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SUBDIVISIONS OF DIGRAPHS IN TOURNAMENTS

ANTÓNIO GIRÃO, KAMIL POPIELARZ, AND RICHARD SNYDER

Abstract. We show that for every positive integer k, any tournament with minimum out-

degree at least (2+ o(1))k2 contains a subdivision of the complete directed graph on k vertices,

which is best possible up to a factor of 8. This may be viewed as a directed analogue of a theorem

proved by Bollobás and Thomason, and independently by Komlós and Szemerédi, concerning

subdivisions of cliques in graphs with sufficiently high average degree. We also consider the

following problem: given k, what is the smallest positive integer f(k) such that any f(k)-vertex

tournament contains a 1-subdivision of the transitive tournament on k vertices? We show that

f(k) = O
(

k2 log3 k
)

which is best possible up to the logarithmic factors.

1. Introduction

The complete directed graph on k vertices, denoted by
−→
Kk, is a directed graph in which every

pair of vertices is connected by an edge in each direction. As usual, we say that a tournament

T contains a subdivision of
−→
Kk if it contains a set B of k vertices and a collection of 2

(k
2

)

pairwise internally vertex disjoint directed paths joining every ordered pair of vertices in B. We

denote such a subdivision by T
−→
Kk, and the vertices in B are called the branch vertices of the

subdivision. Our main aim in this note is to investigate the density conditions under which a

tournament must contain a T
−→
Kk, where by ‘density’ we mean specifically minimum out-degree.

The undirected analogue of this line of research has been studied extensively. The story begins

with Mader [9], who showed that any graph with sufficiently large average degree contains

a subdivision of the complete graph on k vertices. Later, in [10] he showed that average

degree at least c2k suffices. It is not hard to show that the random graph G(n, 1/2) with high

probability contains a subdivision of a clique with
√
n/10 vertices (and with high probability

does not contain a subdivision of a clique on at least 10
√
n vertices). This motivated Mader [9],

and independently Erdős and Hajnal [3], to conjecture that any graph with average degree at

least ck2, for some constant c, should necessarily contain a subdivision of Kk. This was later

established by Bollobás and Thomason [2], and independently by Komlós and Szemerédi [7].

Given these results, it is natural to consider the problem in the directed setting, with a suitable

density condition. It is not hard to see that average degree is not the right density condition: a

transitive tournament has large average degree, yet clearly cannot even contain a subdivision of−→
K2. But what about large minimum out/in-degree? This, again, does not hold, but the reason

is more subtle. Indeed, Thomassen [14] constructed digraphs on n vertices with minimum out-

degree at least c log n which contain no directed cycles of even length; since any subdivision of−→
K3 must contain an even cycle, these digraphs do not contain T

−→
Kk for any k ≥ 3. On the other
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hand, Kühn, Osthus and Young [8] showed that any digraph on n vertices with minimum out-

degree d contains a subdivision of a complete digraph of order ⌊d2/(8n3/2)⌋, implying that any

digraph on n vertices with minimum out-degree
√
8kn3/4 contains a subdivision of a complete

digraph on k vertices.

The above discussion has left out the case of tournaments: Is it true that tournaments with

large enough minimum out-degree contain a subdivision of the complete directed graph? The

first and last author [5] answered this question in the affirmative: for every positive integer k

there is an m(k) such that any tournament with minimum out-degree at least m(k) contains a

subdivision of the complete directed graph on k vertices. This result was an important step in

the proof of a partial resolution of a conjecture of Pokrovskiy [12]. They proved this with m(k)

doubly-exponential in k2. Our main result in this paper is to show that we may actually take

m(k) to be merely quadratic in k. To state our main theorem, let us introduce the following

function defined for every integer k ≥ 2:

d(k) = min{m : any tournament T with δ+(T ) ≥ m contains a T
−→
Kk}.

For example, observe that d(2) = 1. We are able to determine d(k) for all k ≥ 3 up to a

factor of 8.

Theorem 1.1. We have that

k2/4 ≤ d(k) ≤ (2 + o(1))k2,

where the o(1) term goes to zero as k → ∞.

The lower bound is simple: any k2/4-regular tournament on k2/2 vertices cannot contain a

T
−→
Kk simply because such a subdivision has at least

(

k
2

)

+ k > k2/2 vertices. This is true, for

example, of a random tournament on k2/2 vertices, as such a tournament with high probability

has minimum out-degree (1− o(1))k2/4. We do not know if there are better constructions, and

we leave the exact determination of d(k) as an open problem.

Finally, we consider a similar problem for embedding subdivisions of transitive tournaments.

Recall that a tournament is transitive if there is an ordering of the vertices such that every edge

goes in the same direction. We denote by Tk the transitive tournament on k vertices, and we

denote by TTk any subdivision of Tk. In the context of embedding subdivisions of transitive

tournaments in general directed graphs, Scott [13], answering a question of Jagger [6], showed

that for r ≥ 2 and n ≥ n(r) every directed graph on n vertices with more edges than the

r-partite Turán graph T (r, n) contains a TTr+1. As for minimum degree conditions, Mader [11]

conjectured that for all k there is f(k) such that any digraph with minimum outdegree f(k)

contains a subdivision of Tk. This conjecture remains open to this day, even for k = 5.

Let T (k) denote the smallest integer such that any tournament on T (k) vertices contains a

transitive tournament of order k. A well-known theorem of Erdős and Moser [4] states that

2(k−1)/2 ≤ T (k) ≤ 2k−1. In particular, any tournament on at least 2k−1 vertices contains a

transitive subtournament on k vertices. If instead of finding a copy of a transitive tournament

we allow each edge to be replaced by a directed path of length at most 3, then the following

result holds.

