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Abstract

Let S be a string of length n with characters from an alphabet of size σ. The subse-

quence automaton of S (often called the directed acyclic subsequence graph) is the min-
imal deterministic finite automaton accepting all subsequences of S. A straightforward
construction shows that the size (number of states and transitions) of the subsequence
automaton is O(nσ) and that this bound is asymptotically optimal.

In this paper, we consider subsequence automata with default transitions, that is,
special transitions to be taken only if none of the regular transitions match the current
character, and which do not consume the current character. We show that with default
transitions, much smaller subsequence automata are possible, and provide a full trade-off
between the size of the automaton and the delay, i.e., the maximum number of consecutive
default transitions followed before consuming a character.

Specifically, given any integer parameter k, 1 < k ≤ σ, we present a subsequence
automaton with default transitions of size O(nk logk σ) and delay O(logk σ). Hence, with
k = 2 we obtain an automaton of size O(n log σ) and delay O(log σ). On the other extreme,
with k = σ, we obtain an automaton of size O(nσ) and delay O(1), thus matching the
bound for the standard subsequence automaton construction. Finally, we generalize the
result to multiple strings. The key component of our result is a novel hierarchical automata
construction of independent interest.

1 Introduction

Let S be a string of length n with characters from an alphabet of size σ. A subsequence

of S is any string obtained by deleting zero or more characters from S. The subsequence

automaton (often called the directed acyclic subsequence graph) is the minimal deterministic
finite automaton accepting all subsequences of S. Baeza-Yates [1] initiated the study of
subsequence automata. They presented a simple construction using O(nσ) size (size denotes
the total number of states and transitions) and showed that this bound is optimal in the sense
that there are subsequence automata of size at least Ω(nσ). They also considered variations
with encoded input strings and multiple strings. Subsequently, several researchers have further
studied subsequence automata (and its variants) [2, 3, 4, 5, 6, 7, 8, 9]. See also the surveys
by Troníček [10, 11]. The general problem of subsequence indexing, not limited to automata
based solutions, is investigated by Bille et al. [12].

In this paper, we consider subsequence automata in the context of default transitions, that
is, special transitions to be taken only if none of the regular transitions match the current
character, and which do not consume the current character. Each state has at most one default
transition and hence the automaton remains deterministic. The key point of default transitions
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is to reduce the size of standard automata at the cost of introducing a delay, i.e., the maximum
number of consecutive default transition followed before consuming a character. For instance,
given a pattern string of length m the classic Knuth-Morris-Pratt (KMP) [13] string matching
algorithm may be viewed as an automaton with default transitions (typically referred to as
failure transitions). This automaton has size O(m), whereas the standard automaton with
no default transitions would need Θ(mσ) space. The delay of the automaton in the KMP
algorithm is either O(m) or O(logm) depending on the version. Similarly, the Aho-Corasick
string matching algorithm for multiple strings may also be viewed as an automaton with
default transitions [14]. More recently, default transitions have also been used extensively to
significantly reduce sizes of deterministic automata for regular expression [15, 16]. The main
idea is to effectively enable states with large overlapping identical sets of outgoing transitions
to "share" outgoing transitions using default transitions.

Surprisingly, no non-trivial bounds for subsequence automata with default transitions are
known. Naively, we can immediately obtain an O(nσ) size solution with O(1) delay by using
the standard subsequence automaton (without default transitions). At the other extreme,
we can build an automaton with n + 1 states (each corresponding to a prefix of S) with
a standard and a default transition from the state corresponding to the ith prefix to the
state corresponding to the i + 1st prefix (the standard transition is labeled S[i + 1]). It is
straightforward to show that this leads to an O(n) size solution with O(n) delay. Our main
result is a substantially improved trade-off between the size and delay of the subsequence
automaton:

Theorem 1. Let S be a string of n characters from an alphabet of size σ. For any integer

parameter k, 1 < k ≤ σ, we can construct a subsequence automaton with default transitions

of size O(nk logk σ) and delay O(logk σ).

