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Proper orientations and proper chromatic number
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Abstract

The proper orientation number ~χ(G) of a graph G is the minimum k such that there
exists an orientation of the edges of G with all vertex-outdegrees at most k and such
that for any adjacent vertices, the outdegrees are different. Two major conjectures about
the proper orientation number are resolved. First it is shown, that ~χ(G) of any planar
graph G is at most 14. Secondly, it is shown that for every graph, ~χ(G) is at most
O( r log r

log log r ) +
1
2mad(G), where r = χ(G) is the usual chromatic number of the graph,

and mad(G) is the maximum average degree taken over all subgraphs of G. Several
other related results are derived. Our proofs are based on a novel notion of fractional
orientations.

1 Introduction

Borowiecki, Grytczuk and Piĺsniak [7] discovered a beautiful fact that every graph admits an
orientation of its edges such that the outdegrees of any two adjacent vertices are different. Such
orientations can be interpreted as graph colorings and are now known as proper orientations.
With this interpretation in mind we define the proper chromatic number, also called the
proper orientation number, ~χ(G) of a graph G as the minimum value, taken over all proper
orientations of G, of the maximum outdegree, max{d+(v) | v ∈ V (G)}. Let us observe that

∗Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, 200438, China,
ybchen21@m.fudan.edu.cn

†Department of Mathematics, Simon Fraser University, Burnaby, BC V5A 1S6, Canada, mohar@sfu.ca
‡Supported in part by the NSERC Discovery Grant R611450 (Canada), and by the Research Project

J1-2452 of ARRS (Slovenia).
§On leave from IMFM, Department of Mathematics, University of Ljubljana.
¶Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, 200438, China,

hhwu@fudan.edu.cn
‖Supported in part by National Natural Science Foundation of China grant 11931006, National Key Re-

search and Development Program of China (Grant No. 2020YFA0713200), and the Shanghai Dawn Scholar
Program grant 19SG01.

1

http://arxiv.org/abs/2110.07005v2


several other papers about proper orientations use the indegree form for this parameter, but
the two versions are clearly equivalent.

The original interest in proper orientations came from their connection to the 1-2-3-
Conjecture of Karoński,  Luczak and Thomason [9]. The first systematic study of the proper
orientation number can be found in Ahadi and Dehghan [1]. Improved results for bipartite
graphs came in a paper by Araujo, Cohen, de Rezende, Havet, and Moura [5], who proved
that every bipartite graph satisfies the following:

~χ(G) ≤
⌊

1
2

(

∆(G) +
√

∆(G)
)⌋

+ 1. (1.1)

Prior to our results, this was still the best general upper bound on ~χ(G) of bipartite graphs. In
this paper, we provide an improvement that is essentially best possible general upper bound.

Before continuing, we should mention that computing ~χ(G) is NP-hard. Moreover, given
a graph G and a positive integer k, deciding whether ~χ(G) ≤ k is NP-complete, even if G is
the line graph of a regular graph [1]; or if G is a planar subcubic graph [5]; or if G is planar
and bipartite with maximum degree 5 [5]. These results show that any insight into the proper
orientation number is of interest.

In the case of sparse graph families, one can say a bit more. Papers [5,10] and [2,6] treated
trees and outerplanar graphs. The main outcome is that the proper orientation number is
bounded on these classes if they satisfy some other conditions (e.g. being triangle-free, or
bipartite, or sufficiently connected). The paper by Knox et al. [10] shows that every 3-
connected bipartite planar graph G satisfies ~χ(G) ≤ 5. This was later improved by Noguchi
[13], who proved that every bipartite planar graph G with minimum degree 3 satisfies ~χ(G) ≤
3.

However, none of these works was able to solve the most intriguing question from [6]
whether the proper orientation number of all planar graphs is bounded. One of our main
results, see Theorem 1.4 below, resolves this question in the affirmative.

The key to our results is another question from [5]. First of all, in view of (1.1), Araujo et
al. [5] asked the following.

Problem 1.1. Does there exists a constant C such that every bipartite graph G satisfies
~χ(G) ≤ ∆(G)

2
+ C?

We will answer Problem 1.1 in the affirmative. In fact, the upper bound depending on
∆(G) will be improved by using the related quantity called the Maximum Average Degree of
the graph, mad(G), which is defined as the largest average degree of all subgraphs of G:

mad(G) = max
H⊆G

2|E(H)|

|V (H)|
.

Of course, the maximum in this definition can be taken over all induced subgraphs only. This
is the basic parameter in sparsity theory (see [12]) and is a well-known upper bound on the
chromatic number of any graph: χ(G) ≤ ⌊mad(G)⌋ + 1. On the other hand, 1

2
mad(G) gives

a general lower bound on ~χ(G), since a graph with mad(G) = d has a vertex with outdegree
at least ⌈d/2⌉ under any orientation of its edges.

Our first main result resolves Problem 1.1.
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Theorem 1.2. Let G be a bipartite graph. Then

⌈

1
2
mad(G)

⌉

≤ ~χ(G) ≤
⌈

1
2
mad(G)

⌉

+ 3.

This bound is tight since for each k, there exist a bipartite graph G with
⌈

1
2
mad(G)

⌉

= k and
~χ(G) = k + 3.

Theorem 1.2 implies various previous results on bipartite planar graphs, for example a
result of Araujo et al. [5], who proved that every tree has proper orientation number at most
4 (which is best possible). Meanwhile, we obtain a bound for arbitrary bipartite planar graphs.

Corollary 1.3. Let G be a bipartite planar graph. Then ~χ(G) ≤ 5.

There is a folklore conjecture that the proper orientation number is bounded on the class
of all planar graphs, but no finite upper bound was ever established. By extending the method
used in the proof of Theorem 1.2, we confirm the conjecture by obtaining the following upper
bound for planar graphs.

Theorem 1.4. Let G be a planar graph. Then ~χ(G) ≤ 14.

In the proof of the upper bound we use the fact that planar graphs are 4-colorable (the
Four-Color Theorem [3,16]). Let us remark that even without this result we are able to obtain
a (slightly weaker) upper bound by using the simpler fact that planar graphs are 5-colorable.

The bound of Theorem 1.4 may not be optimal. Planar graphs with ~χ(G) = 10 have been
constructed by Araujo, Havet, Linhares Sales, and Silva [6], but no example with ~χ(G) > 10
are known.

For 3-colorable planar graphs we have a stronger bound.

Theorem 1.5. Let G be a 3-colorable planar graph. Then ~χ(G) ≤ 11. Moreover, if G is
outerplanar, then ~χ(G) ≤ 10.

Theorem 1.5 in particular resolves a problem of Araujo et al. [6], who conjectured that all
outerplanar graphs have bounded ~χ(G). Araujo et al. [4, 6] and Ai et al. [2] proved that var-
ious classes of outerplanar graphs (cactus graphs, triangle-free 2-edge-connected outerplanar
graphs, and maximal outerplanar graphs whose inner dual is a path) have bounded ~χ(G). As
for a lower bound, Araujo et al. [6] found outerplanar graphs having ~χ(G) ≥ 7.

The proof for outerplanar graphs uses the fact that these graphs are 3-colorable and
their maximum average degree is less than 4. The same proof gives a bound for the proper
orientation number of more general graphs. In particular it applies to the superclass of all
series-parallel graphs. As the series-parallel graphs are precisely the graphs whose tree-width
is at most 2, we have the following result.

