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COMPLETION AND DEFICIENCY PROBLEMS

RAJKO NENADOV, BENNY SUDAKOV, AND ADAM ZSOLT WAGNER

Abstract. Given a partial Steiner triple system (STS) of order n, what is the order of the smallest

complete STS it can be embedded into? The study of this question goes back more than 40 years. In

this paper we answer it for relatively sparse STSs, showing that given a partial STS of order n with

at most r ≤ εn
2 triples, it can always be embedded into a complete STS of order n + O(

√
r), which

is asymptotically optimal. We also obtain similar results for completions of Latin squares and other

designs.

This suggests a new, natural class of questions, called deficiency problems. Given a global spanning

property P and a graph G, we define the deficiency def(G) of the graph G with respect to the property P
to be the smallest positive integer t such that the join G∗Kt has property P . To illustrate this concept

we consider deficiency versions of some well-studied properties, such as having a Kk-decomposition,

Hamiltonicity, having a triangle-factor and having a perfect matching in hypergraphs.

The main goal of this paper is to propose a systematic study of these problems; thus several future

research directions are also given.

1. Completion problems

1.1. Steiner triple systems and (n, k)-block designs. Steiner triple systems (STSs) are one of

the most classical objects studied in combinatorial design theory, dating back to Kirkman [30]. We

say that a family F of 3-element subsets, called blocks, of an n-element set X is a STS if any pair

of distinct elements of X are contained in precisely one block. In 1847, Kirkman [30] proved that a

Steiner triple system exists if and only if n ≡ 1, 3 (mod 6).

A family F of 3-element subsets of an n-element set X is a partial STS if any pair of distinct

elements of X is contained in at most one block. Given a partial STS F on a set X, we say that a

(complete) STS F ′ on a set X ′ is an embedding of F if X ⊆ X ′ and F ⊆ F ′. This naturally prompts

the following question: can every partial STS F be obtained from some STS F ′ by deleting a number

of elements, or, equivalently, does every partial STS have an embedding; if yes, then what is the order1

of a smallest such STS? In 1977 Lindner conjectured [34] that any partial Steiner system of order n has

an embedding of order n′, for each n′ ≥ 2n+ 1 such that n′ ≡ 1, 3 (mod 6). After some progress over

the years [45, 33, 1, 5] the conjecture was recently proved by Bryant and Horsley [6]. While the bound

2n+1 is sharp in general, it is a natural question whether this can be improved if F is sparse, that is

if F contains only a few blocks. Some results along these lines were obtained in [10, 4, 7, 25, 26]. In

particular, Horsley [25] showed that if F has at most n2/50− o(n2) blocks then it has an embedding

of order 8n/5 + O(1). In this paper we determine an asymptotically optimal bound for embeddings

of relatively sparse partial STSs.
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Theorem 1.1. There exist absolute constants ε, n0 > 0 such that the following holds. If F is a partial

Steiner triple system of order n ≥ n0 with |F| ≤ εn2 blocks, then there exists an embedding of F of

order at most n+O(
√

|F|).

Similarly to Steiner triple systems, an (n, k)-design is a collection of blocks of size k covering each

pair of elements exactly once (and so a STS is a (n, 3)-design). Here the notions of a partial (n, k)-

design and an embedding are defined analogously as in the case of Steiner triple systems (i.e. k = 3).

Wilson [48] proved that the necessary divisibility conditions suffice for the existence of such designs.

Embedding problems of partial (n, k)-designs, for k ≥ 4, have also been studied, see e.g. [20, 41]. We

obtain the following generalization of Theorem 1.1:

Theorem 1.2. For every integer k ≥ 3, there exist ε, n0 > 0 such that the following holds. If F is

a partial (n, k)-design of order n ≥ n0 with |F| ≤ εn2 blocks, then there exists an embedding of F of

order at most n+ 7k2
√
F .

Theorem 1.2 (and therefore Theorem 1.1) is tight up to a multiplicative constant in the number of

added elements with respect to both k and |F| for every k ≥ 3 and |F| ≥ 2n. We present a construction

which shows this in Section 3. For |F| < n/2 and k = 3, Horsley [25] conjectured that in fact there

exists an embedding of F which is of the same order as F .

Note that a STS on a set of size n corresponds to a K3-decomposition of a complete graph on n

vertices. Recall that a Kk-decomposition of a graph G is a partition of the edge set of G into copies

of Kk.

1.2. Latin squares. Completion problems can also be studied for Latin squares, which are another

classical combinatorial objects dating back to Ozanam [40] and Euler [16]. Recall that an n×n matrix

M with entries in [n] forms a Latin square if Mi,j 6= Mi′,j and Mi,j 6= Mi,j′ for all i 6= i′ and j 6= j′. In
other words, every element of [n] appears exactly once in each row and each column. To be consistent

with terminology from Section 1.1, we say that M is of order n. Notions of partial Latin squares and

embeddings are also defined analogously, as follows. An n× n matrix P over [n]∪ {∗} forms a partial

Latin square if Pi′,j 6= Pi,j 6= Pi,j′ for all i 6= i′ and j 6= j′ such that Pi,j 6= ∗. Thinking of ∗ as the

symbol for ‘empty’, we have that every element of [n] appears at most once in every row and column.

Let us denote with |P | the number of non-empty cells in P . Given a partial Latin square P over [n]

and a (complete) Latin square M over [n′], for some n′ ≥ n, we say that M is an embedding of P if

Mi,j = Pi,j for every 1 ≤ i, j ≤ n such that Pi,j 6= ∗. If M and P are of the same order, that is n′ = n,

we say that M is a completion of P .

Completions and embeddings of Latin squares have been extensively studied as well and have a long

history, see e.g. [42, 12, 9, 32]. A classical theorem of Smetaniuk [44] as well as Anderson and Hilton [2]

states that every partial Latin square of order n with at most n− 1 non-empty cells has a completion.

This is the best possible result in the sense that there exists a partial Latin square of order n with

exactly n non-empty cells which does not have a completion: put 1 on every cell of the main diagonal

except the last one, and in the last one put 2. Thus in order to be able to complete a partial Latin

square with more than n− 1 empty cells we need to impose further structural restrictions. One such

possible restriction was conjectured by Daykin and Häggkvist [13]: every partial Latin square such

that each row, column and symbol are used at most n/4 times (that is, each row and column contain

at least 3n/4 elements ∗) has a completion. For discussion and sharpness examples see [47].

Evans [17] showed that any partial Latin square of order n has an embedding of order 2n, and

this bound is sharp. Our next theorem solves asymptotically the completion problem for sparse Latin

squares.



COMPLETION AND DEFICIENCY PROBLEMS 3

Theorem 1.3. There exist absolute constants C, ε, n0 > 0 such that the following holds. If L is a

partial Latin square of order n ≥ n0 with |L| ≤ εn2, then L has an embedding of order n′ for some

n′ ≤ n+ C
√

|L|.

This theorem is tight up to the value of the constant C (see the discussion following the proof). Notice

that a (complete) Latin square corresponds to a K3-decomposition of the complete tripartite graph

Kn,n,n. Thus Theorem 1.3 can be seen as a multi-partite analogue of Theorem 1.1. Next, we discuss

a Latin square analogue of Theorem 1.2.

We say that two (partial) Latin squares R (red) and B (blue) of order n are orthogonal if no two

cells contain the same combination of red symbol and blue symbol, unless one of these cells is empty.

More precisely, we have (Ri,j, Bi,j) 6= (Ri′,j′ , Bi′,j′) for every 1 ≤ i, i′, j, j′ ≤ n such that (i, j) 6= (i′, j′)
and Ri,j, Ri′,j′, Bi,j , Bi′,j′ 6= ∗. Given a family P = {P1, . . . , Pr} of partial Latin squares of order n,

let us denote with |P| the number of cells (i, j) ∈ [n]2 such that (Pk)i,j 6= ∗ for some k ∈ [r]. In other

words, if we ‘draw’ all Latin squares from P into the same n×n grid, then |P| denotes the number of

cells which contain at least one non-empty symbol.

In [3] it was proved that if we are given r mutually orthogonal partial Latin squares P1, . . . , Pr of

order n such that in each row and column all but at most crn cells are empty in every Pi (where cr is

a specific small constant depending on r), then they can be completed to a set of mutually orthogonal

Latin squares. We show that if we drop the condition that every row and column has a bounded

number of non-empty cells, but instead ask only for not too many cells to be filled in, there exist

embeddings P ′
1, . . . , P

′
r of P1, . . . , Pr respectively, each of order n′ for some n′ which is only slightly

larger than n, which are also pairwise orthogonal.

