
ar
X

iv
:1

51
1.

09
36

0v
1

 [
cs

.D
S]

 3
0

N
ov

 2
01

5

On the Complexity of Multi-Parameterized Cluster

Editing✩

Faisal N. Abu-Khzam

Department of Computer Science and Mathematics

Lebanese American University

Beirut, Lebanon

Abstract

The Cluster Editing problem seeks a transformation of a given undi-
rected graph into a disjoint union of cliques via a minimum number of edge
additions or deletions. A multi-parameterized version of the problem is
studied, featuring a number of input parameters that bound the amount of
both edge-additions and deletions per single vertex, as well as the size of
a clique-cluster. We show that the problem remains NP-hard even when
only one edge can be deleted and at most two edges can be added per
vertex. However, the new formulation allows us to solve Cluster Editing
(exactly) in polynomial time when the number of edge-edit operations per
vertex is smaller than half the minimum cluster size. In other words, Cor-
relation Clustering can be solved efficiently when the number of false pos-
itives/negatives per single data element is expected to be small compared
to the minimum cluster size. As a byproduct, we obtain a kernelization al-
gorithm that delivers linear-size kernels when the two edge-edit bounds are
small constants.

Keywords: Cluster Editing, Correlation Clustering,
Multi-parameterization, Kernelization

✩A preliminary version of a portion of this paper appeared in the 7th Annual Interna-
tional Conference on Combinatorial Optimization and Applications (COCOA 2013) [2]

Email address: faisal.abukhzam@lau.edu.lb (Faisal N. Abu-Khzam)

Preprint submitted to Elsevier August 4, 2018

http://arxiv.org/abs/1511.09360v1

1. Introduction

Given a simple undirected graph G = (V,E) and an integer k > 0,
the Cluster Editing Problem asks whether k or less edge additions or dele-
tions can transform G into a graph whose connected components are cliques.
Cluster Editing is NP-Complete [20, 23], but it is fixed-parameter tractable
with respect to the parameter k [8, 16] 1. The problem received considerable
attention recently as can be seen from a long sequence of continuous algorith-
mic improvements (see [5, 6, 7, 9, 10, 16, 17]). The current asymptotically
fastest fixed-parameter algorithm runs in O∗(1.618k) time [5]. Moreover, a
kernel of order 2k was obtained recently in [10]. This means that an arbi-
trary Cluster Editing instance can be reduced in polynomial-time into an
equivalent instance where the number of vertices is at most 2k. The number
of edges in the reduced instance can be quadratic in k.

Cluster Editing can be viewed as a model for accurate unsupervised
“correlation clustering.” In such context, edges to be deleted or added from
a given instance are considered false positives or false negatives, respectively.
Such errors could be small in some practical applications, and they tend to
be even smaller per input object, or vertex. In fact, a single data element
that is causing too many false positive/negatives might be considered as
outlier.

We consider a parameterized version of Cluster Editing where both the
number of edges that can be deleted and the number of edges that can be
added, per vertex, are bounded by input parameters. We refer to these two
bounds by error parameters. Similar parameterizations appeared in [18]
and [19]. In [18], two parameters p and q were used to bound (respectively)
(i) the number of edges that can be added between elements of the same
cluster and (ii) the number of edges that can be deleted between a cluster
and the rest of the graph. In [19], the total number of edge-edit operations,
per vertex, and the number of clusters in the target solution are used as
additional parameters. We shall see that setting separate bounds on the
two parameters could affect the complexity as well as algorithmic solutions
of the problem.

We introduce another parameter that bounds, from below, the minimum
acceptable cluster size and present a polynomial time algorithm that solves
Cluster Editing, exactly, whenever the sum of error parameters is small
compared to the minimum cluster size (in the target solution). This condi-

1We assume familiarity with the notions of fixed-parameter tractability and kerneliza-
tion algorithms [11, 14, 15, 22].

2

tion could be of particular interest in applications where the cluster size is
expected to be large or when error parameters per data element are not ex-
pected to be high. In this respect, the message conveyed by our work bears
the same theme as another, rather experimental, study of various clustering
methods conducted in [12] where it was suggested that Clustering is not as
hard as claimed by corresponding NP-hardness proofs.

