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Abstract

We analyze bidding behavior in large discriminatory price auctions where the number
of objects is a non-trivial proportion of the number of bidders. Bidders observe private
signals that are aÆliated with the common value. We show that the average price in the
auction is biased downward from the expected value of the objects, even in the compet-
itive limit. In particular, we show that conditional on relatively low signals, bidders bid
the expected value of the objects conditional on their information and winning; while bids
at higher signals 
atten out and are below the expected value conditional on winning.

JEL classi�cation numbers: D44, C72, D41, G14

Key words: Auction, Competition, Discriminatory Auction, Asymptotic EÆciency, EÆ-
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On the Informational IneÆciency of Discriminatory

Price Auctions �

Matthew O. Jackson Ilan Kremer

1 Introduction

EÆcient Market Hypotheses posit that markets aggregate the information held by dif-
ferent agents in an economy and that prices come to re
ect the expectation of the value
of assets based on this information. This informational role of prices is important for a
variety of reasons including the central one that it aids in eÆcient investment decisions.
As such, it is important that we understand the conditions under which eÆcient market
hypotheses hold.

In this paper we examine price behavior in discriminatory auctions with many agents
and many goods, with a focus on the relationship between equilibrium prices and the true
value of the goods. There are at least two reasons for being interested in auctions when
examining the issues mentioned above. The �rst is that auctions are widely used in the
real world. The second is that much of the strategic reasoning that underlies the analysis
of auctions is present even in markets that are not formally organized as auctions. In
terms of our attention to discriminatory auctions: while the existing literature focuses
on the uniform price auction; there are good reasons why we should also examine the
discriminatory auction. The discriminatory auction format is very widely used, including
many formally structured treasury auctions. Moreover, discriminatory auctions are a
good model of price discrimination in more loosely organized markets, as in many markets
there is no single clearing price and in a sense, \winning" agents pay their bids.

We examine a discriminatory auction in which many units are being sold to many
agents who each demand a single unit whose value is common across all bidders. We are
interested in the competitive limit and hence take the limit as we increase the number
of bidders. Our characterization of prices comes from understanding bidding behavior
and the expected gains that agents have as a function of their signals. We �nd that
bidders who are uncertain of whether they will win an object end up competing away
their surplus so that their conditional expected utility is zero. That is, agents whose
signals are below a certain threshold bid the expected value of the object conditional on

�We are grateful for �nancial support from the National Science Foundation under grant SES-9986190.



their signal and winning. However, there are also agents whose signals are high enough
that they are certain to get an object, and these agents extract surplus even in the
limit. For signals above this threshold, the bidding strategy 
attens out, as agents are
(nearly) certain that they will win an object, and so agents observing higher signals have
positive expected utilities. This leads to a distinct price pattern, prices deviate from
Rational Expectations Equilibrium or Walrasian prices (or uniform price auction prices)
in a particular way. When we integrate over all realizations, the average price is biased
downward from true value. When conditioning on low values we �nd that average price
tends to be too high and conversely when the value is high the average price tends to be
too low.

Before presenting our results, let us discuss the contribution of our work relative
to a few papers. The most closely related papers examine information aggregation in
common value auctions. Wilson (1977) and Milgrom (1979,1981) provided important
results characterizing when equilibrium prices come to re
ect the expected value of an
asset. They examined common-value auctions with a �xed number of units of the asset
for sale and a growing number of bidders, and identi�ed conditions under which prices
converge to the expected value of the asset as if the economy had the information of all
bidders. Their results might be interpreted as \bad news" for eÆcient market hypotheses
in the sense that the necessary and suÆcient condition on the structure of information
is a very strong one and unlikely to be met in most market settings of interest.

In an important recent paper, Pesendorfer and Swinkels (1997) (PS hereafter) showed
that the news is much better if one considers settings where the number of units of
the asset for sale grow in addition to the number of bidders. They showed that the
limiting price of a uniform price auction converges to the expected value of the asset as
if the economy had the information of all bidders under quite weak assumptions on the
information structure. As many markets of interest, such as Treasury auctions, have both
large quantities of the asset for sale as well as large numbers of bidders, this is \good
news" for market eÆciency. Apart from the auction format, the model we presents is
similar to PS.

As the results of Wilson (1977) and Milgrom (1979, 1981) hold for a wide variety
of auction formats,1 one might wonder whether the PS results do as well. We demon-
strate that, unfortunately, the price-eÆciency result of Pesendorfer and Swinkels (1997)
critically depends on using the uniform price auction format. Speci�cally, we show that
information aggregation fails in the context of one of (if not the) most prominent auction
format: namely the discriminatory price auction. The additional results that we provide
characterize exactly how the bidding strategies and average price in a discriminatory are
biased relative to the true value of an object; which, of course, is necessarily new as
previous papers have focused on cases where prices come re
ect true value.

