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Abstract. A graph G is called a sum graph if there is a so-called sum

labeling of G, i.e. an injective function ℓ : V (G) → N such that for every
u, v ∈ V (G) it holds that uv ∈ E(G) if and only if there exists a vertex
w ∈ V (G) such that ℓ(u) + ℓ(v) = ℓ(w). We say that sum labeling ℓ is
minimal if there is a vertex u ∈ V (G) such that ℓ(u) = 1. In this paper, we
show that if we relax the conditions (either allow non-injective labelings
or consider graphs with loops) then there are sum graphs without a
minimal labeling, which partially answers the question posed by Miller
in [6] and [5].

1 Introduction

An undirected graph G = (V,E) is a sum graph if there exists an injective
function ℓ : V (G) → N such that every pair of vertices u 6= v ∈ V (G) is
connected via an edge of G if and only if there exists a vertex w ∈ V (G) such
that ℓ(w) = ℓ(u)+ℓ(v). We call the function ℓ a sum labeling or labeling function.
The value ℓ(u) + ℓ(v) is an edge-number of the edge uv and it is guaranteed by
vertex w. The sum number σ(G) of a graph is defined as the least integer, such
that G+ K̄σ(G) (G with σ(G) additional isolated vertices) is a sum graph.

The concept of sum graphs was introduced by Harary [4] in 1990. It was
further developed by Gould and Rödl [3] and Miller [6], [7] who showed general
upper and lower bounds on σ(G) of order Ω(|E|) for a given general graph G
and better bounds for specific classes of graphs.

For some graphs the exact sum numbers are known: σ(Tn) = 1 for trees
(of order n ≥ 2) [2], σ(Cn) = 2 for cycles (n ≥ 3, n 6= 4) and σ(C4) = 3 [4],
σ(Kn) = 2n− 3 for complete graphs (n ≥ 4) [1], σ(H2,n) = 4n − 5 for cocktail
party graphs (n ≥ 2) [6] and for complete bipartite graphs [8].

In the work of Miller et al. [6] and [5], an open question was raised whether
every sum graph has a labeling that uses number 1. Such labelings are called
minimal. In [6], a minimal labeling of complete bipartite graphs is presented. In
[5], an upper bound on σ(G) for G being a disjoint union of graphsG1, G2 . . . , Gn

is shown. If at least one of the disjoint graphs has minimal labeling then

σ(G) ≤

n∑

i=1

σ(Gi)− (n− 1).
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In our work, we approach sum graphs from a different perspective. Instead
of grounding our research on the properties of graphs, our basic objects are sets
of integers. Given an integer set M , the rules of sum labeling uniquely define
a graph such that it is a sum graph and its labeling consists exactly of all the
integers from the given set. From our research we provide two negative answers
to questions parallel to the one raised by Miller et al.

While it is natural to require graphs to have no loops, when we construct
a sum graph from an integer set, it seems more natural to allow loops (i.e. for
every not necessarily distinct vertices u, v ∈ V (G) we have uv ∈ E(G) if and
only if there exists w ∈ V (G) such that ℓ(u)+ ℓ(v) = ℓ(w)). We call these graphs
sum graphs with loops. When we say sum graphs without loops we refer to the
previous definition, where the vertices are required to be distinct. We show the
following:

Theorem 1. There exists an infinite family of sum graphs with loops which
admit no minimal labeling.

Another relaxation of the original problem (without loops) is to allow the
integer setM to be a multiset. This of course causes the labeling function to cease
being injective, thus we call such graphs non-injective sum graphs. Nevertheless,
in this approach we may consider graphs without loops and obtain the following
similar result:

Theorem 2. There exists an infinite family of non-injective sum graphs (with-
out loops) which admit no minimal labeling.

1.1 Preliminaries

Let G be a sum graph with some labeling ℓ. We call set M = {ℓ(v) : v ∈ V (G)}
label-set of G.

For a finite multiset of natural numbers S ⊂ N, let GS be the graph with
elements of S being its vertices and for every u, v ∈ S let there be an edge
uv ∈ E(GS) if and only if u + v ∈ S. Depending on context, we sometimes
allow GS to have loops. We say that set S induces a graph GS . Let f denote
the natural bijection of vertices of GS and integers in S. For any integer i ∈ S
we denote ψ(i) the subset of V (GS) such that a vertex v ∈ ψ(i) if and only if
f(v) = i. We say that an integer i induces a vertex v if v ∈ ψ(i).

We say that two vertices u, v of a graph G without loops are equivalent if it
holds that N(u)\{v} = N(v)\{u}.

Lemma 1. Let G be a graph with labeling ℓ and let u, v be two of its vertices.
If ℓ(u) = ℓ(v), then u and v are equivalent.

Proof. Suppose ℓ(u) = ℓ(v). Consider any w ∈ V (G) other than u and v. The
edge-numbers of wv and wu are the same, so either both edges are present or
none of them is. Since we do not consider loops, the only remaining edge to
consider is uv. If uv /∈ E(G), then clearly N(u) = N(v). If uv ∈ E(G), then
all neighbors of v are also neighbors of u except u itself and vice versa. In both
cases, u and v are equivalent.