Theorem 1.4. For every integer r ≥ 3 there exists positive ε and integer n0 such that the following

holds. If P = {P1, . . . , Pr−2} are r − 2 pairwise orthogonal partial Latin squares of order n such that

|P| ≤ εn2, then there exist pairwise orthogonal Latin square P ′
1, . . . , P

′
r−2 of order n′ ≤ n+ Cr2

√

|P|
such that each P ′

i is an embedding of Pi.

As with the previous theorems, Theorem 1.4 is tight up to the value of C and a sharpness example is

presented after the proof. Note that for r = 3 we have that Theorem 1.4 is equivalent to Theorem 1.3.

To see the connection between Theorem 1.4 and Theorem 1.2, observe that a pair of orthogonal

complete Latin squares corresponds to a K4-decomposition of Kn,n,n,n, a 4-partite complete graph

with each part being of size n. In general, a set of r − 2 pairwise orthogonal complete n × n Latin

squares corresponds to a Kr-decomposition of the complete r-partite graph with vertex classes of size

n (this connection is discussed in detail in Section 4). Thus, not surprisingly, the proof of Theorem 1.4

will follow the idea of the proof of Theorem 1.2. However, there are some additional difficulties in this

case which did not occur in Theorem 1.2.

2. A general class of completion problems and the notion of deficiency

Our results in Section 1 suggest the following new class of extremal problems. Given a global,

spanning property P (e.g. Hamiltonicity) it is easy to see that by deleting even some small number of

edges from the complete graph we can obtain a graph which does not satisfy P. The reason is that

isolating a vertex can be done cheaply by deleting only n − 1 edges. This is why historically Turán

type problems were mostly studied for local properties (e.g. containing a triangle) whereas for global

properties a minimum degree condition was usually added to avoid the above issues. In the present

paper we look at this problem differently.

For a graph G and integer t ≥ 0, denote by G∗Kt the join of G and Kt, which is the graph obtained

from G by adding to its vertex set t new vertices and adding every edge that is incident to at least one
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of the t new vertices. That is, G∗Kt has |V (G)|+ t vertices and e(G)+
(

t
2

)

+ t|V (G)| edges. Similarly

if H is a k-uniform hypergraph, denote by H∗Kt the k-uniform hypergraph obtained by adding t new

vertices and all k-edges containing at least one of the t new vertices.

Observe that Theorem 1.2 can be equivalently formulated as follows: if one removes up to r ≤ εn2

edge-disjoint copies of Kk from Kn to obtain a graph G, then there exists some t with t ≤ Ck2
√
r so

that G ∗Kt has a Kk-decomposition. Moreover, as a set of r orthogonal Latin squares can be viewed

as a Kr+2-decomposition of a complete balanced r+ 2-partite graph, Theorem 1.4 is the multipartite

analogue of Theorem 1.2.

In general, given a property P and a graph G, we propose to study the minimum positive integer t

such that the join G∗Kt has property P. We call such t the deficiency of the graph G with respect to

the property P. Our previous theorems address the deficiency of graphs with respect to the existence

of a Kk-decomposition and an extension of this problem to the multi-partite setting. Note that the

concept of deficiency appeared before, for example in the Tutte–Berge formula on the characterization

of the size of a maximum matching in a graph. Nevertheless the questions we propose here are new

and the study of deficiency concept by itself leads to intriguing open problems. We illustrate this with

two more examples: the existence of a Hamiltonian cycle and the existence of a triangle-factor.

2.1. Hamiltonian graphs. It is clear that an n-vertex graph may have as many as
(

n
2

)

− (n − 2)

edges without having a Hamiltonian cycle. E.g., take a complete graph and remove all but one edge

incident to some chosen vertex. This was proved to be tight by Ore [39] in 1961. The deficiency

variant of this problem exhibits a more interesting behaviour. Given integers n and m, what is the

smallest integer f(n,m) such that G ∗Kf(n,m) has a Hamiltonian cycle for any n-vertex graph G with

m edges? Equivalently, given that G ∗Kt does not have a Hamiltonian cycle, how many edges can G

have?

Here we give a complete answer to this question and also determine the extremal constructions.

It appears that there are two natural and competing constructions, both of which are best for some

range of t.

Theorem 2.1. Let n and t be integers and G an n-vertex graph so that G ∗ Kt does not have a

Hamiltonian cycle. Then we have the following bounds on e(G).

• If n+ t is even:

e(G) ≤
(

n

2

)

−
{

t(n− 1)−
(

t
2

)

if t ≤ (n+ 4)/5
(n+t+2

2

2

)

− 1 if t ≥ (n+ 4)/5.

• If n+ t is odd:

e(G) ≤
(

n

2

)

−
{

t(n− 1)−
(

t
2

)

if t ≤ (n+ 1)/5
(n+t+1

2

2

)

if t ≥ (n+ 1)/5.

In the case where n+ t is even and t = (n+ 4)/5, or n+ t is odd and t = (n+ 1)/5, there are exactly

two graphs which achieve equality. In all other cases there is a unique G for which the equality holds.

These upper bounds on the number of edges of G such that G ∗Kt does not contain a Hamilton cycle

were implicitly obtained by Skupień [43].

We remark that the deficiency problem for Hamiltonicity is equivalent to another natural question.

Define the path-covering number µ(G) of a graph G to be the minimum number of vertex-disjoint

paths required to cover the vertices of G. Let g(n, k) be the minimum integer so that every n-vertex

graph G with at least g(n, k) edges has µ(G) ≤ k. This parameter g(n, k) has been studied before,

see e.g. [38, 36]. Note that a non-Hamiltonian graph has path-cover number t precisely if G ∗Kt has
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a Hamiltonian cycle but G ∗Kt−1 does not. Therefore Theorem 2.1 gives a tight bound on g(n, k) for

all values of the parameters together with extremal examples.

2.2. Triangle factors. Given an integer k ≥ 3, a Kk-factor of a graph G is a collection of vertex-

disjoint copies of Kk covering every vertex of G. Corrádi and Hajnal [11] proved that if a graph on

3n vertices has minimum degree δ(G) ≥ 2n then it contains a triangle factor, and a corresponding

minimum degree condition for the existence of a Kk-factor was determined later by Hajnal and Sze-

merédi [23]. The deficiency problem for Kk-factors asks: given integers n and m, what is the smallest

integer f(n,m) such that G∗Kf(n,m) has a Kk-factor for any n-vertex graph G with m edges? Equiv-

alently, given that G ∗Kt does not have a Kk-factor and k|n + t, how many edges can G have? We

give a partial answer to this problem in the case k = 3.

Theorem 2.2. There exists n0 such that the following holds. Let n ≥ n0 and t be integers so that

3|n + t and let G be an n-vertex graph so that G ∗Kt does not have a K3-factor. If t ≤ n/1000 then

e(G) ≤
(

n

2

)

−
(

k

2

)

−
{

k(n− k), if t is odd,

k(n− k − 1), if t is even,

where k = ⌈(t+ 1)/2⌉. This bound on e(G) is sharp.

The range of values of t for which this theorem holds can be easily extended using our proof, but we

did not optimize it for the sake of clarity of presentation.

2.3. Organization of the paper. The rest of this paper is organized as follows. We give the proof of

Theorem 1.2 in Section 3. Our main result on Latin squares, Theorem 1.4, is proved in Section 4. We

discuss the deficiency of the Hamiltonicity property and prove Theorem 2.1 in Section 5, and continue

on with the deficiency of K3-factors and the proof of Theorem 2.2 in Section 6. We finish with some

concluding remarks and suggest future directions of research in Section 7. Whenever rounding is not

crucial, we omit it for the sake of brevity.

3. Completing Steiner triple systems and other block designs

In this section we prove Theorem 1.2. We start with a lemma which may be of independent

interest. Hajnal and Szemerédi [23] proved that every graph G with sk vertices and minimum degree

δ(G) ≥ s(k − 1) contains a Kk-factor, i.e. a collection of vertex-disjoint k-cliques covering every

vertex, and this is optimal. In Section 6 we discuss the deficiency version of this result: if instead of

the minimum degree of G we only know its number of edges, how many full degree vertices one needs

to add to guarantee the existence of a Kk-factor? Our first lemma is similar in spirit to the above

problem, however instead of adding full degree vertices we add vertices of very large degree.

Lemma 3.1. Let k ≥ 3 and r ≥ 1 be integers and let G be a graph on vertex set S ∪̇ T with

|T | ≥ 5k2
√
r, such that the degree of every vertex satisfies d(v) ≥ |V (G)| − k

√
r. Then no matter how

one removes at most k2r edges from G[S], the resulting graph contains a collection of vertex-disjoint

k-cliques covering every vertex of G, except possibly up to k − 1 vertices that lie in T .