Theorem 1.2. There is a constant C > 0 such that the following holds. For all k ≥ 2, any

tournament on at least Ck2 vertices contains a TTk, where each directed path in the subdivision

has length at most 3. Moreover, this is tight up to the multiplicative constant.
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It is natural to ask if a similar lower bound on the number of vertices allows us to embed

1-subdivisions: subdivisions where each edge is replaced by a directed path of length 2. An old

conjecture of Erdős, confirmed by Alon, Krivelevich and Sudakov [1], states that any graph on n

vertices and at least εn2 edges contains a 1-subdivision of a complete graph on c(ε)
√
n vertices

(in fact, they show that this holds with c(ε) = O(ε)). We obtain a partial directed analogue of

this result, up to log factors.

Theorem 1.3. Any tournament on at least Ck2 log3 k vertices contains a 1-subdivision of Tk.

We are able to prove this with C = 107, but no attempt is made to optimize this constant,

as we believe that the same result should hold after removing the log factors (see Section 4 for

a conjecture along these lines).

1.1. Notation and Organization. Our notation is standard. Thus, for a vertex v in a dir-

ected graph G, we let N+
G (v), N−

G (v) denote the out-neighbourhood and in-neighbourhood of

v, respectively. Moreover, we let d+G(v) = |N+
G (v)| denote the out-degree of v, and analogously

d−G(v) the in-degree of v. We often omit the subscript ‘G’ when the underlying digraph is clear.

We denote by δ+(G) the minimum out-degree of G; further, if X ⊂ V (G), we write δ+(X) to

mean the minimum out-degree of G[X]. For a subset X ⊂ V (G) we let N+(X) denote the set
⋃

x∈X N+(x). Lastly, if X,Y ⊂ V (G), we write X → Y if every edge of G between X and Y is

directed from X to Y .

The remainder of this paper is organized as follows. In Section 2, we prove our main theorem,

Theorem 1.1. In fact, we shall establish a quantitative version that implies Theorem 1.1 (see

Theorem 2.4). The proof requires two preparatory lemmas, which we state and prove first.

In Section 3, we establish our results Theorem 1.2 and Theorem 1.3 concerning embedding

subdivisions of transitive tournaments in large enough tournaments. Finally, we conclude in

Section 4 with a further consequence of the general method of this paper, and collect a few open

problems.

2. Subdivisions of complete directed graphs

Our aim in this section is to prove the upper bound d(k) ≤ (2+ o(1))k2 in Theorem 1.1. The

proof relies on two lemmas, which we prove first. The first lemma allows us to find k vertices

whose in-degrees do not differ by much; such vertices will serve as the branch vertex set of

our potential subdivision. Our second lemma yields a dichotomy: either we can find a partial

subdivision which contains many paths of length 2 or 3, or we can disconnect the tournament

in a particularly nice way. We first isolate the following simple fact, as it will be used elsewhere.

Fact 2.1. Let T be a tournament. Then for every positive integer ℓ there are at most 2ℓ + 1

vertices in T of in-degree (out-degree) at most ℓ.

Proof. If L is the set of vertices in T of in-degree at most ℓ, then

ℓ|L| ≥
∑

v∈L

d−(v) ≥
(|L|

2

)

,

implying the bound |L| ≤ 2ℓ+ 1, as claimed. The proof for ‘in-degree’ replaced by ‘out-degree’

is identical. �
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Lemma 2.2. Suppose k ≥ 3 is an integer and let α > 0. If T is a tournament with at least

2αk2 + (20α+4)k7/4 vertices, then there exists a set B of k vertices and a number m such that

for every v ∈ B:

• d−(v) ≥ αk2 + 2k7/4.

• d−(v) ∈ [m− k7/4,m+ k7/4].

Additionally, if |T | = 2αk2 + (20α + 4)k7/4, then d+(v) ≤ m+ (20α + 1)k7/4 for every v ∈ B.

Proof. By Fact 2.1 there must exist at least |T | − 2αk2 − 4k7/4 vertices in T whose in-degree is

at least αk2 + 2k7/4. If we partition the interval [αk2 + 2k7/4, |T |] into consecutive intervals of

size k7/4, then there must exist at least

k7/4 · |T | − 2αk2 − 4k7/4

|T | − αk2 − 2k7/4
≥ k

vertices in the same interval. Note that the above inequality holds since it is equivalent to

|T |(k3/4 − 1) ≥ 2αk11/4 + 4k10/4 − αk2 − 2k7/4,

and it is not hard to verify that this is true for k ≥ 3, using the assumption that |T | ≥ 2αk2 +

(20α+ 4)k7/4. Finally, if v is one of the k vertices found above and |T | = 2αk2 + (20α+ 4)k7/4,

then d+(v) ≤ |T | − αk2 − 2k7/4 = αk2 + k7/4 + (20α + 1)k7/4. Therefore,

m ≥ αk2 + k7/4 ≥ d+(v)− (20α + 1)k7/4,

establishing the last claim of the lemma. �

We say that a subset B of vertices is (α,m, k)-balanced if it satisfies the two properties

guaranteed by Lemma 2.2. Additionally, T
−→
Kk(ℓ1, ℓ2) denotes a partial subdivision of

−→
Kk with

precisely ℓ1 paths of length 2, ℓ2 paths of length 3, and no paths of length greater than 3. If

U ⊂ V (T ) disconnects T , then T \ U decomposes as S ∪ T ′ where S ∩ T ′ = ∅, S, T ′ 6= ∅, and

S → T ′. In this situation, we call S the source component, and T ′ the sink. The following key

lemma says that either we can find a suitable T
−→
Kk(ℓ1, ℓ2), or there exists a subset U of vertices

which disconnects T , and such that the source component of the remaining tournament is quite

large.

