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Abstract

Non-uniform hypergraphs appear in various domains of computer sci-
ence as in the satisfiability problems and in data analysis. We analyze a
general model where the probability for an edge of size ¢ to belong to the
hypergraph depends on a parameter w; of the model. It is a natural gen-
eralization of the models of graphs used by Flajolet, Knuth and Pittel [10]
and Janson, Knuth, Luczak and Pittel [I6]. The present paper follows the
same general approach based on analytic combinatorics. We show that
many analytic tools developed for the analysis of graphs can be extended
surprisingly well to non-uniform hypergraphs. Specifically, we investigate
random hypergraphs with a large number of vertices n and a complexity,
defined as the excess, proportional to n. We analyze their typical struc-
ture before, near and after the birth of the complex components, that are
the connected components with more than one cycle. Finally, we compute
statistics of the model to link number of edges and excess.

Keywords: hypergraph, phase transition, analytic combinatorics.

1 Introduction

In the seminal article [9], Erdds and Rényi discovered an abrupt change of
the structure of a random graph when the number of edges reaches half the
number of vertices. It corresponds to the emergence of the first connected
component with more than one cycle, immediately followed by components with
even more cycles. The combinatorial analysis of those components improves the
understanding of the objects modeled by graphs and has application in the

*This work was partially founded by the ANR Boole, the ANR Magnum, the Amadeus
program and the Univ Paris Diderot, Sorbonne Paris Cité (UMR, 7089).



analysis and the conception of graph algorithm. The same motivation holds
for hypergraphs which are used, among others, to represent databases and xor-
formulas.

Much of the literature on hypergraphs is restricted to the uniform case, where
all the edges contain the same number of vertices. In particular, the analysis of
the birth of the complex component in terms of the size of the components and
the order of the phase transition can be found in [I7], [6], []], [14] and [25].

There is no canonical choice for the size of a random edge in a hypergraph;
thus several models have been proposed. One is developed in [26], where the
size of the largest connected component is obtained using probabilistic methods.
It is our opinion that to be general, a non-uniform hypergraph model needs one
parameter for each possible size of edges, in order to quantify how often those
edges appear. In [7], Darling and Norris define such a model, the Poisson random
hypergraphs model, and analyze its structure via fluid limits of pure jump-type
Markov processes.

We have not found in the literature much use of the generating function of
non-uniform hypergraphs to investigate their structure, and we intend to fill
this gap. However, similar generating functions have been derived in [I3] for a
different purpose: Gessel and Kalikow use it to give a combinatorial interpre-
tation for a functional equation of Bouwkamp and de Bruijn. The underlying
hypergraph model is a natural generalization of the multigraph process.

In Section [2| we introduce the hypergraph models, the probability distribu-
tion and the corresponding generating functions. The important notion of excess
is also defined. Section [3]is dedicated to the asymptotic number of hypergraphs
with n vertices and excess k. Statistics on the random hypergraphs are derived,
including the limit distribution of the number of edges. Section {4 focuses on
hypergraphs with small excess (subcritical), which are composed only of trees
and unicycle components with high probability. The critical excess at which
the first complex component appears is obtained in Section For a range of
excess near and before this critical value, we compute the probability that a
random hypergraph contains no complex component. The classical notion of
kernel is introduced for hypergraphs in Section [6] It is then used to derive the
asymptotics of connected hypergraphs with n vertices and fixed excess k. We
derive in Section [7] the structure of random hypergraphs in the critical window,
and obtain a surprising result: although the critical excess is generally different
for graphs and hypergraphs, both models share the same structure distribution
exactly at their respective critical excess. Finally, we give an intuitive explana-
tion of the birth of the giant component in Section [§]and prove that there is with
high probability a component with an unbounded excess in random hypergraphs
with supercritical excess.

2 Presentation of the Model

In this paper, a hypergraph G is a multiset E(G) of m(G) edges. Each edge e is
a multiset of |e| vertices in V(G), where |e| > 2. The vertices of the hypergraph
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Figure 1: Hypergraph with n = 5 vertices, m = 3 edges, excess k = 0, size l = 8
and NumbSeq = 432. There is one cycle, which links the vertices 2 and 3.

are labelled from 1 to n(G). We also set I(G) for the size of G, defined by

W= ld= 3 deg).
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Those notions are illustrated in figure

The notion of excess was first used for graphs in [2§], then named in [I6], and
finally extended to hypergraphs in [18]. The excess of a connected component C'
is always greater than or equal to —1. It expresses how far from a tree it is: C
is a tree if and only if its excess is —1, contains exactly one cycle if its excess
is 0, and is said to be complex if its excess is strictly positive. Intuitively, a
connected component with high excess is “hard” to treat for a backtracking
algorithm. The excess k(G) of a hypergraph G is defined by

k(G) = 1(G) — n(G) — m(G).

A hypergraph may contain several copies of the same edge and a vertex may
appear more than once in an edge; thus we are considering multihypergraphs.
A hypergraph with no loop nor multiple edge is said to be simple. Since each
edge is a multiset of vertices, the edges of a hypergraph G form a multiset of
multisets of vertices E(G). We define NumbSeq(G) as the number of distinct
orderings of the vertices in E(G). For example, two possible orderings for the hy-
pergraph from figure [T are ((5,3,4), (3,2),(2,1,3)) and ((2,3), (5,4,3),(2,1,3)),
while (5,1,4), (1,2), (2,3, 1) would describe a different hypergraph. In summary,
NumbSeq(G) is the number of ways to write E(G) as a sequence of sequences of
vertices. If G is simple, then NumbSeq(G) is equal to m(G)![[.cp(q) lel!, oth-
erwise it is smaller. We associate to any family F of hypergraphs the generating
function

n(G
F(z,w,z) = Z NumbSeq(G) H “le| wm(G)xl(G)Zi()

m(G)! le]! n(G)!