Observe that the bound on T cannot be significantly improved: let |S| = k
√
r and |T | < k(k−1)

√
r,

and suppose G is a complete graph on vertex set S ∪̇ T . Then removing all edges from S creates a

graph without a collection of vertex-disjoint Kk’s covering every vertex of S.

Proof of Lemma 3.1. Let R be the set of at most k2r edges we deleted from S and set GR = G \ R.

Let B ⊆ S be the set of vertices incident to at least 2k
√
r edges in R. Note that |B| ≤ k

√
r. We

will first consider the vertices in B one by one, and for each b ∈ B we will find a disjoint set of k − 1
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vertices in NGR
(b)∩T = NG(b)∩T that form a copy of Kk−1 (recall that R contains only edges which

completely lie in S).

Let B = {b1, b2, . . . , b|B|} and suppose that for each j ≤ i we have found a set Bj ⊂ T∩NG(bj) of k−1

vertices so that G[Bj ] ∼= Kk−1 and Bj1 ∩Bj2 = ∅ for each 1 ≤ j1 < j2 ≤ i. Set Ti := T \
{

⋃

j≤iBj

}

.

From dG(bi+1) ≥ |V (G)| − k
√
r we get

|NG(bi+1) ∩ Ti| ≥ |Ti| − k
√
r ≥ |T | − |B|(k − 1)− k

√
r > 3k2

√
r.

Let Hi = G[N(bi+1) ∩ Ti] and note that every vertex v ∈ Hi satisfies

dHi
(v) ≥ |N(bi+1) ∩ Ti| − k

√
r >

(

1− 1

k − 1

)

|V (H)|.

Therefore, by Turán’s theorem Hi contains a copy of Kk−1. Let Bi+1 be the vertex set of such a copy.

Continuing this process, we have found a collection of vertex-disjoint Kk’s covering every vertex of B.

It remains to find a collection of disjoint Kk’s which cover all the vertices in S′ = S \B and all but

at most k − 1 in T|B|. To this end, let T ′ ⊆ T|B| be an arbitrary subset such that |S′ ∪ T ′| is divisible
by k and |T|B| \ T ′| ≤ k − 1. We will show that the graph H ′ := G[S′ ∪ T ′] contains a Kk-factor.

Having the Hajnal–Szemerédi theorem in mind, stated in the beginning of this section, the only thing

we need to show is that H ′ has sufficiently large minimum degree. Consider some vertex v ∈ H ′. As

v /∈ B we have that it is adjacent to at most 2k
√
r edges in R. Together with the assumption that

the initial degree of v (in G) was at least |V (G)| − k
√
r, this implies

dH′(v) ≥ |V (H ′)| − k
√
r − 2k

√
r − |T|B| \ T ′| ≥

(

1− 1

k

)

|V (H ′)|.

In the last inequality we used that

|V (H ′)| ≥ |T ′| ≥ |T | − (|B|+ 1)(k − 1) > 4k2
√
r.

Hence by the Hajnal–Szemerédi theorem H ′ has a Kk-factor. Finally, this Kk-factor together with the

copies of Kk given by Bi ∪ {bi} for 1 ≤ i ≤ |B|, forms a desired collection of vertex-disjoint Kk’s. �

To prove Theorem 1.2 we also need the following result of Gustavsson [22]:

Theorem 3.2. For every integer k ≥ 3 there exists an integer n0 > 0 and a positive constant γ such

that every graph G with n ≥ n0 vertices and minimum degree δ(G) ≥ (1−γ)n, satisfying
(

k
2

)

|e(G) and

k − 1|d(v) for every v ∈ G, has a Kk-decomposition.

It is worth mentioning that currently best known bounds on the value of γ in Theorem 3.2 are due

to Dross [14] (k = 3) and Montgomery [37] (k ≥ 4) together with result from [21], which implies that

the decomposition threshold for cliques equals its fractional relaxation. As γ only has an impact on

the value of ε in Theorem 1.2, either of these theorems serve our purpose.

The following lemma directly implies Theorem 1.2.

Lemma 3.3. For every integer k ≥ 3 there exist ε, n0 > 0 such that the following holds. Let G be a

graph obtained from the complete graph on n ≥ n0 vertices by deleting r ≤ εn2 edge-disjoint copies of

Kk. Then there exists some t ≤ 7k2
√
r such that G ∗Kt has a Kk-decomposition.

Proof. Let j ≥ 0 be the smallest integer such that n + t is divisible by k and n + t − 1 is divisible

by k − 1, where t = 6k2
√
r + j. It follows from the Chinese Remainder Theorem that j ≤ k2, thus

t ≤ 7k2
√
r. We show that G′ = G∗Kt has a Kk-decomposition. For the rest of the proof let W denote

the set of t vertices added to G (corresponding to Kt) and R the set of edges corresponding to deleted

copies of Kk.
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Let B be the set of vertices in G with degree less than n− k2
√
r. As |R| = r

(

k
2

)

, we have |B| ≤ √
r.

By adding arbitrary set of vertices from G to B, we can assume that |B| = √
r. Our first aim is

to find a small collection of edge-disjoint copies of Kk in G′ that cover every edge incident to at

least one vertex of B. Removing these Kk’s and the vertices in B, we will show that the resulting

graph has a very high minimum degree and hence by Gustavsson’s theorem (Theorem 3.2) it has a

Kk-decomposition. Overall, this gives us a Kk-decomposition of G′.
We build the collection of edge-disjoint copies of Kk in G′ that cover every edge incident to at least

one vertex of B iteratively, considering the vertices of B one by one. For that, let B = {b1, b2, . . . , b|B|}
be an arbitrary ordering of the vertices of B and suppose we have defined the collections S1,S2, . . . ,Si

of distinct copies of Kk in G′, for some i < |B|, such that the following holds:

(i) for every j1, j2 ∈ {1, . . . , i}, if F1 ∈ Sj1 and F2 ∈ Sj2 with F1 6= F2 then F1 and F2 are edge-

disjoint, and

(ii) for every 1 ≤ j ≤ i, every edge in G′ incident to bj belongs to some copy of Kk in Sj and every

copy of Kk in Sj contains bj .

Set Gi to be the graph obtained from G′ by deleting all edges in the Kk’s from
⋃

j≤i Sj. By (ii) we

have that the vertices b1, b2, . . . , bi are isolated in Gi. By (i) and (ii) we have that, for every 1 ≤ j ≤ i,

every vertex v 6= bj occurs in at most one of the Kk’s in Sj . Hence by forming Gi from G′, the degree
of every vertex not in {b1, b2, . . . , bi} reduced by at most

(k − 1)i ≤ (k − 1)(|B| − 1) ≤ (k − 1)(
√
r − 1) ≤ (k − 1)

√
r − 1. (1)

As the vertex bi+1 was connected to every vertex in W (in G′), letting Ni(v) denote the neighborhood

of a vertex v in Gi we have

|Ni(bi+1) ∩W | ≥ |W | − (k − 1)
√
r + 1 ≥ 5k2

√
r.

Set Si := Ni(bi+1)\W and Ti := Ni(bi+1)∩W . Let Hi be the graph on the vertex set Si∪Ti obtained

from G′[Si ∪ Ti] by adding back the edges from R. By (1), every vertex v ∈ Hi has degree at least

degHi
(v) ≥ |V (Hi)| − 1− (k − 1)

√
r + 1 = |V (Hi)| − (k − 1)

√
r.

Hence we may remove again edges from R and apply Lemma 3.1, with k playing the role of k − 1, to

find a collection Fi of vertex-disjoint Kk−1’s in Hi covering every vertex of Si ∪ Ti except possibly up

to k−2 vertices that lie in Ti. Note that we can indeed do that as |R| = r
(

k
2

)

< (k−1)2r. Moreover, as

for every w ∈ V (G′) \ (Si ∪Ti) we have that the edge bi+1w belongs to a copy of Kk from a collections

of edge-disjoint Kk’s, from the fact that k − 1 divides |V (G′)| − 1 we conclude that |Si ∪ Ti| is also

divisible by k− 1. Thus Fi in fact covers every vertex in Si ∪Ti. The copies of Kk−1 from Fi together

with bi+1 form a collection Si+1 of copies of edge-disjoint Kk’s covering every edge incident to bi+1 in

Gi, as desired.

Next, let G∗ be the graph obtained from G′ by deleting all edges in the Kk’s from
⋃

j≤|B| Sj, as well

as the (now isolated) vertices b1, b2, . . . , b|B|. By forming G∗ from G′, the degree of every vertex not

in {b1, b2, . . . , b|B|} reduced by at most k
√
r (see (1)) and hence, by the definition of B, the minimum

degree of G∗ is at least

δ(G∗) ≥ |V (G∗)| − k2
√
r − k

√
r ≥ |V (G∗)| − 2k2

√
r.

