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THE PSEUDOFOREST ANALOGUE FOR THE STRONG NINE DRAGON

TREE CONJECTURE IS TRUE

LOGAN GROUT AND BENJAMIN MOORE

Abstract. We prove that for any positive integers k and d, if a graph G has maximum
average degree at most 2k+ 2d

d+k+1
, then G decomposes into k+1 pseudoforests C1, . . . , Ck+1

so that for at least one of the pseudoforests, each connected component has at most d edges.

1. Introduction

For any graph G, a decomposition of G is a set of edge disjoint subgraphs of G such
that the union of their edges sets is the edge set of the graph. Graph decompositions are a
particularly heavily studied area of graph theory, and one of the most beautiful results about
graph decompositions is the Nash-William characterization of when a graph decomposes into
k forests.

Theorem 1.1 ([8], Nash-Williams Theorem). A graph G decomposes into k forests if and

only if

max
H⊆G,v(H)≥2

e(H)

v(H)− 1
≤ k.

Here, H ⊆ G is taken to meanH is a subgraph of G. We will refer to maxH⊆G,v(H)≥2
e(H)

v(H)−1

as the fractional arboricity of G. It is not hard to see that the fractional arboricity of a graph
might not be integral. For instance, the fractional arboricity of a cycle on n vertices is n

n−1 .
By the Nash-William characterization, this implies that cycles decompose into two forests,
and you cannot decompose a cycle into a single forest. Additionally, it is easy to see that
cycles decompose into a forest and a matching, which is quite a bit stronger than just saying
that cycles decompose into two forests. As the fractional arboricity of cycles is much closer
to 1 than to 2, you might speculate that this is the reason you get this extra structure in the
decomposition. In general, one might speculate that if the fractional arboricity of a graph is
much closer to k − 1 than to k, then not only does G decompose into k forests, but that one
of the forests can be assumed to be a matching. Intuitively, this should be believable. If the
fractional arboricity is very close to k− 1 but still greater than k− 1, then the Nash-William
characterization says that you need k forests, but just barely. Such a graph would roughly
look like the union of k− 1 forests, and then a few edges left over. It is reasonable to believe
that you can force these left over edges to form a matching. Even more generally, you could
conjecture that there exists an ε ∈ (0, 1) such that if the fractional arboricity of G is at most
k+ ε, then G decomposes into k+1 forests, such that one of the forests has maximum degree
at most d. The Nine Dragon Tree Conjecture (now proven by Hongbi Jiang and Daqing
Yang [4]), proposed by Mickeal Montassier, Patrice Ossona de Mendez, André Raspaud, and
Xuding Zhu in [6] does just this.

Both authors thank NSERC for financial support.
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Theorem 1.2 ([4], Nine Dragon Tree Theorem). Let k and d be positive integers. If the

fractional arboricity of G is at most k + d
k+d+1 , then G decomposes into k + 1 forests such

that one of the forests has maximum degree at most d.

In [6], it was shown that the fractional arboricity bound is sharp for arbitrarily large graphs.
Despite this, Montassier et al. proposed a significant strengthening of the Nine Dragon Tree
Theorem, aptly named the Strong Nine Dragon Tree Conjecture.

Conjecture 1.3 ([6], Strong Nine Dragon Tree Conjecture). Let k and d be positive integers.

If the fractional arboricity of G is at most k + d
k+d+1 , then G decomposes into k + 1 forests

such that one of the forests has each connected component containing at most d edges.

This conjecture is wide open. The d = 1 case was proven by Yang in [9]. The k = 1 and
d = 2 case was proven by Kim, Kostochka, West, Wu, and Zhu [5]. Recently, the second
author resolved the d ≤ k + 1 case [7]. Moreover, it was shown that the conjecture is true if
you replace “d edges” in the conclusion with a function f(d, k) edges.

This paper will focus on pseudoforest decompositions. Recall, a pseudoforest is a graph
where each connected component contains at most one cycle. All of the above results or con-
jectures have pseudoforest analogues. The pseudoforest analogue of Nash-Williams Theorem
is Hakimi’s Theorem.

Theorem 1.4 ([3], Hakimi’s Theorem). A graph G decomposes into k pseudoforests if and

only if the maximum average degree of G is at most 2k.

Here, the maximum average degree of a graph G is

mad(G) := max
H⊆G

2e(H)

v(H)
.

Genghua Fan, Yan Li, Nine Song, and Daqing Yang [2] proved the pseudoforest analogue
of the Nine Dragon Tree Theorem.

Theorem 1.5 ([2]). Let k and d be positive integers. If mad(G) ≤ 2k + 2d
d+k+1 , then G

decomposes into k + 1 pseudoforests, such that one of the pseudoforests has maximum degree

at most d.