To get an analogous definition for a graph with loops one would not ex-
clude the vertices v and u from the neighborhoods. This rather subtle difference
actually makes dealing with sum graphs with loops much easier.

We define an operation that removes loops from sum graphs. Consider a sum
graph G with loops. Let us take one by one each vertex v with a loop and choose
any integer k ≥ 2 (independently for each vertex). We replace v with a clique
Kk and connect all neighbors of v to all vertices from Kk. We denote set of all
possible results of this operation by C(G), and denote Ck(G) the unique result
where we fix all values k from the construction to a given fixed value. Let G be
induced by a multisetM , we may equivalently define C(G) as all graphs induced
by all possible multisets obtained from the set M via raising the multiplicity of
membership of any i ∈M such that 2i ∈M .

2 Sum Graphs with Loops

This section serves as an introduction to the topic of this paper. We show that
there is a sum graph with loops that admits no minimal sum labeling. Though
this is weaker result than Theorem 1, we provide a direct proof without usage
of complex tools. The full proof of Theorem 1 is given later as a consequence of
Theorem 2.

For a proof, we use the graph induced by the set {2, 3, 4, 6, 7}. This specific
graph was chosen based on a result of a computer experiment as the smallest
graph induced by an arithmetic sequence with difference 1 starting from 2 with
one element missing such that no minimal labeling was found. The proof goes
through several cases and is given in the Appendix.

Theorem 3. There exists a sum graph with loops that admits no minimal la-
beling.

2 43 6 7

Fig. 1. The sum graph induced by the set {2, 3, 4, 6, 7}.

Although Theorem 3 does not require the labeling function to be injective,
the theorem holds also under the constraint of injectivity. The labeling used to
induce the graph is certainly injective, and the theorem shows that there exists
no minimal labeling; thus, in particular no injective minimal labeling.

It is easy to observe that sets {1, 2, ..., k} induce graphs with the maximum
number of edges out of all sum graphs with loops on the same number of vertices.
In fact, it can be shown that any graph with the same number of vertices and
edges is necessarily isomorphic to this graph. Based on this observation, it seems



reasonable to assume that the set {2, 3, ..., k − 1, k} might induce a graph with
specific structure and possibly exclude all labelings with 1 as 1 was removed
from the inducing set. This idea does not hold, as the same graph is induced for
example by the set {1, 2, ..., k, 3k}.

However, the situation seems to change dramatically once we remove one
more value. Let us call gap-graphs of size k all graphs induced by the set obtained
from {2, ..., k} by removing one element we call a gap. Hence, a gap-graph of
size k has k − 2 vertices. While for small values of k some gap-graphs have a
minimal labeling, we conjecture that for k ≥ 10 none of the gap-graphs of size
k with gap i such that 3 < i < k has a minimal labeling. While we do not
prove this conjecture, it serves as a basic inspiration for our main result and as
a consequence of our main result, we prove Theorem 1 by providing a partial
proof of the conjecture for sufficiently large n and a specific choice of gap.

3 Non-injective Sum Graphs without Loops

In this section, we construct graphs with (non-injective) sum labelings such that
they do not admit minimal labelings.

Based on the result from the previous section and the conjecture about gap-
graphs, it is a natural question whether we can modify the gap-graph idea to re-
move all loops and keep the desired properties that may prevent existence of min-
imal labelings. Let us consider the gap-graph G induced by the set {2, 3, 4, 6, 7}
from Theorem 1, and its loopless modification H = C2(G). The sum graph H is
induced by a multiset {2, 2, 3, 3, 4, 6, 7} by definition. Unfortunatelly a graph iso-
morphic to H is induced by a multiset {1, 5, 2, 2, 4, 6, 9} (with the same ordering
of vertices). This numbering can be naturally extended to a (non-injective) label-
ing of any graph from C(G). While this gives us a negative result, we show that
for large enough gap-graphs and at least some choice of gap, the construction C
does in fact guarantee all produced graphs to admit no minimal labeling.

We first develop some tools applicable (up to minor adjustments) to all flavors
of sum graphs (injective, non-injective, with or without loops). Namely, that
labels of each sum labeling of a sum graph can be described as a set of arithmetic
sequences. We show how several simultaneous description of this form limit each
other and in doing so reflect some structural aspects of underlying sum graphs
directly into their label-sets.

The graphs we work with are based on arithmetic sequence of integers.
We define graph An as the unique sum graph with loops induced by the set
{2, 3, ..., n− 1, n, n+2}, in other words by a set of all integers from 2 up to n+2
without the second-last value n+ 1. Note that graph An has exactly n vertices.

3.1 Sequence Description

Let us denote an arithmetic sequence (a, a+ d, a+2d, ..., a+ jd) with difference
d as (id + a)i where we always consider i going from 0 up to some unspecified
integer. We also generally refer to sequences with difference d as d-sequences.



Let us fix a vertex v and call it generator. The set of terminals associated
with this generator is defined as V (G)\N(v). Note that v has exactly n−deg(v)
terminals. It is an important observation is that unless v has a loop, it is its own
terminal. We say that a terminal w is a proper terminal of v if w 6= v, and is
improper terminal otherwise.