1See Bali and Jackson (2002) and Jackson and Kremer (2003ab) for results on the equivalence of
auction formats with �xed numbers of objects for sale but large numbers of bidders.
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2 Model

We examine a framework that is similar to PS, but with the notable di�erence that we
examine discriminatory auctions rather than uniform auctions.

We examine a sequence of discriminatory auctions with an increasing number of
bidders. The sequence is indexed by n, the number of agents in the economy. A non-
random supply of kn identical indivisible goods is to be sold in economy n. The highest
kn bidders are each awarded a single unit and each pay his or her bid. The other bidders
pay nothing. Ties are broken by uniform randomization among the tied bidders.

We assume that:

(A1) The supply of goods is proportional to the number of bidders: kn
n
2 (0; 1) for all n

and kn
n
! 
 2 (0; 1).

Each agent values a single unit at the same (common) value v and puts no value on
further objects. This value is unknown to bidders and is distributed on [0; 1], as described
by a continuous density function f .

(A2) The density function f is continuous and positive on [0; 1].

Agents are risk neutral and agent i receives a payo� of v � bi if he or she receives an
object with a bid of bi and the value turns out to be v, and 0 otherwise.

Before bidding, an agent i 2 f1; : : : ; ng in economy n observes a private signal,
the realization of a random variable Si, that takes on values in [0; 1]. The Si's are
independently and identically distributed conditional on V . This conditional distribution
of Si given V is described by a conditional density function gSijV (sjv).

A standard aÆliation condition ensures the existence of increasing and symmetric
equilibria in both the discriminatory and uniform price auctions. Speci�cally, we follow
PS in assuming such an aÆliation condition in addition to some continuity and di�eren-
tiability conditions:

(A3) gSijV (sjv) is continuous in (s; v) and continuously di�erentiable in v for all s and
v.

The continuity of the conditional density function limits the potential information
that can be contained in any given signal, while the di�erentiability is for technical
convenience.

(A4) for every signal, s there exists a value v; so that gSijV (sjv) > 0.
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(A4) together with (A3) ensures that each signal has some non-trivial probability of
being observed, which is also important in putting an upper bound on the information
content of signals.

(A5) gSijV (sjv) satis�es the Strict Monotone Likelihood Ratio Property (henceforth,
SMLRP):

@

@v

gSijV (sjv)

gSijV (s0jv)
> 0;

for all si > s0i in [0,1] and all v 2 [0; 1], and this partial derivative is continuous.

Note that we change the standard weak inequality in the MLRP condition to be a
strict one, and we add continuity for technical convenience. This strengthening to be
strict is essential to our results. For instance, if signals are independent of the common
value (as allowed under a weak MLRP) then we get no correlation between prices and
values and prices are simply the unconditional expected value of an object.

Let GSi (s) denote the unconditional distribution of Si and gSi be the corresponding
density, Y n denote the kn-th order statistic of the signals, and Y n

�i denote the kn-th order
statistic of the signals excluding i's signal. Let GV jSi (vjs) denote the distribution of V
conditional on observing a signal Si. Let s

� (v) be the s such that

GSijV (sjv) = 1� 
:

As the equilibrium bidding strategy turns out to be increasing, this is the asymptotic
cuto� signal for getting an object, conditional on V = v. Under our assumptions s� (v)
is well-de�ned and increasing in v, and s� (1) < 1.

For s � s�(0), let v(s) be such that GSijV (sjv(s)) = 
.2 Thus, v(s) is the value for
which s would just be on the margin of getting an object in an increasing equilibrium in
the limit. Note that s�(v(s)) = s for s 2 [s�(0); s�(1)], so this is the inverse function of
v(�).

We assume that:

(A6) GV jSi (v(s)js) > 0 for all s such that v(s) > 0.

(A6) limits the information that a signal contains about where the value might lie.
While this is not a condition directly on the primitives fV and gSijV , it is implied if,
for instance, one requires in conjunction with our other conditions that gSijV have full
support for each value of V .

2For s � s�(1), follow the convention of setting v(s) = 1.
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3 The Main Result

In this setting there exists a symmetric pure-strategy Bayesian equilibrium for every n. A
direct extension of the results of Milgrom andWeber (1982) for �rst price auctions implies
that we can �nd such a symmetric pure bidding strategy that is increasing in the bidder's
signal, which we denote by bn (s) (see the appendix for an explicit characterization). We
are interested in the limiting properties of this bidding strategy as n becomes large. Let
h (s) be the expected value of an object conditional on the event that (in the limit) an
agent wins the auction with a signal s under the symmetric increasing strategies. So,

h (s) = E (V jSi = s; v(s) � V ) :

Our main result is that:

Theorem 1 If A1 through A6 hold, then

bn (s)! min fh (s) ; h (s� (1))g :

Thus, the expected price in the auction converges to a level that is below the expected
value of the asset.