As r ≤ εn2 and |V (G∗)| = n + t − |B| > n, for ε sufficiently small compared to k we have 2k2
√
r <

γ|V (G∗)|, thus Gustavsson’s theorem implies a Kk-decomposition of G∗. Indeed, by our choice of t

we have that (k − 1)|(n + t − 1) and
(

k
2

)

|
(

n+t
2

)

. Since G∗ is obtained from Kn+t by removing edge

disjoint Kk’s, its degrees are still divisible by k − 1 and its number of edges is divisible by
(

k
2

)

. The

decomposition of G∗, together with the Kk’s from S1, . . .S|B|, forms a full Kk-decomposition of G′. �
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We now present a construction showing that Lemma 3.3 is tight for r > 2n up to a multiplicative

constant, which also translates to sharpness of Theorem 1.1 and Theorem 1.2. To remind the reader,

a linear lower bound on r is not a coincidence: for k = 3 and r < n/2, Horsley [25] conjectured that

any partial STS of order n has an embedding of the same order, and it is natural to believe that a

similar result should hold for partial (n, k)-designs as well. Let k ≥ 3 and 2n < r ≤ 4n2/k2. We define

copies of Kk to be deleted as follows: Fix a vertex v and a subset V ′ of size k
√
r/2 (the upper bound

on r tells us that |V ′| ≤ n, thus we can indeed choose such V ′). Take a family of Kk’s given by an

arbitrary Kk-decomposition of Kn[V
′] together with copies of Kk obtained by joining v to the copies

of Kk−1 of an arbitrary Kk−1-factor of Kn \ (V ′∪{v}). All these copies of Kk are clearly edge-disjoint

and there are less than r/2 + n ≤ r of them. Let G be the graph obtained by removing these copies.

Then V ′ is an independent set in G and v is not connected to any vertex outside of V ′. In particular,

for every w ∈ V ′, in order to cover the edge {v,w} by a copy of Kk one needs to add k − 2 new

vertices. Moreover, all these sets of new vertices have to be disjoint in order to keep the copies of Kk’s

edge-disjoint, resulting in (k − 2)|V ′| = k(k − 2)
√
r/2 new vertices.

As remarked earlier, we cannot always guarantee that a partial (n, k)-design F always has an

embedding of the same order. The next corollary of Lemma 3.3 shows that we can find a partial

(n, k)-design F ′ over the same set such that F ⊆ F ′ and F ′ is close to being a complete (n, k)-design.

Corollary 3.4. For every k ≥ 3 there exists ε, n0 > 0 such that the following holds. Given a partial

(n, k)-design F of order n ≥ n0 with |F| ≤ εn2 blocks, there exists a partial (n, k)-design F ′ over the

same set such that F ⊆ F ′ and F ′ covers all but at most 21k3
√

|F|n pairs of vertices.

Proof. Each block of F corresponds to a copy Kk in Kn, thus let G be the graph obtained from Kn

by deleting these |F| copies. Then, for some t ≤ 7k2
√

|F|, G ∗Kt contains a Kk-decomposition. Note

that every two Kk’s in a Kk-decomposition which contain the same vertex v intersect only in v. Thus

there are exactly (t+ n− 1)/(k − 1) copies of Kk which contain a vertex v, thus at most

t · t+ n− 1

k − 1
≤ 2tn

k − 1
≤ 21kn

√

|F|

copies of Kk contain at least one newly added vertex. The first inequality holds for sufficiently small

ε. Therefore, deleting all the copies of Kk containing at least one newly added vertex gives a partial

(n, k)-design over [n] which has at most 21k3n
√

|F| pairs of vertices uncovered. �

We finish this section with a short discussion on possible extensions of Theorems 1.1 and 1.2

to hypergraphs. Denote by K
(3)
n the complete 3-uniform hypergraph with n vertices. Somewhat

surprisingly, in this case is not true that by removing εn3 edge-disjoint copies of K
(3)
4 from K

(3)
n we

can always decompose the remaining hyperedges into copies of K
(3)
4 , even if we add linearly many full

degree vertices. The following construction shows this: Fix two vertices v,w and choose a collection F
of quadratically many hyperedges in V (K

(3)
n )\{v,w} that cover every pair of vertices exactly once. In

other words, F is a STS on V (K
(3)
n ) \ {v,w}. Remove all K

(3)
4 ’s formed by a hyperedge in F together

with the vertex v. Note that this removes only O(n2) hyperedges, whereas K
(3)
n has Θ(n3) edges.

Now consider the hyperedges containing v,w. Each hyperedge {v,w, x} needs to be covered, but the

{v, x, y} edge has already been used for all y and so a new vertex x′ needs to be added, moreover these

new vertices need to be different and so at least n− 2 new vertices need to be added.

Note, however, that by a celebrated result of Keevash [27] about existence of designs in hypergraphs

with very large degree, there exists an absolute constant C such that for t = Cn+O(1) we have that

H ∗ Kt contains a K
(3)
4 -decomposition for any hypergraph H on n vertices. To salvage a deficiency

problem for hypergraphs, we believe the following is plausible.
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Question 3.5. Is it true that for every ε > 0 there exists a δ > 0 such that the following holds for

large enough n: Let H be obtained from K
(3)
n by deleting some number of edge-disjoint copies of K

(3)
4

so that every vertex is incident to at most δn2 such deleted copies. Then there exists an integer t ≤ εn

so that H ∗Kt has a K
(3)
4 -decomposition.

4. Embedding partial Latin squares

In this section we prove Theorem 1.4. As mentioned earlier, Theorem 1.4 can be seen as a multi-

partite version of Theorem 1.2. Let us make this connection explicitly. Suppose we are given k − 2

pairwise orthogonal partial Latin squares P1, . . . , Pk−2 of order n. Let V1, . . . , Vk be vertex classes of

Kn,...,n, the complete k-partite graph with each part being of size n (we call such a complete k-partite

graph n-balanced), and label vertices in each Vi as {1, . . . , n}. Throughout this section we are always

working with k-partite graphs, thus there is no risk of ambiguity by writing Kn,...,n. Slightly abusing

notation, we implicitly differentiate between vertices with the same label coming from different Vi’s.

We now form a family of edge-disjoint cliques in Kn,...,n as follows: for each i, j ∈ [n] such that

(Pt)i,j 6= ∗ for at least one t ∈ {1, . . . , r − 2}, take a clique with the vertex set

{i ∈ V1} ∪ {j ∈ V2} ∪ {w ∈ Vt+2 : 1 ≤ t ≤ k − 2 and (Pt)i,j = w}.

Clearly, each such clique is of size at least 3 and at most k. Let us denote all these cliques by

A1, . . . , Am. It is important to observe that every such clique contains a vertex from V1 and V2. Note

that if there exists a Kk-decomposition of a complete k-partite graph Kn′,...,n′ , for some n′ ≥ n, such

that each Ai belongs to a clique from this decomposition, then there exist pairwise orthogonal Latin

squares P ′
1, . . . , P

′
k−2 of order n′, with each P ′

i being an embedding of Pi: simply set (P ′
t)i,j to be the

label of the vertex in Vt+2 which belongs to the Kk from this decomposition which contains i ∈ V1

and j ∈ V2.

In the case where all Ai’s are of size k then what we are asking for is just an embedding of a partial

Kk-decomposition (that is, its multi-partite version). However, some cliques could be smaller than k

and handling this is one of the main differences compared to the proof of Theorem 1.2. This is done

in the following lemma.

Lemma 4.1. For every k ≥ 3 there exists ε > 0 such that the following holds. Let m ≤ εn2 and

A1, A2, . . . , Am be edge-disjoint cliques in Kn,...,n such that each Ai contains a vertex from V1 and a

vertex from V2. Then, for n
′ = n+8k

√
m, there exist a collection of edge-disjoint Kk’s B1, B2, . . . , Bm

in Kn′,...,n′ such that Ai ⊆ Bi for all i ∈ [m].

Proof. Let us denote the set of newly added 8k
√
m vertices to each Vi by Ti. It will be convenient for

the proof to further split each Ti into two sets, say T ′
i and T ′′

i , of (nearly) equal size.

Let Q = {v1, v2, . . . , v√m} be a set of bad vertices, defined iteratively as follows. Having defined

v1, v2, . . . , vi, let vi+1 ∈ V (Kn,...,n)\{v1, . . . , vi} be a vertex incident to the largest number of Aj ’s that

are not incident to any of the vertices v1, v2, . . . , vi. Observe that, by definition, any v 6∈ Q is incident

to at most
√
m of Aj ’s that do not contain a vertex from Q.