Corollary 1.6. Let G be a graph whose tree-width is at most 2. Then ~χ(G) ≤ 10.

Building on their results about bipartite graphs, Araujo et al. [5] asked a more general
question.
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Problem 1.7 (Araujo et al. [5]). Can ~χ(G) be bounded above by a function of mad(G)?

Our second main result provides a strong answer to Problem 1.7, and resolves another
basic question.

Theorem 1.8. Let G be a graph whose chromatic number is r. Then

~χ(G) = O
( r log r

log log r

)

+ 1
2
mad(G).

The constant involved in the O-notation in Theorem 1.8 is small. The precise dependence
is given in Section 5 as Theorem 5.1.

In particular, since r = χ(G) ≤ mad(G)+1, Theorem 1.8 provides a resolution of Problem
1.7.

Corollary 1.9. For a graph G with mad(G) = d, ~χ(G) = O
(

d log d
log log d

)

.

The paper is organized as follows. In Sections 2 and 3 we give our main tools. Then we
apply them to prove the main results, first Theorem 1.2 on bipartite graphs, then Theorem
1.8, and finally Theorems 1.4 and 1.5 about the proper orientation number of planar graphs.

2 Partial and fractional orientations

An orientation of a graph is a k-orientation if every vertex has outdegree at most k. It is easy
to see that a graph G with a k-orientation has mad(G) ≤ 2k. Hakimi [8] proved the converse
statement.

Lemma 2.1 (Hakimi [8]). A graph G admits a k-orientation if and only if mad(G) ≤ 2k.

If G is a graph, we can describe any of its orientations by specifying, for each edge uv ∈
E(G), two values p(u, v) and p(v, u), one of which is 1 and the other one is 0. If p(u, v) = 1,
then we say that the edge uv is oriented from u to v. If we orient only a subset of the edges,
we can have p(u, v) = p(v, u) = 1 for those edges uv that are left unoriented. Such a function
p will be called a partial orientation. In this paper we shall use a generalized version of partial
orientations where we will allow p(u, v) having any value in [0, 1]. In fact, we will have the
following three possibilities for each edge uv:

(PFO1) An unoriented edge uv satisfies p(u, v) = p(v, u) = 1.

(PFO2) An oriented edge uv satisfies p(u, v) = 1 and p(v, u) = 0. In this case we consider
the edge uv as being oriented in the direction from u to v.

(PFO3) A fractionally oriented edge uv satisfies p(u, v) = α and p(v, u) = 1 − α for some
α ∈ (0, 1).

4



If all edges satisfy (PFO1) and (PFO2), then we say that p is a partial orientation of G. If
all edges satisfy (PFO1)–(PFO3), then we say that p is a partial fractional orientation of G,
and if (PFO1) never occurs (all edges are oriented), it is a (fractional) orientation.

For a partial fractional orientation p we define the following values for each vertex v ∈
V (G). The potential outdegree dp(v) of v (with respect to the PFO p) is defined as follows:

dp(v) =
∑

u∈N(v)

p(v, u),

where N(v) denotes the set of all neighbors of v in G. The potential outdegree dp(v) represents
the largest possible outdegree of the vertex v, obtained if all unoriented edges incident with v
would be oriented out of v (and the fractionally oriented edges are unchanged). The outdegree
d+p (v) of v is the fractional weight of oriented edges incident with v, not counting the unoriented
edges. It can be expressed as follows:

d+p (v) =
∑

u∈N(v)

(1 − p(u, v)).

Fractional orientations can be turned into usual orientations such that the outdegree of
each vertex is just the “rounding” of the fractional outdegree (see [11]). This result is stated
next just for reference although we are not using it. Instead, we are using our own rounding
method that is described after the lemma.

Lemma 2.2. Let G be a graph and let p be a fractional orientation of the edges of G. Then
there is an orientation q of the edges of G such that

d+q (u) =
⌊

∑

v∈N(u)

p(u, v)
⌋

or
⌈

∑

v∈N(u)

p(u, v)
⌉

.

Recall that if p is a PFO, we say that an edge uv is fractionally oriented if 0 < p(u, v) < 1.
In that case we also say that the edge is unsaturated.1 A cycle C = u1u2 . . . uku1 is said
to be unsaturated if all its edges uiui+1 (1 ≤ i ≤ k, where uk+1 = u1) are unsaturated.
For an unsaturated cycle we define α := max{p(ui, ui+1) | 1 ≤ i ≤ k} and we note that
β := 1 − α > 0. By changing, for each i ∈ [k], the value p(ui, ui+1) to p(ui, ui+1) + β and
changing p(ui+1, ui) to p(ui+1, ui)−β, we obtain another PFO in which all edges on the cycle,
for which p(ui, ui+1) = α, become saturated, and so the cycle is no longer unsaturated. We will
refer to this operation as saturating the cycle C. By doing this, the corresponding potential
outdegrees dp(u) of all vertices of the graph remain unchanged. It is easy to see that repeated
use of this operation leads to a proof of Lemma 2.2.

We will need another operation that is similar to the one described above. Here we
take a path P = u1 . . . uk (k ≥ 2), all of whose edges are unsaturated, and in addition
to that, the endvertices u1 and uk are also unsaturated, meaning that none of dp(u1) and
dp(uk) is an integer. Now we define α as the maximum of all values p(ui, ui+1) (1 ≤ i < k)

1This terminology is taken from a close relationship with network flow techniques.
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and set α′ = dp(u1) − ⌊dp(u1)⌋ and β ′ = dp(uk) − ⌊dp(uk)⌋. Similarly as above, we set
β = min{1−α, 1−α′, β ′} and then change each p(ui, ui+1) to p(ui, ui+1) +β and change each
p(ui+1, ui) to p(ui+1, ui) − β (1 ≤ i < k). This change produces new PFO in which either one
of the edges on the path becomes saturated or one of the endvertices becomes saturated. We
say that we have saturated the path P . For further reference we state the basic property of
the described change as the following fact.

Observation 2.3. The process of saturating an unsaturated path P = u1 . . . uk described
above produces new PFO q, in which either one of the edges on the path becomes saturated
or one of the endvertices becomes saturated. The potential degrees of all vertices except u1

and uk remain unchanged, while dp(u1) increases by β and dp(uk) decreases by β. Moreover,
dq(u1) ≤ ⌈dp(u1)⌉ and dq(uk) ≥ ⌊dp(uk)⌋.

The well-known Hall Theorem characterizes when a bipartite graph with bipartition U ∪V
contains a matching covering all vertices in U . There is a weighted version in which a matching
is replaced by an edge-set (subgraph) M so that each vertex in U is contained in the prescribed
number of edges in M . We denote by dM(v) the number of edges in M that are incident with
the vertex v. For S ⊆ V (G), we write N(S) = ∪s∈SN(s), and for v ∈ V , we denote by e(v, S)
the number of edges from v to S. The following result by Ore [14, 15] is a generalization of
Hall’s Theorem, and is also called the Ore-Ryser Theorem by some authors (see [17]).

Lemma 2.4 (Ore [14, 15]). Let G = (U ∪ V,E) be a bipartite graph and suppose that W :
V ∪U → N0 is a weight function of the vertices of G. Suppose that for every vertex-set S ⊆ U
we have

∑

u∈S

W (u) ≤
∑

v∈V

min{W (v), e(v, S)}. (2.2)

Then there is a subgraph M of G such that

dM(u) = W (u), for each u ∈ U, and

dM(v) ≤ W (v), for each v ∈ V.