Hence, with k = 2 we obtain an automaton of size O(n log σ) and delay O(log σ). On
the other extreme, with k = σ, we obtain an automaton of size O(nσ) and delay O(1), thus
matching the bound for the standard subsequence automaton construction.

To obtain our result, we first introduce the level automaton. Intuitively, this automaton
uses the same states as the standard solution, but hierarchically orders them in a tree-like
structure and samples a selection of their original transitions based on their position in the
tree, and adds a default transition to the next state on a higher level. We show how to do this
efficiently leading to a solution with O(n log n) size and O(log n) delay. To achieve our full
trade-off from Theorem 1 we show how to augment the construction with additional ideas for
small alphabets and generalize the level automaton with parameter k, 1 < k ≤ σ, where large
k reduces the height of the tree but increases the number of transitions. In the final section
we generalize the result to multiple strings.

2 Preliminaries

A deterministic finite automaton (DFA) is a tuple A = (Q,Σ, δ, q0, F ) where Q is a set of
nodes called states, δ is a set of labeled directed edges between states, called transitions,
where each label is a character from the alphabet Σ, q0 ∈ Q is the initial state and F ⊆ Q
is a set of accepting states. No two outgoing transitions from the same state have the same
label. The DFA is incomplete in the sense that every state does not contain transitions for
every character in Σ. The size of A is the sum of the number of states and transitions.
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Figure 1: An example of an SA constructed from the string abadca.

We can think of A as an edge-labeled directed graph. Given a string P and a path p in A
we say that p and P match if the concatenation of the labels on the transitions in p is P . We
say that A accepts a string P if there is a path in A, from q0 to any state in F , that matches
P . Otherwise A rejects P .

A deterministic finite automaton with default transitions is a deterministic finite automaton
AD where each state can have a single unlabeled default transition. Given a string P and
a path p in AD we define a match between P and p as before, with the exception that for
any default transition d in p the corresponding character in P cannot match any standard
transition out of the start state of d. Definition of accepted and rejected strings are as before.
The delay of AD is the maximum length of any path matching a single character, i.e., if the
delay of AD is d then we follow at most d − 1 default transitions for every character that is
matched in P .

A subsequence of S is a string P , obtained by removing zero or more occurrences of char-
acters from S. The alphabet of the string S is denoted by Σ(S). A subsequence automaton

constructed from S, is a deterministic finite automaton that accepts string P iff P is a subse-
quence of S. A subsequence automaton construction is presented in [1]. This construction is
often called the directed acyclic subsequence graph or DASG, but here we denote it SA. The
SA has n + 1 states, all accepting, that we identify with the integers {0, 1, . . . , n}. For each
state s, 0 ≤ s ≤ n, we have the following transitions:

• For each character α in Σ(S[s + 1, n]), there is a transition labeled α to the smallest
state s′ > s such that S[s′] = α.

The SA has size O(nσ) since every state can have at most σ transitions. An example of an
SA is given in Figure 1.

A subsequence automaton with default transitions constructed from S, denoted SAD, is
a deterministic finite automaton with default transitions that accepts string P iff P is a
subsequence of S.

The next section explores different configurations of transitions and default transitions in
SADs.

3 New Trade-Offs for Subsequence Automata.

We now present a new trade-off for subsequence automata, with default transitions. We will
gradually refine our construction until we obtain an automaton that gives the result presented
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in Theorem 1. In each construction we have n + 1 states that we identify with the integers
{0, 1, . . . , n}. Each of these states represents a prefix of the string S and are all accepting
states. We first present the level automaton that gives the first non-trivial trade-off that
exploits default transitions. The general idea is to construct a hierarchy of states, such that
every path that only uses default transitions is guaranteed to go through states where the
outdegree increases at least exponentially. The level automaton is a SAD of size O(n log n)
and delay O(log n). By arguing that any path going through a state with outdegree σ will
do so by taking a regular transition, we are able to improve both the size and delay of the
level automaton. This results in the alphabet-aware level automaton which is a SAD of size
O(n log σ) and delay O(log σ). Finally we present a generalized construction that gives a trade-
off between size and delay by letting parameter k, 1 < k ≤ σ, be the base of the exponential
increase in outdegree on paths with only default transitions. This SAD has size O(nk logk σ)
and delay O(logk σ). With k = 2 we get an automaton of size O(n log σ) and delay O(log σ).
In the other extreme, for k = σ we get an automaton of size O(nσ) and delay O(1).

