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Abstract

Soon after his 1964 seminal paper on edge colouring, Vizing asked the following ques-
tion: can an optimal edge colouring be reached from any given proper edge colouring
through a series of Kempe changes? We answer this question in the affirmative for triangle-
free graphs.

1 Introduction

Vizing proved in 1964 [Viz64] that, to colour properly the edges of a simple graph, it suffices
to have one more colour than the maximum number of neighbours.

Theorem 1.1 ([Viz64]). Any simple graph G satisfies χ′(G) 6 ∆(G) + 1.

Here, χ′(G) denotes the chromatic index of G, that is, the smallest integer k such that G
admits a proper k-edge-colouring. The largest degree of a vertex in G is denoted by ∆(G),
where the degree of a vertex is the number of neighbours it has.

The proof of Theorem 1.1 relies heavily on the notion of Kempe change, introduced in 1879
by Kempe1 in a failed attempt to prove the Four Colour Theorem [Kem79]. Given an edge-
coloured graph, a Kempe chain is a maximal connected bicoloured subgraph. A Kempe change

corresponds to selecting a Kempe chain and swapping the two colours in it. Observe that a
Kempe chain may consist in a single edge e, coloured say α, when some colour β does not
appears on any edge incident to e. A Kempe change on this Kempe chain therefore precisely
recolour e into β, possibly decreasing the total number of colours.

Theorem 1.2 ([Viz64]). For every simple graph G, for any integer k > ∆(G) + 1, for any k-

edge-colouring α, there is a (∆(G) + 1)-edge-colouring that can be reached from α through a

series of Kempe changes.
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was supported by Czech-French Mobility project 8J19FR027.
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Note that while some graphs need ∆(G) + 1 colours, some graphs can be edge-coloured
with only ∆(G) colours. In the follow-up paper extending the result to multigraphs [Viz65],
and later in a more publicly available survey paper [Viz68], Vizing asks whether an optimal
colouring can always be reached through a series of Kempe changes, as follows.

Question 1.3 ([Viz65]). For every simple graph G, for any integer k > χ′(G), for any k-edge-
colouring α, is there a χ′(G)-edge-colouring that can be reached from α through a series of
Kempe changes?

Question 1.3 is in fact stated in the more general context of multigraphs.
Note that neither Theorem 1.2 nor Question 1.3 implies that all colourings with fewer

colours are reachable, i.e., there is no choice regarding the target colouring. We say two k-
edge-colourings are Kempe-equivalent if one can be reached from the other through a series
of Kempe changes using colours from {1, . . . , k}. Question 1.3, if true, would imply [AC16]
and the following conjecture of Mohar [Moh06], using the target χ′(G)-colouring as an inter-
mediate colouring.

Conjecture 1.4 ([Moh06]). For every simple graph G, all (∆(G) + 2)-edge-colourings are
Kempe-equivalent.

Mohar proved the weaker case where (χ′(G) + 2) colours are allowed.

Theorem 1.5 ([Moh06]). For every simple graphG, all (χ′(G)+2)-edge-colourings are Kempe-

equivalent.

As noted in [MMS12], Theorem 1.5 is not true when replacing (χ′(G) + 2) with χ′(G),
regardless of whether χ′(G) = ∆(G) (consider the graphK5,5) or χ′(G) = ∆(G)+1 (consider
the graphK5). As noted in [Moh06], it could however be true with (χ′(G) + 1).

Not much is known towards Question 1.3 or Conjecture 1.4. In 2012, McDonald, Mohar
and Scheide [MMS12] proved the case ∆(G) = 3 of the former (hence the case ∆(G) = 4 of
the latter). In 2016, Asratian and Casselgren [AC16] proved the case ∆(G) = 4 of the former
(hence the case ∆(G) = 5 of the latter). We answer both questions affirmatively in the case
where the graph is triangle-free, regardless of the value of ∆(G).

Theorem 1.6. For every triangle-free graph G, for any integer k > χ′(G), any given χ′(G)-
edge-colouring can be reached from any k-edge-colouring through a series of Kempe changes.

Theorem 1.6 improves upon an earlier theorem concerning bipartite graphs [Asr09]. We
derive the immediate following corollary.

Corollary 1.7. For every triangle-free graphG, all (χ′(G)+1)-edge-colourings are Kempe equiv-

alent.