We shall also study the complexity of the multi-parameterized version of
Cluster Editing when the error-parameters are small constants. In particu-
lar, we show that Cluster Editing remains NP-hard even when at most one
edge can be deleted and at most two edges can be added per vertex. More-
over, we show in this case that a simple reduction procedure yields a problem
kernel whose total size is linear in the parameter k. Previously known kernel-
ization algorithms cannot be applied to the considered multi-parameterized
version and they deliver kernels whose order (number of vertices only) is
linear in k.

The paper is organized as follows: section 2 presents some preliminaries;
in section 3 we study the complexity of Cluster Editing when parameterized
by the error-parameters; section 4 is devoted to a general reduction pro-
cedure; the consequent complexity results are presented in sections 5, and
section 6 concludes with a summary.

2. Preliminaries

We adopt common graph theoretic terminologies, such as neighborhood,
vertex degree, adjacency, etc. The term non-edge is used to designate a pair
of non-adjacent vertices. Given a graph G = (V,E), and a set S ⊂ V , the
subgraph induced by S is denoted by G[S]. A clique in a graph is a subgraph
induced by a set of pair-wise adjacent vertices. An edge-editing operation
is either a deletion or an addition of an edge. We shall use the term cluster
graph to denote a transitive undirected graph, which consists of a disjoint
union of cliques, as connected components.

For a given graph G and parameter k, the Parameterized Cluster Editing
problem asks whether G can be transformed into a cluster graph via k or less
edge-editing operations. In this paper, we consider a multi-parameterized
version of this problem that assumes a set of parameters (independent of
the input). We shall use the list of parameters in the name of the problem.
For example (a, d, k)-Cluster Editing is formally defined as follows.

3

(a, d, k)-Cluster Editing:

Input: A graph G, parameters k, a, d, and two functions α : V (G) →
{0, 1, · · · , a}, δ : V (G) → {0, 1, · · · , d}.
Question: Can G be transformed into a disjoint union of cliques by at most
k edge-edit operations such that:
for each vertex v ∈ V (G), the number of added (deleted) edges incident on
v is at most α(v) (δ(v) respectively)?

We shall further use some special terminology to better-present our results.
The expression solution graph may be used instead of cluster graph, when
dealing with a specific input instance. Edges that are not allowed to be in
the cluster graph are called forbidden edges, while edges that are (decided
to be) in the solution graph are permanent. An induced path of length two
is called a conflict triple, which is so named because it can never be part of
a solution graph. To cliquify a set S of vertices is to transform G[S] into a
clique by adding edges.

A clique is permanent if each of its edges is permanent. To join a vertex
v to a clique C is to add all edges between v and vertices of C that are not
in N(v). This operation makes sense only when C is permanent or when
turning C to a permanent clique. If v already contains C in its neighborhood,
then joining v to C is equivalent to making C ∪{v} a permanent clique. To
detach v from C is the opposite operation (of deleting all edges between v
and the vertices of C).

The first, and simplest, algorithm for Cluster Editing finds a conflict
triple in the input graph and “resolves” it by exploring the three cases
corresponding to deleting one of the two edges in the path or inserting the
missing edge. In each of the three cases, the algorithm proceeds recursively.
As such, the said algorithm runs in O(3k) time (3 cases per conflict triple).
The same idea has been used in almost all subsequent algorithms, which
added more sophisticated branching rules.

We first study the (a, d)-Cluster Editing problem, which corresponds to
the case where k is not a parameter. This version is similar to the one
introduced in [19] where a bound c is placed on the total number of edge-
edit operations per single vertex. The corresponding problem is called c-
Cluster Editing. When c ≥ 4, c-Cluster Editing is NP-hard (shown also in
[19]). This does not imply, however, that (a, d)-Cluster Editing is NP-hard
when a + d = 4. To see this, note that (a, 0)-Cluster Editing is solvable
in polynomial time for any a ≥ 0: any solution must add all the needed
edges to get rid of all conflict-triples, if this is possible with at most a edge
additions per vertex.