3 Main tools

In this section, we will introduce our main tools. Using them, we will be able to construct
proper orientations in r-partite graphs.

Throughout this section we will assume that G is an r-partite graph (r ≥ 2) with the
corresponding vertex-partition V = V1 ∪ · · · ∪ Vr. We will also assume that mad(G) ≤ 2k,
where k is a positive integer, and we fix a k-orientation D0 of G, and refer to D0 as the base
orientation of G.

Suppose that p is a partial fractional orientation (PFO) of G. Let us recall that the
potential outdegree dp(v) of a vertex v is defined as dp(v) =

∑

u∈N(v) p(v, u). Note that dp(v)

counts the number of unoriented edges incident with v together with the outdegree d+p (v) of
the oriented edges. If all undirected edges incident with v were oriented out of v, then (and
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only then) the outdegree would become equal to dp(v). We say that a vertex v is oriented if
all its incident edges are (partially) oriented. On the other hand, if at least one edge incident
with a vertex v is unoriented, then we say that v is an unoriented vertex.

Equivalently, dp(v) = d+p (v).
We say that a PFO p is j-proper if the following holds:

(1) For every oriented vertex v, dp(v) is an integer.

(2) For each m > j, the set Am of oriented vertices v with dp(v) = m is independent.2

(3) Every (partially) oriented edge is incident with a vertex in some Am, where m > j.

(4) If u /∈ ∪m>jAm and v ∈ ∪m>jAm and vu ∈ E is oriented out of v in the base orientation,
then p(v, u) = 1 and p(u, v) = 0, i.e. vu is also oriented out of v under p.

When referring to property (4) of a j-proper PFO, we will say that p is aligned with D0.
Suppose that p also satisfies:

(5) (Strong version) If v ∈ V (G) and dp(v) ≤ j, then dp(v) is an integer.

Then p is said to be strongly j-proper.
We say that a j-proper PFO p can be changed into an ℓ-proper PFO q, where ℓ ≤ j, if

the sets Am (m > j) are the same in p and in q. Note that this implies (by (3)) that every
oriented edge in p is also oriented in q (but q may have more oriented edges if ℓ 6= j).

By using the saturation process described at the end of the previous section, we are able
to change any j-proper PFO into a strongly j-proper PFO.

Lemma 3.1. Suppose that a PFO p is j-proper. Then p can be changed into a strongly
j-proper orientation q such that the following holds:

• The set of unoriented edges is the same in p and in q;

• dq(v) = dp(v) if dp(v) is an integer;

• dq(v) ≤ dp(v) if dp(v) > j;

• dq(v) is either equal to ⌊dp(v)⌋ or to ⌈dp(v)⌉ if dp(v) < j.

Proof. We change p by making successive steps, in each step either decreasing the number
of unsaturated edges with 0 < p(u, v) < 1 or decreasing the number of vertices v for which
dp(v) < j is not integral. It suffices to describe one such step.

If for each vertex v with dp(v) < j, the value dp(v) is an integer, then p is strongly j-proper
and we stop. Otherwise, let u be a vertex with noninteger value dp(u) < j. Then u is incident
with an edge uu1 with 0 < p(u, u1) < 1. If dp(u1) is an integer, we find another edge u1u2

with 0 < p(u1, u2) < 1 and continue building a path uu1u2 . . . ut (t ≥ 1) until we either repeat
one of the previous vertices (ut = ui for some 1 ≤ i < t), or we reach a vertex ut with dp(ut)
non-integral, possibly ut = u. In the latter case we have a path or a cycle uu1 . . . ut such that

2A set of vertices is independent if no two vertices in the set are adjacent.
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such that dp(ui) is integer for 1 ≤ i < t and dp(ut) is not an integer. This path or cycle is
clearly unsaturated. In the former case, we get an unsaturated cycle uiui+1 . . . ut such that
dp(us) is integer for i ≤ s < t.

If we have an unsaturated cycle, then by saturating the cycle we keep potential degrees
unchanged and we saturate at least one of the edges. If we have an unsaturated path, then by
saturating this path, dp(ut) decreases (but not more than down to the first smaller integer), so
we are sure to have the third and the fourth property of the lemma, and dp(v) increases, but
not more than to the ceiling of its value (see Observation 2.3), so we have the last property
of the lemma.

By doing this, either one of the edges on the path/cycle obtains value 0 or 1, or dp(v) or
dp(ut) becomes an integer. This completes the proof.

Having the above lemma, we will be able to assume that every j-proper PFO is strongly
j-proper.

With every (strongly) j-proper PFO p, we associate the gap values. Let A = ∪m>jAm be
the set of oriented vertices in sets Am (m > j) from item (2) in the definition of j-proper. For
a vertex v /∈ A we define its gap with respect to j:

gap(v) := dp(v) − j.

If G is r-partite with parts V1, . . . , Vr, then we also define

Gap(i) := max{gap(v) | v ∈ Vi \ A}, 1 ≤ i ≤ r.

When speaking about gaps, the value j will usually be clear from the context. If not, we may
use the term j-gap and use the notation gapj(v) and Gapj(i) to clarify.

Lemma 3.2. Suppose that G has a j-proper PFO p such that each vertex that is not in
A = ∪m>jAm has nonpositive gap. Then p can be changed into a proper orientation q such
that dq(v) ≤ ⌈dp(v)⌉ for every v ∈ V (G).

Proof. By Lemma 3.1, we may assume that dp(v) is integer for each vertex v. Observe that
every vertex with dp(v) > j is oriented since all gaps are nonpositive. Also, a vertex u has gap
zero precisely when dp(u) = j. Starting with an empty set Aj, add to Aj any vertex u with
gapj(u) = 0 and orient all unoriented edges uw incident with u out of u, i.e. set p(u, w) = 1
and p(w, u) = 0. This will decrease the gap of w by 1.

Thus repeating this step will form an independent set Aj . After no vertex with gap 0
remains, all gaps are negative integers. Now, passing from j to j−1, we have a (j−1)-proper
PFO for which all gaps are nonpositive. Thus, we can repeat the process until all vertices
have been oriented.

We end up with a 0-proper PFO. It remains to show that we can change all nonintegral
p-values into 0/1, without changing the values dp(v). Let H be the subgraph of G containing
those edges uv for which 0 < p(u, v) < 1. If there are no such edges, then we already have
a proper orientation. Otherwise, H contains a cycle C since no vertex can be incident with
precisely one edge in H . By saturating this cycle, we saturate one of the edges uv ∈ E(C) and
thus decrease the number of edges in H . By repeating this process, we obtain an orientation
as claimed.
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In later sections we will construct proper orientations, starting with some j-proper partial
orientation, and then we will decrease the gaps until no vertices with positive gap are left. We
proceed from a j-proper PFO to a (j − 1)-proper PFO such that the gaps Gap(i) (1 ≤ i ≤ r)
decrease and eventually all become 0. Of course, in the new (j − 1)-proper PFO, the gap is
considered with respect to j − 1. By doing so, the sets Am for m > j will remain unchanged
and we will form the new independent set Aj If we achieve that Gap(i) ≤ 0 (with respect to
the PFO being (j − 1)-proper), we say that we close the gap of the ith part Vi. And when all
gaps become nonpositive, we say that the gaps were closed.

In our construction of proper orientations, we use the quantity d1(v), which denotes the
number of edges which are in-edges for v in the base orientation and are still unoriented under
the partial fractional orientation we are building. The following simple corollary of properties
(3) and (4) of j-proper PFOs will be used throughout.