Fan et al. also showed the maximum average degree bound is best possible.

Theorem 1.6 ([2]). For any positive integers k and d, there are arbitrarily large graphs G and

an edge e where mad(G− e) = 2k+ 2d
k+d+1 , but G does not decompose into k+1 pseudoforests

where one of the pseudoforests has maximum degree d.

The main result of this paper is that the pseudoforest analogue of the Strong Nine Dragon
Tree Conjecture is true.

Theorem 1.7. Let k and d be positive integers. If mad(G) ≤ 2k+ 2d
d+k+1 , then G decomposes

into k + 1 pseudoforests T1, . . . , Tk, F , such that each connected component of F contains at

most d edges.

By Theorem 1.6, the maximum average degree bound given in Theorem 1.7 is sharp.
Some of the cases of Theorem 1.7 were known. As having maximum degree one is the same
as having one of the pseudoforests be a matching, Theorem 1.5 implies Theorem 1.7 when
d = 1. Interestingly, the proof given in [5] of the Strong Nine Dragon Tree Conjecture when
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k = 1 and d = 2 implies Theorem 1.7 when k = 1 and d = 2. Prior to our result, all other
cases were open.

As a template for how the proof of Theorem 1.7 will proceed, we will give a proof of the
non-trivial direction of Hakimi’s Theorem. The proof we give appears in [2] (and is perhaps
the first time it appeared in print, we are not aware of any earlier proofs), and the proof of
the Nine Dragon Tree Theorem for pseudoforests in some sense follows this proof of Hakimi’s
Theorem. However, we feel that our proof more faithfully follows this proof of Hakimi’s
Theorem, and thus leads to the stronger result while having a shorter proof.

Before proceeding, we need some definitions. Given a graph G, an orientation of G is
obtained from E(G) by taking each edge xy, and replacing xy with exactly one of the arcs
(x, y) or (y, x). To reverse the direction of an arc (x, y) is to replace (x, y) with the arc (y, x).
For any vertex v, let d(v) denote the degree of v, and d+(v) denote the outdegree of v. A
directed path P from u to v is a path P oriented so that v is the only vertex with no outgoing
edge. The next observation is easy and well known.

Observation 1.8. A graph G is a pseudoforest if and only if G admits an orientation where
every vertex has outdegree at most one.

From this observation, we get an important corollary.

Corollary 1.9. A graph admits a decomposition into k pseudoforests if and only if it admits

an orientation such that every vertex has outdegree at most k.

For a proof of Corollary 1.9 we refer the reader to Corollary 1.2 and Theorem 1.1 of [2].
Alternatively, here is a short proof due to a referee. Given an orientation where each vertex
has out degree at most k, colour the tails incident to each vertex with distinct colours from
1, . . . , k. Now each colour class of edges induces a subgraph with maximum outdegree at
most one, hence it is a pseudoforest. For the converse, given k pseudoforests, we orient each
vertex to have maximum outdegree at most 1. The union of these oriented pseudoforests is
an orientation of G with maximum outdegree at most k. We will use Corollary 1.9 repeatedly
and implicitly throughout our proofs. With that, we can give a proof of Hakimi’s Theorem.

Proof of Theorem 1.4. We only prove that a graph with maximum average degree 2k decom-
poses into k pseudoforests, as the other direction is trivial.

Suppose towards a contradiction that G has maximum average degree at most 2k, but G
does not decompose into k pseudoforests. Then G does not admit an orientation such that
each vertex has outdegree at most k.

Consider an orientation ~G of G that minimizes the sum

ρ :=
∑

v∈V (G)

max{0, d+(v) − k}.

If this sum is zero, then we have a desired decomposition, a contradiction. Thus there is a
vertex v ∈ V (G) such that v has outdegree at least k + 1. If there is a directed path P from
v to x such that x has outdegree at most k − 1, then we can reverse the directions on all of
the arcs on P and obtain a decomposition with smaller ρ value, a contradiction. Consider
the subgraph H induced by vertices which are reachable from directed paths of v. That is,
x ∈ V (H) if there is a directed path P which starts at v and ends at x. Then all vertices in
H have outdegree at least k, and v has outdegree at least k + 1. But this implies that the
average degree of H is strictly larger than 2k, a contradiction. �
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Now we will give a high level overview of how our proof will proceed. We will take a pseud-
oforest decomposition C1, . . . , Ct, F where we will try and bound the size of each connected
component in F . In the above proof of Hakimi’s Theorem, the bad situation was a vertex
which had too large outdegree. Now, the bad situation is that there is a component which
is too large. In the proof of Hakimi’s Theorem, we searched for special paths to augment
on from a vertex which had too large outdegree, and in our proof, we will search for paths
to augment on from a component which is too large. In the proof of Hakimi’s theorem, we
identified a situation where we could augment our decomposition and obtain a better decom-
position, namely, directed paths from a vertex with too large outdegree to a vertex with small
outdegree. In our proof, we will identify similar situations, namely, finding two components
which are small enough to augment our decomposition, or finding a large component which
has at least two small components nearby to perform augmentations. Then we will show that
when these configurations are removed, either we have a decomposition satisfying Theorem
1.7 or our graph actually had too large maximum average degree to begin with.