Lemma 2.3. Suppose k ≥ 3 is an integer, T is a tournament with δ+(T ) ≥ k2 + 2k7/4, and

suppose B ⊂ V (T ) is an (α,m, k)-balanced subset of k vertices for some α,m > 0. Then one of

the following must occur:

(1) There is a copy of T
−→
Kk(ℓ1, ℓ2) in T with branch vertex set B such that

4(ℓ1 + ℓ2) + 6k7/4 > m.

(2) There is a subset U ⊂ V (T ) that disconnects T such that the source component S of

T \ U satisfies |S| ≥ |U |+ k. Moreover, the sink T \ (U ∪ S) has size at least k.

Proof. Let B be an (α,m, k)-balanced k-set of vertices in T , and suppose (1) fails in the state-

ment of the lemma. List the edges e1, . . . , eN of T ∗[B] whereN :=
(k
2

)

, and T ∗ is the tournament

obtained from T by reversing T ’s edges. Then for any permutation σ : [N ] → [N ] there is an

index f = f(σ) such that the edges eσ(1), . . . , eσ(f−1) can be successfully embedded as paths of

length 2 or 3, but eσ(f) cannot, and the resulting copy of T
−→
Kk(ℓ1, ℓ2) satisfies

m ≥ 4(ℓ1 + ℓ2) + 6k7/4.
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Pick an ordering σ such that the number of paths ℓ1 of length 2 in the partial subdivision

S with embedded edges eσ(1), . . . , eσ(f−1) is maximized. Without loss of generality, we may

assume σ is the identity permutation, and let ef = xy. Since ef fails to embed we must

have that every edge is directed from N−(y) \ V (S) to N+(x) \ V (S). Similarly, we have that

W = N+(x)∩N−(y) ⊂ V (S). Let A denote the set of ℓ1 non-branch vertices that are on paths

of length 2 in S. We claim that, in fact, W ⊂ A ∪ B. Indeed, if there is ei = uv, i < f , and a

u− v path uzwv with, say, z ∈ W , then consider the embedding order where we swap ei and ef

and embed ef using the 2-path xzy. This is a legal embedding of ef , as z does not belong to

any of the subdivided edges ej with j 6= i, f . But now we have an embedding order with more

directed paths of length 2 in the partial subdivision, contradicting our choice of σ.

Now since B is (α,m, k)-balanced, all in-degrees differ by at most k7/4, and so

|N−(x) \N−(y)| ≤ |N−(y) \N−(x)|+ k7/4

= |W |+ k7/4.

≤ ℓ1 + k + k7/4.

Note that the last inequality holds since W ⊂ A ∪ B. Now, let U = V (S) ∪ (N−(x) \N−(y))

and observe that |U | satisfies the upper bound

|U | ≤ 2ℓ2 + ℓ1 + k + (ℓ1 + k + k7/4)

= 2(ℓ1 + ℓ2) + 2k + k7/4

Then T \U is disconnected with source component S = N−(y) \U and sink N+(x) \ V (S). By
the minimum out-degree condition on T , the sink has at least k2+2k7/4−(2

(

k
2

)

+k) > k vertices.

Finally, as |S| ≥ |N−(y)|−|U |, and recalling that |N−(y)| ≥ m−k7/4 and m ≥ 4(ℓ1+ℓ2)+6k7/4,

we have

|S| ≥ (m− k7/4)− (2(ℓ1 + ℓ2) + 2k + k7/4)

≥ 2(ℓ1 + ℓ2) + 4k7/4 − 2k

≥ |U |+ (3k7/4 − 4k)

≥ |U |+ k,

where the last inequality follows since k ≥ 3. This completes the proof of the lemma. �

With the above lemma complete, we are ready to prove the main result of this section.

Theorem 2.4. Let k ≥ 2 be an integer. Any tournament T with δ+(T ) ≥ 2k2+147k7/4 contains

a T
−→
Kk. Moreover, this subdivision has the property that each edge is subdivided at most twice.

The rough idea of the proof is as follows. We shall iteratively apply Lemma 2.3: if at some

point we find a partial subdivision with many paths of length 2 or 3, then we stop. Otherwise,

we obtain a cut set U with source component S satisfying |S| ≥ |U |, and look to apply the

lemma again to T \ (U ∪ S). Eventually we either obtain a partial subdivision S, or reach a

subtournament T ′ that is quite small. In the first case, we show how to extend this partial

subdivision to a full subdivision. In the latter case, since T ′ is small and the minimum out-

degree is large, every vertex in T ′ has many out-neighbours outside of T ′. We use this fact,
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together with some structural features of the cut sets and source components, to embed the

requisite paths. Let us now make these ideas more precise.

Proof of Theorem 2.4. We may assume that k ≥ 3 as any tournament with δ+(T ) ≥ 1 contains

a directed cycle (i.e., a subdivision of
−→
K2). We shall apply Lemma 2.3 repeatedly to obtain

subtournaments T1 := T, T2, . . ., and subsets U0 := ∅, U1, U2, . . ., such that for every i ≥ 1

• Ui ⊂ Ti.

• |Ti| ≥ k.

• Ti ⊂ Tj if i > j.

• Ti \ Ui is disconnected with source component Si satisfying |Si| ≥ |Ui| and such that

|Ti \ (Ui ∪ Si)| ≥ k.

Indeed, set T1 = T , U0 = ∅ and suppose Ti, Ui−1 have already been defined for some i ≥ 1.