The general approach toward Theorem 1.6 follows that of [AC16], which itself follows
that of [Moh06]. From a k-edge-colouring with k > χ′(G), say we aim to reach a given χ′(G)-
colouring α. We select a colour class M of α, and seek through a series of Kempe changes to
reach a k-edge-colouring whereM is monochromatic and its colour appears on no other edge.
We can then delete M and apply induction on χ′(G).
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Complexity implications

As is often mentioned, Vizing’s original argument can be turned into a polynomial-time algo-
rithm—thiswas formally noted byMisra andGries in 1992 [MG92]. However, decidingwhether
a graph G is ∆(G)-edge-colourable is an NP-complete problem [Hol81], even in the case of
triangle-free graphs [Kor97]. This leaves little hope for extracting a polynomial-time algorithm
from the proof of Theorem 1.6. There is however no difficulty in detecting the difference be-
tween Vizing’s argument and ours: we start by assuming full access to a∆(G)-edge-colouring,
which is crucial in the proof.

More about Kempe changes

While this is irrelevant for the rest of the paper, let us mention some more applications and
connections of Kempe changes to other problems. Since its introduction in the context of 4-
colouring planar graphs, much work has focused on determining which graph classes have
good properties regarding Kempe-equivalence of their vertex colourings, see e.g. [Moh06]
for a comprehensive overview or [BBFJ19] for a recent result on general graphs. We refer
the curious reader to the relevant chapter of a 2013 survey by Cereceda [vdH13]. Kempe-
equivalence falls within the wider setting of combinatorial reconfiguration, which [vdH13] is
also an excellent introduction to.

Perhaps surprisingly, Kempe-equivalence has direct applications in approximate counting
and statistical physics (see e.g. [Sok00, MS09] for nice overviews). Closer to graph theory,
Kempe-equivalence can be studied with a goal of obtaining a random colouring, by proving
that a given random walk is a rapidly mixing Markov chain, see e.g. [Vig00].

General setting of the proof

Let us argue that it suffices to handle the case of a χ′(G)-regular graph. Indeed, any graphG is
the induced subgraph of a χ′(G)-regular graph that is also χ′(G)-edge-colourable. To see this,
we decrease step-by-step the difference between χ′(G) and the smallest degree of a vertex in
G. Let β be a χ′(G)-edge-colouring of G, and consider two copies of G, each coloured β. We
add an edge between both copies of every vertex of smallest degree: since both copies of G
are coloured the same, there is a colour available for the new edge. Note that this construction
does not create any triangle. See Figure 1 for an example.
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(a) Graph G
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gree increases to 2
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(c) Step 2 (final): a 3-regular graph

Figure 1: Construction of a 3-regular 3-edge colourable graph from a 3-edge colourable graph
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Additionally, note that any series of Kempe changes in a graph has a natural transposition
to any induced subgraph of it. Indeed, if a Kempe chain in the graph corresponds to more than
one Kempe chain in the induced subgraph, it suffices to operate the swap in every such Kempe
chain.

This allows us to restrict our attention to the case where ∆(G) = χ′(G) and the colour
class M is a perfect matching, which will prove to be convenient. Theorem 1.6 was already
proved in [Moh06] when k > χ′(G) + 2. Therefore, we focus on the case k = χ′(G) + 1,
though the reader can convince themself that the proof could be adapted for higher k with a
loss in simplicity.

From now on, we consider only (∆(G) + 1)-edge-colourings of a ∆(G)-regular graph G.
Therefore, for every such colouring α, and for every vertex u, there is a unique colour mα(u)
in {1, . . . ,∆+ 1} \ {α(uv) | v ∈ N(u)}, referred to as the missing colour of α at u.

We defined the notion of Kempe changes in the introduction: let us introduce some help-
ful notation around them. For any colouring α, for any two (distinct) colours c, d, we denote
by Kα(c, d) the subgraph of G induced by the edges coloured c or d. The notion of a com-
ponent of Kα(c, d) containing an edge e is straightforward. We extend this notion to that of
a component containing a vertex u. To describe a Kempe change, we will indicate that we
swap the component of Kα(c, d) containing this edge or that vertex, for some given c and d.
We will write α ! β to indicate that two k-edge-colourings α and β are Kempe-equivalent.
Formally, we should indicate the bound on the number of colours involved in an intermediary
colouring in the sequence of Kempe-changes. However, we believe that there is no ambigu-
ity anywhere regarding this. In particular, throughout the proof we only involve colours in
{1, . . . ,∆(G) + 1}.

