(K1) for every vertex v ∈ K, k ≤ dK(v) ≤ 2k;

(K2) for every vertex v ∈ K with dK(v) ≥ k + 1, we have |{w ∈ NK(v) : dK(w) = k}| ≤ 9
10k;
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(K3) |K| ≥ n
3 ;

(K4) k|K| is even.

(In fact, we will be able to find an induced subgraph K of G satisfying these properties.)

3.1 The stripping procedure

In order to achieve our goal, we are going to use a carefully designed stripping procedure during
which one vertex is removed in each step until a subgraph K satisfying properties (K1), (K2),
and (K3) remains. It will be easy to modify K to enforce the final property (K4), if necessary, at
the end.

We found property (K2) to be particularly challenging to enforce. The typical approach to this
sort of problem is to repeatedly remove a vertex if it violates one of (K1-3). Often one can argue
that at every step, the remaining graph is uniformly random conditional on its degree sequence (for
example, this happens when analyzing the k-core stripping process). In some situations, the vertex
set is initially partitioned into a fixed number of parts, and one must condition on the number of
remaining neighbours each vertex has in each part; this is more complicated but in principle not
much more difficult than conditioning on the degree sequence. In the present situation, enforcing
(K2) requires conditioning on the number of remaining neighbours each vertex has in W , the set of
vertices of degree k. However, this is not an initial partition; W changes during the process. This
made our analysis more difficult.

In dealing with this problem, it helps to partition W into W0, the vertices that initially have
degree k, and W1, the vertices whose degrees change to k during the process. W1 is much smaller
than W0 and so we can afford to delete vertices if they have at least two neighbours in W1 rather
than at least 9

10k. This simpler deletion rule helps us deal with the fact that W1 is changing
throughout our stripping process.

We begin with the k-core of G, as any subgraph K satisfying (K1) must be a subgraph of the
k-core. The k-core of a graph can be found by repeatedly deleting vertices of degree less than k
from the graph so this can be viewed as an initial phase of our stripping procedure. We continue
stripping the graph (as explained below) and, throughout our procedure, we partition the vertex
set as follows:

W0 = the vertices in the remaining graph that had degree k in the k-core of G;

W1 = the vertices of degree at most k in the remaining graph that are not in W0;

R = the vertices of degree greater than k in the remaining graph.

Note that vertices may move from R to W1 during our procedure, but no vertex leaves W0 or W1

unless it is deleted.

The following definition governs the stripping procedure.

Definition 6. We say a vertex v is deletable if in the initial k-core:

(D1) deg(v) > 2k; or

6



(D2) v /∈ W0 (that is, deg(v) ≥ k + 1) and v has at least 1
2k neighbours in W0;

or if in the remaining graph:

(D3) deg(v) < k; or

(D4) v ∈ R and v has at least two neighbours that are in W1; or

(D5) v ∈ W1 and v has a neighbour that is either (i) in R and deletable, or (ii) in W1.

Furthermore,

(D6) once a vertex becomes deletable it remains deletable.

Remarks: Let us make three remarks.

(a) Deleting vertices in W1 with non-deletable neighbours in W1 is not required for properties
(K1), (K2), and (K3); we only delete them because it helps with our analysis.

(b) In many similar stripping processes (for example, the k-core process), we have the property
that the subgraph we eventually obtain does not depend on the order in which vertices are
deleted. That is not true for our procedure—whether a vertex ever becomes deletable can
depend on the deletion order. However, our goal is only to obtain a subgraph with the desired
properties (K1), (K2), and (K3) and so this works for our purpose.

(c) Deleting a vertex that is deletable may cause some non-deletable vertices to become deletable
which, in turn, might force more non-deletable vertices to change their status. However, this
“domino effect” will eventually stop (possibly with all remaining vertices marked as deletable)
because of (D6).

At any point of the algorithm, we use Q to denote the set of deletable vertices that have not yet
been removed. Recall from (8) that β = e−k/200. We will show that w.h.p. we reach Q = ∅ within
βn steps. It will be convenient to force our stripping procedure to halt after βn steps regardless of
whether it has reached the desired property (that is, Q = ∅).

Now, we are ready to introduce our stripping procedure. This procedure can be applied to any
graph G. Much of the work in this paper will be to analyze what happens when it is applied to
G = Gn,p.

STRIP

1. Begin with the k-core of G, and initialize Q to be the set of vertices v with deg(v) > 2k or
v /∈ W0 and v has at least 1

2k neighbours in W0; i.e. for which (D1) or (D2) hold.

2. Until Q = ∅ or until we have run βn iterations, let v be the next vertex in Q, according to a
specific fixed vertex ordering. Let N(v) be the set of neighbours of v remaining at this point.

(a) Remove v from the graph (and from Q).

7



(b) If any u ∈ N(v) ∩R now has degree at most k, then move u from R to W1.

(c) If any vertex w /∈ Q is now deletable, place w into Q.

Clarification: In step 2c, w does not leave whichever of W0,W1, R it was in. So for example, w
could be in Q ∩W0.

Remark: Note that initially no vertex has degree less than k and W1 = ∅ so, indeed, all initially
deletable vertices are added to Q in step 1.

The following observation is an immediate consequence of Definition 6. Indeed, parts (a) and
(b) follow from (D5); part (c) follows from (D4).

Observation 7. The following properties hold at the beginning of every iteration.

(a) If u ∈ W1 then u has no neighbours in W1\Q.

(b) If u ∈ R ∩Q then u has no neighbours in W1\Q.

(c) If u ∈ R\Q then u has at most one neighbour in W1.

Here are two more straightforward but useful observations.

Observation 8. During any iteration of Step 2, at most 4k2 vertices enter Q.

Proof: This follows by noting: (i) the deleted vertex v has at most 2k neighbours u; (ii) if u
enters W1 then u has at most k− 1 other neighbours z; (iii) if a vertex w becomes deletable then it
is either one of the u, z mentioned in (ii) or w ∈ W1 and w is a neighbour of a z ∈ N(u) ∩R which
becomes deleteable; (iv) each such z has at most one neighbour w 6= u that is in W1, else z would
have already been in Q.

Observation 9. If the stripping procedure terminates with Q = ∅, then in the remaining subgraph:
the degree of every vertex is in {k, k + 1, . . . , 2k} and each vertex in R has at most 1

2k neighbours
of degree k (provided that k ≥ 3). Thus, the remaining subgraph satisfies properties (K1) and (K2).

3.2 Configuration models

We model the k-core of G = Gn,p=c/n with the configuration model introduced by Bollobás [4],
and inspired by Bender and Canfield [2]. We are given the degree sequence of a graph (that is, the
degree of each vertex). We take deg(v) copies of each vertex v and then choose a uniform pairing
of those vertex-copies. Treating each pair as an edge gives a multigraph. It is well-known (see,
for example, the result of McKay [11]) that the multigraph (for a degree sequence meeting some
mild conditions; these conditions are met in our application) is simple with probability tending to a
positive constant, and it follows that if a property holds w.h.p. for a uniformly random configuration
then it holds w.h.p. for a uniformly random simple graph on the same degree sequence; see the
survey of Wormald [19] for more on this, and for a history of the configuration model and other
related models.
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Throughout our analysis, we often refer to a pair in the configuration as an edge in the corre-
sponding multigraph. A sub-configuration is simply a subset of the pairs in a configuration, and
thus yields a subgraph of the multigraph.

We define C to be the k-core of Gn,p=c/n. We expose the degree sequence D of C and then
define Λ to be a uniform configuration with degree sequence D. We will prove:

Lemma 10. W.h.p. STRIP terminates with Q = ∅ when run on Λ.

As described above, we can transfer our results on random configurations to random simple
graphs thus obtaining:

Lemma 11. W.h.p. STRIP terminates with Q = ∅ when run on C.

3.3 k-core properties

We will require the following properties of the configuration Λ.

Setup for Lemma 12: k is a sufficiently large constant, and ck < c ≤ cmax = ck + k−1/2. C is
the k-core of Gn,p=c/n. Λ is a uniform configuration with the same degree sequence as C. Finally,
W0, R are as defined in Section 3.1.

Lemma 12. W.h.p. before the first iteration of STRIP:

(a) |Λ| > 0.99n;

(b) 0.99n
k < |W0| < 1.01n

k ;

(c) the total degree of the set of vertices with degree greater than 2k is at most e−k/6n;

(d) there are at least n
5k edges with both endpoints in W0;

(e) there are at least 1
2n edges from W0 to R;

(f) there are at least 1
3kn edges with both endpoints in R;

(g) C has at most e−k/3n vertices of degree at most 2k and with at least 1
2k neighbours in W0;

(h) at least n
200 vertices in R have no neighbours in W0.

The proof of Lemma 12 is straightforward, but lengthy. So we defer the proof to Section 5.

Corollary 13. When STRIP terminates, the remaining subgraph has size at least n
3 ; that is, it

satisfies (K3).

Proof. This follows from Lemma 12(a), since 0.99n− βn ≥ n
3 , for k sufficiently large. �
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3.4 Stripping a configuration

We will apply STRIP to the random configuration Λ. In order to analyze this process, We must
carefully track the information that is exposed. If the partition W0,W1, R were fixed throughout
our procedure, then we would simply expose the number of remaining neighbours that each vertex
has in each part. But because W1 and R change during the process, our exposure is more delicate.
We found that the best way to deal with this complication includes exposing many of the remaining
edges involving W1 and R.

Definition 14. Suppose the vertices of a configuration are partitioned into R,W0,W1. We define
the RW-information to be:

• for each vertex v ∈ W0, degW1∪R(v),degW0
(v);

• for each vertex v ∈ W1 ∪R, degR(v), degW0
(v), degW1

(v);

• all vertex-copy pairs that have one vertex-copy in W1 and the other in W1 ∪R.

Remark: A priori, it is not obvious that this is the information we should expose. For ex-
ample, for each v ∈ W0, it may seem more natural to expose degR(v) and degW1

(v) rather than
degW1∪R(v). But this precise set of information is what we needed to make our analysis work.