Lemma 2. Let G be a sum graph without loops, let ℓ be a fixed labeling of G,
let v be a fixed generator and let w be a proper terminal of v. Then there is no
vertex in G labeled ℓ(v) + ℓ(w).

Proof. For contradiction, let a vertex u ∈ V (G) be labeled ℓ(v)+ ℓ(w). Then the
edge-number of the edge vw is guaranteed by u, thus vw ∈ E(G). This however
makes w a neighbor of v and we reach a contradiction.

The previous lemma does not hold for improper terminal v, as the edge used
in the proof would be a loop and thus would not be an edge of G even though it
is technically guaranteed. In case of sum graphs with loops this issue does not
arise.

Lemma 3. Let G be a sum graph with fixed labeling ℓ, let M denote the label-
set of G, let v be a fixed generator and let u be a non-terminal of v. Then there
exists a sequence S = (iℓ(v) + ℓ(u))i ⊆M such that its last element is a label of
a proper terminal of v.

Proof. Since u is a non-terminal of v, there exists an edge uv with edge-number
ℓ(v)+ℓ(u). Clearly, this edge is guaranteed by some vertex u1 labeled ℓ(v)+ℓ(u).
The vertex u1 cannot be v as ℓ(u1) > ℓ(v). If u1 is a proper terminal, then
S = (ℓ(u), ℓ(u) + ℓ(v)) and we are done. Otherwise, u1 is a non-terminal and
we iterate the previous argument, building a sequence S′ from u1 and setting
S = (ℓ(u)).S′ where the dot operation denotes sequence concatenation.

Lemma 4. Let G be a sum graph, and let v be a fixed generator with k terminals
and label ℓ(v) = g. Then for every labeling ℓ and associated label-set M , the
following holds:

1. The label-set M can be described as a union of at most k distinct arithmetic
sequences with difference g.

2. The last element of each of the sequences is a label of a terminal.
3. Each label of a proper terminal is the last element of one of the sequences.
4. If v has j non-equivalent terminals and the description ofM has j sequences,

then one of the sequences is a singleton sequence (g).

Proof. Let u be a non-terminal of v such that it has the lowest label of all
non-neighbors. From Lemma 3 we have a sequence S1 such that it covers some
elements ofM and ends in a terminal. IfM\S contains non-terminals, we iterate
by using the Lemma 3 with the lowest remaining non-terminal label. If M\S
contains no further non-terminals and is non-empty, then we create a singleton
sequence (ℓ(w)) for each proper terminal w. Clearly the only element of M



that can remain not-covered is ℓ(v), as v is improper terminal. In such case we
create one more singleton sequence (ℓ(v)). Suppose S1 = (ig + a)i and S2 =
(ig+ b)i, for some integers a, b, are two constructed non-singleton sequences (S1

was constructed first). Since both S1 and S2 have the same difference, a /∈ S2

and a < b by the choice of a and b, both sequences are distinct. Clearly, no
singleton sequence shares an element with any other sequence. Since there are
exactly k terminals, each sequence ends with a terminal label and all sequences
are distinct, we get that there are at most k sequences in total. Naturally, M
is in the union of all of the constructed sequences and the sequences contain no
extra elements. This proves points 1 and 2.

From Lemma 2, we have that if a sequence contains the label of a proper
terminal, the hypothetical next element of the sequence is not a label of any
vertex. Thus labels of proper terminals can only be the last elements in sequences,
which proves the point 3.

Let v have j non-equivalent terminals. From Lemma 1 we have that there are
j distinct labels of terminals in M . If there are j sequences in the description of
M via generator v, we deduce from the previous points that each of the distinct
labels is the last element of a distinct sequence. In particular, the label g must
be the last in a sequence as v is its own (improper) terminal. Since all labels
are positive and the difference of each sequence is g, the label g must form a
singleton sequence (g).

Note that some labels generated by a sequence may be labels of several
vertices, if these are equivalent.

Let v be a vertex of a fixed graph G. Let v-cover denote the set of sequences
covering the label-set M of G as described in Lemma 4. Each such set is associ-
ated with one difference value. If α is this difference value (i.e. α = ℓ(v)), then
we also reference to such a cover as α-cover.

3.2 Cover Merging

While the results of the previous section do not give particularly strong results
when all the degrees are low (in respect to the number of vertices), it does give
strong limits on potential labelings once we have one or more vertices with almost
full degree. In this section, we expand our tools to impose additional constraints
when applying the previous results to multiple vertices simultaneously.

Let G be a graph with fixed proper labeling and let M be its label-set. Then
each vertex gi induces a cover Ci of M , as described in Lemma 4. Each such
cover Ci is associated with a difference di (di = ℓ(gi)) and a number of terminals
of gi (including gi) denoted ti.

We say that two covers Ci and Cj are mergeable if the number of non-
equivalent vertices in G (and thus also the size of any label-set of G) is at least
2 · (ti− 1) · (tj − 1)+3. A proof of the following lemma is given in the Appendix.

Lemma 5. Let Ci and Cj be mergeable covers, then there exists a pair of se-
quences Si, Sj from covers Ci resp. Cj such that they share at least three ele-
ments.



Lemma 6. For any fixed mergeable covers C1, C2 there exist positive integers
j, k, such that GCD(j, k) = 1, j ≤ t1−1, k ≤ t2−1 and the equation k ·d1 = j ·d2
holds.

