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A Separation Between RLSLPs and LZ77�

Philip Billea, Travis Gagieb, Inge Li Gørtza,∗, Nicola Prezzaa

aDTU Compute, Technical University of Denmark, Lyngby, Denmark
bEIT, Universidad Diego Portales, Santiago, Chile

Abstract

In their ground-breaking paper on grammar-based compression, Charikar et al.

(2005) gave a separation between straight-line programs (SLPs) and Lempel-

Ziv ’77 (LZ77): they described an infinite family of strings such that the

size of the smallest SLP generating a string of length n in that family, is an

Ω(logn/ log log n)-factor larger than the size of the LZ77 parse of that string.

However, the strings in that family have run-length SLPs (RLSLPs) — i.e.,

SLPs in which we can indicate many consecutive copies of a symbol by only one

copy with an exponent — as small as their LZ77 parses. In this paper we modify

Charikar et al.’s proof to obtain the same Ω(log n/ log log n)-factor separation

between RLSLPs and LZ77.

Keywords: grammar-based compression; run-length compression; SLP;

RLSLP; LZ77; Thue-Morse sequence

1. Introduction

Storing and processing massive datasets has become a fundamental task of

modern computer science and inspired a renaissance in data compression. Most

datasets are highly repetitive and so dictionary- and grammar-based compres-

sion algorithms often achieve dramatic results, with the added benefit that some5
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are “computation-friendly” in the sense that we can perform many calculations

faster on compressed datasets than on uncompressed ones. However, tradi-

tional techniques for analyzing compression — developed mainly for statistical

compressors and based on empirical entropy or the expected compressibility of

strings generated by Markov sources — do not accurately predict how well we10

can compress repetitive datasets.

Charikar et al. [1] changed the course of this line of research by proving

upper and lower bounds relating the sizes of several compressed representations,

to the size of the input’s Lempel-Ziv ’77 (LZ77) parse [2] and to the size of its

smallest straight-line program (SLP). The LZ77 parse of a text is a greedy left-15

to-right parse into maximal factors such that each factor already occurred to the

left. Despite its simplicity, LZ77 can be easily shown to be optimal among all

unidirectional parses (i.e. that copy phrases from left-to-right), and dominates

SLPs, which are context-free grammars that generate only the text as output,

and other popular compression schemes.20

Let zno be the number of phrases of the Lempel-Ziv parse when overlaps

are not allowed between phrases and their sources, and let g∗ be the size of

the smallest SLP. Charikar at al. [1] and Rytter [3] showed how to obtain a

unidirectional parse of size at most g starting from a SLP of size g. It follows

from the optimality of LZ77 that the relation zno ≤ g∗ holds. On the other hand,25

they showed how to build an SLP of size O(zno log(n/zno)) from the LZ77 parse,

so g∗ has at most that size. Finally, Charikar et al. showed an infinite family

of strings for which g∗/zno = Ω(log n/ log log n), where n is the length of the

string. These results imply that LZ77 compression without overlaps is always

at least as good as grammar compression, and strictly better in some cases.30

Given that SLPs are often more computation-friendly than LZ77, one might

wonder whether we could enhance SLPs so that they become as powerful as

Lempel-Ziv compression. See, for example, Bille et al. [4, Thm 1.1] and Kreft

and Navarro [5, Thm 4.11] for classical solutions to the random access prob-

lem on grammar- and Lempel-Ziv-compressed texts, respectively. One possible35

extension of SLPs is to add so-called run-length rules, i.e. rules of the form
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X → Y �, for � > 1 (meaning that X expands to � repetitions of Y ). This exten-

sion takes the name run-length SLP, or RLSLP in what follows. RLSLPs were

formally introduced by Nishimoto et al. [6], who used them in a compressed

data structure for computing longest common extensions, although Jeż [7] used40

a similar idea earlier in his paper on approximating the smallest SLP via re-

compression. Interestingly, Jeż’s construction gives a balanced RLSLP, which

becomes unbalanced when it is converted into a standard SLP. Very recently,

Gagie, Navarro and Prezza [8] used RLSLPs in a data structure supporting fast

random access to compressed strings.45

Let g∗rl be the size of the smallest RLSLP. It is easy to show that g∗ =

Θ(log n) and g∗rl = O(1) on unary strings of length n. This implies that RL-

SLPs are a strict improvement over SLPs. Since zno ∈ Θ(log n) on unary strings,

we also have that zno/g
∗
rl = Θ(logn) for an infinite class of strings: RLSLPs

improve upon Lempel-Ziv compression in some cases, and therefore are good50

candidates for capturing it. However, a slight modification to the LZ77 com-

pression scheme adds enough power to capture, again, grammar compression

with run-length rules. Let z be the number of phrases of the Lempel-Ziv parse

when overlaps are allowed between phrases and their sources. By adapting Ryt-

ter’s proof, Gagie et al. [8] proved that z ≤ 2g∗rl, implying we cannot hope to55

significantly beat LZ77 with overlaps using RLSLPs, but they did not give a

separation between z and g∗rl; for strings in the family Charikar et al. described,

g∗rl = O(zno)

The missing piece in the puzzle is the following: are RLSLPs always at least

as good as Lempel-Ziv (with or without overlaps)? In this paper, we answer60

negatively to this question. By adapting Charikar at al.’s proof [1], we give an

infinite family of strings for which g∗rl/zno = Ω(log n/ log log n). Since z ≤ zno

trivially holds, our result implies that Lempel-Ziv compression with overlaps

is always at least as good as grammar-compression with run-length rules, and

strictly better in some cases. Formally, we prove the following theorem.65

Theorem 1. There exists an infinite family of strings for which the ratio be-
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tween the size of the smallest RLSLP and the length of the LZ77 parse is

g∗rl
zno

= Ω

(
log n

log log n

)
.