We restate STRIP here, describing how it runs on a configuration and adding details about how
we expose the pairs of the configuration. Recall that pairs of vertex-copies correspond to edges in
a graph, so when we remove a vertex-copy we do not necessarily remove the actual vertex or any
other copies of the vertex.

Recall the procedure STRIP and the definitions of W0,W1, R and being deletable from Sec-
tion 3.1.

STRIP2

1. Begin with Λ and set W0 = W0,W1 = ∅,R = V (Λ)\W0. (Note that these sets are W0,W1, R
respectively at the beginning of our procedure.) Now expose the RW-information.

2. Initialize Q to be all vertices v with deg(v) > 2k or v /∈ W0 and v has at least 1
2k neighbours

in W0.

3. Until Q = ∅ or until we have run βn iterations, let v be the next vertex in Q, according to a
specific fixed vertex ordering.

(a) Expose the partners of every vertex-copy of v (of course, if they are not already exposed).
Let N(v) be the set of neighbours of v remaining at this point.

(b) Remove v from Λ (and from Q), along with all vertex-copies of v and their partners.

(c) If any u ∈ N(v) ∩R has its degree decreased to at most k, then

i. move u from R to W1;

ii. expose the vertex-copies of u that have partners in W1∪R; for each such vertex-copy,
expose its partner.

10



(d) If any vertex w /∈ Q is now deletable, place w into Q.

(e) Set W0 = W0,W1 = W1,R = R and expose the RW-information of the remaining
configuration.

Remark: The exposure of the RW-information in step 3(e) is redundant; that information was
in fact exposed during previous steps. We state step 3(e) in this way to be explicit about the fact
that it is exposed.

We define W0(i),W1(i), R(i), and Q(i) to be those vertex sets at the end of iteration i of
STRIP2. We define Ψ(i) to be the RW-information of the remaining configuration with partition
R = R(i),W0 = W0(i), and W1 = W1(i); i.e. the RW-information exposed during step 3(e).
W0(0),W1(0), R(0), Q(0),Ψ(0) are the sets and RW-information from steps 1 and 2.

Observation 15. We expose enough information to carry out each step of STRIP2.

Proof. Ψ(0) specifies the vertices of Q in step 2. Now consider iteration i of step 3. The
exposed partners of the vertex-copies of v allow us to loop through the vertices u in Step 3(c), and
the RW-information Ψ(i− 1) tells us the degree of each such u.

To determine which vertices w become deleteable: We know whether w satisfies (D3) from
Ψ(i− 1) and the number of vertex-copies of w that were removed in previous steps. If w ∈ R now
satisfies (D4) then w had 0 neighbours (or 1, respectively) in W1 at the end of iteration i − 1 (we
know this from Ψ(i− 1), and at least 2 neighbours (or 1, respectively) of w moved into W1 during
step 3(c) (we know this because the neighbours of those vertices in R were exposed in step 3(c)).
If w ∈ W1 now satisfies (D5) then first note that we have exposed all neighbours of w that are in
W1 ∪ R, either in Step 3(c) if w entered W1 during this iteration, or in Ψ(i − 1) otherwise. Any
such neighbour in R that is now deleteable satisfies (D4); we have already described how we know
whether it is deleteable. This is enough to determine whether w satisfies (D5). �

Clarification: It is important to note that in the definition of RW-information, R,W0,W1

are not necessarily set to be the sets W0,W1, R at some point during STRIP2; they can be any
partition of the vertices. This arises in the proof of Lemma 16 below; in particular, it is the reason
that we need to prove Claim 2.

Given a particular partition into R,W0,W1, and RW-information, Ψ, let ΩΨ be the set of all
configurations on vertex set R ∪ W0 ∪ W1 with RW-information Ψ; that is, all configurations in
which each v has degR(v),degW0

(v),degW1
(v),degW1∪R(v) equal to the values prescribed in Ψ, and

where the set of pairs with one copy in W1 and the other in W1 ∪R is as prescribed in Ψ.

The next lemma allows us to analyze STRIP2 by treating the configuration remaining after
iteration t as being uniformly selected from ΩΨ(t).

Lemma 16. For any t ≥ 0, and any possible set Ψ(t): every configuration in ΩΨ(t) is equally likely
to be the subconfiguration remaining after t iterations.

Proof. Let H be the subconfiguration induced by the vertex-copies that remain after t
iterations of STRIP2. Consider any H ′ ∈ ΩΨ(t), and form Λ′ from Λ by replacing the pairs of H
with the pairs of H ′.
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Claim 1: Each vertex v has the same degree in both Λ and Λ′.

Proof: Indeed, Λ,Λ′ differ only on the pairs of H,H ′ and, by construction, v has the same degree
in H ′ as in H. The claim holds. �

Claim 1 says that Λ,Λ′ have the same degree sequence D and so both are equally likely to be
chosen as our initial configuration. The remainder of this proof will establish that if we apply t
iterations of STRIP to Λ′ we will obtain H ′. This will imply that H,H ′ are both equally likely
to be what remains after applying t iterations of STRIP2 to the our initial random configuration.
This will finish the proof of the lemma.

We define H(i),H ′(i) to be the sub-configurations remaining after applying i iterations of
STRIP2 to Λ,Λ′, respectively. So H = H(t) and we wish to show that H ′ = H ′(t). Note that this
does not follow immediately from the fact that H ′ ∈ ΩΨ(t). Ψ(t) specifies, for example, that each
vertex v ∈ H has the same number of neighbours from R = R(t) in both Λ and Λ′ at the beginning
of the procedure. But it is not obvious that, after running t iterations of STRIP2, R is the set of
remaining vertices with degree greater than k. Claim 2, below, argues that this is indeed the case.

We let W ′
0(i),W

′
1(i), R′(i), Q′(i) denote the vertex sets W0,W1, R,Q after applying i itera-

tions of STRIP2 to Λ′. In what follows, we use deg(v),degR(v), etc. to denote degrees in Λ and
deg′(v),deg′

R(v), etc. to denote degrees in Λ′.

Claim 2: for every 0 ≤ i ≤ t, W0(i) = W ′
0(i),W1(i) = W ′

1(i), R(i) = R′(i), and Q(i) = Q′(i).

Proof: By definition, W1(0) = W ′
1(0) = ∅. Claim 1 implies that W0(0) = W ′

0(0) and R(0) =
R′(0). To prove that Q(0) = Q′(0) we apply Claim 1 and we also need to argue that each vertex v
has the same number of neighbours in W0(0)= W ′

0(0) in both Λ and Λ′. Note that W0(t) ⊆ W0(0).
The number of neighbours v has in W0(t) is specified by Ψ(t) to be the same in both Λ,Λ′, and the
set of edges from v to W0(0)\W0(t) is identical in both Λ,Λ′ as W0(0)\W0(t) is not in H.

Having established the base case, we proceed by induction on i. Suppose that Claim 2 holds
for some i < t. Since Q(i) = Q′(i), the (i + 1)-st vertex deleted is the same for both Λ,Λ′, since
we choose the next deletable vertex according to the same ordering in both procedures; let v be
that vertex. So the vertex set of the subgraph after i + 1 steps is the same in both procedures.
Furthermore, v is not in H as it is removed during the first t iterations on Λ. Thus the set of pairs
including a copy of v is the same in both Λ,Λ′ and hence in both remaining configurations.

The key observation is that all decisions made in STRIP2 are based on sets of pairs that are
equal in H(i),H ′(i). This implies that we will make the same changes to the various vertex sets in
both configurations. Indeed, the decisions made are determined entirely by:

• Pairs containing copies of v: these are the same in H(i),H ′(i) since v /∈ H.

• The decision as to whether u is moved to W1 in step 3(c) is determined by deg(u). Every
vertex has the same degree in what remains of both Λ and Λ′ by Claim 1 and the fact that
all pairs removed during the first t steps of STRIP2 are the same in both Λ,Λ′, as they each
include at least one vertex not in H.

• The decision as to whether w enters Q in Step 3(d) is determined by whether w is deleteable.
Whether w satisfies (D3) is determined by deg(v) which is the same in both processes as
described above. Whether w is now in W0,W1 or R was decided in step 3(c) and so is the
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same in both processes. Whether w ∈ R satisfies (D4) is determined by the number of pairs
containing a copy of w and a vertex-copy in W1; all such pairs are the same in both Λ and Λ′,
either because the pair is removed during the first t iterations, or because it is a pair between
W1(t) and R(t) ∪W1(t) and hence is specified by Ψ(t). The argument for whether w ∈ W1

satisfies (D5) is the same.

So STRIP2 makes the same decisions, and carries out the same steps during iteration i + 1 on
both Λ and Λ′. This yields the claim for iteration i+ 1 and so the proof of the claim is finished. �

Therefore STRIP2 removes the same sequence of vertices for the first t iterations on Λ and on
Λ′, and so H ′ is what remains after t iterations on C. This finishes the proof of the lemma as
explained above. �

Lemma 16 allows us to analyze the configuration remaining after any iteration t of STRIP2 by
taking a uniform member of ΩΨ(t). This is fairly simple as the members of ΩΨ(t) all decompose
into the union of a few configurations which can be analyzed independently using the configura-
tion model. Given any three disjoint vertex sets W0,W1,R, a set of RW-information Ψ, and a
configuration Λ ∈ ΩΨ we define:

• ΛW0
⊂ ΛΨ - the sub-configuration induced by W0;

• ΛW1
⊂ ΛΨ - the sub-configuration induced by W1;

• ΛR ⊂ ΛΨ - the sub-configuration induced by R;

• ΛW0,W1∪R ⊂ ΛΨ - the bipartite sub-configuration induced by W0,W1 ∪R;

• ΛW1,R ⊂ ΛΨ - the bipartite sub-configuration induced by W1,R.