Proof. Let us fix two mergeable covers C1 and C2. Let S1, S2 denote sequences
such that S1 ∈ C1, S2 ∈ C2 and |S1 ∩ S2| ≥ 3. Let x0, x1, x2 be the three
smallest elements of S1 ∩ S2 so that x0 < x1 < x2. Since all of them come from
both sequences with no holes, we may denote the distance between elements
m = x1 − x0 = x2 − x1.

As both x1, x2 belong to both sequences, it must hold that m = k ·d1 = j ·d2
for some positive integers j, k such that x2 is k-th element following x1 in S1

and also j-th element following x1 in S2.

Suppose d1 = d2, then k = j = 1 ≤ t1−1, t2−1 and the lemma holds trivially.
We may assume d1 6= d2. From definition of a single sequence, S1 contains all
k possible elements from interval (x1, x2]. Similarly, S2 contains all j elements
from (x1, x2]. If GCD(k, j) > 1 then there is some m0 < m such that x1 +m0 is
an element of both sequences which would contradict the minimality of x1, x2.
More generally, if any two elements x3, x4 of S1 such that x1 < x3 < x4 ≤ x2
belonged to the same sequence S0 ∈ C2, then x1+(x4−x3) ∈ S1∩S2 which would
contradict the minimality of x2. Analogously, we would reach a contradiction if
any such x3, x4 belonged to any S′

0 ∈ C1. Thus the k elements of S1 from the
interval (x1, x2] fall into distinct sequences from C2 and we have k ≤ t2 as t2
limits the number of sequences in C2. Analogously we get j ≤ t1.

From Lemma 4, we know that if the k elements of S1 fall into t1 distinct
sequences from C2, then one of them has to be the singleton sequence (d2). Recall
that we chose x1, x2 from S1 ∩S2 so that they are preceded by some element x0
from S1 ∩ S2. This means that x1 > d2 and thus the singleton sequences from
C2 cannot, in fact, play any role. Thus, the limit on the number of sequences
involved can be further reduced to k ≤ t2 − 1. Symmetrically, we obtain that
j ≤ t1 − 1.

Lemma 7. For any fixed mergeable covers C1, C2 of a graph G without loops,
let d1 = 1. Then d2 ≤ t2 − 1.

Proof. Consider the equation from Lemma 6. If d1 = 1 then k = j · d2. From the
same lemma we also know that GCD(j, k) = 1, so necessarily j = 1 and k = d2.
Finally, we also have inequality k ≤ t2 − 1 which together give d2 ≤ t2 − 1.

3.3 Vertices ψ(2) and ψ(3) in C(An)

In this section, we explore the exact structure of terminals of graphs from C(An).
Based on a number of simple properties we show that given large enough n, no
graph from C(An) admits label 1 on any vertex from ψ(2) and ψ(3).

For a vertex v of a fixed labeling, let τ(v) denote the set of proper terminals of
v. Lemma 8 summarizes some basic observations. For its proof see the Appendix.



Lemma 8. For any graph G ∈ C(An) such that n ≥ 39, let us fix arbitrary
vertices vi such that vi ∈ ψ(i) for values of i from 2 to 6. Then for any integers
j, k such that 2 ≤ j, 2 ≤ k ≤ 6 all of the following holds:

1. Vertex vk has exactly k proper terminals (and k + 1 terminals in total), all
of which have distinct labels.

2. If j ≤ 3, then the vertices vj and vk are mergeable.
3. If labeling is minimal and either ℓ(v2) or ℓ(v3) equals to 1, then ℓ(vk) ≤ k.
4. There is exactly one proper terminal in the intersection of all τ(vk), and this

terminal has the highest label in the graph.
5. If j is not the highest label, then either j /∈ τ(v2) or j /∈ τ(v3).
6. τ(vk) ⊂ τ(vj) whenever j ≥ k + 2.
7. None of the chosen vertices is a proper terminal of any of the other chosen

vertices and thus ℓ(vj) + ℓ(vk) ∈M for any j 6= k.

For convenience, we extend the meaning of terminal. We characterize possible
labelings of graphs in terms of presence or absence of values in respect to the
label-set of the graph. For a vertex v we say an integer value k is a (proper)
terminal for v as a shortcut for the fact that there exists a vertex w, which is
a (proper) terminal for v and ℓ(w) = k. We only deal with terminals of vertices
from ψ(2), ..., ψ(6) whose all proper terminals are non-equivalent and thus have
distinct labels. Hence the integer terminals and the vertex terminals are in one-
to-one correspondence for these vertices.

Let G be a sum graph with a minimal labeling ℓ. LetM be the label-set of G
in respect to ℓ and let v ∈ V (G) be such that ℓ(v) = 1. According to Lemma 4,
the vertex v describesM as a union of several distinct integer intervals separated
by some values that are not elements of M .

We say that an interval is long if its first six labels and its last six labels
do not intersect. In particular, its last six labels are strictly bigger than 6. The
property of the long intervals we want to use is that for any v such that v ∈ ψ(i)
for i ≤ 6, any terminal among the last six elements of a long interval is always
a proper terminal of v. Proofs of Lemma 9 and Lemma 10 are very similar, thus
the proof of Lemma 9 is given in the Appendix.