3.1 Level Automaton

The level automaton is a SAD with n+1 states that we identify with the integers {0, 1, . . . , n}.
All states are accepting. For each state i > 0, we associate a level, level(i), given by:

level(i) = max({x | i mod 2x = 0})

Hence, level(i) is the exponent of the largest power of two that divides i. The level function
is in the literature known as the ruler function. We do not associate any level with state 0.
Note that the maximum level of any state is log2 n. For a nonnegative integer s, we define s
to be the smallest integer s > s such that level(s) ≥ level(s) + 1.

The transitions in the level automaton are as follows: From state 0 we have a default
transition to state 1 and a regular transition to state 1 with label S[1]. For every other state
s, 1 ≤ s ≤ n, we have the following transitions:

• A default transition to state s. If no such state exist, the state s does not have a default
transition.

• For each character α in Σ(S[s + 1,min(s, n)]), there is a transition labeled α to the
smallest state s′ > s such that S[s′] = α.

An example of the level automaton constructed from the string abacbabcabad and alphabet
{a, b, c, d} is given in Figure 2. The dashed arrows denote default transitions and the vertical
position of the states denotes their level.

We first show that the level automaton is a SAD for S, i.e., the level automaton accepts
a string iff the string is a subsequence of S. To do so suppose that P is a string of length
m accepted by the level automaton and let s1, s2, . . . , sm be the sequence of states visited
with regular transitions on the path that accepts P . From the definition of the transition
function, we know that if a transition with label α leads to state s′, then S[s′] = α. This
means that S[s1]S[s2] . . . S[sm] spells out a subsequence of S if the sequence s1, s2, . . . , sm is
strictly increasing. From the definition of the transitions, a state s only have transitions to
states s′ if s′ > s. Hence, the sequence is strictly increasing.

For the other direction, we show that the level automaton simulates the SA. At each state
s, trying to match character α, we find the smallest state s′ > s such that s′ has an incoming
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Figure 2: The level automaton constructed from the string abacbabcabad.

transition with label α: By the construction, either s has an outgoing transition leading
directly to s′ or we follow default transitions until reaching the first state with a transition
to s′. This means that the states visited with standard transitions in the level automaton are
the same states that are visited in the SA. Since the SA accepts all subsequences of S this
must also hold for the level automaton.

3.1.1 Analysis

The following shows that the number of outgoing transitions increase with a factor two when
the level increase by one. For all s > 0, we have the following property of s and level(s):

s− s = 2level(s) (1)

By definition, 2level(s) divides s. This means that we can write s as c · 2level(s), where c is a
uneven positive integer. We know that c is uneven because 2level(s) is the largest power of two
that divides s. The next integer, larger than s, that 2level(s) divides is s′ = s+ 2level(s). This
means that s ≥ s′. We can rewrite s′ as follows: s′ = s + 2level(s) = c · 2level(s) + 2level(s) =
(c + 1) · 2level(s). Since c is uneven we know that c + 1 is even so we can rewrite s′ further:

s′ = (c+1)
2 · 2level(s)+1. This shows that 2level(s)+1 divides s′ which means that s′ = s and we

conclude that s− s = 2level(s).
Since the maximal level of any state is log2 n and the level increase every time we follow

a default transition, the delay of the level automaton is O(log n).
At each level l we have O(n/2l+1) states, since every 2lth state is divided by 2l, and 2l

is the largest divisor in every second of these cases. Since s − s = 2level(s) each state at
level l has at most 2l + 1 outgoing transitions. Therefore, each level contribute with size at
most n/2l+1 · (2l + 1) = O(n). Since we have at most O(log n) levels, the total size becomes
O(n log n).