Lemma 3.3. Let p be a j-proper PFO and A = ∪m>jAm. Then each vertex v /∈ A satisfies
d+p (v) ≤ k and

d1(v) ≥ ⌈gap(v)⌉ + j − k. (3.3)

Proof. Note that properties (3) and (4) of j-proper PFOs imply that each unoriented vertex
v has d+p (v) ≤ k since each oriented edge vu incident with v is coming from some Am, and if
p(v, u) > 0, then vu is oriented from v to u in the base k-orientation D0.

Let t be the number of unoriented edges incident with v and let t+ be the number of those
edges that are outedges in D0. Then dp(v) = t+ d+p (v) = (t− t+) + (t+ + d+p (v)) ≤ d1(v) + k.
Note that gap(v) = dp(v) − j. Consequently, d1(v) ≥ dp(v) − k = gap(v) + j − k. Now, (3.3)
follows since d1(v) is an integer.

Let l ≥ r + k be an integer (the desired bound on the maximum outdegree of a proper
orientation). We will construct an (l−r)-proper PFO p such that dp(v) ≤ l for each v ∈ V (G)
by using the following algorithm.

Gap-Capping Algorithm:

We start with a partial orientation p with all edges undirected. Now, we repeat the following
process for i = 1, . . . , r, in each step using the partial orientation p obtained in previous steps:

(i) Let Xl−i+1 be the set of unoriented vertices with potential dp(v) ≥ l − i + 1.

(ii) Choose an independent set Al−i+1 in Xl−i+1 containing all vertices in Xl−i+1 ∩ Vi that
has the maximum number of vertices subject to the condition that Xl−i+1∩Vi ⊆ Al−i+1.

(iii) Orient each vertex v ∈ Al−i+1 so that each p-unoriented edge vu incident with v that is
oriented out of v in D0 is also oriented out from v under p. Since D0 is a k-orientation,
this rule orients at most k edges out of v. Since we had dp(v) ≥ l − i + 1 > k before
this step, we can orient additional unoriented edges incident with v such that v becomes
oriented and dp(v) becomes equal to l − i + 1.

After each step of the algorithm, the partial orientation p changes, and at the end it has
properties which we summarize in the following lemma.
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Lemma 3.4. If l ≥ r + k, then after performing the Gap-Capping Algorithm, p is a partial
orientation of the graph G and has the following properties:

(a) p is (l − r)-proper and is in particular aligned with D0.

(b) Gapl−r(i) ≤ r − i for 1 ≤ i ≤ r.

Proof. Let us first check properties (1)–(4) needed for an (l − r)-proper partial orientation.
Property (1) holds since p has no fractionally oriented edges. Similarly, (2) and (3) hold by
the way we construct p (we only orient edges incident to the vertices in sets Al−i+1).

It remains to show that p is aligned with D0. Let A = ∪m>l−rAm. For a vertex v /∈ A,
suppose that vu is an edge incident with v that is oriented out of v. Then this edge was oriented
when we have oriented the edges incident with u and u ∈ Al−i+1 for some i (1 ≤ i ≤ r). By
(iii), the edge vu is oriented from v to u in the base orientation D0. This shows that p is
aligned with D0.

It remains to prove (b). Consider an unoriented vertex v ∈ Vi\A. When we defined Al−i+1,
v was not included, so dp(v) was less than l − i + 1 at that time. Since dp only decreases
during the orientation process, we have the same condition also when the process is finished.
This shows that gapl−r(v) = dp(v) − (l − r) ≤ r − i and completes the proof.

Starting with the partial orientation satisfying the statements of the above lemma, we will
use our next lemma (the gap-decreasing tool) which is based on the notion of a maximum-
weight independent set and uses the Generalized Hall Theorem. In the proof of the lemma,
we also make use of partial fractional orientations.

We will also use the following notation. For a vertex v and 0 ≤ i < r, we define:

δi(v) =

{

0 , if gap(v) ≤ 0;
gap(v)

d1(v)−i⌈gap(v)⌉
, otherwise.

For a vertex-set A, we also write δi(A) = maxv∈A δi(v).

Lemma 3.5. Let p be a strongly j-proper PFO of an r-partite graph G = (V1, . . . , Vr, E), where
j ≥ k. Suppose that for some i, 0 ≤ i < r, at least i gaps are nonpositive, say Gap(2) ≤ 0,
. . . , Gap(i + 1) ≤ 0. Suppose that for each unoriented vertex v ∈ V1 with gap(v) ≥ 0, d1(v)
satisfies the following inequality:

d1(v) ≥ (i + 1)⌈gap(v)⌉. (3.4)

Then we can change p into a (j−1)-proper PFO and, meanwhile, for the (j−1)-gap, we close
the gap of V1 and keep the gaps of V2, . . . , Vi+1 nonpositive. For each other part Vs (s ≥ i+2),
if Gapj−1(s) > 0, then

Gapj−1(s) ≤ Gapj(s) + max {δi(Aj ∩ V1), δ0(Aj ∩ (Vi+2 ∪ · · · ∪ Vr))} ,

where Aj is the new independent set containing vertices with outdegree j, and the gap values
in the definition of δi and δ0 refer to the j-gaps with respect to the original j-proper PFO p.
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Proof. In the proof we will define the color class Aj by orienting some of the unoriented edges.
First of all, let A′ be the set of oriented vertices whose gap is 0. For these vertices, property
(3) of j-proper implies that all their neighbors are in ∪m>jAm. Thus, these vertices can be
put in Aj without worrying that they will be adjacent to any vertex in Aj. If v is an oriented
vertex with negative gap, then gapj(v) ≤ −1 since p is strongly j-proper. Thus, such a vertex
will have gapj−1(v) ≤ 0, and thus we can henceforth neglect any vertices with negative gap.

Throughout the proof we will use the values d1(v). Recall that d1(v) is defined as the
number of edges which are in-edges for v in the base orientation and are still unoriented under
the partial fractional orientation we are building. After orienting some of the edges, we change
this value, and we will denote the value corresponding to the current orientation by d′1(v).
Note that d′1(v) ≤ d1(v).

Let U be the set of all unoriented vertices with gap(v) ≥ 0. We define a weight function
W on U :

W (v) =











⌈gap(v)⌉ v ∈ V1,

1 v ∈ Vs (2 ≤ s ≤ i + 1),

0 otherwise.

Next, we choose an independent set A ⊆ U with maximum weight and, subject to this
maximality condition, with |A ∩ V1| as large as possible, and subject to these conditions, we
also ask |A| to be as large as possible. We let X = U \ A. Now, we claim that all vertices
in A can be oriented with outdegree j. From the definition of W , we obtain the following
inequality for any set S ⊆ X ∩ Vs (s ∈ {1, . . . , i + 1}):

W (S) ≤ W (N(S) ∩ A). (3.5)

For each s = 2, . . . , i + 1, we now consider the bipartite graph Bs with parts X ∩ Vs and
A\Vs and all edges of G between them. Having (3.5), we can apply the Ore Theorem (Lemma
2.4) to obtain an edge-set Ms ⊆ E(Bs) such that

dMs
(v) ≤ W (v) if v ∈ A \ Vs, and (3.6)

dMs
(v) = W (v) if v ∈ X ∩ Vs. (3.7)

Note that by (3.6), Ms does not have any vertex in Vt for t ≥ i + 2.
Now, we orient the edges in Ms from A \ Vs to X ∩ Vs for s = 2, . . . , i+ 1. After orienting

these edges, each vertex in X∩(
⋃i+1

s=2 Vs) gets at least one in-edge because of (3.7). So for every

v ∈ X ∩ (
⋃i+1

s=2 Vs), its gap decreases by at least 1. Next, since Gap(s) ≤ 0 (for 2 ≤ s ≤ i+ 1),

we can orient all remaining unoriented edges incident with vertices in A∩(
⋃i+1

s=2 Vs) out of this
set. Since the gap of these vertices was 0, they will all end up being oriented with outdegree
j. Moreover, each unoriented neighbor of any of these vertices will have its gap decreased at
least by 1, since it gets at least one in-edge from A ∩ (

⋃i+1
s=2 Vs).