Lemma 9. For any graph G ∈ C(An) such that n ≥ 39, there is no labeling
such that ℓ(v) = 1 for any v ∈ ψ(2).

Lemma 10. For any graph G ∈ C(An) such that n ≥ 39, there is no labeling
such that ℓ(v) = 1 for any v ∈ ψ(3).

Proof. Let us fix arbitrary vertices vi such that vi ∈ ψ(i) for values of i from
2 to 6 and let us denote their labels as α := ℓ(v2), β := ℓ(v3), γ := ℓ(v4), δ :=
ℓ(v5), ǫ := ℓ(v6). For contradiction let β = 1. We use the observations from the
previous Lemma 8 and Lemma 7 to reach contradiction.

As v3 has four terminals, M composes of at most three non-trivial intervals
with possible trivial interval {1}, let X,Y, Z denote the intervals other than {1}
so that X < Y < Z. Let k be the last label of X or Y .



As v2 has only two proper terminals, α ≤ 2 and thus α = 2. Since k is a
terminal for v3, it is not a terminal for v2. Together, we get that k+ 2 is a label
and so both gaps between the intervals X,Y, Z have size exactly 1.

Let us focus on the interval X and let k from now on denote its last label.
From k being a terminal for v3 we have that k is also a terminal for v5 and v6.
Thus there are at least three distinct non-labels strictly between k and k + 7,
and so the third closest non-label following k is at most k + 6. As there are at
most two of them in the gaps separating the three intervals, we have that the
sum of lengths of Y and Z is at most 3 (together with 3 non-labels summing up
to 6). From this we get that X is long.

Since α = 2, there is one terminal for v2 in X . If Y or Z has length two, then
the first element is also a terminal for v2. Together with the highest label in M
we would reach a contradiction with v2 having only two proper terminals.

We have that Y = {k+ 2} and Z = {k+ 4}. The label k is a terminal for v3
and label k − 1 is a terminal for v2. Both are also terminals for v5. Therefore,
we need to set δ so that both k + δ and k − 1 + δ fall into {k + 1, k + 3, k + 5}.
But there is no such value and we reach a contradiction.

3.4 Smallest Labels of C(An)

In this section we give limitations on ordering of labels in general case. We apply
this together with our previously acquired knowledge to further limit the position
of label 1 in graphs from C(An).

Lemma 11. Let G be a sum graph, let v1, v2 be equivalent vertices of G with k
terminals. Let ℓ be any labeling of G and M the label-set associated with ℓ. Then
ℓ(v1) is one of the k smallest labels in M . Furthermore, if ℓ(v1) = ℓ(v2) then
ℓ(v1) is one of the k − 1 smallest labels in M .

Proof. Consider v1 and let us count the number of labels fromM not appearing
on any neighbor of v1. The vertex v1 has exactly k terminals including itself.
Therefore there are at least |M | − k labels appearing on the neighbors of v1
and so the edges incident with v1 carry at least |M | − k distinct edge-numbers
expressed as a sum of ℓ(v1) and a positive label of one of the neighbors. Together
we get that M contains at least |M | − k values strictly greater than ℓ(v1).

Assume that ℓ(v1) = ℓ(v2). We can improve the previous argument by the
fact that the label of v1 is present on a neighbor of v1 (namely v2). This improves
the bound on labels in M strictly greater than ℓ(v1) to at least |M | − (k − 1).

Consider graph An for n ≥ 39 with some labeling ℓ, let α denote a label of
some vertex from ψ(2) and let β denote a label of some vertex from ψ(3). Recall
Lemma 8 giving explicit amounts of terminals of vertices from ψ(2) and ψ(3).
As a corollary of the previous Lemma 11 we have that α is among the 3 smallest
labels from M and β is among the 4 smallest labels from M . And as we already
know from Lemma 9 and Lemma 10, α, β 6= 1.



Recall Lemma 6, which gives us limitations on mutual relations in between
labels of mergeable vertices. As we know that ψ(2) are mergeable with ψ(3), we
know that one of the following must hold: α = 2β, 2α = β, 3α = β or 3α = 2β.

We use these facts to show that Lemma 11 can be applied to vertices from
ψ(2) and ψ(3) in its stronger form, thus fully determining the smallest three
labels in minimal labelings of graphs from C(An).

Lemma 12. In any minimal labeling ℓ of a graph G ∈ C(An) such that n ≥ 39,
ℓ(v1) = ℓ(v2) for any v1, v2 ∈ ψ(2).

Proof. For contradiction, let v1, v2 ∈ ψ(2) have distinct labels α1, α2. Without
loss of generality, α1 < α2. We use the observations from Lemma 8. As v1 is
mergeable with v2 and each has three terminals, Lemma 6 implies that neces-
sarily 2α1 = α2.