2 Fan-like tools

Let α be a (∆ + 1)-edge-colouring of a ∆-regular graph G. Consider an edge uv, and say we
want to recolour it. Ifm(u) = m(v), this can be done immediately without impacting the rest
of the colouring. Therefore, let us consider m(v) 6= m(u), and look at the obstacles around
u. There is an edge uw coloured m(v). Again, if we can recolour it without impacting the
rest of the colouring, we can then recolour uv intom(v). This prompts us to define a directed
graph Du(α) on vertex set {uw | w ∈ N(u)}, where a vertex uw has a directed edge to ux if
m(w) = α(ux) (see Figure 2). Note that by definition, every vertex in Du(α) has out-degree
0 or 1, and arbitrarily large in-degree. Consider the sequenceXu(α, v) of vertices than can be
reached from uv in Du(α). For both Du(α) and Xu(α, v), we drop α from the notation when
it is clear from context.

We have three possible scenarios, by increasing difficulty (see Figure 2 for an illustration):

1. Xu(v) induces a path in Du.

2. Xu(v) induces a cycle in Du.

3. Xu(v) induces a comet inDu, where a comet is obtained from a directed path by adding
an edge from the sink to a vertex that is neither the source nor the sink.

For any edge uv, if Xu(α, v) induces a path or cycle in Du, we denote by X−1
u (α, v) the

colouring obtained from α by assigning the colour m(w) to every edge uw ∈ Xu(α, v). Note
that for every edge uw ∈ Xu(α, v), we havemX−1

u (α,v)(w) = α(uw). We refer to this operation
on α as inverting Xu(α, v). Figure 3 illustrates the result of inverting a path. We drop v from
the notation when there is no ambiguity.

4



1
u

3
x0

2

4
x1

3
5

x2

4

1
x3

5

1
u

3
x0

2

4
x1

3
5

x2

4

2
x3

5

1
u

3
x0

2

4
x1

3
5

x2

4

3
x3

5

ux0

ux1ux2

ux3 ux0

ux1ux2

ux3 ux0

ux1ux2

ux3

Figure 2: From left to right, the three possible scenarios for a sequenceXu(α, x0) in the digraph
Du(α): a path, a cycle or a comet. (Vertices are labeled by the missing colors.)
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Figure 3: Coloring α (left) andX−1
u (α, x0) (right) whenXu(α, x0) is a path.

In order to have an overview of the key ingredients in the proof, let us now state an Ob-
servation and some Lemmas, the proof of which are postponed to the following subsections.

Observation 2.1. For any vertex u and path Xu(α) in Du(α), α ! X−1
u (α).

Definition 2.2. For any vertex u and cycle Xu(α) = (ux0, . . . , uxp) in Du(α), we say that

Xu(α) is saturated if for every 0 6 i 6 p, the component ofK(α(uxi), m(u)) containing u also

contains xi−1 (resp. xp if i = 0).

The same conclusion holds for cycles unless the sequence is saturated:

Lemma 2.3. For any vertex u and non-saturated cycleXu(α) in Du(α), α ! X−1
u (α).

To reach the desired conclusion for a saturated cycle, we need further assumptions, includ-
ing the absence of triangles, as follows:

Lemma 2.4. For any vertex u and saturated cycle Xu(α, v) in Du(α), if G is triangle-free, and

if the sequence Yv(α, u) of vertices ofDv(α) induces a cycle, then α ! X−1
u (α, v).

For comets, it suffices to allow one Kempe change outside of Xu(α):

Lemma 2.5. For any vertex u and cometXu(α) = (ux0, . . . , uxp) in Du(α), we have α ! α′,

where α′ satisfies mα′(u) = α(ux0) and is obtained from α by changing the colour of some

edges in Xu(α) and possibly swapping one component C in K(m(u), α(uxq)), where uxq is the

endpoint of the out-edge from uxp in Du(α).
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In the colouring α′ obtained from Lemma 2.5, we stress the fact that the number of edges
coloured α(ux0) strictly decreases as the swapped component C does not contain such a
colour, andmα′(u) = α(ux0), i.e., no edge incident to u has colour α(ux0) in α′.

We prove the lemmas by increasing difficulty in the following subsections.