In particular, if v ∈ X ∩ V1, then |N(v)∩A∩ (V2 ∪ · · · ∪ Vi+1)| ≥ ⌈gap(v)⌉+ 1. Otherwise,
we would have added the vertex v into A (and remove from A the vertices in N(v)∩A∩ (V2∪
· · · ∪ Vi+1)), which would give the set of larger weight. So the j-gap of v becomes smaller or
equal to −1 (and therefore the (j − 1)-gap will not be positive).
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Next, we describe how we orient the so far unoriented edges vu incident with the vertices
v ∈ A∩(V1∪Vi+2∪· · ·∪Vr). First of all, we orient the out-edges vu in the base orientation out
of v (so that their orientation coincides with that in D0). Note that this does not change the
value of d′1(v). Second, we use fractional orientation to let each v ∈ A ∩ (V1 ∪ Vi+2 ∪ · · · ∪ Vr)
have outdegree j. For such a vertex v and any unoriented edge vu ∈ E, we set

p(v, u) = 1 −
gap(v)

d′1(v)
and p(u, v) = 1 − p(v, u). (3.8)

If v ∈ A ∩ V1, the assumption (3.4) and the orientation given in front, yield the following
inequality:

d′1(v) ≥ (i + 1)⌈gap(v)⌉ −
∑

2≤s≤i+1

dMs
(v) ≥ ⌈gap(v)⌉.

The same holds for v ∈ Vs ∩ A (s ≥ i + 2): we have d′1(v) = d1(v) ≥ ⌈gap(v)⌉ by (3.3) and
the assumption that j ≥ k. This implies that 0 ≤ p(v, u) ≤ 1 and thus the changed fractional
orientation is well-defined. Each vertex v ∈ A is now oriented and we claim that its outdegree
is equal to j. We have already shown this for vertices in A ∩ (V2 ∪ · · · ∪ Vi+1). For V1 and
for Vs, s ≥ i + 2, we had precisely d′1(v) unoriented edges incident with v when we made the
change (3.8). Thus, the outdegree of v was increased precisely by d′1(v)− gap(v). Adding also
the out-orientation of edges that are out-edges in the base orientation, this implies that the
outdegree of v is now precisely j.

Under the new orientation, the vertices in A become oriented and have outdegree j. Mean-
while, any other unoriented vertex u, which is in X ∩ Vs (s ≥ i + 2), gets at least one
(fractionally) oriented edge since A is of maximum size. So its j-gap decreases at least by
minv∈A∩N(u){p(v, u)}. This means that the (j − 1)-gap increases with respect to the j-gap by
at most

max
v∈A∩N(u)

{1−p(v, u)} ≤ max
v∈A

{gap(v)

d′1(v)

}

≤ max {δi(Aj ∩ V1), δ0(Aj ∩ (Vi+2 ∪ · · · ∪ Vr))} , (3.9)

with the last inequality holding because d′1(v) ≥ d1(v)− i⌈gap(v)⌉ for v ∈ A∩V1 and because
d′1(v) = d1(v) for v ∈ A ∩ (Vi+2 ∪ · · · ∪ Vr)).

Finally, we set Aj := A∪A′ (where A′ is the set of vertices defined at the beginning of the
proof). Note that the maximum in (3.9) can be taken over all of Aj since for v ∈ A′, we have
gap(v) = 0.

In conclusion, if initially we had Gapj(s) ≥ 0 for s ≥ i + 2, then Gapj−1(s) may have
increased, but the increase is at most the amount stated in the lemma. Of course, if Gapj(s) <
0, then U ∩ Vs = ∅. In that case, the gap may increase by 1, but it will not become positive.
This completes the proof.

We have the following simplified corollary.

Corollary 3.6. Let p be a strongly j-proper PFO of an r-partite graph G = (V1, . . . , Vr, E).
Suppose that Gap(1) ≥ 0 and that Gap(2) ≤ 0, . . . , Gap(i + 1) ≤ 0 and that any unoriented
vertex v with gap(v) ≥ 0 satisfies the following inequality:

j ≥ i⌈gap(v)⌉ + k. (3.10)
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Then we can change p into a (j − 1)-proper PFO with a new independent set Aj containing
newly oriented vertices with outdegree j. Meanwhile, for the (j−1)-gap, we close the gap of V1

and keep the gaps of V2, . . . , Vi+1 nonpositive. For each other part Vs (s ≥ i+2) with Gap(s) ≥

0, the gap may increase but the increase cannot be bigger than maxv∈Aj

{ gap(v)
j−k−(i−1)⌈gap(v)⌉

}

.

Proof. Since Gap(1) ≥ 0, there is a vertex in V1 whose gap is nonnegative. From (3.10) we
conclude that j ≥ k. By (3.3) and (3.10), we have d1(v) ≥ ⌈gap(v)⌉+ j − k ≥ (i+ 1)⌈gap(v)⌉
for each v ∈ V1. This shows that (3.4) holds, and we can apply Lemma 3.5. The lemma gives
a (j − 1)-proper PFO and the new independent set Aj . If v ∈ Aj, then (3.3) implies that
j − k − (i− 1)⌈gap(v)⌉ ≤ d1 − i⌈gap(v)⌉. Therefore, for v ∈ Aj ∩ V1 with gap(v) > 0,

gap(v)

j − k − (i− 1)⌈gap(v)⌉
≥

gap(v)

d1(v) − i⌈gap(v)⌉
.

Similarly, if v ∈ Aj ∩ Vs (i + 2 ≤ s ≤ r) has gap(v) > 0, then by (3.3) and (3.10), we have
d1(v) ≥ ⌈gap(v)⌉ + j − k ≥ (i + 1)⌈gap(v)⌉. So, we have for every i ≥ 0:

gap(v)

j − k − (i− 1)⌈gap(v)⌉
≥

gap(v)

j − k + ⌈gap(v)⌉
≥

gap(v)

d1(v)
.

These inequalities combined with Lemma 3.5 confirm that max{δi(Aj ∩ V1), δ0(Aj ∩(Vi+2 ∪

· · · ∪ Vr))} ≤ gap(v)
j−k−(i−1)⌈gap(v)⌉

. So the last conclusion of the corollary holds.

4 Proper orientations of bipartite graphs

In this section we prove our first main result, Theorem 1.2, which gives a bound for the proper
orientation number of bipartite graphs. The proof is split into two parts. First we establish
the bounds, and then we show that the bounds are best possible.