Let β denote a label of any vertex from ψ(3). From mergeability, both values
α1, α2 relate to β, from Lemma 6. The only values for any of the two alphas are
2β, 12β,

1
3β,

2
3β. Since 2α1 = α2, the only two suitable values are α1 = 1

3β and
thus α2 = 2

3β.
Consider the α2-cover of the label-set M . Since both α1 and α2 are among

the three smallest elements ofM , according to Lemma 11, we know that the two
proper α2-sequences start with elements 1 and α1, as these are smaller than α2.
The value α2 is not an element of either of the two sequences, thus {α2} forms
an improper sequence and consequently 2α2 is not a label. From the last point of
Lemma 8, the value α1+β = 4α1 = 2α2 is a label and we reach a contradiction.

Corollary 1. For any minimal labeling ℓ of An, ℓ(v) < ℓ(w) for any v ∈ ψ(2)
and w ∈ ψ(3).

Proof. The previous Lemma 12 guarantees the additional condition of Lemma 11
on labels of vertices from ψ(2), thus ℓ(v) is at most second smallest label in An.
As 1 is also a label, ℓ(v) is exactly the second smallest and thus 1 6= ℓ(w) > ℓ(v).

Lemma 13. In any minimal labeling ℓ of a graph G ∈ C(An) such that n ≥ 39,
ℓ(v1) = ℓ(v2) for any v1, v2 ∈ ψ(3).

The proof of Lemma 13 is analogous to the proof of Lemma 12 and is given in
the Appendix. We are now ready to prove the last limitation on the placement of
label 1 in minimal labelings of graphs from C(An) in order to exclude all possible
minimal labelings.

Lemma 14. In any labeling ℓ of a graph G ∈ C(An) such that n ≥ 39, if v ∈ ψ(i)
and ℓ(v) = 1, then i ≤ 3.

Proof. Let α be a label of a vertex v ∈ ψ(2) and let β be a label of a vertex
w ∈ ψ(3). From Lemma 12 and Lemma 13, we know that these values are
uniquely determined by ℓ. For contradiction, let α, β > 1. LetM denote the label-
set of G. From the previous Lemma 12 and Lemma 13, we have the additional
conditions to apply Lemma 11 to v and w in its stronger form. Together we have



that α < β (corollary of Lemma 12) and labels 1, α, β are the three smallest
labels in M .

Let x be a vertex such that ℓ(x) = 1. Suppose x is not a terminal for v. Then
α + 1 is a label. Since β is the first label greater than α, we have β = α + 1.
From the fact that α > 1 and β is not a multiple of α and vice versa, the
mergeability of v and w leaves only one possible relation, 3α = 2β. We conclude
that α = 2 and β = 3. Consider any β-sequence, any of its consecutive elements
fall into distinct α-sequences. As there exists at least one β-sequence with at
least 8 elements, the two proper α-sequences must overlap to satisfy the last 4
elements, none of which can fall into the improper α-sequence. Let k be a label of
a proper terminal of v. As x is induced by a number of size at least 4, any proper
terminal label of v is also a terminal label of x. Thus, k + 1 is not a label. This
means that the other α-sequence not terminating in k cannot extend over k+ 1
and thus, either ends before k or begins after k+1. Applying the same argument
to the other sequence, we get that the two α-sequences must not overlap as none
can extend over the last element of the other. This is a contradiction and x must
be a proper terminal for v.

Since 1 is a proper terminal of v, the α-cover of M has only one non-trivial
sequence with the first element k (for some yet unknown integer k). Values β
and β+α are elements ofM with difference α, and thus are consecutive elements
of the only proper α-sequence. Since the only terminal shared between v and w
has the biggest label in M , x is not a terminal of w and thus β+1 is a label and
must belong to the proper α-sequence (as β > α). Together, we have that the
proper α-sequence contains elements β and β + 1; thus, the difference α must
equal to 1, which is a contradiction.

3.5 Results

Proof (of Theorem 2). Let G be any graph from C(An) where n ≥ 39 and let ℓ
be any labeling of G. For contradiction, let ℓ(v) = 1 for some vertex v. Clearly
v ∈ ψ(i) for some integer i, 1 < i ≤ n + 2. As shown by Lemma 9 and Lemma
10, i > 3. The Lemma 14, based on the previously mentioned lemmas, shows the
complementary fact that i ≤ 3. This is of course a contradiction.

The constant 39 is an artifact of used methods and may in fact be much
smaller. While minimal labeling exists for graphs from C(A6), based on a com-
puter search we conjecture that there is in fact no minimal labeling for any graph
from C(An) for any n ≥ 7.

Proof (of Theorem 1). Let G be a graph An where n ≥ 39. For contradiction let
G admit a minimal labeling. We replace each vertex of G with loop by a clique,
obtaining a graph H ∈ C(G), and assign all the new vertices from each new
clique the label of the original vertex this clique replaces. We have a graph H
with sum labeling using the same labels as the labeling of G. Hence if G admits
a minimal sum labeling then H must also admit a minimal sum labeling, which
is a contradiction with Theorem 2.



4 Conclusion

We have shown that the set {2, 3, .., n− 1, n, n+ 2} for n ≥ 39 induces a family
of sum graphs with loops which admit no minimal labeling. Furthermore the
loops can be replaced by a cliques of sizes at least two and we obtain an infinite
family of non-injective sum graphs (without loops) which also admit no minimal
labeling.

The constant 39 is an artefact of used methods and it might be much smaller.
While minimal labeling exists for graphs from C(A6), based on a computer
search, we put forward the following conjecture:

Conjecture 1. Let G ∈ C(An) such that n ≥ 7, then G allows no minimal label-
ing.