The paper is structured as follows. In Section 2 we give the necessary definitions on how
we will pick our counterexample, and prove basic properties about the counterexample. In
Section 3, we describe how we will augment our decomposition in certain situations. In Section
4, we show how to use this augmentation strategy to either find an optimal decomposition or
show that our graph has too large maximum average degree.

Finally, to fix some notation we will let v(G) = |V (G)| and e(G) = |E(G)|. All other
undefined graph theory terminology can be found in [1], or any other standard graph theory
textbook.

2. Picking the counterexample

In this section we describe how we will pick our counterexample. Fix k and d as positive
integers, and suppose that G is a vertex minimal counterexample to Theorem 1.7 for the fixed
values of k and d.

Our first step will be to obtain desirable orientations of G. In particular, the orientations
we will demand will imply that G decomposes into k pseudoforests each with v(G) edges, and
one left over pseudoforest. For this, we use a lemma proved in [2] (Lemma 2.1). Technically,
we need a stronger lemma, however the same proof as Lemma 2.1 will suffice. We give a proof
for completeness sake only, there is no new idea needed.

Lemma 2.1 ([2]). If G is a vertex minimal counterexample to Theorem 1.7, then there exists

an orientation of G such that for all v ∈ V (G), we have k ≤ d+(v) ≤ k + 1.

Proof. Suppose no such orientation exists. As G has maximum average degree at most 2k+2,
by Hakimi’s Theorem, G admits an orientation so that every vertex has outdegree at most
k + 1. Orient G so that every vertex has outdegree at most k + 1, and that the sum

ρ :=
∑

v∈V (G)

max{0, k − d+(v)}

is minimized. Observe that if ρ is zero, then we have a desirable orientation.
First we claim there is a vertex v with outdegree k+1. If not, then all vertices have outdegree

at most k, and by Hakimi’s Theorem G decomposes into k pseudoforests, contradicting that
G is a counterexample to Theorem 1.7.

Now we claim there is no directed path P from a vertex v with outdegree k+1 to a vertex
u with outdegree at most k − 1. Suppose towards a contradiction that P is such a path.
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Then reversing the orientation on all of the arcs in P gives a new orientation, where v has
outdegree k, all internal vertices have the same outdegree, and the outdegree of u increases
by one. But this contradicts that we picked our orientation to minimize ρ.

Let S be the set of vertices in G with out degree at most k − 1, and let S′ be the set of
vertices which have a directed path to a vertex in S. Observe that every vertex in S′ has
outdegree at most k. Let S̄′ = V (G)−S′. Then every edge with one endpoint lying in S′ and
one endpoint in S̄′ is directed from S′ to S̄′. Observe that |S̄′| < v(G).

As G is a vertex minimal counterexample we can decompose G[S̄′] into k+1 pseudoforests
such that one of the pseudoforests has each connected component containing at most d edges.
Additionally, as every vertex in S′ has outdegree at most k, by Hakimi’s Theorem we can
decompose G[S′] into k pseudoforests C1, . . . , Ck. Thus we only need to deal with the edges
between S̄′ and S′. Observe that if v has t arcs (v, u1), . . . , (v, ut) where ui ∈ S̄′ for all
i ∈ {1, . . . , t}, then v has outdegree at most k − t in G[S′]. Thus v has outdegree zero in at
least t of the pseudoforests C1, . . . , Ck. Therefore we can add the arcs (v, u1), . . . , (v, ut) to t
of the pseudoforests so that the result is a pseudoforest. As all arcs between S′ and S̄′ are
oriented from S′ to S̄′, we now have a decomposition of G which satisfies Theorem 1.7. But
this contradicts that G is a counterexample to Theorem 1.7. �

Let F be the set of orientations of E(G) with k ≤ d+(v) ≤ k+1 for each vertex v ∈ V (G).
A useful way of keeping track of our pseudoforest decomposition will be to colour the edges
blue and red, where the edges coloured red will induce a pseudoforest. This will be the
pseudoforest where we will want to bound the size of each connected component.