We shall show how to obtain Ti+1 and Ui as follows. We claim that either Ti contains a

subtournament T ′
i which has large minimum out-degree, or we can find k vertices of small

minimum out-degree in Ti. To make this precise, initialize R = ∅. If there is a vertex v in

T ′
i = Ti with d+

T ′

i

(v) < k2 + 12k7/4, then add it to the set R. Looking at T ′
i = Ti \ {x}, we

repeat the same process to Ti \ {x} and so on. Either we obtain |R| = k or T ′
i = (Ti \ R) 6= ∅

with |R| < k (as |Ti| ≥ k) and δ+(T ′
i ) ≥ k2 + 12k7/4. As δ+(T ′

i ) ≥ k2 + 12k7/4 we easily have

|T ′
i | ≥ 2k2 + 24k7/4. Choose a real number α ≥ 1 such that

|Ti| = 2αk2 + (20α + 4)k7/4,

and apply Lemma 2.2 to Ti. We obtain an (α,m, k)-balanced subset Bi ⊂ V (T ′
i ) of k vertices,

for some m. Now apply Lemma 2.3 to T ′
i and Bi. If condition (1) holds from the lemma, then

we terminate the procedure at step i and obtain a partial subdivision S = T
−→
Kk(ℓ1, ℓ2) in Ti on

branch vertex set Bi satisfying

4(ℓ1 + ℓ2) + 6k7/4 > m.

Otherwise, (2) holds. Let U ′
i be the cut set and S′

i the source component, and moreover, let

Ci = U ′
i ∪R. Note that by (2) of Lemma 2.3 we have |S′

i| ≥ |U ′
i |+k ≥ |Ci|, and the sink, namely

Ti \ (Ci ∪ S′
i), has size at least k.

It follows that we may choose a set Ui ⊂ Ti of minimum possible size such that Ti \ Ui is

disconnected with source component Si satisfying |Si| ≥ |Ui|, and such that the sink Ti+1 has

size at least k. We can continue applying the same argument to Ti+1. Note that eventually this

process must terminate. Indeed, for each i we have that |Ti+1| < |Ti| (as |Ui ∪ Si| ≥ 1). So we

must reach a stage t where for which Tt+1 either contains a partial subdivision S as per (1) of

Lemma 2.3, or we find k vertices all of which have less than k2 +12k7/4 out-neighbours in Tt+1.

Thus we have established the following:

Claim 1. The above procedure terminates at some stage t ≥ 1 with either

(1) a partial subdivision S = T
−→
Kk(ℓ1, ℓ2) ⊂ Tt+1 satisfying 4(ℓ1 + ℓ2) + 6k7/4 > m, or

(2) a subset B ⊂ Tt+1 of k vertices with d+Tt+1
(v) < k2 + 12k7/4 for every v ∈ B. �

We shall denote by B either the branch vertex set of S in the first case of Claim 1, or the

k-set obtained in the second case. This set B will play the role of the branch vertex set of the

full subdivision we wish to embed. Let U =
⋃t

i=1 Ui and S =
⋃t

i=1 Si. The following claim

asserts that for each i ∈ [t] all subsets of Ui send many out-edges to Si.
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Claim 2. For each i ∈ [t] the following holds: for every non-empty subset X ⊆ Ui

|N+(X) ∩ Si| ≥ |X|/2.

Proof. Let X be a non-empty subset of Ui. If Si ⊂ N+(X), then

|N+(X) ∩ Si| = |Si| ≥ |Ui| ≥ |X|,

where the first inequality holds by definition of the sets Ui and Si. So we may assume that Si is

not contained in N+(X). If the claim is false, then replace Ui by U ′
i = (Ui \X)∪ (N+(X) ∩Si)

and set S′
i = Si \ N+(X). The set U ′

i has size strictly smaller than the size of Ui and still

disconnects Ti. Moreover,

|S′
i| = |Si| − |N+(X) ∩ Si|
≥ |Ui| − |X|/2
≥ |Ui| − |X|+ |N+(X) ∩ Si| = |U ′

i |,

which contradicts the minimal choice of Ui. This completes the proof of the claim. �

The next lemma asserts that, as long as vertices in B send enough out-neighbours outside of

Tt+1, then we may embed the required internally vertex disjoint directed paths joining prescribed

pairs in B.

Lemma 2.5. Let ℓ ≥ 1 be an integer and let (x1, y1), . . . , (xℓ, yℓ) be distinct pairs of vertices in

B with xi 6= yi for each i ∈ [ℓ]. If every vertex in B has at least 2ℓ out-neighbours in T \ Tt+1,

then there exist pairwise internally disjoint directed paths Pi of length 3 joining xi to yi for every

i ∈ [ℓ].

Before proving the lemma, we record the following simple consequence of Hall’s theorem that

we need.

Proposition 2.6. Suppose G is a bipartite graph with vertex sets U, V such that |N(X)| ≥ |X|/2
for every X ⊂ U . Then there is a set M ⊂ E(G) with the property that every vertex in U is

incident to exactly one edge in M , and every vertex in V is incident to at most two edges of M .

Proof. For every v ∈ V add a new vertex v′ and join v′ to all of v’s neighbours; call the resulting

graph G′. Then for every X ⊂ U we have |NG′(X)| ≥ |X|, so by Hall’s theorem there is a

matching of U in G′. The result follows by identifying vertices in V with their duplicates. �

Proof of Lemma 2.5. Combining Claim 2 with Proposition 2.6, it follows that for each i ∈ [t]

there is a partition Ui = U ′
i∪U ′′

i such that U ′
i and U ′′

i are both matched into Si. Let U
′ =

⋃t
i=1 U

′
i

and U ′′ =
⋃t

i=1 U
′′
i so that U = U ′ ∪ U ′′, and fix a directed matching M ′ from U ′ to S, and

a directed matching M ′′ from U ′′ to S. Additionally, for each i ∈ [ℓ] let Ni denote the out-

neighbourhood of xi in T \ Tt+1. Observe that some of these Ni’s may repeat (as some of the

xi’s may repeat among the ℓ pairs). Also, since S → Tt+1,

|Ni| = |N+(xi) ∩ U | ≥ 2ℓ,

for each i = 1, . . . , ℓ. Let X ′ ⊂ [ℓ] be those indices i for which |Ni ∩ U ′| ≥ ℓ and X ′′ = [ℓ] \X ′.