First we prove that for every bipartite graph G,

⌈

1
2
mad(G)

⌉

≤ ~χ(G) ≤
⌈

1
2
mad(G)

⌉

+ 3. (4.11)

Proof of (4.11). The lower bound in (4.11) holds for any graph. To prove the upper bound,
let G = (V1, V2, E) be a bipartite graph with mad(G) ≤ 2k and let l = k + 3. As discussed in
the previous section, we start with a base orientation D0, which is a k-orientation of G. Then
we use Lemma 3.4 to obtain an (l − 2)-proper PFO p such that Gap(1) ≤ 1 and Gap(2) ≤ 0.
Since l−2 ≥ k+ 1 ≥ ⌈gap(v)⌉+k for v ∈ V1, we can apply Corollary 3.6 (by using i = 1). By
doing this, we determine Al−2 and close all gaps. Thus we can change p into an (l− 3)-proper
PFO with all gaps nonpositive. By Lemma 3.2, there is a proper orientation q for G such that
dq(v) ≤ dp(v). So dq(v) = d+q (v) ≤ l = k + 3 for each vertex. This shows that ~χ(G) ≤ k + 3.

Tightness of the upper bound

Next we prove that there exist a bipartite graph G such that ~χ(G) =
⌈

1
2
mad(G)

⌉

+ 3.
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We first define a bipartite graph G1 with the bipartition {A∪D,B1 ∪ · · · ∪Bk ∪C}. The
set A has k vertices v1, . . . , vk. For i ∈ [k], the set Bi has (k(k + 2) + 1)

(

k
i

)

vertices. For each
i-subset S ⊆ A, a set of k(k + 2) + 1 of the vertices in Bi is adjacent precisely to the vertices
in S. The set C has m = (k + 3)k2 vertices and is completely joined to A. Divide C into
pairwise disjoint k-subset. Finally, the set D has t = m

k
vertices, each of which is joined to

a different k-set of the partition of C. It is not hard to see that G1 is k-degenerate, i.e., it
can be reduced to the empty graph by successively deleting vertices of degree at most k. This
implies that mad(G1) < 2k.

Claim 4.1. Suppose that p is an orientation of G1 such that d+p (v) ≤ k + 2 for every vertex
v and that d+p (x) 6= d+p (y) for every edge xy, where x ∈ D and y ∈ C. Then for each i ∈ [k]
and each v ∈ A, there is a vertex in Bi with outdegree i that is adjacent to v. Moreover, C
contains a vertex with outdegree k + 1.

Proof. Take S ⊆ A with v ∈ S and |S| = i, where i ∈ [k]. If each vertex in Bi that is
completely adjacent to S (i.e. adjacent to each vertex in S) has outdegree less than i, then
the number of edges oriented from S to Bi is at least k(k + 2) + 1, which implies that some
vertex in S has outdegree more than k + 2. This contradiction proves the first claim.

Suppose now that no vertex in C has outdegree k+ 1. Since d+p (v) ≤ k+ 2 for each v ∈ A,
there are at most k(k + 2) vertices in C that have an incoming edge from A. Since there are
(k + 3)k pairwise disjoint k-subsets in C, one of the parts, say X , of the partition of C into
k-sets has all edges directed from X to A. The vertices in X thus have outdegree k towards
A. If all of them have outdegree in G1 exactly k, their common neighbor in D would have
outdegree exactly k as well, and this would not be a proper orientation. Since each vertex in
X has degree k + 1, and outdegree more than k, its outdegree is precisely k + 1.

Now, we take 8 disjoint copies of G1, denoted by G1, . . . , G8. We denote the vertices in
the set A of Gs by A(s) (1 ≤ s ≤ 8). Finally, add all edges between A(i) and A(j) for all pairs
(i, j) ∈ {(1, 4), (2, 4), (3, 4), (4, 5), (5, 6), (5, 7), (5, 8)} and denote the resulting graph by G.

Claim 4.2. The graph G defined above is bipartite and has mad(G) < 2k. Moreover, ~χ(G) =
k + 3.

Proof. It is not hard to see that G is bipartite and that mad(G) < 2k (since G is k-degenerate).
By (4.11) it is also clear that ~χ(G) ≤ k + 3.

In order to show that ~χ(G) = k + 3, let us suppose, for a contradiction, that there is a
proper orientation p of G such that d+p (v) ≤ k + 2 for every vertex v. Claim 4.1 implies that

for each s ∈ [8] and each v ∈ A(s), we have d+p (v) = 0 or k + 2. Then it is easy to see that

all vertices in A(1) ∪ A(2) ∪ A(3) ∪ A(5) have the same outdegree (either 0 or k + 2), and that
all vertices in A(4) ∪ A(6) ∪ A(7) ∪ A(8) have the same outdegree (which is different from the
outdegrees in A(5)). Without loss of generality, we may assume that the first set has common
outdegree 0. However, this implies that the vertices in A(4) have outdegree at least 4k, which
is larger than k + 2, a contradiction.
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5 Proper orientations of r-partite graphs

In this section, we use Corollary 3.6 to give a proof of Theorem 1.8. In fact, we will prove the
following more specific result.

Theorem 5.1. Let G be an r-partite graph with mad(G) ≤ 2k. Let t be the smallest integer
for which tt+1 ≥ r − 1. Then

~χ(G) ≤ k + 3r(t + 1) ≤ k +
3(1 + o(1)) r log r

log log r
.

Proof. Let χ(G) = r, mad(G) ≤ 2k and l = k + 3r(t + 1). We will prove that there exists a
proper l-orientation p of G. First, we will deal with vertices whose degree is large. As proved
before, this can be controlled by starting with a base k-orientation D0 and use Lemma 3.4.
Having done that, we have obtained an (l − r)-proper PFO p such that Gap(s) ≤ r − s for
each s = 1, . . . , r.

For convenience, let Vi = Vi mod r for any positive integer i. We will use Corollary 3.6
repeatedly and will determine Al−r, . . . , Al−r(t+1)+1 iteratively. In order to apply Corollary 3.6
in this iteration and also in later steps, we have to make sure that the “j ≥ k” condition
from the corollary is satisfied. To see this, note that l = k + 3r(t + 1), so in our process,
j ≥ l − r(t + 1) + 1 ≥ k.

When we determine Al−r−i (0 ≤ i ≤ rt − 1), we view Vi+1 as the set V1 in Corollary 3.6
(which is used throughout with its value of i = 0, i.e., we do not insist on any parts keeping
their nonpositive gap). When applying the corollary, we close the gap of Vi+1, and gaps of

other parts increase at most by maxv∈Al−r−i
{ gap(v)
(l−r−i)−k

}. For this process, we have following
claim.

Claim 5.2. Let j = ⌈ i+1
r
⌉. When we determine Al−r−i (0 ≤ i ≤ rt− 1), we close the gap of

Vi+1 and for any other part, if the gap is positive, then it has increased by at most t−j in this
step.

Proof. From Corollary 3.6, it is sufficient to prove that gap(v)
(l−r−i)−k

≤ t−j for every v ∈ Al−r−i.
The proof is by induction on i. If i = 0, then for every vertex v, we have:

gap(v)

(l − r − i) − k
≤

r − 1

l − r − k
≤

r

rt
=

1

t
. (5.12)

Through the next steps when i = 1, . . . , r− 1, the induction hypothesis shows that the gap of
each vertex is at most r−1, and hence (5.12) holds. Thus, we may now assume that i ≥ r and
j ≥ 2. Since the gap of each part was nonpositive at most r − 1 steps earlier, the induction
hypothesis implies that the gap of each vertex is currently at most (r − 1)t1−j . Thus,

gap(v)

(l − r − i) − k
≤

(r − 1) t1−j

(l − r − rt + 1) − k
≤

rt1−j

tr
= t−j.
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After finishing the above process iteratively for i = 0, 1, . . . , rt − 1, we have a strongly
(l − r(t + 1))-proper PFO p, whose gaps are bounded: Gap(x) ≤ r−x

tt
for 1 ≤ x ≤ r. Next,

we use Corollary 3.6 iteratively to determine Al−r(t+1), . . . , Al−r(t+2)+1 and close the gap of
each part. The following claim will help us proving that this process can be made so that no
positive gaps remain.