4

Observe that if (a, d)-Cluster Editing is NP-hard then so is (a′, d′)-
Cluster Editing for all a′ ≥ a and d′ ≥ d. This follows immediately from
the definition since every instance of the first is an instance of the second.
We shall prove that (2, 1)-Cluster Editing is NP-hard, which yields the
NP-hardness of (a, 1)-Cluster Editing for all a > 1. It was shown in [19]
that (0, 2)-Cluster Editing is NP-hard. We observe in Section 5 that (0, 1)-
Cluster Editing is solvable in polynomial time, and we conjecture that (1, 1)-
Cluster Editing is solvable in polynomial-time.

A kernelization algorithm with respect to an input parameter k is a
polynomial-time reduction procedure that yields an equivalent problem in-
stance whose size is bounded by a function of k. Known kernelization al-
gorithms for Cluster Editing have so far obtained kernels whose order (i.e.,
number of vertices) is bounded by a linear function of k [9, 10, 17]. The
most recent order-bound is 2k [10].

We introduce the minimum acceptable cluster size, s, as another param-
eter. This is especially useful when the input graph is preprocessed so it is
not expected to contain outlier vertices. Observe that the size of a cluster
is expected to be relatively large in some correlation clustering applications,
such as social networks [21]. We shall present (in Section 4) a simple re-
duction procedure that leads to solving Cluster Editing in polynomial time
when s > 2(a+ d). When s ≤ 2(a+ d), the same reduction procedure deliv-
ers kernels whose number of edges is bounded by 5k

4
max(a, 2d)(a + 3d). In

other words, when the constraints a and d are small constants, the kernel
size is linear in k.

3. The (a, d)-Cluster Editing Problem

We consider the case where the Cluster Editing problem is parameterized
by the add and delete capacities a and d, only. In other words, the main
objective is to check whether it is possible to obtain a cluster graph by
performing at most a additions and d deletions per vertex. We denote the
corresponding problem by (a, d)-Cluster Editing.

It was shown in [19] that Cluster Editing is NP-hard when the total
number of edge-edit operations per vertex is four or more. However, as
observed earlier, the result (and proof) of [19] cannot be used in studying
the complexity of each of the separate cases (for a and d) when a + d = 4.
We prove in this section that (2, 1)-Cluster Editing is NP-hard by reduction
from the 4-Bounded-Positive-One-in-Three-SAT problem, which is formally
defined as follows:

5

4-Bounded-positive-1-in-3-SAT
Given: A 3-CNF formula φ in which each variable appears only positively
in at most four clauses.
Question: Is there a truth assignment that satisfies φ so that only one
variable per clause is set to true?

4-Bounded-positive-1-in-3-SAT was shown to be NP-hard in [13]. The
reduction to (2, 1)-Cluster Editing proceeds by constructing a graph with
three types of vertices: variable, clause and auxiliary. Each clause c =
(x ∨ y ∨ z) is represented by a clause gadget as shown in Figure 1.

0

1

2

3 c y4

z

x

Figure 1: Clause gadget. The node corresponding to clause c = (x ∨ y ∨ z) is forced to
lose one of the edges connecting it to a variable gadget.

Observe that edge {3, 4}must be deleted since theK4 formed by {0, 1, 2, 3}
is permanent. It follows that edge {c, 4} cannot be deleted, so exactly one of
the three edges cx, cy and cz must be deleted by any feasible solution. The
deletion of the edge cx means that the variable x is set to true, otherwise it
is false.

0

1

2

3 c

x

4

y

Figure 2: Clause gadget resolved after setting z to true while x and y are set to false.

6

In the variable gadget, shown in Figure 3 below, the four edges connect-
ing the vertices labeled x to the cycle are subject to the same edit operation:
either all four are deleted or all four are kept as permanent. To see this,
note that it is not possible to delete exactly one edge of the cycle {1, 2, 3, 4}.
We either have to turn this cycle to a K4 by two edge additions and by
removing each of the edges incident on vertices labeled x, or two opposite
edges are deleted as shown in Figure 4.

x x

1 2

34

xx

Figure 3: Variable gadget. Variable x may belong to up to four clauses. Each node labeled
x is connected to its corresponding clause gadget.

If a variable x belongs to i different clause(s) where i < 4, then 4 − i
vertice(s) labeled x in the corresponding gadget will be pendant (not con-
nected to a clause gadget). If there is a satisfying truth assignment of a
given formula of 4BP -one-in-three-3SAT, then every variable that is set to
true will have its variable gadget turned into two clusters as shown in Figure
4, and every variable x that is set to false will have its corresponding four
vertices disconnected from the C4, which is turned into a K4 in its gadget.
In the latter case, each of the vertices labeled x will join a (corresponding)
clause cluster as shown in Figure 2.