In summary, we have shown the following result.

Lemma 1. Let S be a string of n characters. We can construct a subsequence automaton with

default transitions of size O(n log n) and delay O(log n).
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Figure 3: The alphabet level automaton constructed from the string abacbabcabad.

3.2 Alphabet-aware level automaton

We introduce the Alphabet-aware level automaton. When the level automaton reaches a state
s where s − s ≥ σ, then s can have up to σ outgoing transitions without violating the space
analysis above. The level automaton only has a transition for each character in Σ(S[s +
1,min(s, n)]). Hence, for all states s in the alphabet-aware level automaton where s− s ≥ σ,
we let s have a transition for each symbol α in Σ, to the smallest state s′ > s such that
S[s′] = α. No matching path can take a default transition from a state with σ outgoing
transitions. Hence, states with σ outgoing transitions do not need default transitions.

We change the level function to reflect this. For each state 1 ≤ i ≤ n we have that:

level(i) = min(⌈log2 σ⌉,max({x | i mod 2x = 0}))

The transitions in the alphabet-aware level automaton is as follows: From state 0 we have
a default transition to state 1 and a regular transition to state 1 with label S[1]. For every
other state s, 1 ≤ s ≤ n, we have the following transitions:

• A default transition to state s. If no such state exist, the state s does not have a default
transition.

• If s − s < σ then for each character α in Σ(S[s + 1,min(s, n)]), there is a transition
labeled α to the smallest state s′ > s such that S[s′] = α.

• If s − s ≥ σ then for each character α in Σ(S[s + 1, n]), there is a transition labeled α
to the smallest state s′ > s such that S[s′] = α.

An example of the alphabet-aware level automaton constructed from the string abacbabcabad
and alphabet {a, b, c, d} is given in Figure 3. The level automaton in Figure 2 is constructed
from the same string and the same alphabet. For comparison, state 4 in Figure 3 now has
outdegree σ and has transitions to the first succeeding occurrence of any unique character and
state 8 has been constrained to level ⌈log2 σ⌉.

The alphabet-aware level automaton is a SAD by the same arguments that led to Lemma 1.
The delay is now bounded by O(log σ) since no state is assigned a level higher than ⌈log2 σ⌉.

The size of each level is still O(n). Hence, the total size becomes O(n log σ)
In summary, we have shown the following result.
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Lemma 2. Let S be a string of n characters. We can construct a SAD of S with size O(n log σ)
and delay O(log σ).

3.3 Full trade-off

We can generalize the construction above by introducing parameter k, 1 < k ≤ σ, which is the
base of the exponential increase in outdegree of states on every path that only uses default
transitions. Now, when we follow a default transition from s to s, the number of outgoing
transitions increase with a factor k instead of a factor 2. This gives a trade-off between size
and delay in the SAD determined by k. Increasing k gives a shorter delay of the SAD but
increases the size and vice versa.

Each state, except state 0, is still associated with a level, but we need to generalize the
level function to account for the parameter k. For every k and i we have that:

level(i, k) = min(⌈logk σ⌉,max({x | i mod kx = 0}))

Now, the level function gives the largest power of k that divides i.
The transitions in the generalized alphabet-aware level automaton is as follows: From state

0 we have a default transition to state 1 and a regular transition to state 1 with label S[1].
For every other state s, 1 ≤ s ≤ n, we have the following transitions:

• A default transition to state s. If no such state exist, the state s does not have a default
transition.

• If s − s < σ then for each character α in Σ(S[s + 1,min(s, n)]), there is a transition
labeled α to the smallest state s′ > s such that S[s′] = α.

• If s − s ≥ σ then for each character α in Σ(S[s + 1, n]), there is a transition labeled α
to the smallest state s′ > s such that S[s′] = α.

We can show that the generalized alphabet-aware level automaton is a SAD by the same
arguments that led to Lemma 2.