Further computer experiments indicate that it is not necessary to restrict to
the omission of the second-last element from the sequence {2, 3, .., n− 1, n, n+
1, n+ 2}. Thus, we put forward the following conjecture regarding sum graphs
with loops:

Conjecture 2. Let G be a gap-graph of size k, where k ≥ 10, with gap i such
that 3 < i < k, then G admits no minimal labeling.
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3. Gould, R.J., Rödl, V.: Bounds on the number of isolated vertices in sum graphs,

Graph Theory. Graph Theory, Combinatorics and Applications 1 (1991): 553-562.
4. Harary, F.: Sum graphs and difference graphs. Congr. Numer 72 (1990): 101-108.
5. Miller, M., Ryan J.F., Smyth, W.F.: The sum number of a disjoint union of graphs.

(2003).
6. Miller, M., Ryan, J.F., Smyth, W.F.: The sum number of the cocktail party graph.

Bulletin of the Institute of Combinatorics and its Applications 22 (1998): 79-90.
7. Nagamochi, H., Miller, M.: Bounds on the number of isolates in sum graph labeling.

Discrete Mathematics 240.1-3 (2001): 175-185.
8. Pyatkin, A.V.: New formula for the sum number for the complete bipartite graphs,

Discrete Math. 239 (2001) 155-160



Appendix

Proof (of Theorem 3). Consider a sum graph induced by the setM = {2, 3, 4, 6, 7}.
For contradiction, assume there is a labeling {a, b, c, d, e} using label 1. Let vi
denote the unique vertex from ψ(i) for every i ∈ M . As vertices v2, v3, v4 are
not equivalent, the labels a, b, c need to be distinct. If we take the greatest of the
three labels, it belongs to a vertex incident with two edges with distinct edge-
numbers that need to be guaranteed by labels d, e. We conclude that a, b, c < d, e.
Therefore, the only values that can be equal to 1 are a, b and c. Without loss of
generality we can also assume a < b and d < e. Let us go through the remaining
cases:

1. a = 1: since there is a loop incident with the vertex v2, there needs to be a
vertex labeled 2 and from b, c < d, e we see it has to be either b or c.

(a) b = 2: as there is no edge v2v3, no label can be equal to 3. Since v2 has
a loop with edge-number 4, we have c = 4. Because of edges v2v4 and
v3v4 we have d = 5 and e = 6. This is a contradiction because there is
no edge v2v6.

(b) c = 2: since v2v4 is an edge and b < d, e, it holds b = 3. From the
edge v3v4 and the loop on v3, we conclude d = 5 and e = 6, which is a
contradiction because there is no edge v2v6.

2. c = 1: from the presence of the edge v2v4 and b < d, e we have b = a + 1.
From the edge v3v4 and loops on v2 and v3 we have three edge-numbers
2a, 2a+2 and a+2 that are all distinct from labels a, b and c because a > 1.
Two of these edge-numbers need to be equal, as there are only two vertices
to guarantee all three. The only option is 2a = a+ 2, which gives us a = 2.
As there is the edge v2v4 and b < d, e, it follows b = 3 and consequently
d = 4 and e = 6. This is a contradiction because there is no edge between
v2v6.

Proof (of Lemma 5). Suppose that the number of non-equivalent vertices of G
is at least 2titj + 1. As there are at most ti sequences in Ci and at most tj
sequences in Cj , there are at most ti · tj possible intersections. Since all labels
are covered by both Ci and Cj , each label falls to one of the intersections. The
claim holds via Pigeonhole principle.

Notice that if Ci contains the maximum number of distinct sequences, from
Lemma 4 we know that one of the sequences is a singleton sequence (di). Clearly
this sequence can have at most one non-zero intersection with any sequence from
Cj , and it can be of size at most one. From a symmetrical argument for Cj we
get that there are actually at most (ti − 1) · (tj − 1) possible intersections that
can contain more than one element and two extra intersections containing at
most one element each. Thus, the lemma holds via Pigeonhole principle.

Proof (of Lemma 8). The first point is an observation based on the structure of
An resp. C(An). The claim holds for An. As all the chosen vertices are induced by
small values, the involved proper terminals are loopless pair-wise non-equivalent



vertices (induced by high values) in An, so the number of proper terminals is
the same in G and all the proper terminals are non-equivalent in C(An).

To prove the second point, we first note that all vertices in An are non-
equivalent. Thus, the same holds for any two vertices of G induced by distinct
integer values. From this we have that there are at least n non-equivalent vertices
in G. From the definition of mergeability, it suffices to show that v3 and v6 are
mergeable, as the condition for these vertices is the most restrictive. Applying
the first point, we get that the condition explicitly states n ≥ 2 · 3 · 6 + 3 = 39,
which is satisfied.

The third point is a direct consequence of the first two points and Lemma 7.
The fact that the vertex with the highest label is a terminal for every vertex

follows as the highest label is necessarily the last element of a sequence in any
cover of the label-set. On the other hand, there can be at most one universally
shared element, as the proper terminals of v2 are induced by values n − 1 and
n + 2, while the proper terminals of v3 are induced by the values n − 2, n and
n+2. None of these values induces multiple vertices in An, which together with
the previous observation proves points 4 and 5.