Note that Ψ specifies the vertex-copies and pairs of ΛW1
,ΛW1,R; thus it also specifies which

vertex-copies in W1 are in ΛW0,W1∪R. To select a uniform member of ΛΨ, we can select the other
three configurations independently; that is,

1. For each vertex v ∈ R, choose a uniform partition of the vertex-copies of v not paired with
copies in W1 into those that will be paired with copies in W0,R, according to degW0

(v),degR(v).

2. For each vertex v ∈ W0, choose a uniform partition of the vertex-copies of v into those that
will be paired with copies in W0,W1 ∪R, according to degW0

(v),degW1∪R(v).

3. Choose ΛW0
by taking a uniform matching on the appropriately selected vertex-copies in W0.

4. Choose ΛR by taking a uniform matching on the appropriately selected vertex-copies in R.

5. Choose ΛW0,W1∪R by taking a uniform bipartite matching on the appropriately selected
vertex-copies in W0,R and the vertex-copies of W1 that are (implicitly) specified by Ψ to be
paired with W0.
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To see that this yields a uniform member of ΛΨ, note that there is a bijection between the
union of these choices and the members of ΛΨ; note also that the number of choices for steps 3,4,5
is independent of the partitions chosen in steps 1,2.

In every use of this model, we will use it to analyze the configuration remaining at a particular
point during STRIP2. We will set W0 = W0,W1 = W1,R = R and so we will use the notation, for
example, ΛW1,R.

The crucial parameter in our analysis is the branching parameter that comes from exploring
W0(0) with a branching process. It is well-known that for any c > ck, W0(0) is subcritical and so
this parameter is less than 1 (see eg. [13, 17]). We need to show how far away it is from 1 when
c = cmin. This bound is the only reason that we require c ≥ cmin rather than c > ck in (9).

Lemma 17. Let k ∈ N be a sufficiently large constant and set α = k9β. Let G = Gn,p be a random
graph with p = c/n for some constant ck + kα = cmin ≤ c ≤ cmax = ck + k−1/2. Then, w.h.p. in the
k-core of G, i.e. at step i = 0 of STRIP:

∑

u∈W0
degW0

(u)(degW0
(u) − 1)

∑

u∈W0
degW0

(u)
< 1 − α. (10)

Proof. Recall from (8) that β = e−k/200 and so α is very small. We are going to use the
notation and observations used in the proof of Lemma 12. See (20) for the definition of f(x) and
x, (21) for the definition of xk, and (22) for the degree distribution of the k-core. In particular,
recall that c = f(x) and ck = f(xk). Our first step is to use the fact that c is bounded away from
ck, to bound x away from xk. We set

x = xk + δ.

Claim: δ > kα.

Proof: Recall from (23) that c ≤ cmax implies δ ≤ log k. Also recall that ǫ = ok(1) was defined
in (25) and used in (30). Since α < (log k)/k, and since ǫ + kα = ok(1), it follows from (30) that
over the range [xk, xk + kα], f ′ does not exceed (ǫ+ kα)

√

(log k)/k +O(1/
√
k) <

√

(log k)/k for k
sufficiently large. Therefore, f(xk + kα) < f(xk) + (kα) ·

√

(log k)/k < ck + kα = cmin ≤ c. Since
c = f(x) = f(xk + δ) and f is increasing, this implies the claim.

We consider the configuration Λ with the same degree sequence as the k-core of G. Recall
that W0 is the set of vertices with degree exactly k in Λ. We could determine the degree sequence
of the subconfiguration induced by W0 and then bound the LHS of (10), but we obtain a simpler
calculation by considering the following experiment: choose a uniformly random vertex-copy σ from
W0 conditional on σ being paired in Λ with another copy from W0; let u ∈ W0 be the vertex of
which σ is a copy. Set Z to be the number of other copies of u that are paired with vertex-copies
in W0. Note that E(Z) is the LHS of (10).

One way to choose σ is to repeatedly take a uniform vertex-copy from W0 and expose its partner;
halt the first time that the partner is also in W0. By Lemma 12(b), w.h.p. a linear proportion
of the copies are in W0 and so w.h.p. we only expose o(n) pairs of vertex-copies before halting.
Now, having found u, we expose the partners of the remaining k− 1 copies of u. So E(Z) is simply
the expected number of these partners that are in W0. Since a vertex in W0 has degree k, Z ≤ k
always holds, and on the other hand E(Z) = Ω(1), as by Lemma 12(b), w.h.p. |W0| ≥ 0.99n/k,
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and in such case E(Z) = Ω(1). Hence, the first order term of E(Z) stems from the event when
Lemma 12(b) holds and only o(n) pairs of vertex-copies were exposed before halting. In that case,
the probability that a particular copy of u selects a partner in W0 is simply the total degree of W0

divided by the total degree of Λ plus a o(1) term for the exposed pairs. Applying (22) to obtain
this ratio, we find that E(Z) = (1 + o(1))g(x) where

g(x) := (k − 1) · k e−x xk

k!
∑

i≥k i e
−x xi

i!

=
k(k − 1) e−x xk

k!

x · e−x
∑

i≥k−1
xi

i!

=
k(k − 1) e−x xk

k!

x · Pr (Po(x) ≥ k − 1).

As mentioned in the proof of Lemma 12(b), xk minimizes the function f(x). Using the fact
that f ′(xk) = 0, it is a simple exercise to show that g(xk) = 1; see [12] for the details. Hence, using
the fact that Pr (Po(x) ≥ k − 1) ≥ Pr (Po(xk) ≥ k − 1) for x > xk, it follows from (24) that

g(x) ≤ k(k − 1) e−xk
xk
k
k!

(

1 − δ(log k/k)1/2(1 + ok(1))
)

(xk + δ) Pr (Po(xk) ≥ k − 1)

= g(xk)
(

1 − δ(log k/k)1/2(1 + ok(1))
)

≤ 1 − 1

2
δ(log k/k)1/2 < 1 − α, by our Claim

provided k is large enough. �

3.5 The procedure terminates quickly

In this section, we will prove that w.h.p. STRIP2 terminates with Q = ∅ when run on Λ. In order
to show that Q reaches ∅ within βn iterations, we will keep track of a weighted sum of the total
degree of the vertices in Q, and we will show that this parameter drifts towards zero.

Within this parameter, the change in the number of edges from Q to W0 is the most delicate.
In particular, the most sensitive part of our process is avoiding cascades that could be formed when
the deletion of vertices in W0∩Q causes too many other vertices in W0 to be added to Q. (Roughly
speaking, Lemma 17 ensures that such cascades do not occur.) So we place a high weight on the
number of edges from Q ∩W0 to W0. We place an even higher weight on the edges from Q\W0 to
W0; these edges play a different role in the analysis because they initiate the potential cascades.
We express this weighted sum with the following variables; each refers to the sets W0,W1, R at the
end of iteration i of STRIP2.

Ai =
∑

v∈Q∩W0

degW0
(v)

Bi =
∑

v∈Q\W0

degW0
(v)

Di =
∑

v∈Q
degW1∪R(v)

Xi = Ai + kBi + k7βDi
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Note that, indeed, since β = e−k/200 < k−10, the edges counted by Ai and Bi have much higher
weights in Xi than those counted by Di.

We will prove that Xi has a negative drift, and that w.h.p. it reaches zero before βn iterations
of STRIP2. At that point, if any vertices remain in Q then they all have degree zero and so will
be removed without any new vertices being added to Q.

Observation 18. W.h.p. throughout STRIP2, we always have:

(a) |W1| ≤ 3kβn;

(b) e(R,W0) ≥ n
3 ;

(c) e(R,R) ≥ kn
4 ;

(d) |Q| ≤ 5k2βn.

Proof. In a nutshell, the observation follows by noting that, since STRIP2 carries out a
very small number of iterations and hence deletes a very small number of vertices, these parameters
will not change much from their initial values as provided in Lemma 12. In more detail, STRIP2
runs for at most βn iterations, where β = e−k/200 from (8), and in each iteration we delete one
vertex.

Initially, W1 = ∅ and every vertex that moves to W1 is the neighbour of a deleted vertex. So
|W1| is bounded by the total degree of the deleted vertices. The total degree of the vertices from the
initial set Q is at most e−k/6n + (2k)e−k/3n < kβn by Lemma 12(c,g). Every other deleted vertex
has degree at most 2k and so the total degree of all deleted vertices is at most (2k)βn+kβn = 3kβn;
this proves part (a).

For part (b), observe that by Lemma 12(e), initially, w.h.p. e(R,W0) ≥ 1
2n. Since by the proof

of part (a) the total degree of all deleted vertices is at most 3kβn, and the number of edges deleted
is bounded by the total degree of all deleted vertices, at any time e(R,W0) ≥ 1

2n − 3kβn ≥ 1
3n.

By an analogous argument, this time using Lemma 12(f), e(R,R) ≥ nk
3 − 3kβn ≥ nk

4 , and part (c)
follows.

Finally, for part (d): Lemma 12(c,g) implies that the size of the initial set Q is at most (e−k/6 +
e−k/3)n < βn. Observation 8 says that at most 4k2 vertices are added to Q during each of the at
most βn steps. So |Q| can never exceed βn + 4k2βn < 5k2βn. �

The key parameter in bounding the drift of X is controlled by the following lemmas.

If σ is a vertex-copy, then we use u(σ) to denote the vertex that σ is a copy of.

Lemma 19. W.h.p. at every iteration i ≤ βn of STRIP2, the RW-information Ψi is such that: if
a vertex-copy σ is chosen uniformly at random from the remaining W0-copies in Λ, then

E
(

degW0
(u(σ))

)

<
(

2 − α

2

)

,

where α = k9β is from Lemma 17.

16



Proof. The expectation we are bounding is equal to:

∑

u∈W0

degW0
(u)2/

∑

u∈W0

degW0
(u). (11)

By Lemma 17, at iteration i = 0 this is

∑

u∈W0
degW0

(u)(degW0
(u) − 1) +

∑

u∈W0
degW0

(u)
∑

u∈W0
degW0

(u)
< 1 − α + 1 = 2 − α.