Definition 2.2. Suppose G is oriented such that k ≤ d+(v) ≤ k+1 for each vertex v ∈ V (G).
Then a red-blue colouring of G is a (non-proper)colouring of the edges where for any vertex
v ∈ V (G), we colour k outgoing arcs of v blue; if after this there is an uncoloured outgoing
arc, colour this arc red.

Note that given an orientation in F , one can generate many different red-blue colourings.
As a graph decomposes into k pseudoforests if and only if it admits an orientation where each
vertex has outdegree at most k, we obtain the following observation.

Observation 2.3. Given a red-blue colouring of G, we can decompose our graph G into k+1
pseudoforests such that k of the pseudoforests have all of their edges coloured blue, and the
other pseudoforest has all of its edges coloured red.

Observe that one red-blue colouring can give rise to many different pseudoforest decom-
positions. Given a pseudoforest decomposition obtained from Observation 2.3 we will say a
pseudoforest which has all arcs coloured blue is a blue pseudoforest, and the pseudoforest with
all arcs coloured red is the red pseudoforest.

Definition 2.4. Let f be a red-blue colouring of G, and let C1, . . . , Ck, F be a pseudoforest
decomposition obtained from f by Observation 2.3. Then we say that C1, . . . , Ck, F is a

pseudoforest decomposition generated from f . We will always use the convention that F is
the red pseudoforest, and each Ci is a blue pseudoforest.

As G is a counterexample, in every pseudoforest decomposition generated from a red-blue
colouring, there is a component of the red pseudoforest which has more than d edges. We
define a residue function which simply measures how close a decomposition is to satisfying
Theorem 1.7.
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R1

R2

R3 R5

R4

Figure 1. In this example we assume k = 1 and d = 1. On the left, the orientation
is in F . On the right we have one possible red-blue colouring generated by this
orientation. Here, the entire graph would be the exploration subgraph, and assuming
R1 is the root, (R1, R2, R3, R4, R5) is the smallest legal order. Lastly, the isolated
vertices are the small components (and are in fact the only possible small components
when k = 1 and d = 1)

Definition 2.5. Let f be a red-blue colouring and C1, . . . , Ck, F be a pseudoforest decom-
position generated by f . Let T be the set of components of F . Then the residue function,
denoted ρ, is

ρ(F ) =
∑

K∈T

max{e(K)− d, 0}.

Using a red-blue colouring, and the resulting pseudoforest decomposition, we define an
induced subgraph of G which we will focus our attention on. Intuitively, this subgraph should
be thought of as an “exploration” subgraph similar to how in the proof of Hakimi’s theorem
we “explored” from a vertex which had too large outdegree. Here we will “explore” from a
component which is too large.

Definition 2.6. Suppose that f is a red-blue colouring ofG, and supposeD = (C1, . . . , Ck, F )
is a pseudoforest decomposition generated from f . Let R be a component of F such that
e(R) > d. We define the exploration subgraph Hf,D,R in the following manner. Let S ⊆ V (G)
where v ∈ S if and only if there exists a path P = v1, . . . , vm such that vm = v, v1 ∈ V (R),
and either vivi+1 is an arc (vi, vi+1) coloured blue, or vivi+1 is an arbitrarily directed arc
coloured red. Then we let Hf,D,R be the graph induced by S.

Given a particular exploration subgraph Hf,D,R, we say R is the root component. We say
the red components of Hf,D,R are the components of F contained in Hf,D,R.

It might not be clear why we made this particular definition for Hf,D,R, however the next
observation shows that for any exploration subgraph Hf,D,R, the red edge density must be
low. Before stating the observation, we fix some notation. Given a subgraph K of G, we will
let Eb(K) and Er(K) denote the sets of edges of K coloured blue and red, respectively. We
let eb(K) = |Eb(K)| and er(K) = |Er(K)|.

Observation 2.7. For any red-blue colouring f , any pseudoforest decompositionD generated
from f , and any choice of root component R, the exploration subgraph Hf,D,R satisfies

er(Hf,D,R)

v(Hf,D,R)
≤

d

d+ k + 1
.

Proof. Suppose towards a contradiction that

er(Hf,D,R)

v(Hf,D,R)
>

d

d+ k + 1
.
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As Hf,D,R is an induced subgraph defined by directed paths, and every vertex v ∈ V (G)
has k outgoing blue edges, each vertex in Hf,D,R has k outgoing blue edges. Thus,

eb(Hf,D,R)

v(Hf,D,R)
= k.

Then we have

mad(G)

2
≥

e(Hf,D,R)

v(Hf,D,R)
=

er(Hf,D,R)

v(Hf,D,R)
+

eb(Hf,D,R)

v(Hf,D,R)
> k +

d

d+ k + 1
.

But this contradicts that G has mad(G) ≤ 2k + 2d
d+k+1 .