Note that by our assumption that each xi has at least 2ℓ out-neighbours outside of Tt+1, it

follows that |Ni ∩ U ′′| > ℓ for each i ∈ X ′′. Now, we may pick |X ′| ≤ ℓ distinct vertices in

U ′ such that each vertex is an out-neighbour of one of the xi’s with i ∈ X ′. Thus we obtain
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a collection P of directed paths of length 3 by using the appropriate matching edge from M ′,

and the fact that S → {y1, . . . , yℓ}. It remains to find the analogous directed paths joining

(xi, yi) for i ∈ X ′′. Let A denote the set of |X ′| vertices in S used in paths in P. Remove from

U ′′ every vertex which is matched by M ′′ to a vertex of A; obviously we remove at most |X ′|
vertices, so each xi with i ∈ X ′′ has more than ℓ−|X ′| = |X ′′| suitable out-neighbours left in U ′′.

Therefore we can pick |X ′′| distinct vertices in U ′′ with the property that each such vertex is an

out-neighbour of one of these xi’s, and use the appropriate matching edges from M ′′ (avoiding

A) as before. Hence, we have found paths joining all pairs, completing the proof. �

Now we are ready to complete the proof of Theorem 2.4. Suppose first that we are in Case (2)

of Claim 1; that is, d+Tt+1
(v) < k2 + 12k7/4 for every v ∈ B. Then by the minimum out-degree

condition on T , we have that each vertex in B has more than k2 out-neighbours outside of Tt+1,

and as k2 > 2
(

k
2

)

, Lemma 2.5 implies that we can embed all the required
(

k
2

)

paths.

So we may assume that we are in Case (1). Then we have a partial subdivision S =

T
−→
Kk(ℓ1, ℓ2) on branch vertex set B, where B is (α,m, k)-balanced for some α ≥ 1. As

4(ℓ1 + ℓ2) + 6k7/4 > m, one has

αk2 + k7/4 ≤ m < 4

(

k

2

)

+ 6k7/4,

so crudely we have α ≤ 7. As we need to embed
(k
2

)

− ℓ1− ℓ2 more paths, in view of Lemma 2.5

and the minimum out-degree condition δ+(T ) ≥ 2k2 + 147k7/4, we are done provided

2k2 + 147k7/4 − d+Tt+1
(v) ≥ 2

((

k

2

)

− ℓ1 − ℓ2

)

holds for every v ∈ B. But this is true since by Lemma 2.2 we have d+Tt+1
(v) ≤ m + (20α +

1)k7/4 ≤ m+ 141k7/4 for every v ∈ B, and so

2

(

k

2

)

− 2(ℓ1 + ℓ2) + (m+ 141k7/4) < k2 + 2(ℓ1 + ℓ2) + 147k7/4

≤ 2k2 + 147k7/4,

where the first inequality follows using the bound m < 4(ℓ1+ ℓ2)+6k7/4, and the last inequality

holds since always ℓ1 + ℓ2 ≤
(k
2

)

. Thus we may embed all remaining paths yielding a T
−→
Kk in

T . �

Observe that our proof shows that we can embed a T
−→
Kk where each path in the subdivision

has length at most 3. We remark that this is best possible in the sense that there exist tour-

naments with large minimum out-degree which cannot contain copies of T
−→
Kk where each path

has length at most 2. For example, it is routine to check that a blow-up of a cyclic triangle

where each class is a copy of the transitive tournament on 10k2 vertices has this property.

3. Subdivisions of transitive tournaments

Our aim in this section is to prove Theorem 1.2 and Theorem 1.3. We begin with a lemma

similar in spirit to Lemma 2.2, but which is tailored to our specific needs in this section. To

state it, we say that a subset B ⊂ V (T ) is C-nearly-regular if either d−(v) ≤ d+(v) ≤ Cd−(v)

for every v ∈ B, or d+(v) ≤ d−(v) ≤ Cd+(v) for every v ∈ B. Further, B is (C,m, k)-nearly-

regular if it is C-nearly-regular and additionally d−(v) ∈ [m−10k,m+10k] for every v ∈ B. The

following lemma allows us to find (4,m, k)-nearly-regular k-element subsets in tournaments.
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Lemma 3.1. Any tournament T contains a 4-nearly-regular subset of size |T |/10, and a

(4,m, k)-nearly-regular subset of size k, for some m.

Proof. We first claim that T contains a 4-nearly-regular subset of size at least |T |/10. Indeed,

let |T | = n and let R ⊂ V (T ) be the vertices for which either the ratio between the out-

neighborhood and in-neighbourhood (or vice-versa) is between 1 and 4. If |R| ≥ n/5, then we

are done, as we may pass to a subset A ⊂ R of at least half the size for which the property is

satisfied for one or the other. If not, then let T ′ = T \R, so that |T ′| ≥ 4n/5. Let T ′
1 be the set

of vertices v ∈ V (T ′) for which d+T (v) > 4d−T (v) and T ′
2 be those vertices v ∈ V (T ′) for which

d−T (v) > 4d+T (v). Suppose without loss of generality that |T ′
1| ≥ |T ′

2|, so that |T ′
1| ≥ 2n/5. This

implies that there is a vertex u in T ′
1 which has in-degree inside T ′

1 at least n/5. But then

n/5 ≤ d−T (u) <
1

4
d+T (u) ≤ n/5,

a contradiction.