Gentle introduction: a proof of Observation 2.1

Proof of Observation 2.1. Let Xu(α) = (ux0, . . . , uxp) be a path in Du(α). Intuitively, we will
start recolouring edges from the end of the path to its beginning. Observe that sinceXu(α) is
a path, by construction of Du(α) there is no edge incident to u that has colour m(xp), hence
m(u) = m(xp). We proceed by induction on p. When p = 0, we have m(x0) = m(u), thus
swapping the single-edge component of K(α(ux0), m(u)) containing ux0 yields the desired
colouring X−1

u (α).
Similarly, for p > 0, we swap the (single-edge) component ofK(α(uxp), m(u)) containing

uxp, and denote by α′ the resulting colouring. We note that inDu(α
′), the sequenceXu(α

′, x0)
is exactly the path (ux0, . . . , uxp−1). MoreoverXu(α

′, x0) = X−1
u (α). By induction we derive

α′ ! X−1
u (α), hence α ! X−1

u (α).

Comets: a proof of Lemma 2.5

Proof of Lemma 2.5. LetXu(α) = (ux0, . . . , uxp) be a comet inDu(α), with xq the endpoint of
the out-edge from uxp inDu(α). SinceXu(α) is a comet, 0 < q < p. We swap the component
C of K(m(u), α(uxq)) containing the edge uxq, and denote by α′ the resulting colouring. In
α, we have mα(xp) = mα(xq−1) = α(uxq). Since C must be a path, it contains at most two
vertices (its endpoints) whose missing colour in α belongs to {m(u), α(uxq)}. We know that
C already contains u, so at least one of xp and xq−1 has the same missing colour in α and α′.
We distinguish the two cases.

• Assumemα′(xq−1) = α(uxq). Sincemα′(u) = α(uxq), it follows that in Du(α
′), the se-

quenceXu(α
′, x0) is exactly (ux0, . . . , uxq−1), which induces a path. We then conclude

by Observation 2.1.

• If not, mα′(xq−1) = α′(uxq), andmα′(xp) = α(uxq). Since mα′(u) = α(uxq), it follows
that inDu(α

′), the sequenceXu(α
′, x0) is exactly (ux0, . . . , uxp), which induces a path.

We then conclude by Observation 2.1.

Non-saturated cycles: a proof of Lemma 2.3

Proof of Lemma 2.3. LetXu(α) = (ux0, . . . , uxp) be a non-saturated cycle inDu(α). Without
loss of generality since Xu(α) induces a cycle that is not saturated, we can assume that the
component of K(α(ux0), m(u)) containing u does not contain an edge incident with xp. By
definition of Du(α), we have m(xi) = α(uxi+1) for every 0 6 i < p, and as illustrated on
Figure 4(a) m(xp) = α(ux0). We consider the colouring α′ obtained from α by swapping the
componentC ofK(α(ux0), m(u)) containing xp (C is referred to as a 1-2 chain on Figure 4(a),
see Figure 4(b) for the resulting colouring). By assumption, this has no impact on the colours
of the edges incident with u, and mα(xi) = mα′(xi) for every 0 6 i < p, as well as mα(u) =
mα′(u). Note however thatmα′(xp) = mα(u). In the colouring α′,Xu(α

′, x0) = (ux0, ..., uxp)
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(d) ColouringX−1
u (α, x0)

Figure 4: Colorings α ! α′ ! X−1
u (α′, x0) ! X−1

u (α, x0).

is a path, thus by Observation 2.1, α′ ! X−1
u (α′, x0); we denote this resulting colouring by α′′

(see Figure 4(c)). In the colouringα′′, letC ′ be the component ofK(α(ux0), mα(u)) containing
xp. We have that C ′ = C ∪ {uxp}, and that mα′′(u) = α(ux0), so it suffices to swap C ′ to
obtain X−1

u (α) as illustrated on Figure 4(d). Hence α ! α′ ! X−1
u (α′, x0) ! X−1

u (α), as
desired.

Double cycles: a proof of Lemma 2.4

Proof of Lemma 2.4. Let Xu = (uv, ux1, . . . , uxp) be a saturated cycle in Du(α), and Yv =
(vu, vy1, . . . , vyq) be a cycle in Dv(α). Observe that m(v) 6= m(u), otherwise Xv and Yu

contain only the edge uv and thus do not induce cycles. Note that m(xp) = m(yq) = α(uv)
and by triangle-freeness xp 6= yq.

Figure 5 illustrates the following argument. Since Xu is saturated, the component of
K(α(uv), m(u)) containing u also contains xp, and thus does not contain yq. In particular,
it follows that q > 2, since by definition α(vy1) = m(u) and thus y1 is in the same component
of K(α(uv), m(u)) as u and xp, while m(yq) = α(uv).