Next, we say that an Ai is bad if it contains at least two vertices from Q. Since Ai’s are edge-disjoint,

this implies that every vertex is incident to at most |Q| = √
m bad cliques. By relabelling Ai’s, we

may assume A1, . . . , As are bad and As+1, . . . , Am are not bad, for some s. We will first extend the

bad cliques using sets T ′
i and then extend the remaining cliques using sets Vi ∪ T ′′

i . By using such

disjoint sets, we can treat both cases independently.

Extending bad cliques. Suppose we have extended A1, . . . , Ai−1 to edge-disjoint copies B1, . . . , Bi−1

of Kk using only vertices from sets T ′
i . Without loss of generality, we may assume Ai is a clique on
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v1 ∈ V1, v2 ∈ V2, . . . , vz ∈ Vz, for some 3 ≤ z < k (if z = k then Ai is already a copy of Kk). We

iteratively extend Ai to a copy of Kz+1 using a vertex from T ′
z+1, then to a copy of Kz+2 using a

vertex from T ′
z+2, and so on.

Since every vertex is incident to at most
√
m bad cliques, at most

√
m vertices from T ′

z+1 are in

the same clique as v1 so far. The same holds for v2, v3, . . . , vz . In particular, all but at most z
√
m

vertices in T ′
z+1 are such that together with Ai they form a copy of Kz+1 which is edge-disjoint from

all previously obtained Kk’s. Let tz+1 ∈ T ′
z+1 be an arbitrary such vertex. Note that every clique so

far which contains tz+1 also contains a vertex from Q, thus from edge-disjointness we have that tz+1 is

contained in at most |Q| = √
m cliques. Continuing the process, all but at most z

√
m+

√
m vertices

in T ′
z+2 do not appear in a same clique with either of v1, . . . , vz, tz+1. In general, after extending Ai

to a copy Kz+j , for some j < k − z, all but at most (z + j)
√
m vertices in T ′

z+j+1 are ‘available’.

Therefore, we can repeat this process until Ai is extended to a copy of Kk which is edge-disjoint from

all other cliques.

Extending good cliques. Throughout the process of extending good cliques, we maintain an in-

variant that every vertex in Vi ∪ T ′′
i which is not bad belongs to at most 2

√
m cliques. Note that at

the beginning of the procedure this condition is satisfied: a vertex which is not bad is contained in at

most
√
m cliques that do not contain a vertex from Q (otherwise such a vertex would be bad) and at

most |Q| = √
m cliques which contain a vertex from Q, owing to all the cliques being edge-disjoint.

Suppose we have extended cliques As+1, . . . , Ai−1 to Bs+1, . . . , Bi−1 and consider a good clique Ai.

Without loss of generality, we may assume that it is a clique on v1 ∈ V1, . . . , vz ∈ Vz, for some z < k,

such that v1 is a bad vertex (if it has a bad vertex at all). By the definition of a good clique, neither

of v2, . . . , vz can then be bad. As each clique uses a vertex from V1 and V2, v1 is incident to at most

n cliques (note that for this it is crucial that every clique contains a vertex from both V1 and V2;

otherwise our ‘without loss of generality’ assumption would not be true). Therefore, by the invariant,

at most n+2z
√
m vertices in Vz+1∪T ′′

z+1 are part of a clique together with one of v1, . . . , vz . Therefore

there are at least k
√
m ‘available’ vertices. Let us choose vz+1 ∈ Vz+1 ∪ T ′′

z+1 to be one such available

vertex which is used the least number of times (that is, it belongs to the smallest number of cliques

B1, . . . , Bi−1, Ai, Ai+1, . . . , Am). This implies that vz+1 appears in at most

m

k
√
m

<
√
m

cliques. In particular, by extending Ai using vz+1 we have that vz+1 appears in at most
√
m + 1

cliques, thus the invariant remains satisfied.

Continuing this process, we have that there are at most n + 2(z + 1)
√
m vertices in Vz+2 ∪ T ′′

z+2

which appear in a clique with either v1, . . . , vz , vz+1. Again, by choosing vz+2 ∈ Vz+2 ∪ T ′′
z+2 to be

an available vertex which appears in the least number of cliques, we maintain the invariant on the

number of cliques which contain any vertex from Vz+2∪T ′′
z+2. In general, after extending Ai to a copy

of Kz+j, for some j such that z + j < k, we have at least k
√
m available vertices in Vz+j+1 ∪ T ′′

z+j+1,

thus we can continue the process until Ai is extended to a copy of Kk. �

The following lemma plays the role analogue to the role of Lemma 3.1 in the proof of Theorem 1.2.

Lemma 4.2. Let k ≥ 3 be an integer and let G be a k-partite graph with vertex classes Vi = Si∪̇Ti,

for i = 1, 2, . . . , k, where |Ti| ≥ 9k
√
m and all Vi’s are of the same size. Moreover, suppose that every

vertex v ∈ Vi has at least |Vj |−
√
m neighbors in every Vj , for i 6= j. Then no matter how we remove at

most rv edges between v ∈ Si and each Sj, for i 6= j, such that
∑

v∈Si
rv ≤ m for each i, the resulting

graph contains a Kk-factor.
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As a clarification, note that we allow rv’s to be different for different vertices as long as the sum

condition is satisfied. Observe that the bound on Ti cannot be improved: let |Si| =
√
m and |Ti| =

(k− 1)
√
m− 1 for all i, and suppose G is the complete r-partite graph. Remove all the edges between

every two sets Si and Sj. Every Kk in the resulting graph which contains a vertex from, say, Si, must

contain a vertex from Tj for every j 6= i. In particular, in order to cover all
⋃

i≥2 Si with vertex-disjoint

copies of Kk we need |T1| ≥ (k − 1)
√
m.

In the proof of Lemma 4.2 we use the following multi-partite version of the Hajnal–Szemerédi

theorem due to Fischer [18].

Lemma 4.3. Let G be a k-partite n-balanced with vertex classes V1, . . . , Vk, such that each vertex

v ∈ Vi has at least 2k−3
2k−2n neighbors in each Vj, for j 6= i. Then G contains a Kk-factor.

It is worth noting that, unlike the Hajnal–Szemerédi theorem, owing to a large minimum partite-

degree, Lemma 4.3 is very easy to prove using a straightforward matchings-based argument. A better

(and optimal) bound on the minimum partite-degree was obtained by Keevash and Mycroft [28] and

Lo and Markström [35]. However, a drawback in their results is that they require n to be sufficiently

large with respect to k, whereas in our proof we rely on the fact that Lemma 4.3 holds for all n.

Proof of Lemma 4.2. Let S :=
⋃

i Si and T :=
⋃

i Ti, let E be the set of removed edges and G′ the
resulting graph. Let us call a vertex v bad if rv >

√
m. Note that every Si contains at most

√
m bad

vertices, and there are at most k
√
m bad vertices all together. Let us denote the set of these vertices

by Q and set p := |Q|. We first find a family of vertex-disjoint Kk’s covering all the vertices in Q.

To this end, consider an arbitrary ordering b1, . . . , bp of the vertices in Q. Suppose that for each

j ≤ i, for some i < p, we have found a set Bj ⊂ T ∩NG′(bj) = T ∩NG(bj) of k − 1 vertices such that

G[Bj ] ∼= Kk−1 and Bj1 ∩ Bj2 = ∅ for each 1 ≤ j1 < j2 ≤ i (recall that every edge with one endpoint

in T which is present in G is also present in G′). Set P i
j := Tj \

(

⋃

t≤i{bt} ∪Bt

)

and note that

|P i
j | = |Tj | − i ≥ 8k

√
m.

Since in G every vertex was missing at most
√
m edges into any other vertex class, we have

|NG(bi+1) ∩ P i
j | ≥ |P i

j | −
√
m ≥ 7k

√
m.

For every j such that bi+1 /∈ Vj , take an arbitrary subset U i
j ⊆ N(bi+1 ∩ P i

j ) of size 7k
√
m and let

Hi be a subgraph of G induced by
⋃

U i
j , where the union goes over all j such that bi+1 /∈ Vj. Every

vertex v ∈ U i
j has at least

|U i
j′ | −

√
m ≥ (1− 1/k)|U i

j′ |
neighbors in U i

j′ , thus a simple greedy argument shows that Hi contains a copy of Kk−1. Let Bi+1 be

the vertex set of such Kk−1. As Bi+1 lies in the neighborhood of bi+1, the two together form a copy of

Kk. Continuing this process, we have found a collection of vertex-disjoint Kk’s covering every vertex

of Q.