�

For the entire proof, we will be attempting to show that we can augment a given decom-
position in such a way that either we obtain a decomposition satisfying Theorem 1.7 or we
can find a exploration subgraph Hf,D,R which contradicts Observation 2.7.

As Observation 2.7 allows us to focus only on red edges, it is natural to focus on red
components which have small average degree. With this in mind, we define the notion of a
small red component.

Definition 2.8. Let C1, . . . , Ct, F be a pseudoforest decomposition generated by a red-blue
colouring. Let K be a subgraph of F . Then K is a small red subgraph if

er(K)

v(K)
<

d

d+ k + 1
.

If K is connected, we say K is a small red component

In particular, we will be interested in the case when K is connected and a small red
component. When K is connected the red subgraph is actually isomorphic to a tree, and we
can rewrite the density bound in the definition in a more convenient manner.

Observation 2.9. Let K be a connected small red subgraph. Then K is acyclic, and further

er(K) <
d

k + 1
.

Proof. First, suppose that K is not acyclic. Then K contains exactly one cycle. As K is
connected, it follows that

er(K)

v(K)
= 1.

But d
k+d+1 < 1 as d and k are positive integers, and hence K would not be a small red

subgraph. Thus we can assume that K is acyclic, so e(K) = v(K)− 1. Thus

e(K)

v(K)
=

e(K)

e(K) + 1
<

d

d+ k + 1
.

Therefore
e(K)(d + k + 1) < d(e(K) + 1).

Simplifying, we see that this is equivalent to

e(K) <
d

k + 1
.

�
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We will want to augment our decomposition, and we will want a measure of progress that
our decomposition is improving. Of course, if we reduce the residue function that clearly im-
proves the decomposition. However, this might not always be possible, so we will introduce a
notion of a “legal order” of the red components. This order keeps track of the number of edges
in components which are “close” to the root component, with the idea being that if we can
continually perform augmentations to make components “closer” to the root component have
fewer edges without creating any large components, then we eventually reduce the number of
edges in the root component, which improves the residue function. We formalize this in the
following manner.

Definition 2.10. We call an ordering (R1, . . . , Rt) of the red components of Hf,D,R legal if
all red components are in the ordering, R1 is the root component, and for all j ∈ {2, . . . , t}
there exists an integer i with 1 ≤ i < j such that there is a blue arc (u, v) such that u ∈ V (Ri)
and v ∈ V (Rj).

Let (R1, . . . , Rt) be a legal ordering. We will say that Ri is a parent of Rj if i < j and
there is a blue arc (vi, vj) where vi ∈ Ri and vj ∈ Rj . In this definition a red component may
have many parents. To remedy this, if a red component has multiple parents, we arbitrarily
pick one such red component and designate it as the only parent. If Ri is the parent of Rj ,
then we say that Rj is a child of Ri. We say a red component Ri is an ancestor of Rj if we
can find a sequence of red components Ri1 , . . . , Rim such that Ri1 = Ri, Rjm = Rj, and Riq

is the parent of Riq+1
for all q ∈ {1, . . . ,m − 1}. An important definition is that of vertices

witnessing a legal order.

Definition 2.11. Given a legal order (R1, . . . , Rt), we say a vertex v witnesses the legal order

for Rj if there is a blue arc (u, v) such that u ∈ Ri and v ∈ Rj and i < j.

Observe that there may be many vertices which witness the legal order for a given red
component. More importantly, for every component which is not the root, there exists a
vertex which witnesses the legal order. We also want to compare two different legal orders.

Definition 2.12. Let (R1, . . . , Rt) and (R′
1, . . . , R

′
t′) be two legal orders. We will say (R1, . . . , Rt)

is smaller than (R′
1, . . . , R

′
t) if the sequence (e(R1), . . . , e(Rt)) is smaller lexicographically than

(e(R′
1), . . . , e(R

′
t′ )).

With Definition 2.12, we will pick our minimal counterexample G in the following manner.
First, v(G) is minimized.

After this we pick an orientation in F , a red-blue colouring f of this orientation, a pseud-
oforest decomposition D = (C1, . . . , Ck, F ) generated from f , such that the number of cycles
in F is minimized. Subject to this, we minimize the residue function ρ. Finally, we pick a
smallest possible legal order (R1, . . . , Rt).

From here on out, we will assume we are working with a counterexample picked in the
manner described. The point of minimizing the number of cycles in F is slightly unintuitive
compared to minimizing the residue function and minimizing the legal order. However, we
minimize the number of cycles because when we augment we will need to ensure our decompo-
sition is in fact a pseudoforest decomposition, and our augmentations will never create more
cycles in F . Hence by minimizing the number of cycles in F first, we can easily take care of
the cases where cycles occur, which allows us to focus on the more important cases where the
components are acyclic.