LetC be the component ofK(α(uv), m(u)) containing yq. We note thatC andXu∪Yv are
disjoint, and that neither endpoint of C is incident to an edge of Xu ∪ Yv \ {vyq}, as the only
verticesmissing colours α(uv) ormα(u) inXu∪Yv are by definition u, xp, and yp, sinceXu and
Yv induce cycles. We consider the colouring α1 obtained from α by swapping C (see Figure 6
for all the intermediate colourings used in this proof). For every xi, we haveα(uxi) = α1(uxi)
andmα(xi) = mα1

(xi); similarly for u, v, and every yj with 1 6 j < q.
The sequence Xu is also a cycle-inducing sequence of vertices that can be reached from

uv in Du(α1). However, Xu may not saturated in α1. We distinguish the two cases.

• Assume that Xu is not saturated in α1. By Lemma 2.3, we have α1 ! X−1
u (α1). By

swapping C for the second time (remember that C andXu are disjoint, and that neither
endpoint of C is incident to an edge of Xu), we obtain X−1

u (α), hence the conclusion.
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Figure 5: Double cycles: Illustration of the beginning of the proof of Lemma 2.4: In colouringα,
the vertex yq is in a different component of K(α(uv), m(u)) than u and xp.

• Assume now that Xu is saturated in α1. Hence the component of K(mα1
(u), mα1

(v))
containing u also contains v thus does not contain yq, sincemα1

(yq) = mα1
(u).

Let C ′ be the component of K(mα1
(u), mα1

(v)) containing yq. Similarly as for C , we
note that C ′ and Xu ∪ Yv are disjoint, and that neither endpoint of C ′ is incident to an
edge of Xu ∪ Yv \ {vyq}. We consider the colouring α2 obtained from α1 by swapping
C ′. InDv(α2), the sequence (vu, vy1, . . . , vyq) is the sequence of vertices ofDv(α2) that
can be reached from uv, and it induces a path. Let α3 = (uv, vy1, . . . , vyq)

−1(α2). By
Observation 2.1, we have α2 ! α3. Note that α3 assigns the colour α(uv) to no edge in
Xu ∪ Yv. InDu(α3), the sequence (ux1, . . . , uxp) is the sequence of vertices that can be
reached from ux1, and it induces a path. Let α4 be the colouring (ux1, . . . , uxp)

−1(α3).
By Observation 2.1, we have α3 ! α4. Note that in α4, we have mα4

(v) = α(uv) and
mα4

(u) = mα(v), with α4(uv) = mα(u). Note that there is a unique connected compo-
nent of K(mα(u), mα(v)) containing vertices of C ′, which is precisely C ′ ∪ {uv, vyq}.

In the colouring α5 obtained from α4 by swapping C ′ ∪ {uv, vyq}, there is a unique
component ofK(α(uv), mα(u)) containing vertices of C , which is preciselyC ∪{vyq}.
Moreover, in the colouring α5, the sequence (vy1, vyq, vyq−1, . . . , vy2) induces a cycle
in Dv. The cycle is not saturated since the component of K(α(uv), mα(u)) containing
vertices of C is preciselyC ∪{vyq}: since q > 2, it does not contain y1. We consider the
colouring α6 obtained from α5 by inverting (vy1, vyq, vyq−1, . . . , vy2). By Lemma 2.3,
we obtain α5 ! α6. Note that in α6, the component of K(α(uv), mα(u)) containing
vertices of C is precisely C : we swap it and obtain α ! X−1

u (α), as desired.

3 The good, the bad and the ugly (edges)

We essentially follow the outline of [AC16], and proceed by induction on∆. Given a∆-regular
triangle-free graphG that is∆-edge-colourable, we consider a (∆+1)-edge-colouringα and a
target∆-edge colouring γ. LetM be a colour class of γ, and note thatM is a perfect matching.
We fix a colour out of {1, 2, . . . ,∆ + 1}, say 1, and try, through Kempe changes from α, to
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Figure 6: Double cycles : illustration of the intermediate colouring in the proof of Lemma 2.4.

9



assign the colour 1 to every edge in M . If we succeed, we can delete M and proceed by
induction on G \M with colours {2, . . . ,∆+ 1}, noting that γ restricted to G \M uses only
(∆(G)− 1) colours. Let us introduce some terminology to quantify how close we are to this
goal of assigning the colour 1 to every edge in M .

In a given colouring, we say an edge is:

• good if it belongs toM and is coloured 1.

• bad if it belongs toM but is not coloured 1.

• ugly if it does not belong to M but is coloured 1.