At iteration 1 ≤ i ≤ βn, each of the i vertices that have been deleted decreases the denominator
of (11) by at most 2k (the largest effect is when we remove a vertex of W0 with k neighbours in
W0) and so the denominator has decreased by at most 2kβn. The numerator has not increased.
Since the denominator was initially at least n/(5k) by Lemma 12(d), the value of (11) is at most

(2 − α) · n/(5k)

n/(5k) − 2kβn
=

2 − α

1 − 2kβn
n/5k

< (2 − α)(1 + 10k2β) < 2 − α

2
,

as α = k9β. �

This brings up to our key lemma:

Lemma 20. W.h.p. at every iteration i ≤ βn of STRIP2, the RW-information Ψi is such that: if
the vertex v ∈ Q that is deleted has degree at least one, then

E(Xi −Xi−1) ≤ −1

2
k7β.

Remark: If v has degree zero then Xi = Xi−1 (deterministically) as during that iteration of
STRIP2, no vertex-copies will be removed from the configuration, and no vertices will join Q.

Proof. First note that Xi can only increase through vertices joining Q. So most of this
analysis focuses on the expected number of vertices that are added to Q. This analysis relies on
the fact that all RW-information is specified deterministically by Ψ (see Definition 14), and that
the configuration is uniform amongst all configurations with that RW-information (see Lemma 16).

Ψ specifies that vertex v is incident to degW0
(v) edges to W0, degW1

(v) edges to W1, degR(v)
edges to R and/or degW1∪R(v) edges to W1 ∪R depending on whether v ∈ W1 ∪R or v ∈ W0. We
consider the effect on Xi −Xi−1 of deleting each of these pairs; specifically, the effect of deleting a
copy of v and a copy of some u ∈ N(v) which is specified to be in W0,W1, R or W1 ∪R.

Case 1: v ∈ W1. Subcase u ∈ W1: The removed pair is not random; it is specified by Ψ, as
Ψ specifies all pairs with one member in W1 and the other in W1 ∪ R. By Observation 7(a), u
is already in Q. So no new vertices are added to Q and Di decreases by exactly two. Thus, the
deletion of uv causes X to change by

∂X = −2k7β.

Subcase u ∈ R: The removed pair is not random; it is specified by Ψ. By Observation 7(c), u
is already in Q or has no other neighbours in W1; either way, any neighbours that u has in W1 are
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already in Q. Also, those neighbours are specified by Ψ (since they are edges from R to W1) and
so they do not need to be exposed.

Thus, any new vertices that are added to Q are the result of the neighbours of u that are in
R, and so we turn our attention to those neighbours. Note that the degree of u is at least k + 1
before the removal of the pair of copies uv (since u ∈ R); if u has degree at least k + 2 before the
removal, no more vertices will be moved to Q. So for the remainder of the analysis, we will assume
that u has degree k + 1 before the removal of uv. Thus u moves to W1 and we expose its at most
k neighbours in W1 ∪ R. There are two ways that the choice of one such partner, w, can cause
vertices to be added to Q:

(a) w ∈ R and w ∈ Q. Then u is added to Q if it was not already in Q. (Note that if w ∈ W1

then u is already in Q as it had two neighbours in W1.)

(b) w ∈ R, w /∈ Q and has exactly one neighbour w′ 6= u in W1. So w is added to Q, and also w′

is added to Q if it was not already in Q. If w has more than one such neighbour w′ ∈ W1,
w′ 6= u, then w and all such neighbours would already be in Q.

Both of those situations require w ∈ R, so to analyze the effect of those possibilities we consider
the at most k neighbours u has in R. To expose a neighbour w of u in R, we choose the partner of
a copy of u in ΛR; that is, we choose a uniform vertex-copy in ΛR; w is the vertex containing that
copy.

Note that, since w ∈ R, the edges from w to W1 are specified by Ψ, and so we do not need
to expose any new partners of copies of w to determine whether w has a neighbour w′ ∈ W1.
Furthermore, the vertices w that would result in additions to Q as in (a,b) above are specified
by Ψ. So to bound the expected change in X, we bound the number of copies of such w. By
Observation 18(a,c,d):

(i) There are at least kn/2 vertex-copies in ΛR to choose from.

(ii) At most 2k ·5k2βn+βn < 11k3βn of them are copies of vertices in R∩Q (as the total degree
of vertices with degree greater than 2k is at most e−k/6n <βn by Lemma 12(c)). If we choose
one of these copies then we have situation (a) and so up to one vertex could be added to Q.

(iii) At most 6k3βn of them are copies of the at most 3k2βn neighbours of W1 not already in Q
(as each such neighbour has degree at most 2k). If we choose one of these copies then we
have situation (b) and so up to two vertices could be added to Q.

Recall that in this portion of the analysis, deg(u) = k + 1 and one of u’s neighbours, v, has been
deleted. So the expected number of vertices added to Q is at most k · 23k3βn/(kn/2) ≤ 46k3β.
Each vertex added to Q will increase X by at most 2k2 (the extreme case is if it has 2k neighbours
in W0). In addition, the removal of the pair uv causes Di to decrease by at least one. So the
expected change to X by the removal of the pair uv is at most:

∂X ≤ −k7β + 2k2 · 46k3β < −1

2
k7β, (12)
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provided k is large enough.

Subcase u ∈ W0: We remove a copy of v and its partner in ΛW0,W1∪R; that copy is selected by
choosing a uniform vertex-copy from the W0-copies in ΛW0,W1∪R. This specifies u, the vertex to
which the copy belongs, and u is added to Q. No other vertices are added to Q in this step. Ai +Di

can increase by at most k− 1, as the vertex of W0 added to Q has remaining degree at most k− 1.
On the other hand, the removal of the pair causes Bi to decrease by one. So the deletion of uv
causes X to change by

∂X ≤ −k + (k − 1) = −1.

Case 2: v ∈ R. Subcase u ∈ W1: The removed pair is not random; it is specified by Ψ. By
Observation 7(b), the other endpoint of the edge is already in Q. So no new vertices are added to
Q and Di decreases by exactly two. Thus, as in Case 1, the deletion of uv causes X to change by

∂X = −2k7β.

Subcase u ∈ R: There are two differences between this subcase, and the corresponding subcase
in Case 1.

(1) The number of vertices u ∈ N(v) that are in R is specified by Ψ, but the actual vertices are
not specified by Ψ - they are selected randomly.

(2) It is possible that u /∈ Q and u has a neighbour in W1.

As in Case 1, subcase u ∈ R, the degree of u prior to the removal of uv is at least k + 1. If that
degree at least k + 2, then no vertex is moved to Q as a result of the deletion of uv. So we assume
that degree is k+1. Thus u moves to W1 and we expose its at most k neighbours in W1∪R. There
are three ways that the choice of one such partner, w, can cause vertices to be added to Q. The
first two, arising when w ∈ R, are the same as (a,b) from Case 1, and the analysis of the effect of
those possibilites on the expected change in X is the same as in Case 1. The third is:

(c) w ∈ W1. In that case, u moves to Q and so does w if it is not already in Q. Note that if u has
more than one neighbour in W1 then u and those neighbours were already in Q.

We expose each of the degR(v) neighbours of v in R by choosing a vertex-copy uniformly from
those in ΛR; u is the vertex containing that copy.

The set of vertices u whose choice would result in situation (c) is specified by Ψ, and there are
at most |N(W1)| ≤ |W1| × k such vertices. Each such vertex has at most k copies in ΛR, as it has
degree k + 1 and one neighbour in W1, so by Observation 18(a). there are at most 3k3βn copies of
such vertices in ΛR. By Observation 18(c), there are at least kn/2 vertex-copies in ΛR to choose
from. So the probability that our choice of u results in situation (c) is at most 3k3βn/(12kn) = 6k2β.
If we choose such a copy then up to two vertices will move to Q, and each can increase X by at
most 2k2. So the expected impact on X by exposing the vertex u is at most 2k2 · 6k2β = 12k4β.

After exposing u, we next expose NR(u) in order to determine whether any vertices were added
to Q because of situations a, b. The same analysis as for (12) shows that the expected impact on
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X of this step is at most −k7β + 2k2 × 46k3β. As in the calculation for (12), the removal of uv
causes Di to decrease by 1. Putting this together, the expected change in X resulting from the
exposure and removal of the edge uv is at most

∂X ≤ −k7β + 2k2 · 46k3β + 12k4β < −1

2
k7β, (13)

provided k is large enough.

Subcase u ∈ W0: The same analysis as in Case 1, subcase u ∈ W0, shows that regardless of
which vertex is selected, the change on X will be ∂X ≤ −1.

Case 3: v ∈ W0. In this case, Ψ specifies the number of edges from v to W1 ∪R, but does not
specify how many go to W1 and how many go to R.

Subcase u ∈ W1∪R: The edge is a pair from ΛW0,W1∪R and so we choose a vertex-copy uniformly
from the W1 ∪R-copies in ΛW0,W1∪R; u is the vertex containing that copy.

If we choose u ∈ R then situations (a,b,c) above are the ways in which this can cause Q to
increase. We can apply the same analysis as for (13). The only difference is that the number of
R-copies in ΛW0,W1∪R is at least n/3 rather than at least kn/2, as we apply Observation 18(b)
rather than Observation 18(c). The result is that the expected change to X conditioning on the
selected u being in R is at most

∂X ≤ −k7β + 2k2 · 69k4β + 18k5β.

If we choose u ∈ W1, then u will enter Q, if it is not already in Q; no other vertices will enter
Q. By Observation 18(a,b) there are at least n/3 R-copies to choose from and at most 3k2βn
W1-copies. So the probability that we select u ∈ W1 is at most 3k2βn/(n/3) = 9k2β. If u is added
to Q then at most this will increase Bi by k − 1 and thus increase X by k(k − 1) < k2. Putting
this together, the expected change in X resulting from the removal of the pair uv is at most:

∂X ≤ 9k2β · k2 + (1 − 9k2β) ·
(

−k7β + 2k2 · 69k4β + 18k5β
)

≤ −1

2
k7β,

provided k is large enough.