Thus, we can always find a 4-nearly-regular subset A of size at least |T |/10. As in the proof of

Lemma 2.2, partition the interval [1, . . . , |T |] into consecutive intervals of size 10k, and distribute

the vertices of A according to their in-degrees in T . By the pigeonhole principle, there must

exist at least

10k · |A||T | ≥ 10k · 1

10
= k

vertices in the same interval. These k vertices form a (4,m, k)-nearly-regular subset for some

m. �

We are now in a position to prove Theorem 1.2, which we restate here for convenience. The

proof is not very different from that of Lemma 2.3: either we can find what we are looking for,

or we can pass to a ‘nice’ subtournament which allows us to embed the required subdivision by

induction.

Theorem 1.2. There is a constant C > 0 such that the following holds. For all k ≥ 2, any

tournament on at least Ck2 vertices contains a TTk, where each directed path in the subdivision

has length at most 3. Moreover, this is tight up to the multiplicative constant.

Proof. First, observe that with high probability a uniformly random tournament T on k2/10

vertices does not induce a set of size k whose distance to a transitive tournament is smaller than

k2/6. This implies T can not contain a TTk since any such subdivision must span at least k2/6

vertices. Let C = 150. We shall apply induction on k. For k = 2, the statement holds trivially

since any tournament with at least 2 vertices contains a subdivision of a transitive tournament

on 2 vertices. Suppose we want to prove the statement for k. Let T be a tournament on Ck2

vertices. Applying Lemma 3.1 to T , we obtain a (4,m, k)-nearly-regular set S ⊂ T consisting

of k vertices. Without loss of generality, assume that d−(v) ≤ d+(v) ≤ 4d−(v) holds for every

v ∈ S. We shall iteratively try to embed a subdivision on these k branch vertices. Observe

that we may always choose an ordering σ of S for which we just need to embed
(k
2

)

/2 extra

paths to find a transitive subdivision. Suppose we are at step i <
(

k
2

)

and we have already

found i paths of the subdivision; we may assume i is maximal. Let P ⊂ T be the set consisting

of the inner vertices of the paths already found. Note that |P | ≤ 2 · k2/4, since each path we

have embedded has at most 2 inner vertices. Suppose now we want to find a directed path

from x to y (where x lies before y in the ordering σ of S). By the maximality of i, we must
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have N+(x) ∩ N−(y) ⊂ P ∪ S, so |N+(x) ∩N−(y)| ≤ k2/2 + k ≤ k2. Furthermore, since S is

(4,m, k)-nearly-regular,

|N−(x) ∩N+(y)| ≤ |N+(x) ∩N−(y)|+ 10k

≤ k2 + 10k

≤ 4k2.

Delete the set (N+(x) ∩N−(y)) ∪ (N−(x) ∩N+(y)) from T and denote by T ′ the remaining

tournament. Then T ′ splits into two disjoint sets A,B where A is the common out-neighborhood

of x, y, and B is the common in-neighborhood of x, y. We claim that the partition V (T ′) = A∪B
satisfies the following two properties:

(1) |A|+ |B| ≥ (1− 1/30)|T |.
(2) min{|A|, |B|} ≥ |T |/6.
To see the the first property, simply observe that we have removed at most 5k2 vertices to

obtain T ′, and therefore |A|+ |B| ≥ (1−1/30)150k2 = (1−1/30)|T |. To see the second property,

since S is (4,m, k)-nearly-regular, for every v ∈ S

d−(v) ≥ d+(v)/4 = (|T | − d−(v))/4,

implying d−(v) ≥ |T |/5. Then also d+(v) ≥ d−(v) ≥ |T |/5. It follows that min{|A|, |B|} ≥
|T |/5− 5k2 ≥ |T |/6 (using our choice of C), as claimed

Without loss of generality suppose that |A| ≤ |B|. If there is a directed edge from A to

B, we may find a directed path from x to y of length 3, which contradicts the maximality of

i. Accordingly, B → A. Since |A| ≥ |T |/6 = Ck2/6 ≥ C(2k/5)2, the induction hypothesis

guarantees a subdivision of a transitive tournament on 2k/5 vertices in T [A], where each path

has length at most 3. Similarly, T [B] contains a subdivision of a transitive tournament on 3k/5

vertices, because |B| ≥ (1/2 − 1/60)Ck2 ≥ C(3k/5)2. As B → A, these two subdivisions may

be put together to form a subdivision of a transitive tournament on k vertices where each path

has length at most 3. �

We close this section by proving Theorem 1.3 (recall that a 1-subdivision of Tk is a subdivision

of the transitive tournament of order k where each directed path has length 2).

Theorem 1.3. Any tournament on at least Ck2 log3 k vertices contains a 1-subdivision of Tk.

Before proving this theorem we need a lemma. Given a graph G and a vertex x ∈ V (G)

we denote by Br(x) = {v ∈ V (G) : dG(x, v) ≤ r} the ball of radius r in G around x. The

following states that if G has the property that every ball of radius C log2 n is small, then G

can be disconnected by o(n) vertices into many small components. Recall that log n denotes

the logarithm of n to the base e.

Lemma 3.2. Let G be an n-vertex graph with the property that for any r ≤ 10 log2 n and any

vertex x we have |Br(x)| ≤ n
5 logn . Then G contains a set S ⊂ V (G) of size at most n

5 logn such

that G− S is the union of connected components each of which has size at most n
5 logn .