It was pointed out to the second author via personal communication by Daqing Yang that
one can remove the condition to minimize the number of cycles in F by instead modifying the
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definition of legal order to take into account the maximum average degree instead of just the
number of edges. This is a nice approach and an argument could be made that this approach
is more intuitive. However the proof ends up being fundamentally the same, and the authors
prefer this approach.

3. Augmenting the decomposition

In this section we describe a very simple operation which will mostly be how we augment
our decomposition. Let f be the red-blue colouring of our counterexample, and let C1, . . . , Ck

be the blue pseudoforests, and F the red pseudoforest. Let (R1, . . . , Rt) be the legal ordering
picked for our counterexample. As some notation, given a vertex x ∈ V (Hf,D,R), we let Rx

denote the red component of Hf,D,R containing x.

Definition 3.1. Let (x, y) be a blue arc. Further suppose that Ry is acyclic, and suppose
that e = xv is an arbitrarily oriented red arc incident to x. To exchange e and (x, y) is to
perform the following procedure. First, take the maximal directed red path in Ry starting
at y, say Q = y, v1, . . . , vl where (vi, vi+1) is a red arc for i ∈ {1, . . . , l} and (y, v1) is a red
arc, and reverse the direction of all arcs of Q. Second, change the colour of (x, y) to red and
reorient (x, y) to (y, x). Finally, change the colour of e to blue, and if e is oriented (v, x),
reorient to (x, v).

See Figure 2 for an illustration. We note that exchanging on an edge e and (x, y) is well-
defined. This is because Ry is acyclic (and hence a tree), and thus there is a unique maximal
directed path in Ry which starts at y.

Observation 3.2. Suppose we exchange the edge e = xv and (x, y). Then the resulting
orientation is in F , and the resulting colouring is a red-blue colouring of this orientation.

Proof. Let us first check the outdegrees of vertices after the exchange. Let Q = y, v1, . . . , vl
be the maximal directed red path in Ry before exchanging the edges. First suppose that Q
is not just y. Then all of the internal vertices on this path have the same outdegree after
reversing as before. On the other hand, the outdegree of y decreases by 1, and the outdegree
of vl increases by one. As Q is a maximal red path, this implies that the outdegree of vl before
reversing the arcs on Q was k, and hence after reversing the arcs this outdegree is k+1. The
outdegree of y drops by one after reversing the arcs on Q, but we reverse the arc (x, y) to
(y, x), and hence the outdegree of y remains the same as before.

If Q is just y, then the outdegree of y before exchanging was k, and then as we reorient
(x, y) to (y, x), the outdegree of y is now k + 1.

Focusing on x now, if e is oriented from x to v, then the outdegree of x is initially k + 1,
and after the exchange it ends up being k; otherwise, we reorient (v, x) to (x, v) and so the
outdegree of x remains the same as before the exchange. Lastly, the outdegree of v remains
the same if e was oriented (x, v), and otherwise the outdegree of v initially was k + 1, and
after reorienting becomes k. Thus the resulting orientation is in F .

Now we will see that this new colouring is a red-blue colouring of the orientation. Note
after exchanging e and (x, y), y has exactly one outgoing edge coloured red. If x had no
outgoing red edge before, it still has no outgoing red edge, and if it did have an outgoing red
edge, then the outdegree of x dropped by one, and now x has no outgoing red edge. Finally, if
Q was not just y, then vl now has no outgoing red edge. It follows that the resulting colouring
is in fact a red-blue colouring. �
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x

y

e
x

y

e

Figure 2. An example of an exchange on an edge e and (x, y)

To avoid repetitively mentioning it, we will implicitly make use of Observation 3.2. Now we
begin to impose some structure on our decomposition. First we make an observation which
allows us to effectively ignore parent components with cycles (such components will still exist,
but for the purposes of our argument we will not need to worry about them).

Observation 3.3. Let (x, y) be a blue arc such that Rx is distinct from Ry and further Ry

is a tree. Then x does not lie in a cycle of F .

Proof. Suppose towards a contradiction that x lies in a cycle of F . Let e be an edge incident
to x which lies in the cycle coloured red. Now exchange (x, y) and e. As (x, y) was an arc
between two distinct red components, and e was in the cycle coloured red, after performing
the exchange, we reduce the number of cycles in F by one. However, this contradicts that we
picked our counterexample to have the fewest number of red cycles. �

With this we can show that given two components K and C, where K is the parent of C,
and C is acyclic, that er(K) + er(C) ≥ d.

Lemma 3.4. Let Rx and Ry be red components such that Ry is the child of Rx, Ry does not

contain a cycle, and (x, y) is a blue arc from x to y. Then er(R
x) + er(R

y) ≥ d.