Claim 5.3. When we determine Al−r(t+1)−i (i = 0, . . . , r − 1), we close the gap of Vi+1, and
keep the gaps of V1, . . . , Vi nonpositive. For any other part, the gap increases by at most
t−(t+1).

Proof. The proof is by induction on i. When i = 0, before using Corollary 3.6, we need to
check the inequality in Corollary 3.6. For v ∈ V (G) with gap(v) ≥ 0, l − r(t + 1) ≥ k. Then
for a vertex v in V2, . . . , Vr, we have gap(v) ≤ (r − 1)t−t and hence

gap(v)

l − r(t + 1) − k
≤

(r − 1)t−t

l − r(t + 1) − k
≤

rt−t

rt
= t−(t+1).

This shows that the gaps of V2, . . . , Vr increase by at most t−(t+1) (or remain nonpositive).
Next, when i > 0, for a vertex in Vs (i + 2 ≤ s ≤ r) we have gap(v) ≤ r−i

tt
+ i−1

t(t+1) ≤
r−1
tt

≤ t
by the induction assumption. Then we check the inequality in Corollary 3.6:

(i− 1)⌈gap(v)⌉ + k ≤ tr + k ≤ l − r(t + 1) − i.

And

gap(v)

l − r(t + 1) − i− k − i⌈gap(v)⌉
≤

rt−t

l − r(t + 1) − r − k − rt
≤

rt−t

rt
=

1

t(t+1)
.

This shows that the gaps of Vi+2, . . . , Vr increase by at most 1
t(t+1) and completes the proof of

the claim.

After determining Al−r(t+2)+1, we have Gap(s) ≤ 0 for s = 1, . . . , r. By Lemma 3.2, there
is a proper orientation for G, whose maximum outdegree is at most l.

6 Proper orientations of planar graphs

Results of the previous section show that the proper orientation number of planar graphs is
bounded. Theorem 1.8 combined with the fact that planar graphs are 4-colorable yields a
rough upper bound. In this section, we will use our main tools together with a more detailed
analysis to obtain a better bound. Our final result, Theorem 1.4, will then establish that for
every planar graph G, we have ~χ(G) ≤ 14. Lastly, we will also outline the proof that every
outerplanar graph G has ~χ(G) ≤ 10.

Proof of Theorem 1.4. Let G be a planar graph. Let us first observe that mad(G) < 6. This
well-known fact follows easily from Euler’s formula. Thus G has a 3-orientation D0, which
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we call the base orientation as before. Furthermore, by the Four-Color Theorem [3, 16], G is
4-partite. We let V1, . . . , V4 be the color classes of a 4-coloring of G.

Next we give a construction of a proper orientation p. We let l = 14 as an upper bound
on the desired maximum outdegree.

Step 0. By Lemma 3.4, we construct an (l − 4)-proper partial orientation p such that
Gap(i) ≤ 4 − i (i = 1, 2, 3, 4). Moreover, p is aligned with the base orientation D0. This
means that any vertex v /∈ Al ∪ Al−1 ∪ Al−2 ∪ Al−3 has d+p (v) ≤ 3.

Our next goal is to close all gaps. We achieve this by using Lemma 3.5 in four additional
steps:

Step 1. We determine Al−4, making p an (l−5)-proper PFO, closing Gap(1), keeping Gap(4)
nonpositive, and achieving Gap(2) ≤ 2 + 3/7 and Gap(3) ≤ 1 + 3/7.

Step 2. We determine Al−5, changing p into an (l− 6)-proper PFO, closing Gap(2), keeping
Gap(1) and Gap(4) nonpositive, and achieving Gap(3) ≤ 1 + 3/7 + 17/24.

Step 3. We determine Al−6, making p an (l−7)-proper PFO, closing Gap(3), keeping Gap(1)
and Gap(2) nonpositive, and achieving Gap(4) ≤ 1.

Step 4. Finally, we change p into an (l − 8)-proper PFO and close all gaps.

Let us now describe how to achieve the claimed statements in Steps 1–4. Having the
(l− 4)-proper partial orientation from Step 0, we will find Al−4, close the gap of V1 and keep
Gap(4) nonpositive by applying Lemma 3.5 with i = 1. We need to confirm the inequality
(3.4). Let v be an unoriented vertex. Since p is aligned with D0, we have:

d1(v) ≥ dp(v) − 3 = (gap(v) + l − 4) − 3 = gap(v) + 7 ≥ 2⌈gap(v)⌉. (6.13)

Note that all gaps are integers at this stage. By Lemma 3.5 we now obtain an (l − 5)-proper
PFO and close the gap for V1. By using (6.13), we can conclude that the gaps of V2 and V3

increase by at most

max {δ1(Al−4 ∩ V1), δ0(Aj ∩ (V2 ∪ V3))} ≤ max
v∈Al−4

{ gap(v)

d1(v) − ⌈gap(v)⌉

}

.

This yields the following upper bound on the increase of the gaps:

max
v∈Al−4

{ gap(v)

d1(v) − ⌈gap(v)⌉

}

≤ max
v∈Al−4

{gap(v)

l − 7

}

≤
3

7
.

We conclude that the new gaps satisfy Gap(2) ≤ 2 + 3
7

and Gap(3) ≤ 1 + 3
7
.

Let us also observe that any vertex u ∈ V2 with its new value gap(u) > 2 belongs to V2,
had its (l − 4)-gap equal to 2 and in the process of changing p to become (l − 5)-proper,
precisely one edge vu incident with u was (fractionally) oriented and the edge uv is directed
out of u in the base orientation. This means that d1(u) remains the same. In particular, we
have d1(u) ≥ 9 by (6.13).
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In Step 2, we determine Al−5, close the gap of V2 and keep the gaps of V1 and V4 nonpositive.
Here we take i = 2 while applying Lemma 3.5 (with appropriate permutation of V1, V2, V3, V4).
As remarked above, if gap(u) > 2, then we have:

d1(u) ≥ 9 = 3⌈gap(u)⌉.

If gap(u) ≤ 2, then

d1(u) ≥ ⌈gap(u)⌉ + (l − 5) − 3 = ⌈gap(u)⌉ + 6 ≥ 3⌈gap(u)⌉.

So we can apply Lemma 3.5 with i = 2 to obtain Al−5 and change p into an (l− 6)-proper
PFO, while closing the gap of V2 and keeping gaps of V1 and V4 nonpositive. For V3, the gap
increases at most by

max {δ2(Al−5 ∩ V2), δ0(Aj ∩ V3)} ≤ max
v∈Al−5

{ gap(v)

d1(v) − 2⌈gap(v)⌉

}

.

If gap(v) > 2, then as shown above, d1(v) − 2⌈gap(v)⌉ = d1(v) − 6 ≥ 3. Thus we have:

gap(v)

d1(v) − 2⌈gap(v)⌉
≤

2 + 3
7

3
≤

17

21
.