Conversely, if there is a solution of the (2, 1)-Cluster Editing instance,
then exactly one variable-vertex neighbor of a clause-vertex is deleted. Due
to above construction, the corresponding variable can be set to true and a
satisfying assignment is obtained for the 4BP -one-in-three-3SAT instance.
We have thus proved the following.

Lemma 1. The (2, 1)-Cluster Editing problem is NP-Hard.

7

x x

1 2

34

xx

x x

1 2

34

xx

Figure 4: Variable gadget: the two cases where exactly two edges of C4 are deleted.

The membership of (a, 1)-Cluster Editing in NP is obvious. With the
above Lemma, and our definition of (a, d)-Cluster Editing, we obtain the
following theorem.

Theorem 1. For a > 1, the (a, 1)-Cluster Editing problem is NP-Complete.

4. A Reduction Procedure

In general, a problem-reduction procedure is based on reduction rules,
each of the form 〈condition, action〉, where action is an operation that can
be performed to obtain an equivalent instance of the problem whenever
condition holds. If a reduction is not possible, or the action violates a
problem-specific constraint, then we have a no instance. Moreover, a reduc-
tion rule is sound if its action results in an equivalent instance.

In what follows, we assume an instance (G, k) of (a, d, s, k)-Cluster Edit-
ing is given. In other words, the problem is parameterized by the add and
delete capacities, as in the previous section, along with the lower-bound on
cluster size s and the total number of edge-edit operations k. Any added
edge, in what follows, is automatically set to permanent.

The main reduction rules are given below. They are assumed to be
applied successively in such a way that a rule is not applied, or re-applied,
until all the previous rules have been applied exhaustively. Some of the rules
are folklore. We shall prove the soundness of new, non-obvious, reduction
rules only.

4.1. Base-case Reductions

Reduction Rule 1. The reduction algorithm terminates and reports a no
instance, whenever any of k, α(v), or δ(v) is negative for some vertex v ∈
V (G).

8

Reduction Rule 2. For any vertex v, if δ(v) = 0 (or becomes zero), then
N(v) is cliquified.

Note that applying Rule 2 may yield negative parameters, which triggers
Rule 1 and causes the algorithm to terminate with a negative answer.

Reduction Rule 3. If α(u) = 0, then set every non-edge of u to forbidden.

4.2. Reductions Based on Conflict-Triples

Reduction Rule 4. If uv and uw are permanent edges and vw is a non-
edge, then add vw and decrement each of k, α(v) and α(w) by one. If vw
is a non-permanent edge, then set vw as permanent.

Reduction Rule 5. If uv is a permanent edge and uw is a forbidden edge,
then set vw as forbidden. If vw exists, delete it and decrement k, δ(v) and
δ(w) by one.

4.3. Reductions Based on Common Neighbors

Reduction Rule 6. If two non-adjacent vertices u and v have more than
2d common neighbors (or more than δ(u) + δ(v) common neighbors), then
add edge uv and decrement each of k, α(u) and α(v) by one.

Soundness: If u and v are not in the same clique in the solution graph, then
at least one of them has to lose more than d edges, which is not possible.

Reduction Rule 7. If two adjacent vertices, u and v, have at least 2d− 1
common neighbors then set uv as permanent edge.

Soundness: If the two vertices are in different clusters of a solution graph,
then deleting edge uv reduces both δ(u) and δ(v) to at most d − 1 each.
Since they have to lose their common neighbors, at least one of them has to
lose d edges, which is not possible.

Reduction Rule 8. If two vertices u and v are such that |N(u) \N(v)| >
a+ d then set edge uv as forbidden. If u and v are adjacent, then delete uv
and decrement each of k, δ(u) and δ(v) by one.

Soundness: For u and v to be in the same cluster, at most d neighbors
may be deleted from N(u) and at most a neighbors can be added to N(v).

9

4.4. Reductions Based on Cluster-Size

Reduction Rule 9. If there is a vertex v satisfying: s − 1 > degree(v) +
α(v), then return No.

Soundness: Obviously, v needs more than α(v) edges to be a member of a
cluster in a solution graph.