3.3.1 Analysis

The delay is bounded by O(logk σ) because no state is assigned a level higher than ⌈logk σ⌉.
With the new definition of the level function we have that

s− s ≤ klevel(s,k)+1

for all s > 0. This expression bounds the number of outgoing transitions from state s.
At level l we have O(n(k − 1)/(kl+1)) states each with O(kl+1) outgoing transitions such

that each level has size O(nk). The size of the automaton becomes O(nk logk σ) because we
have O(logk σ) levels.

In summary, we have shown Theorem 1.
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4 Subsequence automata for multiple strings

Troníček et al. [3] generalizes the simple subsequence automaton to multiple strings. Given
a set of strings S = {S1, S2, . . . .SN} of length n1, n2, . . . , nN , two types of automata are
presented: The subsequence automaton accepts a pattern P iff P is a subsequence of some

string in S and the common subsequence automaton accepts P iff P is a subsequence of every

string in S. When S = {S1, S2, . . . , Sn} and n1 = n2 = . . . = nN = n, a Ω(nN/(N + 1)NN !))
lower bound on the number of states is shown for the subsequence automaton [2]. For both
automata, the number of states is trivially upper bounded by O(n1 · n2 · . . . · nN ) such that
the total size becomes O(σ · n1 · n2 · . . . · nN ). We can reduce the size of these automata by
augmenting them with default transitions. This generalization is in the same spirit as the naive
generalization of the single string automaton in section 1: We introduce default transitions
and save a factor σ in the space but also introduce a delay. Consider the naive common
subsequence automaton with default transitions: For two strings S1, S2 we have n1 · n2 + 1
states that we identify with the points {1, . . . , n1} × {1, . . . , n2} ∪ {(0, 0)}. For each state
(s1, s2) we have the following transitions:

• A default transition to state (s1+1, s2+1). If no such state exist, the state (s1, s2) does
not have a default transition.

• If character S1[s1 + 1] is in Σ(S2[s2 + 1, n2]), there is a transition labeled S1[s1 + 1] to
the state (s1 + 1, s′2) such that s′2 > s2 is the minimal index where S2[s

′

2] = S1[s1 + 1].

• If character S2[s2 + 1] is in Σ(S1[s1 + 1, n1]), there is a transition labeled S2[s2 + 1] to
the state (s′1, s2 + 1) such that s′1 > s1 is the minimal index where S1[s

′

1] = S2[s2 + 1].

The states of the automaton represents the progression in S1 and S2, such that state
(s1, s2) represents that subsequences of the prefixes S1[1, s1] and S2[1, s2] have been used to
match a prefix of P . Each state (s1, s2) considers the symbols S1[s1 + 1] and S2[s2 + 1] for
matching with the next symbol in P . If this is not possible, a default transition is followed to
state (s1 + 1, s2 + 1).

For this automaton the size is O(n1 · n2) and the delay is O(min(n1, n2)). Hence, we
save a σ factor in the size, but introduce a significant delay. As we did for the subsequence
automaton for a single string, we introduce a level automaton that associates a level with each
state. In this way we are able to reduce the delay significantly with only a small increase in
size. For simplicity we only present our construction for the common subsequence automaton,
but it follows immediately that the construction also applies to the subsequence automaton.

4.1 The alphabet-aware level automaton for two strings

The alphabet-aware level automaton for two strings S1, S2 have n1 · n2 + 1 states that we
identify with the points {1, . . . , n1} × {1, . . . , n2} ∪ {(0, 0)}. We define the diagonal of a state
(i, j), as the set of states {(i + k, j + k) | 0 < i + k ≤ n1 and 0 < j + k ≤ n2}. We say that
states belong to the same diagonal if the diagonals of the states defines identical sets of states.
For states (s1, s2), (s

′

1, s
′

2) in the same diagonal, (s1, s2) < (s′1, s
′

2) if s1 < s′1. For each state
(s1, s2) we associates the integer min(s1, s2), which is also its position in the diagonal, such that
(s1, s2) − (s′1, s