GeF e€E(G)

where w; marks the edges of size ¢, w the edges, x the size of the graph and z
the vertices. Therefore, we count hypergraphs with a weight s

:NumbSeq(G) H Wie| 2)

m(G)! le]!

that is the extension to hypergraphs of the compensation factor defined in Sec-
tion 1 of [I6]. We will conveniently refer to the sum of the weights of the

k(G)

ecE(Q)



hypergraphs in F as the number of hypergraphs in F. If F is a family of simple
hypergraphs, then this number of hypergraphs is the actual cardinality of F. In
this case, we obtain the simpler and natural expression

n(@)

(2,0, %) Z ( H Wie ‘> z(G)W (3)

GeF e€cE(GQ)

Observe that the generating function of the subfamily of hypergraphs of excess k
is [y*]F (z/y,w/y, zy), where [z"] Y, arz® denotes the coefficient a,,.
We define the exponential generating function of the edges as

t
= Zwt%.

t>2

From now on, the (w;) are considered as a bounded sequence of nonnegative real
numbers with wg = w; = 0. The value w; represents how likely an edge of size ¢
is to appear. Thus, for graphs we get Q(z) = 2%/2, for d-uniform hypergraphs
(i.e. with all edges of size d) we have Q(z) = z%/d!, for hypergraphs with sizes
of edges restricted to a set S we have Q(z) = ) ¢ 2° and for hypergraphs with
weight 1 for all size of edge 2(z) = e*—1—2z. The hypothesis wg = w; = 0 means
that the edges of size 0 or 1 are forbidden (more specifically, any hypergraph that
contains such an edge will be counted with weight 0). To simplify the saddle
point proofs, we also assume that €2(z)/z cannot be written as f(z%) for an
integer d > 1 and a power series f with a non-zero radius of convergence. This
implies that e(#)/# is aperiodic. Therefore, we do not treat the important,
but already studied, case of d-uniform hypergraphs for d > 2 (those are the
hypergraphs where all the edges have same size d).
The generating function of all hypergraphs is

(z,w,x) Ze“’g(m)z . (4)

This expression can be derived from or using the symbolic method pre-
sented in [I2]. Indeed, Q(nx) represents an edge of size marked by z and n
possible types of vertices, and e® 2("®) a set of edges. For the family of simple

hypergraphs,
shg(z,w,x) = Z (H(l + wtmtw)(¥)> % (5)

n t

Similar expressions have been derived in [I3]. The authors use them to give
a combinatorial interpretation of a functional equation of Bouwkamp and de
Bruijn.

A hypergraph with n vertices and m labelled edges can be represented by
an (n,m)-matrix M with nonnegative integer coefficients, the coefficient M, .
being the number of occurrences of the vertex v in the edge e. In this rep-
resentation, multigraphs correspond to matrices where the sum of the coeffi-
cients on each column is equal to 2. Simple hypergraphs correspond to matrices
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Figure 2: One of the duals of the hypergraph of figure The vertex ¢, of
degree 3, corresponds to the edge (3,4,5), of size 3, in figure

with {0, 1} coefficients that do not contain two identical columns. Let us con-
sider a hypergraph G and a matrix representation M of it. A hypergraph H is
said to be the dual of G if the transpose M 7™ of M represents it. In other words,
H is obtained from G by reversing the roles of vertices and edges, of degrees
and sizes of the edges. Therefore, the choice of weighting the edges depending
of their size can be transposed into weights on the vertices with respect to their
degrees. Figure [2 displays a dual of the hypergraph of figure[I] This notion will
be useful in the proof of Theorem

Comparing with , simple hypergraphs may appear more natural than
hypergraphs. But their generating function is more intricate, their matrix repre-
sentations satisfy more complex constraints and the asymptotic results on hyper-
graphs can often be extended to simple hypergraphs. Furthermore, experience
has shown that multigraphs appear as often as simple graphs in applications.
This is why we do not confine our study to simple hypergraphs.

So far, we have adopted an enumerative approach of the model, but there is
a corresponding probabilistic description. Let us define HG,, ; (resp. SHG,, 1)
as the set of hypergraphs (resp. simple hypergraphs) with n vertices and ex-
cess k, equipped with the probability distribution induced by the weights (2)).
Therefore, the hypergraph G' occurs with probability «(G)/ > yena, , K(H).

3 Hypergraphs with n Vertices and Excess k&

In this section, we derive the asymptotic number of hypergraphs and simple
hypergraphs with n vertices and global excess k. This result is interesting by
itself and is a first step to find the excess k at which the first component with
strictly positive excess is likely to appear. Statistics on the number of edges are
also derived.

Theorem 1. Let A be a strictly positive real value and k = (A — 1)n, then the
sum of the weights of the hypergraphs in HG,, i, is

20
n e ¢ 1

hgn,k ~ /7271'77, <n+k CQ//(C) .\

n+k

where W(z) denotes the function ' (z) — @ and ¢ is defined by ¥(¢) = X. A



similar result holds for simple hypergraphs:

2 +2 "
itk o & exp (——“)24C — Q) QQ(O>

shgn,k ~ \/ﬁ Cn+k CQH(O DY

More precisely, if k = (A—l)n—i—:}mQ/?’ where x is bounded, then the two previous

- p — x> 1/3 3 QO+
asymptotics are multiplied by a factor exp (Q(Cﬂ”i:(v{)—k)n /3 4 %W)
Proof. With the convention , the sum of the weights of the hypergraphs
with n vertices and excess k is

2"y b=/, 1 /.) = ] 30 "5 BT g e

n

The asymptotics is then extracted using the Large Powers Scheme presented
in [I2, Chapter VIII]. Observe that W(z) = ), w(t — 1)"1—71 has nonnegative
coefficients, so there is a unique solution of ¥(¢) = A, and that ¥({) = A
implies ¢ Q"(¢) — X > 0.

For simple hypergraphs, the coefficient we want to extract from is now

nntk dy

2ir }ge"p (Et (7) log (1 +wi (%)H)) AT

The sum in the exponential can be rewritten

Q;y)wzt: (;’) <1og(1+wt (%)H) o, (Z)H>_(Zt B (?)) B (%)H

2,2 "
which is %n — 22y %(y) + O(1/n) when y is bounded (we use here the
hypothesis that wy = w; = 0). In the saddle point method, y is close to ¢, which
in our case is fixed with respect to n. Therefore,

n z 1 w2 (¢
TL'[Z yk] Shg <ya ;a y) ~ exp <_ 24 - 2()) hgn,k :

by [T+ w =) =

t

The constraint k = (A — 1)n + zn?/3 is equivalent to k = (A — 1)n with A =
A+ zn~ /3. Since x is bounded, so is A and the first part of the theorem can
be applied. Let us consider the solution ¢ of ¥(¢) = A. With the help of maple,
we find

e e

W = W exp

[21(9) (%)
<

(2«9%0AY%6«Q%0M3+0( 0'

O



The factor exp (—# — %) is the asymptotic probability for a hyper-
graph in HG,,  to be simple. For graphs, with Q(z) = 22/2 and A = 1/2, we
obtain the same factor e~/ as in [16].

We study the evolution of hypergraphs as their excess increases. This choice
of parameter may seem less natural than the number of edges, but the excess
turns out to be a better measure of the complexity of a hypergraph than its
number of edges. Indeed, it seems natural to assume that a large edge carries
more information than an edge of size 2. Furthermore, we can compute statistics

on the number of edges of hypergraphs with n edges and excess k.

Theorem 2. Let ¥(z) and ¢ be defined as in Theorem and G be a random
hypergraph in HG,, j, or in SHG,, , with k = (A — 1)n, then the number m of
edges of G admits a limit law that is Gaussian with parameters

Enulin) = 2,
(0w
Vot = (% - cqrig =)

Reversely, the expectation and variance of the excess k of a random hypergraph
with n vertices and m edges are

'(n)
Q(n)

—n—m,

E, m(k) =nm

nm Q'(n)?