Proof. Pick a vertex x ∈ V (G) and perform a breadth-first-search from x, obtaining levels

L0, L1, . . . , Ln such that Li = {v ∈ V (G) : d(x, v) = i}. Denote by k = 10 log2 n. We claim that

there is a k′ < 10 log2 n for which |Lk′ | < |Bk′−1(x)|/(5 log n). If not, for any k′ < 10 log2 n, we
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have

|Bk′(x)| ≥
(

1 +
1

5 log n

)

|Bk′−1(x)|,

and hence by induction |Bk(x)| ≥
(

1 + 1
5 logn

)k
. Using the inequality 1 + x ≥ e

x

x+1 (valid for

any x > −1) with x = 1 + 1/5 log n we obtain

1 +
1

5 log n
≥ e

1
1+5 log n ≥ e

1
10 log n .

Hence, since k = 10 log2 n, this yields |Bk(x)| > (e
1

10 log n )10 log
2 n > n, which is clearly a contra-

diction.

So we may choose k′ < k such that |Lk′ | < |B
k′−1(x)|

5 logn ; remove Lk from G. Pick a vertex from

each connected component of size larger than n
5 logn , and perform the same procedure as above.

Eventually this process must terminate, and the components we are left with are all balls of

radius less than 10 log2 n, so by assumption have at most n
5 logn vertices. Moreover, the union of

the sets removed S has size |S| ≤ n
5 logn by construction, completing the proof of the lemma. �

We are now in a position to prove Theorem 1.3. The proof goes roughly as follows. We define

an auxiliary graph on V (T ) where x ∼ y if and only if the symmetric difference of their out-

neighbourhoods has size less than 2k2 (it is helpful to think of this as being ‘bad’ for embedding

1-subdivisions since, roughly speaking, this implies that |N+(x) \N+(y)| = |N+(x)∩N−(y)| is
‘small’). It turns out that G satisfies the properties required to apply Lemma 3.2. So G splits

into many small components, and therefore every pair of vertices x, y in different components

have |N+(x)∆N+(y)| ≥ 2k2. Moreover, if d+(x) ≥ d+(y), then it is not hard to show that

actually |N+(x)∩N−(y)| ≥
(

k
2

)

+ k. So order the vertices of the components according to non-

increasing out-degree. Finally, we show that enough vertices from the components intersect

the first half and second half of the order, enough that we may apply induction to embed a

1-subdivision of Tk/2 in each half. Then we can greedily embed the remaining directed paths of

length 2 between these partial 1-subdivisions.

Proof of Theorem 1.3. The proof will be by induction on k with C = 107. For k ≤ 3 the

theorem follows: T contains a transitive tournament on at least log2 |T | > 6 vertices, which

contains a 1-subdivision of T3. So let k > 3 and let T be a tournament with |T | := n =

Ck2 log3 k vertices. Construct an auxiliary graph G on V (T ) in the following way: join x to y

if |N+(x)∆N+(y)| < 2k2. Now, apply Lemma 3.2 to G. To see that G satisfies the property

needed for the lemma, suppose there is a vertex x which sees at least n
5 logn vertices in the ball

Br(x) of radius r = 10 log2 n. It is not hard to check that log n ≤ 20 log k. Now, there is a path

in G of length at most 20 log2 n ≤ 8000 log2 k between every pair of vertices in B. It follows that

every such pair has the property that the symmetric difference between their out-neighborhoods

is at most 16000k2 log2 k, by the definition of G. But this is impossible because Br(x) has order

at least n/5 log n ≥ 105k2 log2 k. By looking at the tournament T ′ = T [Br(x)], we observe

that it contains a vertex y whose out-neighborhood N+
T ′(y) has size at least (105k2 log2 k)/2 =

50000k2 log2 k , and by the same reasoning, inside the tournament induced on N+
T ′(y) there

must exist a vertex z whose in-neighborhood has size at least 25000k2 log2 k. Accordingly, in T

we have

|N+(y)∆N+(z)| ≥ 25000k2 log2 k.
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But this contradicts the fact that we must have |N+(y)∆N+(z)| ≤ 16000k2 log2 k, as we estab-

lished earlier.

So we may apply Lemma 3.2 to G. This yields a set S of vertices such that |S| ≤ n
5 logn and

G′ = G−S consists of connected components C1, C2, . . . , Ct. We claim that for any two vertices

belonging to different components, there are many directed paths of length two between them.

Claim 3. Let u, v be any two vertices belonging to different components such that d+(u) ≥ d+(v).

Then |N+(u) ∩N−(v)| ≥ k2 − 1 ≥
(k
2

)

+ k.

Proof. Observe first that as u, v belong to different components, they satisfy

|N+(u) ∩N−(v)| + |N+(v) ∩N−(u)| = |N+(u)∆N+(v)| − 1 ≥ 2k2 − 1.

Moreover, since d+(u) ≥ d+(v) we have that |N+(u)∩N−(v)| ≥ |N+(v)∩N−(u)|−1. Therefore

|N+(u) ∩N−(v)| ≥ (2k2 − 2)/2 = k2 − 1, as claimed. �

Let σ be an ordering of the vertices in V (G′) so that their out-degrees are non-increasing.

Furthermore, let m = |V (G′)| = |V (G− S)| ≥ (1− 1
5 logn)n. We assume that m = (1− 1

5 logn)n

by possibly removing some vertices from G′. Let A1 denote the initial segment (according to σ)

of V (G′) with ⌊m/2⌋ vertices, and A2 the remaining ⌈m/2⌉ vertices. The following lemma allows

us to partition the components C1, . . . , Ct into two families X and Y such that the components

in X intersect A1 in a set X of ‘many’ vertices, and the components in Y intersect A2 in a set

Y of ‘many’ vertices. By Claim 3 and the definition of the ordering σ, we guarantee that there

are many directed paths of length two between each pair x, y with x ∈ X and y ∈ Y . Thus

if X and Y are large enough, we may apply induction to T [X] and T [Y ], and then embed the

remaining paths in-between greedily. To spell out the details more carefully:

Lemma 3.3. There exists a partition X ∪ Y = {C1, . . . , Ct} of the components such that the

following holds. If X =
⋃X and Y =

⋃Y, then

|X ∩A1| ≥
(

1− 1

2 log n

)

m/4 and |Y ∩A2| ≥
(

1− 1

2 log n

)

m/4.