′

2) = min(s1, s2) − min(s′1, s
′

2) and (s1, s2) mod x = min(s1, s2) mod x. With
each diagonal of states, we associate a level structure identical to the one used in the alphabet-
aware level automaton for a single string. Now, when following a default transition from state
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(s1, s2) to (s1+k, s2+k), k > 0, every unique symbol in Σ(S1[s1+1, s1+k])∪Σ(S2[s2+1, s2+k])
contributes with a transition. For each state (i, j), 1 ≤ i ≤ n1, 1 ≤ j ≤ n2, we again associate
a level:

level((i, j)) = min(⌈log2 σ⌉ ,max({x | (i, j) mod 2x = 0}))

For a pair of positive integers (i, j), we define (i, j) > (i, j) to be the smallest pair of
integers in the same diagonal such that level((i, j)) < level((i, j)).

The alphabet-aware level automaton for two strings S1, S2 has the following transitions:
State (0, 0) has a transition labeled S1[1] to state (1, s2) where s2 is the minimal index such
that S2[s2] = S1[1], a transition labeled S2[1] to state (s1, 1) where s1 is the minimal index
such that S1[s1] = S2[1] and a default transition to state (1, 1). These transitions only exists if
the indices exists. Every other state state (s1, s2), where (s1, s2) = (s1, s2), have the following
transitions:

• A default transition to state (s1, s2). If no such state exist, the state (s1, s2) does not
have a default transition.

• If (s1, s2)−(s1, s2) < σ then for each character α in Σ(S1[s1+1,min(s1, n1)])∪Σ(S2[s2+
1,min(s2, n2)]), there is a transition labeled α to the state (s′1, s

′

2), where s′1 > s1 and
s′2 > s2 are the minimal indices such that S1[s

′

1] = S2[s
′

2] = α.

• If (s1, s2)− (s1, s2) ≥ σ then for each character α in Σ(S1[s1+1, n1])∪Σ(S2[s2+1, n2]),
there is a transition labeled α to the state (s′1, s

′

2), where s′1 > s1 and s′2 > s2 are the
minimal indices such that S1[s

′

1] = S2[s
′

2] = α.

An example of an incomplete common subsequence automaton for two strings is given in
Figure 4.

4.1.1 Analysis

For every pair of positive integers (i, j), we have the following property:

(i, j) − (i, j) = 2level((i,j))

This property follows from the same argument that led to equation (1). The number of
transitions out of every state s, is now bounded by 2 · 2level(s) since both S1 and S2 can
contribute with up to 2level(s) transitions.

We can calculate the size of the alphabet-aware level automaton for two strings by summing
up the space contribution from each diagonal of states. Let d be a diagonal consisting of |d|
states. Then the size of d is O(|d| log σ), since each diagonal has the size of an alphabet-aware
level automaton for one string. If D is the set of all diagonals, then the total size of the
automaton becomes

∑

d∈D

O(|d| log σ) = log σ ·
∑

d∈D

O(|d|) = O(log σ · n1 · n2)

The last step is possible since the sum over the states in all diagonals is exactly the number
of states in the automaton. In summary we have shown the following result:

Lemma 3. Let S1, S2 be strings of length n1 and n2 over an alphabet of size σ. We can con-

struct a subsequence automaton and a common subsequence automaton with default transitions

of size O(n1n2 log σ) and delay O(log σ).
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Figure 4: An incomplete common subsequence automaton for two strings S1, S2, laid out in
a two-dimensional grid. State (0, 0) has a transition labeled a = S2[1] to state (i1, 1) and a
transition labeled b = S1[1] to state (0, j1). State (i1, j1) is at level 1 and has a transition for
each unique character in Σ(S1[i1+1, i1+2])∪Σ(S2[j1+1, j1+2]) = {a, c, d}. Transitions out
of the remaining states are missing from the illustration.
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4.2 The alphabet-aware level automaton for multiple strings