) <n ') =g+ Q’(n)) .

Proof. By extraction from Equation , the generating functions of the hyper-
graphs in HG,, i, in SHG,, ; and the generating function of hypergraphs with n
vertices and m edges are

Vn,m(k) =

Q)
hgn,k(w) — nn+k}[yn+k:]ew yy n’
shg,, .(w) = n”*’“[y"““]e”#”e—%w—%wzw(l/n),
Q(ny)™
hgn,m(y) = W’

where w and y mark respectively the number of edges and the excess. The
probability generating function corresponding to the distribution of the number
of edges m in HG,, ;, in SHG,, ; and to the distribution of the excess k in



hypergraphs with n vertices and m edges are

hg,p(w)  [rtRlen e

Pnk(w) = hgn,k(1> - [yn+k]emyy)" )
shg,, x(w) [y"+k]ew¥”e—%w— 2392 02 40(1/n)
P (W) = shg, (1) ] 25 o~ 2252 o1/
hg, m(y) Qny)\™" 1
mant) = 15 = () e

The expected excess in a random hypergraphs with n vertices and m edges is
B, m(k) = p}, (1), and its variance is Vy, ,,, (k) = p;;,m(l) —|—p§b,m(1) - pg,m(l).
We therefore compute the first derivative of this probability generating function

o) = (g ) = ) ),

and thus the second derivative evaluated at 1 is equal to

Q" (n) <Q’(n)>2 < Q' (n) n+m)2
" 2
DPr.m(l) =n"m — +n+m+ | nm —
m(l) < o)~ \9m) o)
The values of the mean and variance of the excess follow.
We now turn to the computation of the limit law of the number of edges m

in a random hypergraph of HG,, . First, using the Large Powers Theorem [12]
Theorem VIIL.8] we obtain

2Cw)
Q) eV Cw "

ntkygw e _ n-1/2
o N ) (rroe™)

uniformly for w in a neighborhood of 1, where (,, is characterized by the relation

w¥(Cyw) = A

Uniformly for s in a neighborhood of 0, we find for the Laplace transform of the
number of edges p,, x(e®) = E, k(™)

Pail(e’) = o A(s)+B(s) (1 L0 (n—l/Q))

_ () Q(¢) A2 5>
A(s) = R s+ ( c — CQH(C)—)\) 54—0(83).

To prove the normal limit distribution of the number of edges m in HG,, ,, we
then apply a lemma of Hwang [I5] that can also be found in [I2, Lemma IX.1].
The means is then nA’(0) and the variance nA”(0). The same result holds for
simple hypergraphs. U

where




Figure 3: Each of those hypergraphs contains a cycle, respectively
(1,2,3,4,5,6), (1,2), (1,2) and (1). Observe that the last hypergraph is not
simple.

The variance V,, ;(m) of the number of edges in a random hypergraph of
HG,, j, is zero only for uniform hypergraphs. Indeed, the number of edges is then
characterized by the number of vertices and the excess, and the corresponding
random variable is degenerated only in that case.

4 Subcritical Hypergraphs

We follow the conventions established by Berge [3]: a walk of a hypergraph G
is a sequence vy, e1,v1,...,v;_1, e, v where for all 4, v; € V(G), ¢; € E(G)
and {v;_1,v;} C e;. A path is a walk in which all v; and e; are distinct. A walk
is a cycle if all v; and e; are distinct, except vy = v¢. Various examples of cycles
are presented in Figure[d] Connectivity, trees and rooted trees are then defined
in the usual way.

The generating function of edges is (z). We say that we replace a vertex
with a hole when this vertex does not count in the size of the edge anymore.
The generating function of edges with one vertex replaced by a hole is Q'(2),
because there are t possible labels for the vertex removed in an edge of size t.
We can mark a vertex in an edge, and the corresponding generating function is
2§ (z). Holes allow us to clip edges together. For example, two edges with one
common vertex can be described as an edge with a vertex replaced by a hole and
an edge with a vertex marked. The generating function of those hypergraphs is
then 2Q/(2)?/2 (we divide by 2 because the two edges have symmetrical roles).

A unicycle component is a connected hypergraph that contains exactly one
cycle. We also define a path of trees as a path with both ends replaced by holes
and that contains no cycle, plus a rooted tree hooked to each vertex (except
to the two ends of the path). It can equivalently be defined as an unrooted
tree with two distinct leaves replaced with holes. The notion of path of trees is
illustrated in Figure [

Lemma 3. Let T(z), U(z), V(2) and P(z) denote the generating functions of
rooted trees, unrooted trees, unicycle components and paths of trees, using the



Figure 4: A path of trees. The two white nodes represent holes. The labels
have been omitted.

variable z to mark the number of vertices, then

T(z) = 26 (T()),
U(z) = T(2) + QT (2)) — T(2) Q(T(2)),

—~
~N
—_

1 1
__ 2'(T(»)

Proof. Those expressions can be derived using the symbolic method presented
in [I2]. The generating function of edges is 2(z). If one vertex is marked, it
becomes z €)' (z) and zQ"(z) if another vertex is replaced by a hole. Equa-
tion @ means that a rooted tree is a vertex (the root) and a set of edges from
which a vertex has been replaced by a hole and the other vertices replaced
by rooted trees. Equation @ is a classical consequence of the dissymmetry
theorem described in [4]. Hypertrees have been studied using a combinatorial
species approach by Oger in [23]. It can be checked that 20,U = T, which, in
a symbolic method, means that a tree with a vertex marked is a rooted tree.
Unicycle components are cycles of rooted trees, which implies . O

Combining the enumeration of hypergraphs with the enumeration of forests,
we can investigate the birth of the first cycle and the limit distribution of the
number of cycles in a hypergraph with small excess.

Theorem 4. Let ¥(z) denote the function ' (z) — Q(Zz) , T be implicitly defined
by 7Q"(7) =1 and A = V(7). Let us consider an excess k = (A — 1)n where
0 < XA < A and the value ¢ such that ¥(¢) = X. With high probability, a
hypergraph in HG,, ;, or SHG,, j, contains no component with two cycles. The

limit distribution of the number of cycles of such a hypergraph follows a Poisson

law 0’ pm amet67
2 Og ()

if the hypergraph is in HG,, , and

1 | W3 (O
21°g(1—<ﬂ”(<>) T

10



if it is in SHG,, 1.