Consider the graph H ′ := G′ \ (
⋃p

i=1{bi} ∪Bi). Then H ′ is a k-partite graph on the vertex set

W1, . . . ,Wk and, as each copy of Kk in G spans across all k vertex classes, we trivially have that all

Wi’s are of the same size, and |Wi| ≥ |Ti| − p ≥ 8k
√
m. Moreover, by the choice of Q and the degree

assumptions on G, each vertex v ∈ Wi has at least

|Wj | −
√
m−

√
m ≥ (1− 1/(2k))|Wj |

neighbors in each Wj. Hence, by Theorem 4.3, H ′ has a Kk-factor. This Kk-factor together with the

copies of Kk which cover Q forms a Kk-factor of G
′. �
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Following the connection between Kk-decompositions and orthogonal Latin squares from the be-

ginning of the section, it is clear that the following lemma implies Theorem 1.4.

Lemma 4.4. For every k ≥ 3 there exist ε > 0 such that the following holds for every sufficiently large

n. Given at most m ≤ εn2 edge-disjoint cliques A1, . . . , Am in Kn,...,n, each of which contains a vertex

from the first two vertex classes, there exists a Kk-decomposition of KN,...,N , where N = n+ 20k
√
m,

such that each Ai is contained within a Kk from such a decomposition.

In the proof of Lemma 4.4, instead of Gustavsson’s theorem (Theorem 3.2), we use the following

multi-partite version.

Theorem 4.5 (Corollary of [3]). For every integer k ≥ 3 there exists γ > 0 such that the following

holds for every sufficiently large n. If G is a k-partite n-balanced graph with vertex classes V1, . . . , Vk

such that every vertex v ∈ Vi has dv ≥ (1 − γ)n neighbors in each Vj, for i 6= j, then G has a

Kr-decomposition.

For clarity, note that a vertex v has the same number of neighbors, dv, in each Vi (other than its

own vertex class) and that thus number might be different for different vertices. The main result in

[3] is more general and here we have stated a streamlined version which suffices for our application.

Proof of Lemma 4.4. First, by Lemma 4.1 we have that there exists a family of m edge-disjoint Kk’s

B1, . . . , Bm in Kn′,...,n′ , where n′ = n+9k
√
m, such that each Ai is contained within Bi. Let us denote

the vertex classes of Kn′,...,n′ by V1, . . . , Vk, and let E denote the edge set of all Bi’s. Note that E

contains exactly m edges between every two sets Vi and Vj , and moreover the number of edges from

E between v ∈ Vi and Vj is the same as between v and Vj′ , for i 6= j, j′ and any vertex v ∈ Vi. Let

us denote this number by rv (note that different vertices might have different values of rv). This will

allow us to eventually apply Lemma 4.2.

We show the lemma for N = n′ + 11k
√
m. We can think of KN,...,N as taking Kn′,...,n′ and adding

11k
√
m new vertices, denoted by Ti, to each Vi and connecting them completely to all other vertex

classes (including all other Tj ’s). Let G be a graph obtained from KN,...,N by removing edges in E.

Note that it suffices to show that G has a Kk-decomposition.

We say that a vertex v in G is bad if rv > k
√
m. There are at most

√
m/k bad vertices in each

Vi, thus by arbitrarily nominating some additional vertices to be bad, we can assume that each Vi

contains exactly
√
m/k bad vertices. This also gives

√
m bad vertices overall. We iteratively build a

collection of edge-disjoint copies of Kk in G that cover every edge incident to at least one bad vertex.

Let b1, . . . , b√m be an arbitrary ordering of the bad vertices and suppose we have defined collections

S1,S2, . . . ,Si of distinct copies of Kr in G′, for some i <
√
m, such that the following holds:

(1) every distinct F1 ∈ Sj1 and F2 ∈ Sj2 , 1 ≤ j1, j2 ≤ i, are edge-disjoint,

(2) for every 1 ≤ j ≤ i, every edge in G′ incident to bj belongs to some copy of Kk in Sj and every

copy of Kk in Sj contains bj.

Set Gi to be the graph obtained from G by deleting all edges in the Kk’s from
⋃

j≤i Sj . By (2) we

have that the vertices b1, b2, . . . , bi are isolated in Gi. By (1) we have that for every 1 ≤ j ≤ i every

vertex v 6= bj occurs in at most one of the Kk’s in Sj (as every such Kk also contains bj). Hence by

forming Gi from G, the number of neighbors of every vertex v ∈ (Vi ∪ Ti) \ {b1, b2, . . . , bi} in each

Vj ∪ Tj , j 6= i, reduces by at most i <
√
m. As in G every vertex v ∈ Vj ∪ Tj was connected to every

vertex in T := ∪j′ 6=jTj′ , letting Ni(v) denote the neighborhood of a vertex v in Gi, we have

|Ni(bi+1) ∩ Tj | ≥ 11k
√
m−

√
m (2)
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for every j 6= z, where z ∈ [k] is such that bi+1 ∈ Vz. Next, for each j 6= z set T i
j = Ni(bi+1) ∩ Tj

and Si
j := Ni(bi+1)∩Vj. As all the missing edges in Gi come from edge-disjoint copies of Kk, we have

that all the sets Si
j are of the same size, as well as all of T i

j . Let Hi be a (k − 1)-partite subgraph of

Gi induced by
⋃

j 6=z T
i
j ∪ Si

j, with edges from E temporarily added back in. Therefore, every vertex

v ∈ Si
j ∪ T i

j has at least

|Si
j′ ∪ T i

j′ | −
√
m

neighbors into every Si
j′ ∪ T i

j′ , for j 6= j′ and j, j′ 6= z. By the discussion on the properties of E from

the beginning of this proof, we may remove edges from E again and apply Lemma 4.2 with k playing

the role of k− 1 to find a collection F of vertex-disjoint Kk−1’s covering every vertex of Hi. Note that

this is indeed possible as every vertex v ∈ Si
j is incident to at most rv edges from E with the other

endpoint in Si
j′ and

∑

v∈Si
j
rv ≤ ∑

v∈Vj
rv ≤ m. By adding bi+1 to every copy of Kk−1 in F , we obtain

a desired collection Si+1 of edge-disjoint Kk’s. This takes care of bad vertices.

Let G′ be the graph obtained from G by deleting all edges in the Kk’s from
⋃

j≤p Sj, and moreover

delete the isolated vertices b1, b2, . . . , b√m from G′. As before, by forming G′ from G, the degree of

every vertex v ∈ (Vi∪Ti) \{b1, b2, . . . , b√m} =: Wi into Wj, for j 6= i, reduced by at most
√
m. Hence,

as a vertex v ∈ Wi is not bad, it has at least

|Wj| −
√
m− rv ≥ |Wj| − 2k

√
m

neighbors in every Wj, for j 6= i. Moreover, as every Vj contains the same number of bad vertices

(which is
√
m/k), we have that all Wj’s are also of the same size, namely |Wj| ≥ n′ + 10k

√
m > n.

Note that all the missing edges in G′ correspond to edge-disjoint Kk’s, thus G
′ satisfies the conditions

of Theorem 4.5. Since for ε > 0 sufficiently small compared to k we have

2k
√
m ≤ γn ≤ γ|Wj |,

Theorem 4.5 implies that G′ contains a Kk-decomposition. This decomposition together with the Kk’s

in S1, . . . S√
m, forms a Kk-decomposition of G. �

We now show that Lemma 4.4 is optimal up to a multiplicative constant factor form ≥ 2n. Consider

a complete k-partite n-balanced graph Kn,...,n with vertex classes V1, . . . , Vk. From each Vi pick an

arbitrary subset Xi ⊆ Vi of size
√

m/2, and choose a vertex v1 ∈ V1 \X1. We now form a family of

at most m cliques as follows. First, take a Kk-decomposition of the subgraph induced by X1, . . . ,Xk

(giving altogether m/2 cliques). Second, take a Kk−1-factor of the (k−1)-partite subgraph induced by

V2\X2, . . . , Vk\Xk, and to each copy of Kk−1 in this factor append v1 (giving additional n−|Xi| ≤ m/2

cliques). Suppose that Kn′,...,n′ , for some n′ ≥ n, contains a Kk-decomposition which contains all of

these cliques. Observe that a copy of Kk in this decomposition which contains v1 and any v2 ∈ X2,

requires a new vertex in each of the k − 2 other vertex classes. In particular, it requires a new vertex

in the k-th class, and all these new vertices have to be distinct. The same holds for a copy of Kk

which contains v1 and v3 ∈ X3, and so on. As each new vertex has to be different, this requires at

least (k − 2)|Xi| = (k − 2)
√

m/2 new vertices in the k-th color class. Finally, in order for a complete

k-partite graph to have a Kk-decomposition, all vertex classes have to be of the same size.

Similarly as it was the case in Section 3, it is likely that if we only have m < cn cliques, for some

small constant c > 0, then n′ = n suffices.