Subcase u ∈ W0: The edge is a pair from ΛW0
and so we choose a uniform vertex-copy from

ΛW0
; u is the vertex containing that copy. By Lemma 19, the expected increase in Ai from adding

u to Q ∩W0 is at most 2 − α
2 where α = k9β. The increase in Di is at most k, and deleting the

pair uv decreases Ai by two. Putting this together,

E(Xi −Xi−1) ≤ −2 +
(

2 − α

2

)

+ k · k7β < −α

4
< −1

2
k7β.

So in every case, the deletion of a copy of v and its partner u results in an expected change in
X of less than −1

2k
7β. Therefore

E(Xi −Xi−1) ≤ −1

2
k7β · deg(v).

Since v has degree at least one, this yields the lemma. �

Our bounds on the drift of Xi and the initial size of Q imply that our procedure stops quickly.
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Lemma 21. W.h.p. STRIP2 halts with Q = ∅ within βn iterations.

Proof. We begin by showing that w.h.p. we reach Xi = 0 long before step i = βn.

As we argued in the proof of Observation 18, Lemma 12(c,g) implies that at iteration i = 0,
the total degree of the vertices in Q is w.h.p. at most (e−k/6 + 2k · e−k/3)n and so we have X0 ≤
k(e−k/6 + 2k · e−k/3)n < e−k/10n. Recall from (8) that β = e−k/200.

By Lemma 20, for every 1 ≤ i ≤ βn,

E(Xi+1 −Xi) ≤ −b, where b :=
1

2
k7β.

Note also that (deterministically), for every 1 ≤ i ≤ βn, |Xi+1 −Xi| ≤ (2k)(4k2) = 8k3, since the
degree of a vertex not belonging to Q is at most 2k, and by Observation 8 we add at most 4k2

vertices to Q in each iteration.

We will use the Martingale inequality from the end of Section 2. We cannot apply this directly
to Xi since Xi stops changing when it reaches zero. So instead, we couple Xi to a process which
is allowed to drop below zero. We define X ′

i+1 = Xi+1 whenever Xi > 0, and if Xi = 0 then
X ′

i+1 = X ′
i−1 with probability b and X ′

i+1 = X ′
i otherwise. So for all i we have E(X ′

i+1 −X ′
i) ≤ −b

and |X ′
i+1 −X ′

i| ≤ 8k3. Setting i∗ := β
k3
n, we have

E(X ′
i∗) ≤ X ′

0 − i∗b < e−k/10n− 1

2
k4β2n < −e−k/50n.

Applying (7) with α = e−k/50n, ℓ = i∗ and c1, . . . , cℓ = 8k3 yields

Pr(Xi∗ > 0) ≤ Pr(X ′
i∗ > 0) ≤ exp

(

−(e−k/50n)2

2β
k3 n(8k3)2

)

= exp(−Ω(n)) = o(1).

At this point, |Q| ≤ e−k/10n + 4k2i∗ < 5β
k n, since by Observation 8 we add at most 4k2 vertices to

Q in each iteration. If Xi∗ = 0 then there are no edges from Q to the remaining vertices outside of
Q. From that point on, no vertices will be added to Q and so STRIP2 halts after |Q| further steps.
So the total number of steps is w.h.p. at most i∗ + 5β

k n < βn. �

This proves Lemma 10 since carrying out STRIP2 performs the same steps as carrying out
STRIP on Λ (the only difference is that STRIP2 also exposes some information). Since proper-
ties that hold w.h.p. on Λ also hold w.h.p. on C, the k-core of Gn,p=c/n, (see the discussion in
Section 3.2), this yields Lemma 11.

3.6 Enforcing (K4)

Observation 9, Lemma 11, Corollary 13 and Lemma 21 imply that w.h.p. STRIP produces a
subgraph K satisfying properties (K1), (K2) and (K3). It only remains to enforce:

(K4) k|K| is even.

To do so, we prove that w.h.p. the output of STRIP has a vertex v which can be deleted without
violating (K1), (K2) or (K3). Thus, if (K4) does not hold, then we remove v to obtain our desired
subgraph K.
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Lemma 22. W.h.p. the output of STRIP contains a vertex of degree greater than k whose neigh-
bours all have degree greater than k.

Proof. We argue that the lemma holds when running STRIP2 on Λ. It immediately follows
for running STRIP on C.

By Lemma 12(h), w.h.p. initially at least n
200 vertices of R have no neighbours in W0. Since we

remove at most one vertex per iteration, at most βn of these vertices are not in the output. By
Observation 18(a), the output satisfies |W1| ≤ 3kβn. Each vertex in W1 has degree at most k (in
fact, at this point exactly equal to k), and so at most 3k2βn members of R have a neighbour in
W1. This implies the lemma as n

200 − βn− 3k2βn > 0 for k sufficiently large. �

4 K has a k-factor

We focus on the subgraph K which we obtained in the previous section by running STRIP on the
k-core of our random graph, and then possibly deleting one vertex in Section 3.6. We will apply
Lemma 5 with Γ := K to prove that K has a k-factor. First we establish some more random graph
properties.

4.1 Further random graph properties

Recall our setting: we begin with the random graph G = Gn,p=c/n where ck +k10β ≤ c ≤ ck +k−1/2

(see (8), (9)). K is the subgraph of the k-core of G obtained after applying STRIP, and possibly
deleting one more vertex. We have shown that w.h.p. K satisfies properties (K1–4) (see Section 3.6).
We will require the following additional properties:

Lemma 23. There exist constants γ, ǫ0 > 0, k0∈ N such that for any k ≥ k0, w.h.p. K satisfies:

(P1) For every Y ⊆ V (K) with |Y | ≤ 10ǫ0n, e(Y ) < k|Y |
6000 .

(P2) For every Y ⊆ V (K) with |Y | ≤ 1
2 |K|, e(Y, V (K) \ Y ) ≥ γk|Y |.

(P3) For every disjoint pair of sets X,Y ⊆ V (K) with |X| ≥ 1
200 |Y | and |Y | ≤ ǫ0n, e(X,Y ) <

1
2γk|X|.

(P4) For every disjoint pair of sets X,Y ⊆ V (K) with |X|+|Y | ≤ ǫ0n, e(X,Y ) <
(

1 + 1
2000

)

|N(X)∩
Y | + k

100 |X|.

(P5) For every disjoint pair of sets S, T ⊆ V (K) with |T | < 1
10ǫ0n and |S| > 9

10ǫ0n, e(S, T ) < 3
4k|S|.

(P6) For every disjoint pair of sets S, T ⊆ V (K) with |T | ≥ 1
10ǫ0n, we have e(S, T ) ≤ k|S| +

3
4

√
k log k|T | and ∑v∈T d(v) > (k + 7

8

√
k log k)|T |.

Remark: Note that γ, ǫ0 do not depend on k.

These properties all correspond to very similar properties in [6, 15], with the exception of (P1)
which is very standard in random graph theory. There are no new ideas here, and the proof is a
bit lengthy. So we defer the proof of Lemma 23 to Section 6.
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4.2 Verifying Tutte’s condition

We now assemble our pieces to show that K has a k-factor. Recall from Definition 2 that L,H are
the vertices of degree k and at least k + 1, respectively, and that, eg., TL, TH denote T ∩L, T ∩H,
respectively.

As we proved in Section 3, w.h.p. the subgraph K has the following properties. Note that (K2)
is rephrased using the notation of Definition 2.

(K1) for every vertex v ∈ K, k ≤ dK(v) ≤ 2k;

(K2) every vertex v ∈ H has at most 9
10k neighbours in L;

(K3) |K| ≥ n
3 ;

(K4) k|K| is even.

In the previous section, we showed that w.h.p. K satisfies properties (P1–6), stated above.

Recall also Tutte’s condition (1): A graph Γ with minimum degree at least k ≥ 1 has a k-factor
if and only if for every pair of disjoint sets S, T ⊆ V (Γ),

k|S| +
∑

v∈TH

(dΓ(v) − k) ≥ q(S, T ) + e(S, T ),

and recall also from Lemma 5 that a graph Γ with minimum degree k ≥ 1 has a k-factor if and
only if this inequality (1) holds for every pair of disjoint sets S, T ⊆ V (Γ) satisfying:

(M1) S ⊆ H; and

(M2) every component Q counted by q(S, T ) satisfies QH 6= ∅.

By our previous lemmas, it will suffice to prove:

Lemma 24. If K satisfies properties (K1–4,P1–6) then for every pair of disjoint sets S, T ⊆ V (K)
satisfying (M1–2) inequality (1) holds.

In all but one case, we actually prove (2); it will be useful to restate it:

k|S| + |TH | ≥ q(S, T ) + e(S, T ),

where e(S, T ) is the number of edges from S to T and q(S, T ) is the number of components Q of
K \ (S ∪T ) such that k|Q| and e(Q,T ) have different parity. Recall that (2) implies (1) since every
vertex in TH has degree at least k + 1.

Proof. Let ǫ0, δ > 0 be the constants implied by Lemma 23. Recall that ǫ0, δ are indepen-
dent of k (see Remark 1 following the statement of Lemma 23). So when we lower bound k in what
follows, our lower bounds can be in terms of ǫ0, δ. We will assume that k ≥ k0 from Lemma 23 and
so we can assume that properties (P1–6) all hold.
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We will consider two cases depending on the size of S ∪ T .