Proof. Let THG,, ;, denote the set of hypergraphs in HG,, ;;, that contains only
trees and unicycle components. The excess of a tree is —1, the excess of a
unicycle component is 0. Since the excess of a hypergraph is the sum of the
excesses of its components, each hypergraph in THG,, ; contains exactly —k
trees. Let Fj, (u) denote the generating function of the number of cycles in
hypergraphs of THG, 1, then

P —k
Fn,k(u) = n'[zn]%EUV(Z)

where u marks the cycles. In the Cauchy integral representation of the coefficient
extraction in F), (u), we apply the change of variable t = T'(z) and obtain

) = i 3im

n! 1 [tRA =) ke O gt
(1 _ tQ//(t))(ufl)/Q gn+1”

Since k = (A — 1)n, this can be rewritten as a coefficient extraction

((1 _ \I,(t))lf)\eﬂ’(t))n
(1 — Q" (t))w=D72

n!
F, = ¢nh
ke (w) (_k)![ ]
We use the Large Powers Theorem VIILS8 of [12] to extract the asymptotic. The
saddle-point equation is

n+k

i - 1-2, Q)| _
tdtlog<(1 T(t)e )7 .

and can be simplified into
V() (1=t (1)) = M1 —tQ"(¢)).
Its two roots are 7 and (, where ( is characterized by the relation
U(C) = A

For A < A, since ¥(7) = A, we have { < 7, so ¢ is the dominant saddle-point.
Application of the theorem and Stirling approximations then lead to

nntk eﬂ(g)n e% log(m)
" Vo O L0
uniformly for u in a neighborhood of 1. Dividing by the cardinality of HG,, j

derived in Theorem|I] we obtain the generating function of the limit probabilities
of the number of cycles in THG,, ;:

Foui(u) (1+0(n~'%)

u—1

ZIP(G € THG,, x and has t cycles | G € HG,, j)u’ ~ ¢ 2
t

tog ( =57y )

11



For v = 1, it is equal to 1, so with high probability, a hypergraph in HG,, j
has no component with more than one cycle. For u = e, we recognize the
characteristic function of a Poisson law with parameter % log (#ﬂ”(ﬂ)

The same computations hold for the analysis of simple hypergraphs, except

" 2m2

the generating function V(z) has to be replaced by V(z) — %(T) - % to
avoid loops and multiple edges (in unicycle components, those can only be two

edges of size 2). O

More information on the length of the first cycle and the size of the compo-
nent that contains it could be extracted, following the approach of [10].

Observe that the value A defined in the theorem is always smaller than 1.
Indeed, the equalities

7Q"(r)=1 and ¥(r)=A

are equivalent with
t—1 t—1

T T
dott—Dw—— =1 and Y (t-w o = A,

t>1 ’ t>1

which implies A < 1.

5 Birth of the complex components

Let us recall that a connected hypergraph is complex if its excess is strictly
positive. In order to locate the global excess k at which the first complex
component appears, we compare the asymptotic numbers of hypergraphs and
hypergraphs with no complex component.

Theorem [f] describes the limit probability for a hypergraph not to contain
any complex component. A phase transition occurs when % reaches the crit-
ical value A — 1, defined in Theorem From an analytic point of view, this
corresponds to the coalescence of two saddle points. In this context, the Large
Powers Scheme ceases to apply, so we replace it with the following general theo-
rem, borrowed from [I] (see also Theorem IX.16 of [12] for discussions and links
with the stable laws of probability theory) and adapted for our purpose (in the
original theorem, p = 0). It is also close to Lemma 3 of [16].

Theorem 5. We consider a generating function H(z) with nonnegative coef-
ficients and a unique isolated singularity at its radius of convergence p. We
also assume that it is continuable in A :={z | |z| < R,z ¢ [p, R]} and there is
a X\ €]1;2] such that H(z) = o — hi(1 — z/p) + ha(1 — z/p)* + O((1 — 2/p)?)
asz — pin A. Letk = h%n—l—xnl/A with © bounded, then for any real constant i

H%(z) . 1 e/ h}H/’\
m ~ g p m(hl/h&\) G )\,/J/, Wﬂ? (10)

—z)* . _ _
where GO\, p7) = 32 3 i sin (ﬂl i+k) r (1 ;Aurk) :

[2"]

12



(ﬁi(/zp))“ we choose for the

contour of integration a positively oriented loop, made of two rays of angle
+7/(2\) that intersect on the real axis at p —n~"/*, we set z = p(1 — tn=1/*)

H*(z) —okp™n L S
[zn](l—z/p)# ™ 2imn(- M)/)\/t Fe™ e™® o tdt

Proof. In the Cauchy integral that represents [2"]

The contour of integration comprises now two rays of angle £7/X intersecting
at —1. Setting u = t’\hA/hl, the contour transforms into a classical Hankel
contour, starting from —oo over the real axis, winding about the origin and
returning to —oo

k ,—n

(0)
—0o"p (1—p) /A " —xul/*hHl/)‘/(ghl/*) 1—p_ g
7h1/hx) . /ee 1 N e
2imn(1=1)/A )\(

— 0o

Expanding the exponential, integrating termwise, and appealing to the comple-
ment formula for the Gamma function finally reduces this last form to . O

Theorem 6. Let U(z) denote the function Q' (z) — %, T be implicitly defined
byrQ' (1) =1, set A = V(1) andy = 1+72 Q"' (7). Let G(\, p; z) be defined as
in Theorem|5. We consider an excess k = (A — 1)n+xn?/3 where x is bounded.
Then the number of the hypergraphs in HG,, ; with no complexr component is
equivalent to

2,
N e | 377 2(ffA)n1/3 - A)zg 31 32/371/335 e
V2mn TR /T — 24 21— A)

For simple hypergraphs, this number is

1 wir?

B2 1 wiyT?
n"tk eF " e72 1 316_ z(ffA)"l/S 5(1 A)2 o <
Vemn ™R VTNV 2
Proof. The number of hypergraphs in THG,, ; has been derived in Theorem

for k= (A —1)n and A < A. We now focus on the case k = (A — 1)n + zn?/.
The number of hypergraphs in THG,, j is again

Uz)~* V()

(=F)!
The two saddle-points 7 and ¢ defined in Theorem [ now coalesce. Furthermore,
eV (?) also has a singularity for T(z) = 7. To extract the asymptotics, we apply

Theorem The Newton-Puiseux expansions of 7', ¢V and U can be derived
from Lemma [3]

e’ ~ (29)TVH 1 = z/p) M,

U(e) = (1= 9(r)) ~ 7(1 = 2/p) + 73420 = 2/p)% + O(1 = 2/,

31 335
24 2(1A))

thg,, , = n![z"]

13



where p = Te~ (), Using Theorem |5 we obtain

thy,  ~ e BTO M) (3 1 PPy
mET (R 2 pryn 31T 2=

which reduces to .