The theorem actually characterizes the limiting bidding strategies, well beyond simply
saying that the price converges to be below the expected value. In particular, bids for
relatively low signals converge to be the expected value conditional on winning, and bids
for relatively high signals converge to a cuto� price, which is the bid that corresponds
to a signal such that any signal above this level is sure to get an item in the limit. The
second part of this characterization is easy to see, while the �rst part of the theorem -
that bids for low signals converge to expected value - is much more diÆcult to prove. We
provide a proof in the appendix.

Let us o�er a couple of observations about the price pattern that the above theorem
implies.

� The average price would not converge to the value of the object even if all agents bid
according to h (s) : To see this consider the case where V is close to zero and focus on
agents who observe the highest signals. They will bid an amount signi�cantly above
zero, and the average price will exceed the asset's value. Conversely, conditioning
values that are close to one, prices will be too low. This last e�ect is enhanced by
the fact that the bidding function 
attens.

� The discriminatory auction leads to a lower expected price than the uniform price
auction, as Pesendorfer and Swinkels (1997) have shown that the price of the uni-
form price auction converges to the expected value of the objects in the limit.3

3The same holds in a wide variety of private value settings too, as shown in Jackson and Kremer
(2003a).
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� In the limit, the increasing nature of the equilibrium means that it is \revealing"
in the sense that someone who knows the structure of the bidding functions and
sees the average price can correctly forecast the value of the asset. However, this
is a weak form of \revelation". Most importantly, such a weak form of revelation
does not capture the spirit of eÆcient market hypotheses and does not identify
mechanisms that aggregate information. The idea is that the market should come
to mold prices in ways so that they re
ect the value of assets; not that an observer
through the daunting task of observing the appropriate bids and inverting them to
deduce signals can unravel the information present in the economy.

To better understand our results, consider the following example.
Example 2

� The number of units for sale is kn = n=2.

� The value of the good v is distributed uniformly on [0; 1]:

� Conditional on v, signals are distributed uniformly on [0; v].4

In the uniform price auction as PS have shown that prices converge to the true value
of the asset V . In this case, it is easy to see that the bids in the symmetric equilibrium
of the uniform auction converge to being twice the signal (2Si). As the median signal
sets the price, and this median converges in probability to Si = v=2, it follows that the
price converges to the value.

The symmetric equilibrium bids in the discriminatory price auction (1) are harder to
handle for a �nite n; as v (s; s) involves a non-trivial computation. However, in the limit
this expression simpli�es tremendously. As signals are distributed uniformly on [0; v];
conditioned on si = Y n

�i (kn) = s one can say with near certainty that v = 2s . Moreover,

in the limit G
�
Y n
�i (kn) = sjsi = s

�
! s

1�s
; while g

�
Y n
�i (kn) = sjsi = s

�
! 2

1�s
: Hence,

(1) simpli�es to

b0(s)
s

1� s
=
� 2

1�s
(2s� b(s)) if s < :5

0 if si � :5.

The fact that the derivative b0 (s) = 0 for s > 0:5 follows from the fact that in the
limit the median is lower than 0:5 with certainty, and so raising one's bid only increases
the payment. This is the key to our analysis, as bids 
atten out in a discriminatory
auction (but not in a uniform price auction), and are never above conditional expected
value to begin with. Using the boundary condition of b (0) = 0, we get the following
characterization for the limiting bid function.

b (s) =

(
4s
3

if s < :5, and
2
3

if si � :5.

Consider two cases,
4This violates (A3) as gSijV is not continuous (at s = v), and also violates (A5) as it only satis�es

a weak inequality and is discontinuous at s = v. However, the example is very easy to solve and thus
makes the intuition transparent. The example if perturbed slightly to satisfy our assumptions. Finally,
the example also illustrates that our conclusions extend beyond the speci�c assumptions here.
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� v � 0:5 - In this case winning bidders are uniform on [v=2; v] with the average
signal is 3v

4
: Since in this range the bidding strategy is linear, we conclude that the

average price converges to 3
4
� 4

3
v = v: Hence, the average price converges to the

asset's value; and

� v > 0:5- In this case winning bidders are uniform on [v=2; v] with the average signal
is 3v

4
: However, in this range the bidding strategy is concave rather than linear.

Hence, it follows that the average price converges to a number strictly below v:

The fact that bidding strategy 
attens out for higher signals is the key reason why
average prices are biased downward in the discriminatory auction.5

In this example the average price for low values converges to be exactly the value.
That is partly an artifact of the structure of this particular example, as we already
discussed in the remarks following the theorem, as it is possible for the price to exceed
value at low values.