Case 1: |S| + |T | ≤ ǫ0n:
Recall that q(S, T ) is the number of connected components Q of K \ (S ∪ T ) such that k|Q|
and e(Q,T ) have different parities. Denote by X the union of all vertices belonging to connected
components Q of K\(S∪T ) that contribute to q(S, T ), other than a largest component of K\(S∪T )
(this largest component might or might not contribute to q(S, T ), but is neglected in any case; if
more than one component is largest, we pick one of them arbitrarily). As K \ (S ∪ T ) has at most
one component of size at least 1

2 |K|, we apply (P2) setting Y to be any component in X. Noting
that all edges from Y to V (K)\Y are edges from X to S∪T and summing over all such components
yields:

e(X,S ∪ T ) ≥ γk|X|. (14)

If |X| > 1
200(|S| + |T |) then we can apply (P3) with (X,Y ) := (X,S ∪ T ) to obtain e(X,S ∪ T ) <

1
2γk|X| which contradicts (14). So we have:

|X| ≤ 1

200
(|S| + |T |). (15)

Recalling that SH = S by (M1), we now turn our attention to the vertices of H. (15) and the
fact that we are in Case 1 imply that |S| + |TH | + |XH | ≤ |S| + |T | + |X| < 2ǫ0n and so we can
apply (P1) to obtain:

e(S ∪ TH ∪XH) <
k

6000
|S ∪ TH ∪XH |. (16)

(K1-2) imply that each vertex in XH has at least k
10 neighbours in H. Every such neighbour must

be in X ∪ S ∪ T and so e(XH , S ∪ TH) ≥ k
10 |XH | − 2e(XH ). This yields

e(S ∪ TH ∪XH) ≥ e(XH) + e(S, TH) + e(XH , S ∪ TH) ≥ e(S, TH ) +
k

10
|XH | − e(XH),

which combined with (16) and (P1) applied to X := XH gives:

k

6000
(|S| + |TH | + |XH |) ≥ e(S, TH ) +

(

k

10
− k

6000

)

|XH | ≥ 599k

6000
|XH |.

Rearranging allows us to replace (15) with a bound only involving the high vertices:

|XH | ≤ 1

400
(|S| + |TH |). (17)

(M2) implies that every component counted by q(S, T ), except possibly the one excluded from
X, contains a vertex of XH . So q(S, T ) ≤ |XH | + 1. This allows us to bound the RHS of (2) as:

q(S,T ) + e(S, T )

≤ |XH | + e(S, TH ) + e(S, TL) + 1

≤ 1

400
(|S| + |TH |) +

(

1 +
1

2000

)

|N(S) ∩ TH | +
k

100
|S| +

9k

10
|S| + 1

by (17), (P4), (M1) and (K2)

≤ 1

400
|TH | +

(

1 +
1

2000

)

|N(S) ∩ TH | +
92k

100
|S| + 1 (18)

24



We now split this case into 3 subcases.

Case 1a: S = ∅.
In this case our goal is to show |TH | ≥ q(S, T ). By (18), since e(S, T ) = 0, |S| = 0, |N(S)∩TH | = 0,
we have q(S, T ) ≤ 1 + 1

400 |TH |. This yields |TH | ≥ q(S, T ) if |TH | ≥ 1.

Thus we can assume |TH | = 0 and so q(S, T ) ≤ 1, i.e. there is at most one component Q in
K\(S ∪ T ) which is counted by q(S, T ). Since S = ∅, e(T,Q) = e(T,K\T ) which has the same
parity as 2e(T ) + e(T,Q) =

∑

v∈T dK(v) = k|T | since TH = ∅. (K4) implies that k|T | has the same
parity as k|Q|. Therefore k|Q| has the same parity as e(Q,T ) and so q(S, T ) = 0. Therefore the
LHS and RHS of (2) are both 0 and so the desired inequality holds.

Case 1b: |TH | ≤ 3|N(S) ∩ TH | and S 6= ∅.
(18) and |N(S) ∩ TH | ≤ |TH | imply

q(S, T ) + e(S, T ) ≤ 1 + k|S| + |TH | −
(

k

20
|S| − 1

300
|TH |

)

− k

40
|S|

≤ k|S| + |TH | −
(

k

20
|S| − 1

300
|TH |

)

(19)

for k ≥ 40 since S 6= ∅. (K1) implies that |N(S) ∩ TH | ≤ |N(S)| ≤ 2k|S|. So since we are in
Case 1b:

1

300
|TH | ≤ 1

100
|N(S) ∩ TH | ≤ k

50
|S| ≤ k

20
|S|.

This and (19) imply (2).

Case 1c: |TH | > 3|N(S) ∩ TH | and S 6= ∅.
(18) implies

q(S, T ) + e(S, T ) ≤ 1 +
19k

20
|S| +

1

400
|TH | + 2|NS ∩ TH |

≤ k|S| + |TH |

for k ≥ 20 since S 6= ∅. This is (2).

Case 2: |S| + |T | ≥ ǫ0n :
This case follows the arguments of Cases 3 and 4 of [15]. We reproduce them here:

If |T | < 1
10ǫ0n then |S| > 9

10ǫ0n and so e(S, T ) < 3
4k|S| by (P5). We also have q(S, T ) < n <

1
4k|S| for k > 40

9ǫ0
, and this yields (2).

If |T | ≥ 1
10ǫ0n then we use the bound q(S, T ) < n < 1

16

√
k log k|T | for k > 25600/ǫ20, and then

the two parts of (P6) combine to give (1). This is the only case where we prove (1) directly rather
than (2). �

Our main theorem follows immediately:

Proof of Theorem 1 We prove in Section 3 that, if ck +k10β ≤ c ≤ ck +k−1/2 then w.h.p. the
subgraph K obtained by STRIP (and possibly deleting one additional vertex) satisfies properties
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(K1-4). Lemma 23 establishes that w.h.p. K satisfies properties (P1-6). So Lemma 24 implies that
w.h.p. every pair of disjoint vertex sets S, T ⊆ V (K) satisfying (M1-2) also satisfy (1). Lemma 5
now establishes that K has a k-factor and so Theorem 1 holds for ck + k10β ≤ c ≤ ck + k−1/2.
Containing a k-regular subgraph is a monotone increasing property and ck + e−k/300 ≥ ck + k10β
for k sufficiently large, so Theorem 1 holds for all c ≥ ck + e−k/300. �

Remark 25. The proof of Lemma 12(a), below, shows that the size of the k-core in fact is (1 −
ok(1))n. So after removing at most βn = e−k/200n vertices (Lemma 21), the k-regular subgraph we
obtain is of size (1 − ok(1))n.

5 Proof of Lemma 12

To complete the paper, all that remains is two deferred proofs. First, we present the proof of
Lemma 12, where we establish some straightforward properties of the k-core. Recall the statement:

Setup for Lemma 12: k is a sufficiently large constant, and ck < c ≤ cmax = ck +k−1/2. C is
the k-core of Gn,p=c/n. Λ is a uniform configuration with the same degree sequence as C. Finally,
W0, R are as defined in Section 3.1. For the convenience of the reader, we state the lemma again.

Lemma 12: W.h.p. before the first iteration of STRIP:

(a) |Λ| > 0.99n;

(b) 0.99n
k < |W0| < 1.01n

k ;

(c) the total degree of the set of vertices with degree greater than 2k is at most e−k/6n;

(d) there are at least n
5k edges with both endpoints in W0;

(e) there are at least 1
2n edges from W0 to R;

(f) there are at least 1
3kn edges with both endpoints in R;

(g) C has at most e−k/3n vertices of degree at most 2k and with at least 1
2k neighbours in W0;

(h) at least n
200 vertices in R have no neighbours in W0.

Proof. First recall from Section 3.1 that, before the first iteration of STRIP, W0 is the set
of vertices with degree k in Λ, and R is the set of vertices with degree greater than k in Λ.

Part (a) is well-known; the size of the k-core approaches n as k grows (see, for example, the
results of Molloy [12] or Gao [8]). Indeed, in [12] it is proved that w.h.p. the k-core has size ζn+o(n),
where

ζ = ζ(c) = 1 − e−x
k−1
∑

i=0

xi

i!
= e−x

∑

i≥k

xi

i!
= Pr (Po(x) ≥ k),

where x = x(c) is the greatest solution to

c = f(x) :=
x

1 − e−x
∑k−2

i=0 xi/i!
. (20)

26



Recall from (3) that ck is the minimum value of f over all x > 0. Simple analysis of f shows that
there is exactly one value of x for which f(x) = ck; we denote that value by xk. Moreover, for
every c > ck there are exactly two solutions for x. It is straightforward to verify that f ′(x) ≥ 0 for
x ≥ xk and so for c ≥ ck we have xk ≤ x(c) ≤ x(cmax).

Recall from (4) that qk = log k − log(2π). [15] shows that

xk = k + (kqk)1/2 +
qk
3

− 1 + ok(1), (21)

(note that xk is denoted as λk in [15]). It follows that

ζ = Pr (Po(x) ≥ k) ≥ Pr (Po(xk) ≥ k) → 1,

as k → ∞. Part (a) holds for k large enough.

Corollary 3 of [7] establishes that for any constant i ≥ k, the number of vertices of degree i in
the k-core is w.h.p. λin + o(n) where

λi = Pr (Po(x) = i) =
e−xxi

i!
. (22)

In particular, w.h.p. |W0| = e−xxk

k! n + o(n), and so to prove part (b) we will estimate e−xxk

k! .

Below, setting δ = δ(c) = x(c) − xk, we will prove that c ≤ cmax implies

δ ≤ log k. (23)

So for now, we will restrict our attention to x = xk + δ with 0 ≤ δ ≤ log k. Using 1 + y =
exp

(

y + O(y2)
)

, and 1/(1 + y) = 1 − y + O(y2) we get that

e−xxk

k!
=

e−xk−δxkk
k!

(

1 +
δ

xk

)k

=
e−xkxkk

k!
exp

(

−δ +
δk

xk
+ O

(

δ2k

x2k

))

=
e−xkxkk

k!
exp

(

−δ + δ
(

1 − (qk/k)1/2 + O(qk/k) + O(δ/k)
))

by (21)

=
e−xkxkk

k!
exp

(

−δ(qk/k)1/2 + O(δ log k/k)
)

since qk = log k + O(1)

=
e−xkxkk

k!