Proof. Suppose towards a contradiction that er(R
x) + er(R

y) < d. Hence er(R
x) < d. Thus

Rx is not the root. Let w be a vertex which witnesses the legal order for Rx (w exists as Rx

is not the root). By Observation 3.3 we know that x does not belong to a cycle of Rx.
Case 1: w 6= x.
Let e be the edge incident to x in Rx such that e lies on the path from x to w in Rx. Then

exchange (x, y) and e. As er(R
x) + er(R

y) < d, all resulting red components have fewer than
d edges, and hence we do not increase the residue function. Furthermore, we claim we can
find a smaller legal order. Let Ri be the component in the legal order corresponding to Rx.
Then consider the new legal order where the components R1, . . . , Ri−1 remain in the same
position, we replace Ri with the new red component containing w, and then complete the
order arbitrarily. By how we picked e, e(Rw) is strictly smaller than e(Ri), and hence we
have found a smaller legal order, a contradiction.

Case 2: w = x.
We refer the reader to Figure 3 for an illustration. As Rx is not the root component, let Rx1

be the closest ancestor of Rx such that e(Rx1) ≥ 1 (there is an ancestor with this property, as
the root has at least one edge). Let Rxn , Rxn−1 , . . . , Rx1 be a sequence of red components such
that for i ∈ {2, . . . , n}, Rxi is the child of Rxi−1 and Rx is the child of Rxn . Up to relabelling
the vertices, there is a path P = x1, . . . , xn, x, y such that (xi, xi+1) is an arc coloured blue,
and (xn, x) is an arc coloured blue. Let e be a red edge incident to xn. Now do the following.
Colour (x, y) red, and reverse the direction of all arcs in P . Colour e blue, and orient e away
from x1. By the argument in our proof of Observation 3.2, the resulting orientation is in F
and the colouring described is a red-blue colouring. Furthermore as er(R

x) + er(R
y) < d,
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R1

R2 x

yR3 R5

R4

Figure 3. An illustration of Case 2 in Lemma 3.4, where k = 1 and d = 1 and
x = w. A vertex in the root component was the ancestor, so in this case we reduce
the residue function.

all resulting red components have at most d edges, and hence the residue function did not
increase (in the event that Rx1 is the root, the residue function strictly decreases, so we
assume that Rx1 is not the root). Finally, we can find a smaller legal order in this orientation,
as we simply take the same legal order up to the component containing x1, and then complete
the remaining order arbitrarily. As the component containing x1 has at least one fewer edge
now, this order is a smaller legal order, a contradiction. �

We note the following important special case of Lemma 3.4, that small red components do
not have small red children.

Corollary 3.5. If K is a small red component, then K does not have any small red children.

Proof. Suppose towards a contradiction that K has a small red child C. As K is small, then
er(K) < d

k+1 . Similarly, er(C) < d
k+1 . But then er(K) + er(C) < 2d

k+1 ≤ d, contradicting
Lemma 3.4. �

Now we will show that every red component has at most k small red children.

Lemma 3.6. If K is a red component, then K has at most k small children.

Proof. Suppose towards a contradiction that K has at least k + 1 distinct small children.
Then by the pigeon-hole principle, there are two distinct small children C1 and C2 such that
there are blue arcs (x, x′), (y, y′) so that x 6= y, x, y ∈ V (K), x′ ∈ V (C1) and y′ ∈ V (C2). By
Observation 3.3 we can assume that neither x nor y lies in a red cycle in K. Consider a path
Px,y in K from x to y (not directed). Let ex be the edge incident to x in Px,y and ey be the
edge incident to y in Px,y. Let Kx denote the component of K − ey which contains x, and let
Ky denote the component of K − ex which contains y.

Claim 3.7. er(Kx) ≤ er(T2) and er(Ky) ≤ er(T1).

Proof. By symmetry, we will only show that er(Kx) ≤ er(T2). So suppose towards a con-
tradiction that er(Kx) > er(T2). Then exchange on (y, y′) and ey. As er(Kx) > e(T2), the
residue function does not increase. Observe that if K is the root, then the residue function
will decrease, and that will give a contradiction. Thus we may assume that K is not the root.
We claim we can find a smaller legal order. If there is a vertex which witnesses the legal order
for K in Kx, then taking the same legal order up to K and then replacing K with Kx gives
a smaller legal order. Similarly, if there is no vertex which witnesses the legal order in Kx,
then because er(Kx) > er(T2), taking the same legal order up to K and replacing K with
the component containing y of K − ey after the exchange, and filling in the rest of the order
arbitrarily gives a smaller legal order. In both cases, this is a contradiction. �
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Note that either er(K) ≤ er(Kx) + er(Ky) or er(K) ≤ er(Kx) + er(Ky)− 1 (the first case
occurs if ey 6= ex, and the second occurs if ey = ex). Since each Ti is a small child, Claim 3.7
(together with Observation 2.9) implies that

er(Kx) + er(Ky) <
d

k + 1
+

d

k + 1
≤ d.