As in the proof of Theorem [4] for the analysis of simple hypergraphs we
Crerm) | wir -
5 .

replace the generating function V' (z) with V(z) 7

In Theorem [4] we have seen that when k = (A — 1)n with A < A, the
probability for a random hypergraph in HG,, j, to contain only trees and unicyclic
components tends to 1. When k = (A —1)n+O(n'/3), this limit becomes /2/3
because G(2/3,1/4;0) is equal to 2/(3+/7). It is remarkable that this value does
not depend on , therefore it is the same as in [I0] for graphs. However, the
evolution of this probability between the subcritical and the critical ranges of
excess depends on the parameters (w;).

Corollary 7. Let 7, A and v be defined as in Theorem [0 For k = (A — 1)n
and A < A, a hypergraph in HG,, i, or in SHG,,  has no complex component with
high probability. For k = (A — 1)n + zn?/® with x bounded, the limit probability
that such a hypergraph has no complex component is

3m —x3y 31 3343
\V5expl 3 |Gl s 75 o
2 6(1—A)3 2747 2(1-A7)
where G is the function defined in Theorem [,

Proof. From the second assertion of Theorem [I| we deduce the asymptotic num-

ber of hypergraphs in HG,, ;, when k = (1 — A)n + zn?/3
—22 1/3, &3 y—14A
nnJrk e@n 62(1—/\)” +% (1—A)3

h ~
En.k V2mn TR VvV1—A

Equation E divided by this estimation of hg,, , leads to the result announced.
The computations are the same for simple hypergraphs. O

Theorem 5| does not apply when H(z) is periodic. This is why we restricted
Q(y)/y not to be of the form f(2?) where d > 1 and f(2) is a power series
with a strictly positive radius of convergence. An unfortunate consequence is
that Theorems [I] and [6] do not apply to the important but already analyzed
case of d-uniform hypergraphs. However, the expression of the critical excess
is still valid. For the d-uniform hypergraphs, Q(z) = %, U(z) = %zdil
and 797! = (d — 2)!, so we obtain k = 15%n for the critical excess, which
corresponds to a number of edges m = m, a result already derived in [26].

14



6 Kernels and Connected Hypergraphs

In the seminal articles [28] and [29], Wright establishes the connection between
the asymptotics of connected graphs with n vertices and excess k£ and the enu-
meration of the connected kernels, which are multigraphs with no vertex of
degree less than 3. This relation was then extensively studied in [I6] and the
notions of excess and kernels were extended to hypergraphs in [I§].

A kernel is a hypergraph with additional constraints that ensure that:

e cach hypergraph can be reduced to a unique kernel,

e the excess of a hypergraph that contain no tree component is equal to the
excess of its kernel,

e for any integer k, there is a finite number of kernels of excess k,

e the generating function of hypergraphs of excess k can be derived from
the generating function of kernels of excess k.

Observe that the two last requirements oppose each other: the third one impose
the kernels to be elementary, but the fourth one means they should keep trace
of the structure of the hypergraph. Following [I8], we define the kernel of a
hypergraph G as the result of the repeated execution of the following operations:

1. delete all the vertices of degree <1,
2. delete all the edges of size < 1,

3. if two edges (a, v) and (v, b) of size 2 have one common vertex v of degree 2,
delete v and replace those edges with (a,b),

4. delete the connected components that consist of one vertex v of degree 2
and one edge (v, v) of size 2.

The following lemma has already been derived for uniform hypergraphs
in [I8]. We give a new and more general proof. We also introduce the defi-
nition of clean kernels, borrowed from [I8], and derive an expression for their
generating function. As we will see in the proof of Theorem with high
probability the kernel of a random hypergraph in the critical window is clean.

Lemma 8. The number of kernels of excess k is finite and each of them contains
at most 3k edges of size 2. We say that a kernel is clean if this bound is reached.
The generating function of clean kernels with excess k is

er(1 + wsgz?)2kwdk 2k, (12)

where e, = % and the variables w and x have been omitted. The
generating function of connected clean kernels with excess k is
cr(1 4 w3z?)2kwdk 2 (13)

where ¢, = [2%F]log Y- €,2%".
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Figure 5: A cubic multigraph and one of the clean kernels that can be obtained
from it. The labels have been omitted.

Proof. By definition of the excess, we have

k—l—n—&—m:Z\d:Zdeg(v).

eckE veV

By construction, the vertices (resp. edges) of a kernel have degree (resp. size)
at least 2, so

k+n-+m>3m—ms, (14)
kE+n+m > 3n—ng, (15)

where ng (resp. ms) is the number of vertices of degree 2 (resp. edges of size 2).
Furthermore, each vertex of degree 2 belongs to an edge of size at least 3, so

k4+n+m>2mg + no. (16)

Summing those three inequalities, we obtain 3k > ms.

This bound is reached if and only if , and are in fact equalities.
Therefore, the vertices (resp. edges) of a clean kernel have degree (resp. size) 2
or 3, each vertex of degree 2 belongs to exactly one edge of size 3 and all the ver-
tices of degree 3 belongs to edges of size 2. Consequently, any clean kernel can
be obtained from a cubic multigraph with 2k vertices through substitutions of
vertices of degree 3 by groups of three vertices of degree 2 that belong to a com-
mon edge of size 3. This construction is illustrated in Figure 5] Consequently,
if f(z) denotes the generating function of a family of cubic multigraphs, where z
marks the vertices, then the generating function of the corresponding clean ker-
nels is f(z + w3z?). The number of cubic multigraphs of excess k (i.e. the sum
of their compensation factors) is (2k)!lex, so the generating function of cubic
multigraphs of excess kis >, erz2k. A cubic multigraph is a set of connected
cubic multigraphs, so the value (2k)!c, defined in the theorem is the number of
connected cubic multigraphs.

To prove that the total number of kernels of excess k is bounded, we introduce
the dualized kernels, which are kernels where each edge of size 2 contains a vertex
of degree at least 3. This implies the dual inequality of

k4+n+m > 2ny + mo,

which leads to 7Tk > n + m. Finally, each dualized kernel matches a finite
number of normal kernels by replacing some vertices of degree 2 that do not
belong to any edge of size 2 with edges of size 2. This substitution is illustrated
in Figure [6] O

16
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Figure 6: A dualized kernel and one of the corresponding kernels. The labels
have been omitted.

The previous lemma gives a way to construct all hypergraphs with fixed
excess k that contain neither trees nor unicyclic components, and all connected
hypergraphs with fixed excess k. It starts from the finite corresponding set of
kernels of excess k, adds rooted trees to its vertices, replaces the edges of size 2
with paths of trees and adds rooted trees into the edges of size greater than 2.

Lemma 9. Let hg;U’V(z) denote the generating function of hypergraphs with

excess k that contain neither trees nor unicyclic components, and chgy(z) the
generating function of connected hypergraphs with excess k. With the notations
of Lemma[8 we have

3k
hg)Y (2) = B o(T(2)) ’
o 24 (1 T(2)2/(1(2)))"
3k
che, (2) = Cre(T(2)) .