Throughout the proof, we consider exclusively (∆+1)-colourings that can be reached from
α through a series of Kempe changes: let us denote by C all such colourings. We define an
order on C and we will prove that, in any minimal colouring, all edges of the perfect matching
M are coloured 1.

Definition 3.1. A colouring in C is minimal if it has the fewest bad edges among all colourings

in C, and among those with the fewest bad edges, has the fewest ugly edges.

Note that there may be many minimal colourings. Ifm(u) = 1, we say the vertex u is free.

Lemma 3.2. In a minimal colouring, every ugly edge vw is such that the sequence of vertices of

Dv reached from vw induces a cycle.

Proof. We consider a minimal colouring β, and denote by Xv(w) = (vw, vx1, . . . , vxp) the
sequence of vertices of Dv(β) reached from vw. Suppose by contradiction that Xv(w) does
not induce a cycle. The simple yet key observation is that for every i, m(xi) 6= 1.

If Xv(w) induces a path, we conclude immediately using Observation 2.1, as X−1
v (β, w)

has the same number of bad edge as β, and one fewer ugly edge.
Therefore, it suffices to consider the case where Xv(w) induces a comet. We let q be such

that vxp has an out-edge to vxq in Dv . In addition to m(xi) 6= 1 for every 1 6 i 6 p, note
that m(v) 6= 1, as β(vw) = 1. The colouring β ′ obtained from Lemma 2.5 has therefore the
same number of bad edges as β, and fewer ugly edges. Since β ′ ! β, this contradicts the
minimality of β.

By considering the last element of a sequence reached from an ugly edge, Lemma 3.2 yields
the following statement, whose proof appeared in [AC16] but which we state somewhat dif-
ferently.

Corollary 3.3 ([AC16]). In a minimal colouring, both endpoints of an ugly edge have a free

neighbour.

As we shall see, a consequence of Corollary 3.3 together with the regularity assumption is
that, in a minimal colouring, there are bad edges with a free endpoint (unless there is no bad
edge at all). These are central to the argument2. Let us now prove a small observation and
then proceed with the core of the proof.

Observation 3.4. In any minimal colouring β, every bad edge is incident to an ugly edge.

2In [AC16], this allows us to assume case A happens, avoiding case B entirely.
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Proof. Let xy be a bad edge. If m(x) = m(y) = 1, we can swap the (single-edge) component
ofK(1, β(xy)) containing xy and have one fewer bad edges, a contradiction to the minimality
of β. We derive that xy is incident to some edge e satisfying β(e) = 1. Then e is necessarily
ugly, as xy ∈ M andM is a matching.

Proof of Theorem 1.6. Letβ be aminimal colouring. If there is no bad edge, thenM is monochro-
matically coloured, as desired. Therefore, we assume that there is a bad edge which, by Obser-
vation 3.4, is incident to an ugly edge e. By Corollary 3.3 applied to e, there exists some free
vertex u (adjacent to an endpoint of e).

Let v be such that uv ∈ M , note that since u free, uv is bad, and is thus incident to an
ugly edge by Observation 3.4. Since u cannot be incident to an ugly edge (it is free), there is
some vertex w ∈ N(v) such that vw is ugly. We denote by Xv the sequence of vertices of Dv

reached from vw, and by Yw the sequence of vertices of Dw reached from vw.
By Lemma 3.2, we obtain immediately that Xv induces a cycle in Dv , and Yw induces a

cycle in Dw. By Lemmas 2.3 or 2.4, we derive that β ! Y −1
w (β). Note that Y −1

w (β) has at
most as many bad and ugly edges as β.

By triangle-freeness, u and w are not adjacent and so uw does not appear in Yw. Thus
mY −1

w (β)(v) = 1 = mY −1
w (β)(u). We swap the (single-edge) component of K(1, β(uv)) con-

taining the edge uv, and obtain a colouring with fewer bad edges, a contradiction.

4 Conclusion

The main result of this paper is based on the Vizing’s fans; in his proof he only needs to handle
the case of paths and comets (as described in Section 2), our main contribution is to extend this
argument to non saturated cycles and double cycles. The proof yields an algorithm that, given
a target optimal colouring, computes a polynomial transformation sequence in polynomial-
time. The method could be pushed further, however the length and the complexity of the
proof would increase exponentially. The general case for multigraphs still seems a challenging
question, and an additional argument is probably needed to solve it.

Moreover, even some special cases are of their own interest. For instance, it’s still unclear
how to handle the case of cliques, as an induction on the chromatic index is not possible for
this class of graphs.
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