If gap(v) ≤ 2, then d1(v) ≥ 6 + gap(v) and we have:

gap(v)

d1(v) − 2⌈gap(v)⌉
≤

gap(v)

6 + gap(v) − 2⌈gap(v)⌉
≤

gap(v)

2 + gap(v)
≤

1

2
.

We conclude that Gap(3) ≤ 1 + 3
7

+ 17
21

and that Gap(1), Gap(2), Gap(4) ≤ 0.
In Step 3 we will close the gap of V3 and keep the gaps of V1 and V2 nonpositive. In order

to achieve this, we take i = 2 and apply Lemma 3.5. And we see if gap(v) > 2, v has at
least two fractionally oriented edges in the current (l − 6)-proper PFO p. These edges are
both out-edges for v in D0 and we see in the same way as above that d1(v) ≥ 9 = 3⌈gap(v)⌉.
Similarly, if 1 < gap(v) ≤ 2, v gets at least one fractionally oriented edge in p and this edge
is an out-edge for v in D0. Consequently,

d1(v) ≥ (⌈gap(v)⌉ + l − 5) − 3 = 8 ≥ 3⌈gap(v)⌉.

If gap(v) ≤ 1, then d1(v) ≥ (⌈gap(v)⌉ + l − 6) − 3 ≥ 3⌈gap(v)⌉.
We conclude that the condition (3.4) holds and thus we obtain an (l− 7)-proper PFO and

close the gap for V3. When applying Lemma 3.5, the gap of V4 increases at most by

max
v∈Al−6

{ gap(v)

d1(v) − 2⌈gap(v)⌉

}

.

Consider any vertex v ∈ Al−6. If gap(v) > 2, then

gap(v)

d1(v) − 2⌈gap(v)⌉
≤

gap(v)

9 − 2⌈gap(v)⌉
≤

gap(v)

3
≤ 1.

18



If gap(v) ≤ 2, then

gap(v)

d1(v) − 2⌈gap(v)⌉
≤

gap(v)

4 − ⌈gap(v)⌉
≤

gap(v)

2
≤ 1.

This implies that the new gaps are bounded as follows: Gap(4) ≤ 1 and Gap(1), Gap(2),
Gap(3) ≤ 0.

In the last step, we close the gap of V4 and keep the gaps of V1, V2, V3 nonnegative. We
only need to check the inequalities to apply Lemma 3.5 (with i = 3). If gap(v) > 0, then
v ∈ V4 and v gets at least one fractionally oriented edge in Step 3. So

d1(v) ≥ (⌈gap(v)⌉ + l − 8) − 2 ≥ 4 = 4⌈gap(v)⌉.

And if gap(v) = 0, we have d1(v) ≥ (l− 8)− 3 ≥ 0 = 4⌈gap(v)⌉. Thus we can use Lemma 3.5
to close the gap of V3, while keeping the other gaps nonpositive. Finally, after no gaps are
positive, Lemma 3.2 shows that p can be changed to a proper orientation of G. As we started
with l = 14, we get the claim of the theorem.

Proof of Theorem 1.5. For 3-colorable graphs, we can use the same proof as above, except that
we start with three classes V1, V2, V3. Considering a graph G, we use its base 3-orientation
D0, and if G is outerplanar, we can assume that D0 is a 2-orientation. In order to treat both
cases at the same time we set l = 11 and k = 3 for the general 3-colorable case, and l = 10
and k = 2 for the outerplanar case.

Next we sketch how to construct a proper orientation p with maximum outdegree at
most l. By Lemma 3.4, we can construct an (l − 3)-proper partial orientation p such that
Gap(i) ≤ 3 − i for i = 1, 2, 3. Meanwhile, for any unoriented vertex v ∈ Vi, d

+
p (v) ≤ k, and

the partial orientation is aligned with D0. Then we need to close the gap of these parts. We
achieve this by using Lemma 3.5 in two steps:

Step 1. We determine Al−3, making p (l − 4)-proper, closing Gap(1), keeping Gap(3) non-
positive, and achieving Gap(2) ≤ 1 + 1

2
.

Step 2. We determine Al−4, making p (l − 5)-proper, closing all gaps.

Next, we describe how to achieve the claimed statements. First we find Al−3, close the
gap of V1 and keep Gap(3) being nonpositive. We check the inequlities in Lemma 3.5 where

d1(v) ≥ (gap(v) + l − 3) − k ≥ gap(v) + 5 ≥ 2⌈gap(v)⌉.

So we obtain an (l− 4)-proper PFO and close the gap of V1. And for V2, the gap increases at
most by

max
v∈Al−3

{ gap(v)

d1(v) − ⌈gap(v)⌉

}

≤ max
v∈Al−3

{ gap(v)

gap(v) + 5 − ⌈gap(v)⌉

}

≤
2

5
.

Here we have used the fact that gap(v) ≤ 2 for every v ∈ Al−3.
In Step 2 we have Gap(2) ≤ 1 + 2

5
and Gap(1), Gap(3) ≤ 0. Next we find Al−4 and close

all gaps. To check the inequality needed in order to apply Lemma 3.5, we first consider any
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vertex v with gap(v) > 1. Clearly, v ∈ V2, and v gets at least one fractionally oriented edge
in Step 1. Such an edge is an out-edge for v in the base orientation. Thus, if 1 < gap(v) < 2,
then

d1(v) ≥ (⌈gap(v)⌉ + l − 4) − 2 ≥ 6 = 3⌈gap(v)⌉.

If gap(v) ≤ 1, then

d1(v) ≥ gap(v) + l − 4 − 2 ≥ 4 + gap(v) ≥ 3⌈gap(v)⌉.

Thus we obtain an (l − 5)-proper PFO and Gap(1), Gap(2), Gap(3) ≤ 0. By Lemma 3.2, we
can now obtain an l-proper orientation. So ~χ(G) ≤ l = 11.

7 Conclusion

In this paper, we introduced a tool combining fractional orientations and Hall theorem. By
repeated use of it, we have proved that ~χ(G) can be bounded by a function of mad(G) and
χ(G). In this way, we also gave detailed upper bounds for planar and outerplanar graphs,
by using the fact that every planar graph is 4-colorable with mad(G) at most 3, and that
every outerplanar graph is 3-colorable with mad(G) at most 2. But, there are still some basic
questions about proper orientation number that remain open.

The first one is about the tightness of our bound on proper orientation number of planar
graphs.

Question 7.1. What is the maximum value of ~χ(G) over all planar graphs G?

We know that the answer to this question is between 10 and 14, but it is unclear what is
the right number.

In Corollary 1.9, we show that ~χ(G) is bounded by a (non-linear) function of mad(G). It
would be important to know whether this function can be replaced by a linear upper bound.

Question 7.2. Can ~χ(G) be bounded above by a linear function of mad(G)?

Theorem 1.8 shows that ~χ(G) is bounded by the sum of 1
2
mad(G) and a non-linear function

of χ(G). As 1
2
mad(G) is a trivial lower bound on ~χ(G), the gap between them is more

interesting.

Question 7.3. Can ~χ(G) − 1
2
mad(G) be bounded by a linear function of χ(G)?

In particular, for a graph G of genus g, Corollary 1.9 implies that

~χ(G) ≤ O(g1/2 log g/ log log g).

Is there a better bound? We believe there is and propose the following.

Conjecture 7.4. If G is a graph of genus g, then ~χ(G) ≤ O(g1/2).
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