=0 (1 =T(2)Q"(T(2)))
where the functions Ey ¢(z) and Cy¢(2) are entire functions and

Brar(t) = ex (14207 () 1267 (1),
Cran(t) = i (142927 (1)) 2 (1)

Proof. Theorem [§implies that the generating function of the kernels of excess k
is a multivariate polynomial with variables z,ws,ws,.... Let us write it as the
sum of two polynomials, P, and Qk, one corresponding to clean kernels and the
other to the rest of the kernels of excess k. According to Theorem [8] Pj is equal
to ex(1 + wszz?)?*w3k22k. By definition of the clean kernels, the degree of Qy
with respect to wy is strictly less than 3k.

One can develop a kernel into a hypergraph by adding rooted trees to its ver-
tices, replacing its edges of size 2 by paths of trees and adding rooted trees into
the edges of size greater than 2. This matches the following substitutions in the

generating function of kernels: z « T'(z), wq + % and w; + QO(T) for
all t > 2. With this construction, starting with all kernels of excess k, we obtain
all hypergraphs with excess k£ that contain neither trees nor unicyclic compo-

nents. Applying this substitution to P + Q, we obtain for their generating

17



functions thU’V (2)

Q"(T(2))
1—T(2) (T

3k
)™ (2) = ex(1+ TP (TP o) T

where the “ .- hides terms with a denominator 1 — T(z) Q" (T(z)) at a power
at most 3k — 1.

A hypergraph is connected if and only if its kernel is connected. The pre-
vious construction applied to connected kernels of excess k leads to the similar

following expression for the generating function of connected hypergraphs of
excess k

Q(T(z)
1-T(2) Q(

ﬂaJ TE™ +
O

c@ﬁd=%ﬂ+ﬂd%wﬁwm%(

From the previous lemma, it is easy to derive the asymptotic number of
connected hypergraphs with fixed excess. The corresponding result for uniform
hypergraphs can be found in [I8]. As a corollary, those hypergraphs have clean
kernels with high probability.

Theorem 10. The number of connected hypergraphs with n vertices and fixed
excess k s

cpV2m ( Al >k <e>n +(3k—1)/2
n[z"]| chg,(2) ~ —5~ | ==5— -] n" ,
[ ] k( ) 1—‘(%) 23/2 P

where ¢, is defined in Lemma@ T is the solution of TQ" (1) =1, p=Te
and v = 1+712Q" (7). The same results apply to connected simple hypergraphs.

~9'(n)

Proof. Injecting the Puiseux expansion of the generating function of rooted trees

T(z) NT—T\/f\/]. —z/p

in the expression of chg; (z) derived in Lemma@ we obtain

k
m&m~%(§2)<1zm>w?

The asymptotic enumeration result follows by singularity analysis [12, Theo-
rem VI.4].

We now prove that the result holds for connected simple hypergraphs. As
shown in the first part of the proof, we can restrict our investigation to hyper-
graphs with clean kernels. Among them, let us consider the set of connected
hypergraphs with excess k that are not simple. Each one contains a loop or
two edges of size 2 linking the same vertices. Therefore, the kernel of each of

18



them has at least one edge of size 2 that is not replaced by a (non-empty) path
of threes in the hypergraph. It follows that the generating function of those
hypergraphs has a denominator 1 — T'(z) Q"(T(z)) at a power at most 3k — 1,
so the cardinality of this set is negligible compared to the number of connected
hypergraphs with excess k.

Another and more intuitive way to understand it is that at fixed excess,
adding more and more vertices into a kernel, the chances that an edge of size 2
does not break into a non-empty path of threes are negligible. O

To derive a complete asymptotic expansion of connected hypergraphs, one
needs to take into account non-clean kernels. For any fixed k, one can enumerate
all the kernels of excess k (since it is a finite set), then apply the substitution
described in the previous proof to obtain the generating function of all connected
hypergraphs of excess k, from which a complete asymptotic expansion follows.
Although computable, this construction is heavy. The purely analytic approach
of [I1], that addresses this problem for graphs, may allow a simpler expression.

The asymptotic enumeration of connected hypergraphs in HG,, , when k
tends toward infinity is more challenging. Since the original result for graphs
from Bender, Canfield and McKay [2], other proofs have been proposed by
Pittel and Wormald [24] and van der Hofstad and Spencer [27], which may be
generalized to hypergraphs.

7 Structure of Hypergraphs in the Critical Win-
dow

The next theorem describes the structure of hypergraphs with an excess at or
close to the critical value k = (A — 1)n introduced in Theorem [6] It generalizes
Theorem 5 of [16] about graphs. Interestingly, the result at the critical excess
does not depend on the (w;).

Theorem 11. Let U(z), 7, A and  be defined as in Theorem @ Let ry,...,1q
denote a finite sequence of integers and r = Y i_, try, then the limit of the
probability for a hypergraph or simple hypergraph with n vertices and global ex-
cess k = (A — 1)n + O(n'/3) to have exactly r; components of excess t for t

from 1 to q is
A\" 2t e
= it e S B 1
(3) @r)tV 3r!lry! gl (17)

where the (¢;) are defined as in Theorem @ For k= (A — 1)n +2n?/? and x
bounded, the limit of this probability is

grll e o f3m o —aty (31 3r 3y
eyl rd Vo2 6(1—A)3 2747 27 2(1-A)

Proof. Let chg,(z) denote the generating function of connected hypergraphs of
excess k. From Theorem [0} when z tends towards the dominant singularity p
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of T'(z), .
chie(2) ~ cx (Y3 ) (12l 2

The sum of the weights of hypergraphs with global excess k& and ; components
of excess t is
") o eV chg, (2)™ chgy(2)™  chgy(2)"™

(r—k)! rq! ral T !

and an application of Theorem [5| ends the proof, with G(3/2,1/4 + 3r/2;0) =

#% Those computations are the same as in Theorem@ O

n![z

We have derived the limit of the probability for the structure of a random
hypergraph, i.e. the number of components of each finite excess. However,
would the hypergraph contain a component with an excess going to infinity
with the number n of vertices, those limit of probabilities could not capture it.
Therefore, we now need to prove that this situation has a zero limit probability.
To do so, we prove that the limit of probabilities we derived form in fact a
probability distribution, meaning that they sum to 1. In [I6l p. 52], the authors
prove that the sum over all r1,75,... > 0 of Expression is equal to 1. This
corresponds to the special case x = 0 of the next theorem.

Theorem 12. We consider a random hypergraph in HG,, ; or SHG,, ; with
E=(A-1)n+ xn?/3 and & bounded. With high probability, all its components
have a finite excess.