(

1 − δ(qk/k)1/2 + O(log3 k/k)
)

(24)

=
e−xkxkk

k!
(1 + ok(1)), for δ ≤ log k.

Using Stirling’s formula, (21) and the fact that 1 + y = exp
(

y − y2/2 + y3/3 + O(y4)
)

, we get for
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some ǫ = ǫ(k) = ok(1)

e−xkxkk
k!

=
e−xk

√
2πk

(exk
k

)k
(

1 + O(k−1)
)

=
e−(kqk)

1/2− qk
3
+1−ǫ

√
2πk

(

1 +
(kqk)1/2 + qk

3 − 1 + ǫ

k

)k

(1 + O(k−1))

=
exp

(

− qk
2 + (1 − ǫ)(qk/k)1/2 + O(q2k/k)

)

√
2πk

=
1 + (1 − ǫ)(qk/k)1/2 + O(log2 k/k)

k
since qk = log(k/2π) and ey = 1 + y + O(y2) (25)

=
1 + ok(1)

k
.

Therefore
e−xxk

k!
=

1 + ok(1)

k
for x = xk + δ with 0 ≤ δ ≤ log k. (26)

Next we prove that our upper bound c ≤ cmax = ck + k−1/2 implies (23) and so (26) establishes
part (b). To do this we estimate the derivative of f(x) over the range 0 ≤ δ ≤ log k to show that
at δ = log k and x = xk + δ we have c(x) = f(x) > cmax. Rewriting (20) as:

f(x) =
x

e−x
∑

i≥k−1
xi

i!

,

the derivative is

f ′(x) =
e−x

∑

i≥k−1
xi

i! − x
(

−e−x
∑

i≥k−1
xi

i! + e−x
∑

i≥k−1
xi−1

(i−1)!

)

(

e−x
∑

i≥k−1
xi

i!

)2

=
e−x

∑

i≥k−1
xi

i! − xe−x xk−2

(k−2)!
(

e−x
∑

i≥k−1
xi

i!

)2 . (27)

Recalling qk = log k − log(2π), and that x = xk + δ with 0 ≤ δ ≤ log k, we have

xe−x xk−2

(k − 2)!
= e−xx

k

k!
· k(k − 1)

x
=

e−xkxkk
k!

(

1 − δ(qk/k)1/2 + O(log3 k/k)
) k(k − 1)

x
by (24)

=
(

1 + (1 − ǫ− δ)(qk/k)1/2 + O(log3 k/k)
) k − 1

x
by (25)

=
(

1 + (1 − ǫ− δ)(qk/k)1/2 + O(log3 k/k)
)(

1 − (qk/k)1/2 + O(log k/k)
)

by (21) and since
1

1 + y
= 1 − y + O(y2)

= 1 − (ǫ + δ)(qk/k)1/2 + O(log3 k/k). (28)

Standard bounds for the tail probabilities of a Poisson random variable (see eg. [1, Theorem A.1.15]),
along with (26) yield that for 0 ≤ δ ≤ log k we have

Pr (Po(x) ≤ k − 2) = O
(

k−1/2
)

,
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and so

e−x
∑

i≥k−1

xi

i!
= 1 − Pr (Po(x) ≤ k − 2) = 1 −O

(

k−1/2
)

. (29)

Substituting (28) and (29) into (27) and recalling qk = log k + O(1) yields

f ′(x) = (ǫ + δ)(qk/k)1/2 + O
(

k−1/2
)

= (ǫ + δ)(log k/k)1/2 + O
(

k−1/2
)

, for x = xk + δ and 0 ≤ δ ≤ log k. (30)

Therefore, recalling that f(xk) = ck and since ǫ = ok(1) = o(δ) we have for k sufficiently large

f(xk + log k) = f(xk) + Θ((log k)2) · (log k/k)1/2 + (log k) · O
(

k−1/2
)

> ck + k−1/2 = cmax.

(Note that integration of (30) would have given the same result.) Since f(x) is monotone increasing
for x > xk, it follows that x(c) ≤ xk + log k for all ck ≤ c ≤ cmax, thus proving (23). Therefore (26)
and (22) yield part (b).

For part (c) it is easier to show the desired property for G instead of C; the conclusion for
C will trivially follow. The degree of each vertex in G is a random variable X with the binomial
distribution Bin(n − 1, c/n) with E[X] ≤ c < 1.1k, provided that k is large enough. Hence,
applying (6) with t = 0.9k + ℓ, we get that the expected total degree of all vertices with degree
greater than 2k is at most

n
∑

ℓ≥1

(2k + ℓ) Pr (X ≥ 2k + ℓ) ≤ n
∑

ℓ≥1

(2k + ℓ) exp

(

− (0.9k + ℓ)2

2(1.1k + (0.9k + ℓ)/3)

)

≤ n
∑

ℓ≥1

(2k + ℓ) exp

(

−k + ℓ

4

)

= O(ke−k/4n) < e−k/5n,

provided k is sufficiently large. Since the concentration can be proved with a straightforward con-
centration argument using, for example, Azuma’s Inequality or an easy second moment argument,
we omit the details. This establishes part (c).

For the remaining parts, let us first observe that the total degree of all vertices in G is
2Bin

((n
2

)

, c/n
)

with expectation c(n − 1) < 1.01kn, provided k is sufficiently large. Hence, by
Chernoff’s bound, w.h.p. it is at most 1.02kn, and this upper bound clearly holds for the total
degree of the vertices of C. On the other hand, part (a) implies that it is at least 0.99kn.

For parts (d,e,f), we return to analyzing Λ directly. We will focus on the partners of the vertex-
copies in W0. Part (b) implies that the total degree of the vertices in W0 is between 0.99n and
1.01n. Expose the partners in Λ of the vertex-copies of W0, one at a time. At step i ≤ 1.01n, the
probability that the partner chosen is in W0 is between pi and qi, where

pi = max

{

0.99n − 2i

1.02kn
, 0

}

and qi = max

{

1.01n − i

0.99kn − 2i
, 0

}

≤ max

{

1.01n − i

0.98kn
, 0

}

, (31)

provided k is sufficiently large. Hence, the number of vertex-copies in W0 whose partner is in
W0 can be stochastically lower/upper bounded by the two sums of independent Bernoulli random
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variables: the first one with parameters pi and the second one with qi. The expected value of the
first sum is more than 0.24n/k, and the expectation of the second one is at less than 0.53n/k. The
concentration follows immediately from Chernoff’s bound and we get that w.h.p. the number of
edges with both endpoints in W0 is at least n

5k and at most n
k , which finishes part (d).

Now, parts (e) and (f) follow deterministically. The number of edges from W0 to C\W0 is at
least 0.99n − 2n

k ≥ 1
2n for k large enough. Finally, there are at least (0.99kn − 2 · 1.01n)/2 edges

with both endpoints in C\W0 which is more than 1
3kn for k large enough.

Part (g) is slightly more complicated. For a contradiction, suppose that there is a set T with
|T | = e−k/3n such that every vertex in T is of degree at most 2k and has at least 1

2k neighbours in
W0. (Note that some of them might be from W0.) We will first show that this implies (determinis-
tically) that there exists a subset S ⊆ T of size at least 1

2e
−k/3n and with at least 1

8ke
−k/3n edges

between S and W0 \ S.

To prove this, we consider the average of |E(S,W0 \ S)| over all subsets S ⊂ T of size ⌈12 |T |⌉.
Consider any edge uv with u ∈ T and v ∈ W0; there are at least 1

4k|T | such edges (if u, v are both in
T ∩W0 then the edge uv is only counted once). A very simple count shows that uv ∈ E(S,W0 \S)
for at least half of the subsets S of size ⌈12 |T |⌉; there are four cases corresponding to the parity of
|T | and whether v ∈ T . Therefore,

∑

S⊂T,|S|=⌈12 |T |⌉
|E(S,W0 \ S)| ≥ 1

8
k|T |

( |T |
⌈12 |T |⌉

)

,

and so at least one such set S has |E(S,W0 \ S)| ≥ 1
8k|T |.

Next, we show that w.h.p. no such set S exists in Λ. Indeed, let us fix a set S and expose the
partners of all vertex-copies from W0 \ S in Λ. Arguing similarly as for (31), the number of edges
from W0 \ S to S can be stochastically upper bounded by the binomial random variable

X ∼ Bin

(

1.01n,
2k|S|

0.98kn

)

, with E[X] < 3e−k/3n.

It follows from Chernoff’s bound that the expected number of sets S with a large number of edges
to W0 \ S is at most

(

n
1
2⌈e−k/3n⌉

)

Pr

(

X ≥ ke−k/3

8
n

)

≤
(

3e1+k/3
)

1

2
⌈e−k/3n⌉

exp

(

−1.4 · ke
−k/3

8
n

)

= o(1),

provided that k is sufficiently large. Part (g) follows from Markov’s inequality.

Finally, let us move to part (h). We showed earlier that the total degree of the vertices of
C is at least 0.99kn and the total degree of the vertices in W0 is at most 1.01n. It follows from
parts (a), (b), and (c) that there are at least 0.98n vertices in R that are of degree at most 2k
(and, of course, at least k + 1). We pick (arbitrarily) 0.13n of them and expose partners of all
corresponding vertex-copies. Note that, regardless of the history of the process, the probability
that a given vertex of degree ℓ ≤ 2k has no neighbour in W0 is at least

(

1 − 1.01n

0.99kn − (2k)(0.13n)

)ℓ

≥
(

1 − 1.4

k

)2k

≥ e−3,
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provided that k is sufficiently large. Hence, the number of vertices in R that have no neighbours in
W0 is bounded from below by the random variable X ∼ Bin(0.13n, e−3) with E[X] = 0.13e−3n >
0.006n. Part (h) holds by Chernoff’s bound and the proof of the lemma is finished. �

6 Proof of Lemma 23

Our final piece is the deferred proof regarding properties of the subgraph K obtained by our
stripping procedure. Recall our setting: we begin with the random graph G = Gn,p=c/n where

ck + k10β ≤ c ≤ ck + k−1/2 (see (8), (9)). K is the subgraph of the k-core of G obtained after
applying STRIP, and possibly deleting one more vertex. We repeat the statement of the lemma:

Lemma 23 There exist constants γ, ǫ0 > 0, k0∈ N such that for any k ≥ k0, w.h.p. K satisfies:

(P1) For every Y ⊆ V (K) with |Y | ≤ 10ǫ0n, e(Y ) < k|Y |
6000 .