Reduction Rule 10. If there is a vertex v satisfying: δ(v) > degree(v) +
α(v) − (s− 1) set δ(v) = degree(v) + α(v) − (s − 1).

Soundness: If δ(v) edges incident on v are deleted (so degree(v) is decre-
mented by δ(v)), we get a no-instance by Rule 9.

Reduction Rule 11. If s > 2 and two non-adjacent vertices u and v have
less than s − 2a common neighbors (or s − α(u) − α(v) such neighbors)
then set edge uv as forbidden.

Soundness: If α(u)α(v) = 0, then uv is already forbidden by Rule 3. For u
and v to belong to the same cluster, they must have at least s− 2 common
neighbors. After adding uv, the maximum number of common neighbors we
can add is 2a − 2 (a − 1 edges between u and N(v) and vice versa). The
total number of common neighbors after adding all possible edges remains
less than s− 2(= s− 2a+ 2a− 2).

Reduction Rule 12. If s > 2 and two adjacent vertices u and v have
< s− 2a− 2 common neighbors, then delete edge uv and decrement each of
k, δ(u) and δ(v) by one.

Soundness: The argument is similar to the previous case, except that each
vertex must add at least a neighbors of the other to obtain s − 2 common
neighbors.

4.5. Permanent and Isolated Cliques

If a clique contains more than 2d vertices, then it is permanent due
to Rule 7. Moreover, no vertex can be joined to an isolated permanent
clique with more than a vertices. As a consequence, we obtain the following
reduction rule.

Reduction Rule 13. If a clique C is such that N(C) \ C = ∅ and |C| >
max(a, 2d) then delete C.

10

The presence of permanent cliques can yield problem reductions that
are not obtained by exhaustive applications of the above reduction rules.
Note that a permanent edge is a special case of a permanent clique. The
soundness of the following rules is obvious.

Reduction Rule 14. If a vertex v has more than d neighbors in a perma-
nent clique C, then v is joined to C.

Reduction Rule 15. Let C be a permanent clique of size > a. If a vertex
v has less than |C| − a neighbors in C, then v is detached from C.

An isolated clique is said to be small if its size is less than s. In general,
deleting isolated cliques is a sound reduction rule for the single-parameter
Cluster Editing problem. In multi-parameterized versions, we either add
a parameter that bounds the number of small isolated cliques, including
outliers, or (to adhere to our problem formulation) we must keep a number
of such cliques. To see this, note the example of a single isolated vertex v
and an isolated clique C with less than α(v) vertices. In this case, v can be
joined to C to avoid having a small cluster that can potentially yield a no
answer.

At this stage, if there is an isolated clique C in the so-far reduced in-
stance, then |C| ≤ max(a, 2d). If C is small (i.e., 1 ≤ |C| < s) then each
vertex of C must be affected by at least one edge-editing operation. Conse-
quently:

Reduction Rule 16. If the total number of vertices in small isolated cliques
is > 2k then (halt and) report a no instance.

On the other hand, if an isolated clique C is not small then it must
satisfy s ≤ |C| ≤ max(a, 2d). As observed above, we need to keep a few of
these cliques. Since this is needed only when s ≥ 2, we can safely keep at
most k/2 such cliques.

Reduction Rule 17. If s > 1 and there are more than k non-small isolated
cliques then delete all but at most k/2 of them.

5. The Complexity of Multi-parameterized Cluster Editing

An instance (G, a, d, s, k) of Cluster Editing is said to be reduced if the
above reduction rules have been exhaustively applied to the input graph G.

Our second main theorem, proved below, addresses the optimization
version of Cluster Editing, which seeks a minimum number of edge-edit
operations. So k is not a parameter in this case, but we keep the other
constraints.

11

Theorem 2. When s > 2(a+d), and ad > 0, the Minimum Cluster Editing
problem is solvable in polynomial time.

Proof. Let u and v be non-adjacent vertices such that uv is not forbidden.
By Rules 6 and 11: s − 2a ≤ |N(u) ∩N(v)| ≤ 2d. This is impossible since
s−2a > 2d, so uv must be forbidden and any two non-adjacent vertices must
belong to different clusters. If u and v are adjacent vertices such that uv is
not permanent, then by Rules 7 and 12: s−2a−2 ≤ |N(u)∩N(v)| < 2d−1.
Again, this is impossible (it implies s < 2(a + d) + 1), so edges between
adjacent vertices must be permanent. It follows that in a reduced instance
any edge is either permanent or deleted.