5. Hamilton cycles

To prove Theorem 2.1 we will need the following well known result of Chvátal [8] which gives a

sufficient condition for a graph to contain a Hamilton cycle.
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Theorem 5.1. Let G be a graph with vertex degrees d1 ≤ d2 ≤ . . . ≤ dn, where n ≥ 3. If di > i or

dn−i ≥ n− i for each 1 ≤ i < n/2, then G is Hamiltonian.

Proof of Theorem 2.1. Let G be an n-vertex graph and t an integer so that G ∗Kt does not contain

a Hamilton cycle. Let m(G) denotes the number of missing edges in G, that is m(G) =
(

n
2

)

− e(G).

To prove the first part of the theorem, it suffices to show the following bounds on m(G):

• If n+ t is even then

m(G) ≥
{

t(n− 1)−
(

t
2

)

if t ≤ (n+ 4)/5
(n+t+2

2

2

)

− 1 if t ≥ (n+ 4)/5.
(3)

• If n+ t is odd then

m(G) ≥
{

t(n− 1)−
(

t
2

)

if t ≤ (n+ 1)/5
(n+t+1

2

2

)

if t ≥ (n+ 1)/5.
(4)

Let G′ = G ∗Kt and label the vertices of G′ as v1, . . . , vn+t in a non-decreasing order with respect

to the degree. Since G′ is not Hamiltonian, it does not satisfy the conditions of Theorem 5.1. Note

that the minimum degree of G′ is at least t, thus there exists some t ≤ i < (n+ t)/2 such that di ≤ i

and dn+t−i < n+ t− i. Denote S := {v1, v2, . . . , vi}. From d1 ≤ d2 ≤ . . . ≤ di ≤ i we deduce that the

number of edges missing from G′ is at least

m(G′) ≥
i

∑

j=1

(n+ t− 1− dj)−
(

i

2

)

≥ i(n + t− 1− i)−
(

i

2

)

=: f(i).

It is important to notice that m(G′) = f(i) iff all the missing edges are incident to S and S is an

independent set. Moreover, we have m(G′) = m(G). For brevity, let us set u = (n+ t)/2− 1 if n+ t is

even, and u = (n+ t− 1)/2 otherwise. As f(·) is a downward facing parabola and t ≤ i ≤ u, we have

m(G) ≥ min{f(t), f(u)}. (5)

Again, if i 6∈ {t, u} then we have a strict inequality. It is now a matter of straightforward calculation to

show that the bound from (5) gives precisely (3) and (4). In particular, if n+t is even then f(t) ≤ f(u)

iff t ≤ (n+ 4)/5, and if n+ t is odd then f(t) ≤ f(u) iff t ≤ (n+ 1)/t.

We now derive extremal constructions, that is we describe how G has to look in order to achieve

equality in (5). First, recall the properties obtained so far: every missing edge in G is incident to S

and S is an independent set; i ∈ {t, u}. Let us first consider the case f(t) ≤ f(u) and i = t. Note that

this corresponds to t ≤ (n + 4)/5 if n+ t is even, and t ≤ (n + 1)/5 if n+ t is odd. In either case we

have

m(G) = f(t) = t(n− 1)−
(

t

2

)

,

which implies that all the edges incident to S are missing. Therefore G is isomorphic to a graph which

contains exactly t isolated vertices.

The other case is a bit more involved and we have to consider the cases when n+ t is even and odd

separately. Let us first assume n+ t is even. Then

m(G) = f(u) = f((n+ t)/2− 1) =

(

n+t+2
2

2

)

− 1 =

(

u+ 2

2

)

− 1 =

(

u

2

)

+ 2u.

As we know that every edge within S is missing, from the previous bound we conclude that there have

to be exactly 2u edges missing between S and V (G) \S. We aim to show that these 2u edges have to

be incident to exactly two vertices in V (G) \ S, from which we conclude that G is isomorphic to the

graph obtained from Kn by choosing a set S of u+2 vertices and removing all but one edge within S.
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To conclude that there are exactly 2 vertices incident to all of these 2u missing edges we employ, for

the first time, the second part of Chvátal’s theorem: dn+t−u < n+ t−u. Recall that u = (n+ t)/2−1,

thus

du+1 ≤ du+2 ≤ (n+ t)/2.

Therefore both vu+1 and vu+2 are missing at least n+ t− 1− (n+ t)/2 = u edges each, and all these

edges have to be also incident to S. Therefore we obtain the remaining 2u missing edges. Note that

all vertices in V (G) \ (S ∪ {vu+1, vu+2}) have full degree.

Let us finally consider the case i = u and n+ t is odd. We now have u = (n + t− 1)/2 and

m(G) = f(u) =

(

n+t+1
2

2

)

=

(

u

2

)

+ u.

Similarly to the previous case, we aim to show that all of the u missing edges with one endpoint in

V (G) \ S have to be incident to a single vertex. From dn+t−u ≤ n + t− u− 1 and n + t− u = u+ 1

we conclude that vu+1 is missing at least u edges. Moreover, all these missing edges have another

endpoint in S. As every other vertex has full degree, we conclude that G is isomorphic to a graph

obtained from Kn by choosing a set S of u+ 1 vertices and removing all edges within S.

�

6. Triangle factors

The main idea of the proof of Theorem 2.2 is to first deal with vertices with small degree and then

show that the remaining graph satisfies the minimum degree condition of the Corrádi-Hajnal theorem.

The details are somewhat tricky and require verification of several technical inequalities.

Proof of Theorem 2.2. Before we start with the proof let us fix the following constants: α = 0.002,

β = 0.011 and γ = 0.05. These values are chosen so that all following inequalities work. Moreover, it

will be convenient to set

ℓ = 0.1n and h = 0.9n.

Suppose that n is sufficiently large and t ≤ n/1000 is odd. Let k = ⌈(t + 1)/2⌉ and let G be an

n-vertex graph which is missing at most

d :=

{

(

k
2

)

+ k(n− k)− 1, if t is odd
(

k
2

)

+ k(n− k − 1)− 1, if t is even
(6)

edges. Note that in both cases we have

d < 0.0005n2.

We show that then G′ = G ∗Kt contains a K3-factor. For the rest of the proof let W denote the set

of vertices corresponding to Kt in G′. We advise the reader that we will often switch between G and

G′.
Our strategy consists of three steps. In the first step we find a collection of vertex-disjoint triangles

which cover every vertex from a set L ⊆ V (G) consisting of vertices of low degree, that is

L = {v ∈ V (G) : degG(v) < ℓ}.

Let U1 ⊆ V (G′) denote the set of all vertices in G′ which are not covered by these triangles. Then in

the second step we find a collection of vertex-disjoint triangles in G′[U1] which cover all the vertices

I ⊆ V (G) ∩ U1 of intermediate degree,

I = {v ∈ V (G) ∩ U1 : ℓ ≤ degG(v) < h}.
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Note that we are indeed looking at the degree of a vertex v in the whole original graph and not just

in G[U1]. Again, let U2 ⊆ U1 denote the set of vertices which are not covered by this and the previous

collection of triangles. Finally, we show that G′[U2] has minimum degree at least 2|U2|/3 which, by

the Corrádi–Hajnal theorem [11] (stated in Section 2.2), implies that G′[U2] contains a triangle-factor.

Overall, we obtain a K3-factor of the whole graph G′.
Let us show why the first step is indeed possible. As every vertex in L is missing at least n− 1− ℓ

edges, we must have
|L|(n− 1− ℓ)

2
≤ d ≤ 0.0005n2.

This implies |L| ≤ αn. Let M1 ⊆ L be a largest subset such that the induced graph G[M1] contains

a perfect matching. Next, consider a largest matching in the bipartite graph induced by L \ M1

and V (G) \ L and let M2 ⊆ L \ M1 be the set of vertices contained in this matching. Finally, let

M3 = L \ (M1 ∪M2) be the remaining vertices in L. For brevity, denote the size of M1,M2 and M3

by m1,m2 and m3, respectively. Note that if m1/2 +m2 + 2m3 ≤ t then there exists a collection of

vertex-disjoint triangles in G′ which cover every vertex in L: For every vertex in M3 we choose two

vertices in W ; for every vertex in M2 it suffices to choose one additional vertex in W (the third vertex

in a triangle comes from the matching which saturates M2); for every edge in a perfect matching from

G[M1] we choose one additional vertex in W .

We now show that

m1/2 +m2 + 2m3 ≤ t (7)

holds. We do this by estimating the number of missing edges in terms of m1,m2 andm3 and comparing

it to (6). First, observe that L \M1 is an independent set as otherwise we get a contradiction with

the maximality of M1. This gives us a simple bound of at least
(

m2+m3

2

)

missing edges in G[L]. Next

we estimate the number of missing edges between L and V (G) \ L. Based on the definition of L, we

have that every vertex in M1 is missing at least n − |L| − ℓ edges with the other endpoint being in

V (G) \ L. As the size of the largest matching in the bipartite graph B ⊆ G induced by L \M1 and

V (G) \ L is of size m2, by Kőnig’s theorem we have that the size of a smallest vertex cover in B is

also of size m2. Recall that the vertex cover is a set of vertices which touches every edge of the graph.