Proof. Let C1
i = Ci ∩ A1 and similarly C2

i = Ci ∩ A2. Denote by C1, C2, . . . , Ct′ the set of

connected components for which |C1
i | ≥ |Ci|/2; this implies that |C2

t′+ℓ| ≥ |Ct′+ℓ|/2, for every

ℓ ∈ [t − t′]. If | ∪t′
i=1 C

1
i | ≥ m/4 and also | ∪t

i=t′ C
2
i | ≥ m/4, then we may take the partition

X = {Ci : i ∈ [t′]} and Y = {Ci : i ∈ [t] \ [t′]}. So assume that | ∪t′
i=1 C

1
i | < m/4. Choose a set

B ⊂ {t′ + 1, . . . , t} (perhaps empty) as large as possible for which

L =

∣

∣

∣

∣

∣

∣

⋃

j∈[t′]∪B

C1
j

∣

∣

∣

∣

∣

∣

≤ m/4.

Recall that |Ci| ≤ n/5 log n for each i ∈ [t]. Thus if j ∈ [t] \ (B ∪ [t′]), then the maximality of

B implies that

m/4 < L+ |C1
j | ≤ L+ |Cj |/2 ≤ L+

n

10 log n
,

and using m = (1− 1
5 logn)n, we have

L ≥ m/4− n

10 log n
=

(

1− 3

5 log n

)

n/4

≥
(

1− 1

2 log n

)(

1− 1

5 log n

)

n/4
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=

(

1− 1

2 log n

)

m/4.

Moreover, by assumption we must have that | ∪j∈{t′+1,...,t}\B C2
j | ≥ m/4 >

(

1− 1
2 logn

)

m/4.

Hence the partition X = {Ci : i ∈ [t′] ∪ B} and Y = {Cj : j ∈ {t′ + 1, . . . , t} \ B} satisfies the

conclusion of the lemma. �

Thus Lemma 3.3 furnishes X and Y with the stated properties. Consider T ′ = T [X ∩ A1]

and T ′′ = T [Y ∩ A2]. The following claim asserts that these subtournaments are large enough

to apply induction. The proof is routine calculation. In the following, recall that C = 107.

Claim 4. Both T ′ and T ′′ have size at least C
(

k
2

)2
log3

(

k
2

)

.

Proof. We prove this for T ′; the proof for T ′′ is identical. By Lemma 3.3 we have that

|T ′| ≥
(

1− 1

2 log n

)

m/4 ≥
(

1− 1

2 log n

)(

1− 1

5 log n

)

(Ck2/4) log3 k,

so in order to show that |T ′| ≥ C(k/2)2 log3(k/2) we must prove that
(

1− 1

2 log n

)(

1− 1

5 log n

)

log3 k ≥ log3
(

k

2

)

. (3.1)

Expanding the left-hand side, one sees that the left-hand side of (3.1) is at least
(

1− 7

10 log n

)

log3 k ≥
(

1− 7

20 log k

)

log3 k,

where we have used the inequality log n ≥ log(k2) = 2 log k. Now it is not difficult to check

that (1− 7/(20 log k)) log3 k ≥ log3(k/2) = (log k− log 2)3. Indeed, after taking cube roots and

cancelling the log k factor, this is equivalent to showing that
(

1− 7

20 log k

)1/3

≥ 1− log 2

log k
,

which is easily seen to be true since log 2 > 7/20. Accordingly, (3.1) holds. �

So by the previous claim, T ′ and T ′′ are large enough to find a 1-subdivision of Tk/2 in each of

them, by induction; denote the branch vertex set of each of these by B′, B′′, respectively. As B′

lies entirely before B′′ in the ordering σ, for every x ∈ B′, y ∈ B′′ we have that d+(x) ≥ d−(y).

Hence it follows from Claim 3 that |N+(x) ∩N−(y)| ≥
(

k
2

)

+ k and therefore we may greedily

embed directed paths of length 2 between every such pair. Thus we have found a 1-subdivision

of Tk in T . �

4. Concluding remarks and open problems

Observe that our methods for embedding subdivisions of complete digraphs straightforwardly

generalize to obtain the following result concerning embedding subdivisions of general digraphs

in tournaments with large minimum out-degree.

Theorem 4.1. There exists an absolute constant C > 0 such that the following holds. Let

D be a digraph with m edges and no isolated vertices, and suppose T is a tournament with

δ+(T ) ≥ Cm. Then T contains a subdivision of D. Moreover, each edge is subdivided at most

two times.
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Recall that d(k) is the minimum m such that any tournament T with δ+(T ) ≥ m contains

a subdivision of
−→
Kk. We have determined d(k) up to a factor of 8, and it is natural to ask

whether or not the trivial lower bound is the correct answer.

Question 4.2. Is it true that d(k) =
(

1
4 + o(1)

)

k2?

Earlier, we mentioned that Alon, Krivelevich and Sudakov [1] proved that any graph on n

vertices and with at least εn2 edges contains a 1-subdivision of a complete graph on c(ε)
√
n

vertices. We conjecture that the following analogue for tournaments is true (recall that Tk

denotes the transitive tournament on k vertices).

Conjecture 4.3. There is a constant C > 0 such that any tournament with at least Ck2 vertices

contains a 1-subdivision of Tk.

Our Theorems 1.2 and 1.3 provide some evidence for this conjecture. Yet, it seems new ideas

are needed to resolve the conjecture in full.
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