The alphabet-aware level automaton for the set of strings S = {S1, S2, . . . , SN} have 1 +
∏N

i=1 Si states that we identify with the set of integer points {1, . . . , n1} × {1, . . . , n2} × . . .×
{1, . . . , nN} ∪ {(0, 0, . . . , 0)}. Hence, a state in the automaton corresponds to a tuple with N
elements (s1, s2, . . . , sN ). We generalize the definition of diagonals for dimension N as follows.
The diagonal of a state (s1, s2, . . . , sN ) is the set of states:

{(s1 + k, s2 + k, . . . , sN + k) |
N
∧

i=1

0 < si + k ≤ ni}

Again, states belong to the same diagonal if the diagonal of each state defines identical sets of
states, and for states (s1, s2, . . . , sN ), (s′1, s

′

2, . . . , s
′

N ), in the same diagonal, (s1, s2, . . . , sN ) <
(s′1, s

′

2, . . . , s
′

N ) if s1 < s′1. For each state (s1, s2, . . . , sN ) we associate the integer min(s1, s2, . . . , sN )
and define subtraction and modulo operations on states as in the previous section.

With each state we again associate the level:

level((s1, s2, . . . , sN )) = min(⌈log2 σ⌉ ,max({x | (s1, s2, . . . , sN ) mod 2x = 0}))

For a tuple of positive integers (s1, s2, . . . , sN ), we define (s1, s2, . . . , sN ) > (s1, s2, . . . , sN )
to be the smallest tuple of integers in the same diagonal such that level((s1, s2, . . . , sN )) <
level((s1, s2, . . . , sN )).

The alphabet-aware level automaton for multiple strings, S1, S2, . . . , SN , has the following
transitions: State (0, 0, . . . , 0) has a transition labeled Si[1] to state (s1, s2, . . . , sN ) where
si = 1, such that sj is the minimal index where Sj[sj] = Si[1], for every i = {1, 2, . . . , N} and
j 6= i and a default transition to state (1, 1, . . . , 1). Every other state (s1, s2, . . . , sN ), where
(s1, s2, . . . , sN ) = (s1, s2, . . . , sN ), has the following transitions:

• A default transition to state (s1, s2, . . . , sN ). If no such state exist, the state (s1, s2, . . . , sN )
does not have a default transition.

• If (s1, s2, . . . , sN ) − (s1, s2, . . . , sN ) < σ then for each character α in
⋃N

i=1 Σ(Si[si +
1,min(si, ni)]) there is a transition labeled α to the state (s′1, s

′

2, . . . , s
′

N ), where, s′i > si
is the minimal index such that Si[s

′

i] = α, for all 1 ≤ i ≤ N

• If (s1, s2, . . . , sN )−(s1, s2, . . . , sN ) ≥ σ then for each character α in
⋃N

i=1Σ(Si[si+1, ni])
there is a transition labeled α to the state (s′1, s

′

2, . . . , s
′

N ), where s′i > si is the minimal
index such that Si[s

′

i] = α, for all 1 ≤ i ≤ N .

4.2.1 Analysis

For each state (s1, s2, . . . , sN ) we have that

(s1, s2, . . . , sN )− (s1, s2, . . . , sN ) = 2level((s1,s2,...,sN ))

The number of transitions out of every state s, is now bounded by N ·2level(s) because each
of the N strings can contribute with up to 2level(s) transitions.

We can calculate the size of the alphabet-aware level automaton for N strings by summing
up the space contribution from each diagonal of states. Let d be a diagonal consisting of |d|
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states. Then the size of d is O(N |d| log σ). If D is the set of all diagonals, then the total size
of the automaton becomes

O

(

∑

d∈D

N |d| log σ

)

= O

(

N log σ ·
∑

d∈D

|d|

)

= O

(

N log σ ·
N
∏

i=1

ni

)

The last step is possible since the sum over the states in all diagonals is the number of states
in the automaton. In summary we have shown the following result:

Theorem 2. Let S1, S2, . . . SN be a set of strings of length n1, n2, . . . , nN over an alphabet

of size σ. We can construct a subsequence automaton and a common subsequence automaton

with default transitions of size O(N log σ ·
∏N

i=1 ni) and delay O(log σ).
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