Proof. According to Theorem[T1} the theorem is proved once the following equal-
ity is established

r r .3 2/3.1/3
YOy gdw ?”TEWG<371+3T;_3/7/?”> -1
P ril Vo2 2’4 2 2(1—A)

where r = >"7_ tr;. We rescale the variable = and replace the function G with
31, 3r 32/31/3z\ 2 1 a*
(355 5N ) " s o Fg T
k>0 (§ +r— ?) :

an expression derived using, on the definition of G from Theorem [5] the com-
plement formula for the Gamma function

s

L(s)I(1 —s) = Sn(ms)

The equality we want to prove becomes

o cq' _ 3 4ad /2t
Z Z 3 TT!”'TT!F”(‘T)_Vﬂe ) (18)

q>0r1,...,m74>0

1 zk
where F.(z) = _ .
,;r(%+r—&3k) k!
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To simplify this expression further, we observe that the coefficient extraction in
the exponential of a generating function has a familiar shape

DYDY Hrr

q>1 r1+2ro+-+qrg=r i=1

The generating function of the (¢;) is characterized by
Z 22 = log (Z 6T22T> ,
i>1 >0

where the value of e, is

(67)!
(31)27237(3r)!(2r)!

Er =

Therefore,
)DID SRS TR St
42071000y 20 n! >0
and Equation , which we want to prove, is equivalent with
23_’"6 Fo(z) =4/ 3643:3/27 (19)
r>0 o 2m .

We first prove the theorem in the particular case £ = 0, which corresponds
to k = (A — 1)n. Since we have

Equation becomes

Zg—r )' r r! _ §
) 2r23r B e Ve

Let u, denote the summand of the left side, then

U1 (r+§)(r+32)

1
Uy (r—i—%)(r—l—l)?

It follows that the sum is equal to the evaluation of a hypergeometric function
at the point 1/2

_ 67)! 7! 1511
37" 4" = o T 5 |
2 (31) 2r23r Br)l2r)!” 2! 2'\676'2'2

r>0
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A special identity of the hypergeometric function states

L(e/2)T((c +1)/2)
T'((a+c)/2T((1+c—a)/2)’

which reduces, for a =1/6 and ¢ =1/2, to

1511 3
A (6’ 6 2) =Va
and achieves the proof of the theorem in the particular case z = 0.

We use computer algebra to solve the general case, specifically Koutschan".ﬂ
Mathematica package [20]. Let A, denote the operator on sequences

QFI(avl_a7c;l/2) =

Ar(ur) = Ur41 — Up

and 0 the differential operator with respect to z. We first apply the creative
telescoping algorithm (see [19] for more details) to the sum

Fro)=) MLZT

k>0 \2 3

It computes pairs of operators of the form
(P(z,r,0,A.),Q(z, 1, K, 0, Ay, Ay))

such that

1 xk 1 zk
P |l—— " | +AQ | ————— | =0.
<r<;+r—2§> k!) “ (r@w—%f) k!)

Since P is independent of k, it commutes with a summation over k and we

obtain
1 xk e
Ql—— = =0
Pp+r=3) k)|, _,

We then check that the right side of the sum cancels for each operator @ re-
turned by the algorithm. The family (P) is a Grobner basis for the ideal of Ore
operators in A, and 0 that cancels F,.(z). From there, using again Koutschan’s
package, we compute a Grobner basis for the ideal of Ore operators that cancels

P-F.(x)+

3 "e, Fr(z).

We then apply the creative telescoping algorithm with this basis as input. The
output is a pair of operators

(98 - 4x2,Q(ac7r,8,AT))

IWe thank Christoph Koutschan for his help.
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such that

(90 — 42?) - (Z 3—’“erFr(sc))> +

r>0

—+o0

Q- (377 Fr(x)) =0.

r=0

After verification that the right side of the sum cancels, we conclude that the
operator 99 — 4z? cancels Y. . ,3 " e, F.(z)). All solutions of this differential
equation have the form -

C 64x3 /27

and the initial condition corresponding to = 0 fixes the constant C' = 4/3/(27).
This proves Equation . O

As a corollary, the previous theorem implies that Theorem [11] holds true for
unbounded q.

8 Birth of the Giant Component

Erdés and Rényi [9] analyzed random graphs with a large number n of vertices
and m edges such that m/n tends toward a constant c¢. They proved that
when ¢ is strictly greater than 1/2; with high probability the graph has a giant
component, which contains a constant fraction of the vertices and has an excess
going to infinity with n. Similar results have been derived for various models of
hypergraphs [26], [17], [6], []], [14].

We consider random hypergraphs with n vertices and excess k = (A — 1)n.
We have seen in Theorem [4] that when A < A, with high probability the hy-
pergraph contains only trees and unicyclic components. We also have derived
the limit distribution of the excesses of the components in the critical window,
i.e. for hypergraphs with excess k = (A — 1)n + zn?/? with = bounded. In this
section, we investigate the case A > A. However, we will not derive results on
the giant component as precise as Erdés and Rényi [9] did for graphs, using
different tools. We first prove that, with high probability, the hypergraph con-
tains a component with unbounded excess. We conjecture that this component
is unique and contains a constant fraction of the vertices. Therefore, we refer
to it as the giant component.

Theorem 13. With the notations of Theorem [ let us consider a random
hypergraph with n vertices and excess k = (A — 1)n, where X is strictly greater
than A. For any fized K, the limit probability that all its components have excess
smaller or equal to K is zero.

Proof. Let hgff)k denote the number of hypergraphs with n vertices, excess k

and kernel of excess £. Since each tree has excess (=1), such a hypergraph
contains a set of £ — k trees, so

U(Z)éfk

V(z)h \U,V
¢ e (2

hgff’)k = nl[z"]

23



We replace V(z) with its expression log (m) and hg\ V( ) with
the expression derived in Lemma [9]

3¢

(e) n! " U(z)t* .
B JZ:;) (f—k)![z ](1 —T(Z)Q”(T(z)))j"'% Ep;(T(2)).

We introduce the notation hg(z’kj) such that hg?(f)k = E?io hgfﬁ’g)

n7

y o onl (7] U(z)~*
T =R (1 T (T ()

U(2) B j(T(2)).

By definition of ¥(t) = Q'(¢) — Q(t and U(z) =T(z)+ QT () — T ()Y (T(2)),
we have U(z) = (1 — \I!(T(z)))T( ). Therefore, using the Cauchy integral rep-

(J)

resentation of the coeflicient extraction, we obtain that hg, s’ is equal to

nt 1 = 9(TE)TET NTNE, (T S
(f—k)!Qiﬂ]{ (1 _ ( )Q”( ( )))J+%( \II(T( ))) T( )E&J(T( ))Z”J"l.