In a typical clustering application, the total number of errors per data
element is expected to be small and should be much smaller than a cluster
size. In the seemingly common case where the cluster size is large compared
to such error, Theorem 2 asserts that Cluster Editing is solvable (exactly)
in polynomial time.

When s ≤ 2(a + d), the Minimum Cluster Editing problem remains
NP-hard even if a and d are small constants and the size of a cluster is
not important (i.e., s = 1). In this case, the reduction procedure may still
help to obtain faster parameterized algorithms. In fact, we shall prove that
applying the above reduction rules yields equivalent instances whose (total)
size is bounded by a linear function of the main parameter k. The following
key lemma follows from the reduction procedure.

Lemma 2. Let (G, a, d, s, k) be a reduced yes-instance of Cluster Editing.
Then every vertex of G has at most a+ 3d neighbors.

Proof. Assume there is a vertex v such that |N(v)| > a+3d. By Rule 6, any
vertex u is either a neighbor of v or has at most 2d common neighbors with
v. In the latter case, v has more than a + d vertices that are not common
with u. Edge uv would then be forbidden by Rule 8. By Rules 7 and 8,
every edge incident on v is either deleted or becomes permanent. Applying
Rules 4 and 5 exhaustively leads to cliquifying and isolating N [v], which
then results in deleting N [v] due to Rule 13.

5.1. The case where a and d are small fixed constants

It was shown in [19] that Cluster Editing is NP-hard when a = 0 and d = 2.
This implies the NP-hardness of (a, 2)-Cluster Editing for a ≥ 0.

When d = 1, our reduction procedure results in a triangle-free instance
or a no answer. To see this observe that every clique of size three or more

12

becomes permanent (2d + 1 = 3). Moreover, a vertex with more than one
neighbor in a clique of size three must be in the clique (otherwise we have a
no instance) while an edge joining a vertex to only one member of a triangle
must be deleted. It follows that cliques of size three or more become isolated
and deleted.

We also observe that (0, 1)-Cluster Editing is solvable in polynomial time.
To see this, note that a vertex of degree three must be part of a clique of size
at least three, since at most one of its incident edges can be deleted. Unless
we have a no instance, such vertex cannot exist in a reduced instance, being
triangle-free. It follows that a reduced yes instance must have a maximum
degree of two. In this case, the problem is equivalent to the Maximum

Matching problem.
At this stage, the only remaining open problem is whether (1, 1)-Cluster

Editing is solvable in polynomial time. We believe it is the case, especially
since every instance is triangle-free, as observed above. Moreover, the reader
would easily observe that every such instance is of maximum degree three.

5.2. Kernelization

We now give a bound on the number of vertices in a reduced instance.

Theorem 3. There is a polynomial-time reduction algorithm that takes an
arbitrary instance of (multi-parameterized) Cluster Editing and either deter-
mines that no solution exists or produces an equivalent instance whose order
is bounded by 5k

2
max(a, 2d).

Proof. Let (G, a, d, k) be a reduced instance of Cluster Editing. Let A be
the set of vertices of G that are incident to edges that must be deleted
or to non-edges that must be added to obtain some minimum solution,
if any. In other words, A is the set of vertices affected by edge-editing
operations. If (G, a, d, k) is a yes instance, then |A| ≤ 2k. Let B = N(A)
and C = V (G) \ (A ∪B).

The connected components of B are cliques, being non-affected by edge-
editing. For the same reason, every vertex x ∈ A satisfies: G[B ∩ N(x)]
is a clique. Let Bx = N(x) ∩ B for some x ∈ A and let N(Bx) = {a ∈
A : Bx ⊂ N(a)}. If |Bx ∪ {x}| > max(a, 2d) then our reduction procedure
sets Bx∪{x} to permanent and automatically joins every element of N(Bx)
to a larger isolated clique containing Bx, which is then deleted by Rule 13.
Therefore |A ∪B| ≤ 2kmax(a, 2d).