Therefore, there is a set of m2 vertices which touch every edge in B. As every vertex from L \ M1

has degree less than ℓ and every vertex in V (G) \ L has degree at most |L \M1| ≤ αn < ℓ (in B), we

conclude that e(B) ≤ ℓm2. Therefore there are at least

(m2 +m3)(n− |L|)− ℓm2

edges missing between M2 ∪M3 and V (G) \ L. All together, we obtain that G is missing at least
(

m2 +m3

2

)

+m1(n− |L| − ℓ) + (m2 +m3)(n− |L|)− ℓm2 (8)

edges. At this point it is convenient to parametrize the previous quantity in terms of |L| = s, m1 and

m2:

f(m1,m2, s) =

(

s−m1

2

)

+ s(n− s)− ℓ(m1 +m2).

It is straightforward to see that f(m1,m2, s) equals the quantity in (8). Note that f is decreasing in

m2. Assume now, towards a contradiction, that m1/2 +m2 + 2m3 > t. Then

m2 > t− 2m3 −m1/2 = t− 2(s −m1 −m2)−m1/2 = t− 2s+ 3m1/2 + 2m2,

hence

m2 < 2s− t− 3m1/2.
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As m1 is an even integer, we can deduce that m2 ≤ 2s − t − 3m1/2 − 1. Therefore, the number of

missing edges in G is at least

f(m1,m2, s) ≥ f(m1, 2s− t− 3m1/2− 1, s)

=

(

s−m1

2

)

+ s(n− s)− ℓ(2s − t−m1/2− 1)

:= g(m1, s).

Next, observe that g is increasing in m1 for 0 ≤ m1 ≤ s:

∂g

∂m1
= m1 − s+ (ℓ+ 1)/2 > 0,

where the second inequality follows from

s ≤ αn ≤ ℓ/2.

Therefore, we have

g(m1, s) ≥ g(0, s) =

(

s

2

)

+ s(n− s)− ℓ(2s− t− 1) =: w(s).

The function w is increasing in s in the interval 0 ≤ s ≤ n − 2ℓ − 1/2. Note that we have s = |L| ≤
αn < n− 2ℓ− 1/2. Moreover, we need only consider the case s ≥ k: If s ≤ k− 1, then 2s ≤ t thus we

can trivially cover every vertex in L with a triangle which uses two new vertices from W . Since the

function w is increasing, its minimum is achieved when s = k, i.e.

w(s) ≥
(

k

2

)

+ k(n− k)− ℓ(2k − t− 1).

If t is odd then

w(s) ≥
(

k

2

)

+ k(n− k).

As w(s) is a lower bound on the number of missing edges in G, we get a contradiction with (6).

Suppose now that t is even. Unlike in the previous case, we do not immediately get a contradiction

with (6) as w(k) is, in fact, smaller than d. However, w(k + 1) is larger than d, thus we only need to

consider the case |L| = k = t/2 + 1. If m1 > 0 then m1 ≥ 2 (because it is even), in which case we get

m1/2 +m2 + 2m3 ≤ m1/2 + 2(k −m1) ≤ t.

Therefore, we can assume m1 = 0. Similarly, if m2 ≥ 2, then again m2 + 2m3 ≤ t. If m2 = 0, then L

is a set of isolated vertices in G, thus the number of missing edges is at least
(

k

2

)

+ k(n− k) >

(

k

2

)

+ k(n− k − 1) = d,

which is a contradiction. Finally, we can assume m2 = 1. In particular, Kőnig’s theorem implies that

the vertex cover number of the bipartite graph induced by L and V (G) \L is exactly 1, i.e. every edge

in this bipartite graph touches some vertex v. If v ∈ V (G) \L, then this bipartite graph is missing at

least (n− k − 1)k edges. Together with the fact that L is an independent set, we get a contradiction

with d. Otherwise, suppose v ∈ L. If there is an edge in the neighbourhood of v in V (G) \ L, then
we could saturate v without using any vertex from W , which gives enough space in W to saturate

L \ {v}. Let us denote the number of neighbours of v in V (G) \L by p. The number of missing edges

in G is now at least
(

k

2

)

+

(

p

2

)

+ k(n− k)− p,
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which is easily seen to be larger than d for any positive value of p. This exhausts all the possibilities

and we can conclude that there exists a collection of vertex-disjoint triangles which saturate all vertices

in L.

Next, let U1 ⊆ V (G′) denote the set of vertices which do not belong to previously obtained triangles.

Recall that every vertex v ∈ I has degree at most h in G, thus the number of missing edges incident

to I is at least
|I|(n − 1− h)

2
≤ d ≤ 0.0005n2.

This implies |I| ≤ βn. We saturate vertices in I by sequentially choosing triangles in a greedy way

by only using edges in G. Suppose we have saturated some i ≤ |I| − 1 vertices from I. Choose an

arbitrary unsaturated vertex v ∈ I. As the degree of v in G is at least ℓ, we have that there are still

ℓ− 3|L| − 3i ≥ ℓ− 3αn − 3βn ≥ γn

‘available’ neighbors of v in G (i.e. neighbors of v which are not part of any triangle so far). In order

to saturate v we just need to find an edge within its available neighbors. However, this is possible as

otherwise there are at least
(

γn

2

)

> 0.0005n2 ≥ d

edges missing in G. To conclude, so far we have found a collection of vertex-disjoint triangles which

saturate every vertex in L ∪ I.

Finally, let U ⊆ V (G′) be the set of vertices used up so far. Note that

|L|+ |I| ≤ |U | ≤ 3|L|+ 3|I| ≤ 3(α + β)n.

We are left with y = n + t− |U | vertices and the minimum degree in the remaining graph is at least

h+ t−|U | ≥ 2y/3 (where the last inequality follows from h−αn−βn ≥ 2n/3). By the Corrádi-Hajnal

theorem, G′ \ U contains a triangle-factor, which finishes the proof. �

Let us give the constructions which show the optimality of Theorem 2.2. If t is odd then let G be

a graph obtained from Kn by taking an arbitrary set of t+1
2 vertices an deleting all edges incident to

them. Otherwise, if t is even then take a set S ⊆ V (Kn) of size t/2 + 1 and a vertex v ∈ V (Kn) \ S,
and delete all the edges incident to vertices in S save the ones which are also incident to v.

7. Concluding remarks

There are many interesting problems that remain open. We proved the deficiency analogue of the

Corrádi-Hajnal theorem in the case t is small. Similarly as in the case of Hamilton cycles (Theorem

2.1), there is another natural construction that is better for larger values of t: delete all edges inside

a set of size n+t
3 + 1. We believe that one of the three constructions is always optimal (recall that

for small t our construction depends on the parity of t). The results of Treglown [46] and Kierstead–

Kostochka [29] might be useful for obtaining further improvements on deficiency results on Kk-factors.

A slightly different question in the same spirit is, given a graph G with m edges and n vertices, how

many vertex-disjoint triangles can we find in G?

There are other natural global spanning properties one might consider. For example, let P be the

property that a k-uniform hypergraph H has a perfect matching, i.e. a collection of disjoint edges

covering every vertex of H. The deficiency problem then is as follows: given a k-uniform hypergraph

H with n vertices and an integer t such that H ∗Kt does not have a perfect matching, at most how

many edges can a H have? Note that here we do not get a new question. It is easy to see that this

problem is precisely equivalent to the famous Erdős Matching Conjecture [15] (see also Chapter 9

in [19]).
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In this paper we completely solve the problem of determining the deficiency of graphs with respect

to Hamiltonicity. It would be interesting to obtain the solution for the analogous question in 3-uniform

hypergraph setting. Here one might want to study this problem for both loose and tight Hamilton

cycles. For a survey on known results on Hamiltonian cycles in hypergraphs see [31]. In particular, Han

and Zhao [24] have found new bounds on the minimum degree threshold that guarantees Hamiltonian

cycles in uniform hypergraphs. Finally, another natural question to consider is the deficiency for

powers of a Hamiltonian cycle.

References

[1] L. Andersen, A. Hilton, and E. Mendelsohn. Embedding partial Steiner triple systems. Proceedings of the London

Mathematical Society, 3(3):557–576, 1980.

[2] L. D. Andersen and A. J. Hilton. Thank Evans! Proceedings of the London Mathematical Society, 3(3):507–522,

1983.
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