After the change of variable t = T'(z2), this expression becomes

1w e on "
h (Z,J) __n 7}{ e, (gt
En (L —Fk)! 2im (1 —tQ ()i~ 3 ( (®) 2,5 ( )t”+k+1

Let us recall that kK = (A — 1)n, so we introduce the notation

1-x Q1)

Ba(t) = (1— (1) % ™

in order to rewrite the expression of hgn £.J)
; | NG s dt
A — 7j§—A 1= U(t) B (t) -
gn,k (g o k)' 2% (1 B tQ,,(t))j_% ( ( )) 57]( )tn+k+1

At this point, it is tempting to use a saddle-point method on a circle to extract
the asymptotics. The dominant saddle-point ( would be characterized as the
smallest root of

24 (9)

b Cq’,\(C)’

which is equal with

1A-T(t)

A1 —U(t)"

Since ) is greater than A = W(7), this saddle-point is equal to 7, and thus cancels
the denominator (1 — ¢tQ2”(¢)). This is a case of coalescence of a saddle-point

with a singularity. To overcome this situation, following the example given in
[12, Note VIII.39], we apply the change of variable t = s®,(t)

j n! 1 1 AL — (e ds
w2 = i | Ao YO B0

(1 —tQ"())
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where ¢ is now considered as a function of s. This integral can be interpreted
as a coefficient extraction

(4,5) _ n! ntk 1 A1 — \I/(t))€+1t€
PEni = (E*k)![ ' ](1 —Q(1)itE A= (1)

Ey;(t). (20)

Applying [12, Theorem VI.6] to the expression t = s®,(t), we compute the first
terms of the singular expansion of ¢(s)

t(s) ~ T —di\/1—s/pa

where the values p; and d; are given by

It follows that

1 A1 —W(t)) et (1) ~
1—r)yits  A-w(@

. it+s . 1.
(1—s/ps)~(213) ( T ) MEM(T).

~dy A—A
In Equation 7 we use Stirling formula to express
n! nnJrk 67)\71

(k)T VIS A (L A

and derive the asymptotics from the coefficient extraction using a singularity
analysis [I2, Theorem VI.4]

1—A\' emT) "
4,5 k - A=X€ 7 i_3
enie ~ (1 - A) TR | G

where the value Cy ; ) is positive and bounded with respect to n. We conclude
that the dominant term in the sum

3¢
¢ 2,5
hg, . = Z hgn,jk
§=0

is hgf{?,f and that the number of hypergraphs with all components with excess
at most K is equivalent with

K 1—A\' enm "
4 K k B A—X T SK-3
D hgn g ~hey ~ 0t (1 - A) e | n*T i COkako
=0
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The asymptotic probability for a hypergraph to have all components of excess at
most K is then the previous value divided by the total number of hypergraphs,
derived in Theorem [I]

1—A\'" ¢ o a0\ st
<H> o () e T nEER(C () = N

T

where (¢ is characterized by () = . There are two ways to prove that this
quantity goes to zero when n is large. The first one is to establish the inequality

1—A\'" ax (€ A am e
- - = T_T<]_
(=) )

using the inequalities A < A and 7 < (. This can be achieved by successive
derivations of the logarithm of the expression. The second and simpler one uses
the observation that this quantity can only tend to 0 or to +o00. Since it is a
probability, the second option is impossible. O

Molloy and Reed [2I] and Newman, Strogatz and Watts [22] gave an intuitive
explanation of the birth of the giant component in graphs with known degree
distributiorﬂ Starting with a vertex, we can determine the component in which
it lies by exploring its neighbors, then the neighbors of its neighbors and so on.
This branching process is likely to stop rapidly if the expected number of new
neighbors is smaller than 1. On the other hand, the component is likely to be
large if this means is greater than 1.

We now explain why the expected number of new neighbors is smaller than
1 only for subcritical hypergraphs. Let us define the excess degree of a vertex
v in an edge e as the sum over all the other edges that contain v of their sizes
minus 1

excess degree(v,e) = Z (lej = 1).
vEE,
é#e
This is the number of neighbors we discover when we arrive at the vertex v
from the edge e, assuming they are distinct. We now prove that the expected
excess degree is smaller than 1 only for subcritical hypergraphs. This provides
an intuitive explanation for the birth of the giant component.

Theorem 14. Let us consider a random hypergraph with n vertices and excess
k= (A= 1)n, and a uniformly chosen pair (v,e), where the vertex v belongs to
the edge e. With the notations of Theorem[]], the expected excess degree of v in
e is smaller than (resp. equal to or greater than) 1, if X is smaller than (resp.
equal to or greater than) A.

Proof. Let F(u) denote the generating function of the degree excess of a marked
vertex in a marked edge of a hypergraph with n vertices and excess k = (A—1)n.
The marked vertex and edge represent v and e. Such a hypergraph can be

2We thank an anonymous referee for those references.
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decomposed into a hypergraph on n—1 vertices, an edge with one vertex marked
— this is the edge e that contains the vertex v — and a set of edges with one vertex
marked and another vertex replaced with a hole. Those last edges contain the
neighbors of v that are counted by the excess degree. Introducing the variable u
to mark the excess degree of v and the variable y for the excess of the hypergraph,
we obtain

Q((n=1)y)
Y

F(u) = [y"**)e Q2 (ny)e ).

After the change of variable ny — y, this expression becomes

yfﬁ)

Flu) = ¥k T g e om,
which can be approximated by
F(u) = nn+k[yn+k]en¥fﬂ’(y)+0(1/n)Q/(y)€Q’(yu).
The expected excess degree of v in e is then F'(1)/F (1) (see [12], Part C])

F/ 1 n+k nM_Q/(y)-&-O(l/n)Q/ Q” Q/(y)
E(excess degree) = F((l) = [y" e Ty (y)y2" (y)e .
) [yn—i-k]ean (y)+ (1/n)Q/(y)€Q/(y)

The asymptotics of the coefficient extractions in the computation of F(1) and
F'(1) are obtained using the Large Powers Theorem [I2, Theorem VIII.8]. The
saddle-point ( is characterized by

V(¢) = A,
and the limit value of the expectation is

lim E(excess degree) = (Q"(C).
Let us recall the equalities A = ¥(7) and 7Q”(7) = 1. Since ¥(z) and zQ"(z)
are increasing functions, it follows that when A is smaller than (resp. equal
to or greater than) A, then (Q2”(¢) is smaller than (resp. equal to or greater
than) 1. O

9 Future Directions

In the present paper, for the sake of the simplicity of the proofs, we restrained
our work to the case where e®(*)/# is aperiodic. This technical condition can
be waived in the same way Theorem VIIL.8 of [I2] can be extended to periodic
functions.

In the model we presented, the weight w; of an edge only depends on its
size t. For some applications, one may need weights that also vary with the
number of vertices n. It would be interesting to measure the impact of this
modification on the phase transition properties described in this paper.

More generally, the study of the relation to other models, as the one pre-
sented in [7] and [5], could lead to new developments and applications.
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