Observe that isolated cliques of size < s must be totally contained in A,
so their elements are part of the 2kmax(a, 2d) vertices of A ∪ B. It follows

13

by Rule 17 that C consists of at most k/2 (non-small) isolated cliques, each
of size max(a, 2d). The proof is now complete.

The following corollary follows easily from Theorem 3 and Lemma 2.

Corollary 1. There is a polynomial-time reduction algorithm that takes an
arbitrary instance of Multi-parameterized Cluster Editing and either deter-
mines that no solution exists or produces an equivalent instance whose size
is bounded by 5k

4
max(a, 2d)(a + 3d).

The above kernel bound is of interest when a and d are fixed small con-
stants. It could be particularly useful since previously known kernelization
algorithms for single-parameter Cluster Editing are not applicable to the
multi-parameterized version especially due to their use of edge contraction,
which also results in assigning weights to vertices. The difficulty of apply-
ing edge contraction stems from the fact that merging two adjacent vertices
does not yield valid edge editing bounds on the resulting vertex. To expli-
cate, assume we contract edge uv and assign δ(u) + δ(v) as edge-deletion
bound to the resulting vertex. Then we might either exceed the d-bound or
allow the deletion of more than δ(u) neighbors of u (from the new combined
neighborhood), thereby obtaining a wrong solution.

6. Acknowledgement

The work on this project has been partially supported by the Lebanese
American University under grant SRDC-t2013-45.

7. Concluding Remarks

We considered the (a, d)-Cluster Editing problem, a constrained version
of Cluster Editing where at most a edges can be added and at most d edges
can be deleted per single vertex. We proved that (a, d)-Cluster Editing is
NP-hard, in general, for any a ≥ 2 and d ≥ 1. We also observed that
(0, 1)-Cluster Editing is solvable in polynomial time while the (0, 2) case is
NP-hard [19]. It remains open whether (1, 1)-Cluster Editing can be solved
in polynomial time.

We presented a reduction procedure that solves the Cluster Editing prob-
lem in polynomial-time when the smallest acceptable cluster size exceeds
twice the total allowable edge operations per vertex. It is worth noting that
edge-editing operations per single data element are expected to be small

14

compared to the cluster size, especially if the input is free of outliers. When
the bounds on the two edge-edit operations per vertex are small constants,
and the cluster size is unconstrained, our reduction algorithm gives a kernel
whose size is linear in the main parameter k. Previously known kerneliza-
tion algorithms are not applicable to the multi-parameterized version and
achieve a linear bound on the number of vertices only.

The reduction algorithm presented in this paper has been implemented
along with the simple branching on conflict triples described in Section 2.
Experiments show a promising performance especially on graphs obtained
from clinical research data [3, 4]. The multi-parameterized algorithm fin-
ished consistently in seconds, reporting significant clusters.

Finally we note that different Cluster Editing solutions to the same prob-
lem instance may differ in terms of the practical significance of obtained clus-
ters. A possible approach would be to combine enumeration and editing,
by enumerating all possible Cluster Editing solutions. Moreover, in some
biology applications, a data element may be an active member of different
clusters. In such cases, the enumeration of all maximal cliques was used as
a possible alternative [1]. To permit a data element to belong to more than
one cluster, we suggest allowing vertex-division (AKA. vertex cleaving) as
another edit operation whereby a vertex is replaced by two different vertices.
The number of allowed divisions per vertex can be added as (yet) another
parameter. This latter formulation is under consideration for future work.

References

[1] F. N. Abu-Khzam, N. E. Baldwin, M. A. Langston, and N. F. Sam-
atova. On the relative efficiency of maximal clique enumeration algo-
rithms, with applications to high-throughput computational biology. In
International Conference on Research Trends in Science and Technol-
ogy, 2005.

[2] Faisal N. Abu-Khzam. The multi-parameterized cluster editing prob-
lem. In Peter Widmayer, Yinfeng Xu, and Binhai Zhu, editors, Combi-
natorial Optimization and Applications - 7th International Conference,
COCOA 2013, Chengdu, China, December 12-14, 2013, Proceedings,
volume 8287 of Lecture Notes in Computer Science, pages 284–294.
Springer, 2013.