We note that since Charikar et al.’s and Rytter’s work, other researchers

simplified the proof that g∗ ∈ O(zno log(n/zno)) and strengthened it to show

g∗ ∈ O(z log(n/z)) [7], and described an infinite family of binary strings for

which g∗/zno = Ω(log n/ log log n) [9]. In collaboration, these authors and oth-

ers [10] have recently independently proposed ideas similar to some of the ones70

we describe in this paper: specifically, they used the cube-freeness of the Thue-

Morse sequence to show there is an infinite family of strings — prefixes of

the Thue-Morse sequence — whose minimum RLSLPs are not asymptotically

smaller than their minimum SLPs. This does not separate RLSLPs from LZ77,

however, since those strings’ LZ77 parses are not asymptotically smaller than75

their minimum SLPs, either.

Now that we know the Charikar et al.’s separation between SLPs and LZ77

can be made robust with respect either to alphabet size or to run-length encod-

ing of symbols in rules, an obvious open problem is strengthening the results in

this paper to hold for strings over small alphabets, ideally binary. In the longer80

term, we feel researchers should revisit several other natural generalizations of

SLPs that Charikar et al. proposed in the conference version of their paper and

claimed to show not to have significantly greater power, “suggest[ing] the ro-

bustness of grammar based string complexity”; the proofs seemed fragile and

those sections were omitted from the final version.85

2. Prelimaries

Charikar et al. [1] showed a separation between the smallest grammar and

the size of the LZ77 parse of a string.

Lemma 2 (Charikar et al.). There exists an infinite family of strings for which

the ratio between size of the smallest grammar and the length of the LZ77 parse

4



is
g∗

zno
= Ω

(
log n

log log n

)
.

The proof is based on the following lemma (implicit in the paper) that they

proved using a link between grammars and addition chains.90

Lemma 3 (Charikar et al.). Let k1, . . . , kp be a set of distinct positive integers,

and consider strings of the form s = xk1 |1xk2 |2 . . . |p−1x
kp , where k1 is the

largest of the ki. Let p = Θ(log k1). There exists an infinite class of sequences

of integers k1, . . . , kp such that the smallest grammar for s has size

Ω

(
log2 k1

log log k1

)
.

Since the LZ77 parse for the string has size O(p + log k1) = O(log k1)

Lemma 2 follows.

Thue-Morse Sequence. The Thue-Morse sequence can be generated by starting

with 01 and keep appending the inverse binary negation of the sequence already

generated:

01 → 0110 → 01101001 → 0110100110010110 → . . .

The Thue-Morse sequence is overlapfree [11, 12, 13, 14], and therefore also

cubefree on two symbols [15]. We denote the infinite Thue-Morse sequence as t

in the following.95

3. Separation

Size of smallest RLSLP. Let t(n) be the prefix of length n of the infinite Thue-

Morse sequence. Let k1, . . . , kp be a set of distinct positive integers, and consider

strings of the form

ŝ = t(k1)|1t(k2)|2 . . . |p−1t(kp),

where k1 is the largest of the ki.

Since the sequences t(ki) are cubefree, there is no difference in the size of

the smallest grammar and the smallest RLSLP for the string ŝ. To see why this
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holds, consider any RLSLP for ŝ. Since ŝ is cubefree, for any rule of the form100

X → Y � it must be the case that � = 2. Then, we can convert all rules of this

kind to the form X → Y Y and obtain a SLP for ŝ of the same size.

Let s = xk1 |1xk2 |2 . . . |p−1x
kp . Assume we have a grammar of size g for

ŝ. Replacing all the terminals (−1, 0, 1) by x gives us a grammar for s of size

g. Thus the smallest grammar for ŝ must be at least the size of the smallest

grammar for s. From Lemma 3 we know that there exist integers k1, . . . , kq,

with q ∈ Θ(log k1) and k1 being the largest integer in the sequence, such that

the smallest grammar for s has size Ω
(

log2 k1

log log k1

)
. It follows that the smallest

SLP (and thus RLSLP, for the above considerations) for ŝ has size at least

Ω

(
log2 k1

log log k1

)
.

Size of LZ77 parse. The LZ77 parse for the Thue-Morse sequence of length

n has size O(log n) [17]. Now consider the string ŝ, and let z1 be the LZ77

parse of t(k1)|1, of size O(log k1). The LZ77 parse of ŝ is then z1 followed by

(1, k2)|2 . . . |p−1(1, kp). The size of the parse is O(log k1 + p) = O(log k1). The

ratio between the smallest RLSLP and the length of the LZ77 parse is therefore

Ω

(
log k1

log log k1

)
= Ω

(
log n

log log n

)
.
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