To prove the sixth point, let us consider τ(vk) in An. Whenever vertex w
induced by an integer i is a terminal for vk then either i+k = n+1 or i+k > n+2.
In both cases it also holds that i+ (k + 2) > n+ 2 and thus w is a terminal for
vk+2.

The final point holds as all vertices induced by values 2 to 6 are connected
in An and thus also in G.

Proof (of Lemma 9). Let us fix arbitrary vertices vi such that vi ∈ ψ(i) for values
of i from 2 to 6 and let us denote their labels as α := ℓ(v2), β := ℓ(v3), γ :=
ℓ(v4), δ := ℓ(v5), ǫ := ℓ(v6). For contradiction let α = 1. We use the observation
from the previous Lemma 8 and Lemma 7 to reach contradiction.

As v2 has three terminals, M composes of at most two non-trivial intervals
with possible trivial interval {1}, let X,Y denote the intervals other than {1}
so that X < Y and let k be the last label of X .

Label k is a terminal for v2, thus it is also a terminal for v4, v5 and v6. On
the other hand, k is not a terminal for v3 as its not the highest label in M .

Consider label of v3 (denoted β). As k is a not terminal for v3, the element
k + β ≤ k + 3 is an element of Y , so there are at most two elements in the gap
between the intervals X and Y . Furthermore, if the gap contains two elements,
then β must be exactly 3.

Consider labels of v4 and v5 (denoted γ resp. δ). As k is a terminal for both
of them (and v2), we have that k+γ ≤ k+4, k+ δ ≤ k+5 and k+α = k+1 are
three distinct non-labels. As there are at most two of them in between X and
Y , we get that the sum of the lengts of the gap and the interval Y is at most 3.
Thus Y contains at most two elements and X is long.

Consider the gap to have size 2. We have β = 3 and since the first interval is
long, we have that v3 has two terminals i, j such that i+β, j+β fall into the gap.
As v3 has three proper terminals, Y has at most one element; as otherwise, it
would hold two additional terminals for v3. We know that all terminals of v2 and



v3 are also terminals of v5. Since β = 3, we have that k, k−1, k−2 are terminals
of v5. Thus, δ is a value such that none of the values k + δ, k − 1 + δ, k − 2 + δ
are equal to k or k + 3. As δ ≤ 5, there is no possible value of δ and we reach a
contradiction. This shows that the size of the gap is 1.

Consider the interval Y to have size 1. The interval Y must consist of a single
element k+2. As k is not a terminal for v3, necessarily k+β is the only possible
label k + 2 and thus β = 2. Notice that the only proper terminals of v3 are now
k− 1 and k+1. However v3 has three proper terminals, which is a contradiction
and we conclude that |Y | = 2.

Since k is a terminal for v2, it is also a terminal for v4, thus k + γ is a non-
label and k + 2 ≤ k + γ ≤ k + 4. There is only one such non-label, k + 4 thus
γ = 4. We have that (k + 1) − γ = k − 3 is a terminal of v4 and thus also a
terminal of v6. The label k− 3+ ǫ is a non-label. Since ǫ 6= γ, the lowest possible
non-label is k + 4, meaning that ǫ must be at least 7, however ǫ ≤ 6 and we
reach a contradiction with the existence of the assumed labeling ℓ.

Proof (of Lemma 13). We proceed analogously as in the proof of Lemma 12.
For contradiction, let v1, v2 ∈ ψ(3) have distinct labels β1, β2. Without loss of
generality, β1 < β2. As v1 is mergeable with v2 and each has four terminals,
Lemma 6 implies that one of the equations 2β1 = β2; 3β1 = β2; 3β1 = 2β2 holds.

Let α denote a label of any vertex from ψ(2). From mergeability, both values
β1, β2 relate to α, according to Lemma 6. Since from the Corollary 1 we have α <
β1, β2, the only possible values of β1, β2 are 2α, 3α, 32α. The only two solutions
are β1 = 3

2α;β2 = 3α and β1 = 2α;β = 3α.
Suppose the former solution holds. All values 1,α,β1 are strictly smaller than

β2 and since β2 belongs to the four smallest labels, there are no further elements
smaller than β2. From the last point of Lemma 8, we have that α+β1 is a label.
From the relations, we have that β1 < α+β1 < 3α = β2. Thus, α+β1 is another
distinct element strictly smaller than β2 and we reach a contradiction.

Thus, the latter solution must apply. Consider β2-cover, it must consist of
three proper sequences with first elements 1, α and β1. As β1 = 2α, the only
labels that are not multiples of α must be of form 1 + iβ2 = 1 + 3iα for non-
negative integer values i. Consider the α-cover, it must consist of two proper
sequences with first elements 1 and α, as 2α = β1 is a label. Thus, if there is
more than one label that is not multiple of α, then there is label 1+α. Together
with the previous, 1 + α is not a label and thus, there is at most one label that
is not a multiple of α, label 1. This means that 1 is a terminal for vertex from
ψ(2) and simultaneously for a v2. This is a contradiction as ψ(2) and ψ(3) can
only share the highest label.
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