[3] Faisal N. Abu-Khzam, Judith Egan, Ling-An Lin, Peter Shaw, and
Timothy Skinner. Understanding complex interactions of symptoms in
pediatric diabetes care: the effect of multi-parameterized correlation

15

clustering on the hvidoere study group on childhood diabetes. 2016.
Manuscript.

[4] Faisal N. Abu-Khzam, Ling-An Lin, Peter Shaw, Heidi Smith-Vaughan,
and Robyn Marsh. Effective use of multi-parameterized correlation
clustering in mining nasopharyngeal carriage and disease data from
young children. 2016. Manuscript.

[5] S. Böcker. A golden ratio parameterized algorithm for cluster editing.
J. Discrete Algorithms, 16:79–89, 2012.

[6] S. Böcker, S. Briesemeister, Q. B. A. Bui, and A. Truss. Going weighted:
Parameterized algorithms for cluster editing. Theoretical Computer Sci-
ence, 410(52):5467–5480, 2009.

[7] S. Böcker, S. Briesemeister, and G. W. Klau. Exact algorithms for
cluster editing: Evaluation and experiments. Algorithmica, 60(2):316–
334, 2011.

[8] L. Cai. Fixed-parameter tractability of graph modification problems for
hereditary properties. Information Processing Letters, 58(4):171–176,
May 1996.

[9] Y. Cao and J. Chen. Cluster editing: Kernelization based on edge cuts.
Algorithmica, 64(1):152–169, 2012.

[10] J. Chen and J. Meng. A 2k kernel for the cluster editing problem. J.
Comput. Syst. Sci., 78(1):211–220, 2012.

[11] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov,
Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh.
Parameterized Algorithms. Springer, 2015.

[12] A. Daniely, N. Linial, and M. Saks. Clustering is difficult only when it
does not matter. CoRR, abs/1205.4891, 2012.

[13] R. Denman and S. Foster. Using clausal graphs to determine the compu-
tational complexity of k-bounded positive one-in-three {SAT}. Discrete
Applied Mathematics, 157(7):1655 – 1659, 2009.

[14] Rodney G. Downey and Michael R. Fellows. Fundamentals of Param-
eterized Complexity. Texts in Computer Science. Springer, 2013.

[15] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer,
2006.

16

[16] J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier. Graph-modeled
data clustering: Exact algorithms for clique generation. Theory Com-
put. Syst., 38(4):373–392, 2005.

[17] J. Guo. A more effective linear kernelization for cluster editing. Theor.
Comput. Sci., 410(8-10):718–726, 2009.

[18] Pinar Heggernes, Daniel Lokshtanov, Jesper Nederlof, Christophe Paul,
and Jan Arne Telle. Generalized graph clustering: Recognizing (p, q)-
cluster graphs. In Dimitrios M. Thilikos, editor, Graph Theoretic Con-
cepts in Computer Science - 36th International Workshop, WG 2010,
Zarós, Crete, Greece, June 28-30, 2010 Revised Papers, volume 6410
of Lecture Notes in Computer Science, pages 171–183, 2010.

[19] C. Komusiewicz and J. Uhlmann. Cluster editing with locally bounded
modifications. Discrete Applied Mathematics, 160(15):2259–2270, 2012.

[20] M. Křivánek and J. Morávek. Np-hard problems in hierarchical-tree
clustering. Acta Inf., 23(3):311–323, June 1986.

[21] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Ma-
honey. Community structure in large networks: Natural cluster sizes
and the absence of large well-defined clusters. Internet Mathematics,
6(1):29–123, 2009.

[22] R. Niedermeier. An Invitation to Fixed-Parameter Algorithms. Oxford
University Press, 2006.

[23] R. Shamir, R. Sharan, and D. Tsur. Cluster graph modification prob-
lems. Discrete Appl. Math., 144(1-2):173–182, November 2004.

17

	1 Introduction
	2 Preliminaries
	3 The (a,d)-Cluster Editing Problem
	4 A Reduction Procedure
	4.1 Base-case Reductions
	4.2 Reductions Based on Conflict-Triples
	4.3 Reductions Based on Common Neighbors
	4.4 Reductions Based on Cluster-Size
	4.5 Permanent and Isolated Cliques

	5 The Complexity of Multi-parameterized Cluster Editing
	5.1 The case where a and d are small fixed constants
	5.2 Kernelization

	6 Acknowledgement
	7 Concluding Remarks