Hence, er(K) ≤ d. Thus we can assume that K is not the root. Let w be a vertex which
witnesses the legal order. Without loss of generality, we can assume that w ∈ V (Kx). Then
exchange on (y, y′) and ey. We do not increase the residue function as er(Ky) ≤ er(T1) <

d
k+1 .

However, we can find a smaller legal order by taking the same legal order up to K, and
replacing K with Kx, and completing this order arbitrarily. But this contradicts our choice
of legal order, a contradiction. �

We are now in position to prove the theorem.

4. Bounding the maximum average degree

In this section, we give a counting argument to show that our chosen exploration subgraph
has too large average degree. We make the following definition for ease of notation.

Definition 4.1. Let K be a red component, and let K1, . . . ,Kq be the small red children of
K. We will let KC denote the subgraph with vertex set V (KC) = V (K)∪V (K1)∪· · ·∪V (Kq),
that contains all red edges from K,K1, . . . ,Kq.

Lemma 4.2. Let K be a red component which is not small. Then KC is not small. Further,

if er(K) > d, then

er(KC)

v(KC)
>

d

d+ k + 1
.

Proof. First, observe that if K has no small children then KC = K and hence is not small. If
er(K) > d, then as K is connected, v(K) ≤ er(K) + 1 and hence er(K)/v(K) ≥ (d+1)/(d+
2) > d/(d + k + 1). Thus we can suppose that K has small children K1, . . . ,Kq. By Lemma
3.6, q ≤ k. By Lemma 3.4, we know for every i ∈ {1, . . . , q} the inequality er(K)+er(Ki) ≥ d
holds. As er(Ki) ≥ 0 for all i ∈ {1, . . . , q}, it follows that er(Ki) ≥ max{0, d − e(K)} for all
i ∈ {1, . . . , q}.

Then a quick calculation shows

er(KC)

v(KC)
=

er(K) +
∑q

i=1 er(Ki)

v(K) +
∑q

i=1 v(Ki)

≥
er(K) +

∑q
i=1max{0, d − er(K)}

er(K) + 1 + q +
∑q

i=1 max{0, d − er(K)}

≥
er(K) +

∑q
i=1max{0, d − er(K)}

er(K) + 1 + k +
∑q

i=1max{0, d − er(K)}
.

The first equality is simply applying the definition of KC . The first inequality uses that
er(Ki) ≥ max{0, d − er(K)}, and that as Ki is small, Ki is a tree, so v(Ki) = er(Ki) + 1.
Finally, the second inequality is using that q ≤ k. Now we split this into two cases based on
whether or not max{0, d − er(K)} is 0 or d− er(K).

Case 1: max{0, d − er(K)} = 0.
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If max{0, d − er(K)} = 0, then er(K) ≥ d. Thus it follows that,

er(K) +
∑q

i=1 max{0, d − er(K)}

er(K) + 1 + k +
∑q

i=1 max{0, d − er(K)}
=

er(K)

er(K) + k + 1

≥
d

d+ k + 1
.

Further, if er(K) > d, the above inequality is strict.
Case 2: max{0, d − er(K)} = d− er(K). As er(K) ≤ d, we only need to show that K is

not small. Calculating we obtain,

er(K) +
∑q

i=1max{0, d− er(K)}

er(K) + 1 + k +
∑q

i=1max{0, d − er(K)}
=

er(K) + q(d− er(K))

er(K) + q(d− er(K)) + k + 1

≥
d− er(K) + er(K)

er(K) + d− er(K) + k + 1

=
d

d+ k + 1
.

�

Now we finish the proof. Let R denote the set of red components of Hf,D,R which are not
small. By Corollary 3.5 it follows that,

V (Hf,D,R) =
⋃

K∈R

V (KC).

This follows since a small component cannot have a small child. Therefore it follows that:

Er(Hf,D,R) =
⋃

K∈R

E(KC).

Now we bound the maximum average degree of Hf,D,R. By Lemma 4.2, we have

er(Hf,D,R)

v(Hf,D,R)
=

∑
K∈R er(KC)∑
K∈R v(KC)

>
d

d+ k + 1
.

Here, equality holds in the first line because we chose unique parents for components. The
strict inequality follows as KC is not small for any K ∈ R by Lemma 4.2, and further the
root component satisfies e(R) > d. However, this contradicts Observation 2.7. Theorem 1.7
follows.
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