(P2) For every Y ⊆ V (K) with |Y | ≤ 1
2 |K|, e(Y, V (K) \ Y ) ≥ γk|Y |.

(P3) For every disjoint pair of sets X,Y ⊆ V (K) with |X| ≥ 1
200 |Y | and |Y | ≤ ǫ0n, e(X,Y ) <

1
2γk|X|.

(P4) For every disjoint pair of sets X,Y ⊆ V (K) with |X|+|Y | ≤ ǫ0n, e(X,Y ) <
(

1 + 1
2000

)

|N(X)∩
Y | + k

100 |X|.

(P5) For every disjoint pair of sets S, T ⊆ V (K) with |T | < 1
10ǫ0n and |S| > 9

10ǫ0n, e(S, T ) < 3
4k|S|.

(P6) For every disjoint pair of sets S, T ⊆ V (K) with |T | ≥ 1
10ǫ0n, we have e(S, T ) ≤ k|S| +

3
4

√
k log k|T | and

∑

v∈T d(v) > (k + 7
8

√
k log k)|T |.

Proof. For every property except (P2), we actually show that it holds in G, and so we
can work in the Gn,p model. For each property, we will show that it holds if ǫ0 is sufficiently small.
Thus we can take a value of ǫ0 that is sufficiently small for all properties.

The following property follows from Lemma 3 in [15], where they show that in fact there is no
such subgraph in G:

(P0) For every Y ⊆ V (K) with |Y | ≤ 2 log n/(ec log log n), e(Y ) ≤ |Y |.
Now, (P1) follows from a very standard first moment argument applied to G = Gn,p=c/n, so

long as ǫ0 is sufficiently small. For Y ⊆ V (K) with |Y | = s ≤ 2 log n/(ec log log n), the statement
follows immediately by Property (P0), for k ≥ 6000. For larger values of s, and for k ≥ 1f and
since k < c < 2k, the expected number of sets Y ⊂ V (G) with |Y | = s for which Y contains at
least ks

6000 edges in G is at most

(

n

s

)(

(s
2

)

ks
6000

)

p
ks

6000 ≤
(ne

s

)s
(

300cse

kn

)
ks

6000

≤
(ne

s

)s
(

6000se

n

)2s

=

(

60002e3s

n

)s

< 2−s,
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for s ≤ ǫ0n so long as ǫ0 < 1/(2 × 60002e3).

Summing over all 2 log n/(ec log log n) < s ≤ 10ǫ0n, we obtain that the expected number of
sets that fail the desired property is O(2−2 logn/(ec log logn)) = o(1). Property (P1) now follows by
Markov’s inequality.

For property (P2) we consider two cases:

Case 1: |Y | ≤ 10ǫ0n. Since each vertex in Y has degree at least k, and applying (P1) we know
e(Y, V (K)\Y ) ≥ k|Y | − 2e(Y ) ≥ k|Y | − k|Y |/3000 > 1

2k|Y |.
Case 2: |Y | > 10ǫ0n. Lemma 2 of [15] proves that in the k-core C, e(Y, V (C)\Y ) ≥ γ′k|Y | for

some constant γ′ > 0 independent of k. (In fact, they prove this for the (k + 2)-core but the same
proof applies to the k-core; the main tool is Lemma 5.3 of Benjamini, Kozma and Wormald [3].)
By Lemma 11, |C\K| ≤ βn. Since K is an induced subgraph of C and every vertex of Y has degree
at most 2k (by property (K1)), this implies that e(Y, V (K)\Y ) ≥ γ′k|Y | − 2kβn. This is at least
1
2γ

′k|Y | if k is sufficiently large so that 2kβ < 5γ′ǫ0 (recall β = e−k/200). So (P2) holds for γ = 1
2γ

′.

Property (P3) follows from Property (P4) of [6]. There it is shown that in G(n, p) with p = c/n
and 0 < c < 2k there is no subgraph satisfying the desired property. Their inequality is not strict,
but it can be clearly made strict. Their proof holds for any γ > 0 so long as ǫ0 is sufficiently small
in terms of γ. Thus, we can use the same value of γ as in property (P2).

For property (P4), it clearly suffices to only consider disjoint sets X,Y 6= ∅ for which N(X)∩Y =
Y. So it suffices to prove that w.h.p. every disjoint pair of sets X,Y ⊆ V (G) with G ∈ G(n, p) with
p = c/n and 0 < c < 2k and 2 ≤ |X| + |Y | ≤ ǫ0n satisfies

e(X,Y ) ≤
(

1 +
1

2000

)

|Y | +
k

100
|X|. (32)

The argument is essentially the same as for Lemma 2.5 of [6], but with different constants; we
give it here for the sake of completeness.

Let σn = |X| and τn = |Y |. For any choice of σ, τ , the expected number of sets X,Y in G
violating (32) is at most

(

n

σn

)(

n

τn

)(

(σn)(τn)

(1 + 1
2000 )τn + k

100σn

)

( c

n

)(1+ 1

2000
)τn+ k

100
σn

≤
( e

σ

)σn ( e

τ

)τn
(

eστc

(1 + 1
2000 )τ + k

100σ

)(1+ 1

2000
)τn+ k

100
σn

. (33)
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If σn, τn are both less than
√
n; i.e. σ, τ < n−1/2 then (33) is at most

( e

σ

)σn ( e

τ

)τn
(

eστc
(

1 + 1
2000

)

τ

)
k

100
σn(

eστc
k

100σ

)(1+ 1

2000
)τn

=
( e

σ

)σn
(

eσc

1 + 1
2000

)
k

100
σn
( e

τ

)τn
(

100eτc

k

)(1+ 1

2000
)τn

< (An−1/2)(
k

100
−1)σn(Bn−1/2)

1

2000
τn for some constants A,B

< n− 1

4

1

2000
(σn+τn), for k > 200. (34)

For general σn, τn, using c < 2k and τ < ǫ0 for ǫ0 sufficiently small, we see that the base of the
exponent in the third factor of (33) is at most

eστc

(1 + 1
2000 )τ + k

100σ
<

eστc
k

100σ
< 200eτ <

( τ

e2

)
1

1+ 1
2000 .

If σ ≥ e−k/200, then for k ≥ 400 we have

eστc
(

1 + 1
2000

)

τ + k
100σ

<
( τ

e2

)
1

1+ 1
2000 < e−1 ≤

( σ

e2

)
100

k
,

while if σ < e−k/200, then for k ≥ 40000 we have

eστc
(

1 + 1
2000

)

τ + k
100σ

<
eστc

(

1 + 1
2000

)

τ
< ecσ1/2σ1/2 < 2eke−k/400σ1/2 < σ1/2 <

( σ

e2

)
100

k
.

Hence, the expected number of disjoint sets X,Y with |X| = σn, |Y | = τn and e(X,Y ) ≥
(

1 + 1
2000

)

|Y | + k
100 |X| is at most

( e

σ

)σn ( e

τ

)τn ( σ

e2

)
100

k
k

100
σn ( τ

e2

)
1

1+ 1
2000

(1+ 1

2000 )τn
=

(

1

e

)|X|+|Y |
. (35)

For every choice of y = |X| + |Y |, there are y − 1 choices for |X|, |Y | ≥ 1. Applying (34) and (35),
the expected number of sets violating (32) is at most

√
n

∑

y=2

(y − 1)n− 1

4

1

2000
y +

ǫ0n
∑

y=
√
n

(y − 1)

(

1

e

)y

= o(1),

and, by Markov’s inequality, (32) holds and thus Property (P4) holds.

Property (P5) follows in the same way as property (P8) of [6], which used proofs taken from [15].
The proofs hold for any ǫ0 sufficiently small so long as k is sufficiently large in terms of ǫ0.

Property (P6) comes from Case 4 of the proof of Theorem 1 in [15]. The first part is equation
(14) of that paper with ǫ := 1

4 ; it is easy to check that their proof goes through with that value of
ǫ. The second part is from the line preceding (14) with ǫ := 1

8 ; that line holds for every ǫ so long
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as k is sufficiently large in terms of ǫ. In both cases, the proof analyzes the degree sequence of Gn,p

and so holds for every subset S, T of Gn,p so long as the vertices of T have degree at least k. There
is a minor difference in that they have c > ck+2 rather than c > ck but this has no significant effect
on the proof. Again, the proofs hold for any ǫ0 sufficiently small so long as k is sufficiently large in
terms of ǫ0. �
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Supérieure, Paris and while D. Mitsche was visiting Ryerson University. The authors are supported
by NSERC Discovery grants and an NSERC Engage grant. We are grateful to two referees who
read this paper very carefully and provided many helpful comments and corrections.

References

[1] N. Alon and J.H. Spencer. The Probabilistic Method, Wiley, 1992 (Third Edition, 2008).

[2] E.A. Bender and E.R. Canfield. The asymptotic number of non-negative integer matrices with
given row and column sums, Journal of Combinatorial Theory, Series A 24 (1978), 296–307.

[3] I. Benjamini, G. Kozma, and N. Wormald. The mixing time of the giant component of a
random graph, Random Structures and Algorithms, 45(3) (2014), 383–407.

[4] B. Bollobás. A probabilistic proof of an asymptotic formula for the number of labelled regular
graphs, European Journal of Combinatorics 1 (1980), 311–316.
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