4 Appendix

The following lemma is useful in the proof of Theorem 1.

Lemma 3 Under (A1) through (A6)

(i) gYnjSi(sjs) is uniformly bounded above across n and s, and

(ii) Given any a > s�(0), GYnjSi(sjs) is uniformly bounded below across n and s > a.

Proof of Lemma 3:

(i) Note that gYnjSi(sjs) =
R
gYnjv(sjv)g (vjs) dv.

Let us argue that gV jSi (vjs) is bounded above. g(vjs) = g(sjv)f(v)R
g(sjv)f(v)dv

. Given that

g(sjv) > 0 for some v by (A4) and this is continuous by (A3), the denominator is positive
for all s. Moreover, as it is continuous in s by (A2) and (A3), and positive everywhere
on a compact set of s, it is uniformly bounded below in s. Given the continuity of the
numerator in s and v, it is bounded above uniformly on a compact set. The claim that
gV jSi (vjs) is bounded above then follows.

5On average the revenue per unit converges to :43 in the discriminatory auction, compared to 0:5 in
the uniform auction.
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So, it is enough to show that we can �nd M so that
R
gYnjv(sjv)dv < M . Note that

gYkn jV (sjv) = n!
(k�1)!(n�k)!

GSijV (sjv)kn�1
�
1�GSijV (sjv)

�n�kn
gSijV (sjv) ; since gSijV (sjv)

is bounded from above it is enough to consider:

Z n!

(k � 1)! (n� k)!
GSijV (sjv)kn�1

�
1�GSijV (sjv)

�n�kn
dv

We change variables by letting X (v) = GSijV (sjv) and get

Z n!

(k � 1)! (n� k)!
Xkn�1 (1�X)n�kn dX (v) :

Let us argue that X 0 (v) is bounded above and below. Note that under this change

of variables,
@GSijV

(sjv)

@v
is nonpositive under (A5), and so is bounded above by 0. It is

bounded below as follows.

G(sjv)�G(sjv0) =
Z s

0
[g(s0jv)� g(s0jv0)] ds0:

Given the continuity of @g(s0jv)
@v

on a compact set, we can �nd A such that

g(s0jv)� g(s0jv0) < A(v � v0);

and the result then follows.

So, it is enough to consider

Z n!

(k � 1)! (n� k)!
Xkn�1 (1�X)n�kn dx

Note that the integrand above is the density of the kn order statistic evaluated at X,
where the sample is drawn from the uniform distribution. Hence the integral is one.

(ii) Fix a > s� (0). By the continuity of GV jSi (from (A2) and (A3)), it follows from
(A6) that there exists Æ > 0 such that GV jSi (v (s) js) > Æ for any s � a. Since gV jSi is
uniformly bounded above (based on an argument similar to that behind (i)), we can �nd
some Æ1 > 0 so that GV jSi (v (s)� Æ1js) > Æ1 for all s � a.

Next, let us argue that the strict MLRP condition (A5) implies that for any v �
v (s)�Æ1 there exists Æ2 > 0 so that G (sjv) > 1�
+Æ2: Let v

0 = v (s)�Æ1. It is enough to

bound 1�G(sjv0)
G(sjv0)

away from 1�G(sjv(s))
G(sjv(s)

= 

1�


: Note that 1�G(sjv0)
G(sjv0)

=

R
1

s
g(tjv0)dtR s

0
g(tjv0)dt

; 1�G(sjv(s))
G(sjv(s))

=R
1

s
g(tjv(s))dtR s

0
g(tjv(s))dt

Fix an " and note that A5 implies that g(t1jv0)
g(t2jv0)

> g(t1jv((s))
g(t2jv(s))

(1 + �) for some

� > 0 for any t1; t2 so that t1 � t2 + " (where we are using the continuity of the partial
derivative on a compact set). This implies that

R 1
s+" g (tjv

0) dtR s
0 g (tjv

0) dt
> (1 + �)

R 1
s+" g (tjv (s)) dtR s
0 g (tjv (s)) dt

8



The reason why the above is true is that if Ai

Bj
> ai

bj
(1 + �) for any i; j, then AiP

j
Bj

>

(1 + �) aiP
j
bj
, which implies that

P
i
AiP

j
Bj

> (1 + �)
P

i
aiP

j
bj
: Also note that (A5) implies

R s+"
s g (tjv0) dtR s
0 g (tjv

0) dt
>

R s+"
s g (tjv (s)) dtR s
0 g (tjv (s)) dt

:

The claim then follows, as we can pick " to be small, and this combined with g (sjv)
being uniformly bounded implies that we can make

R s+"
s g (tjv (s)) dt small.

Using Chebyshev's bound we conclude that conditional on v � v (s)�Æ1, the probabil-
ity that s � Yn is bounded away from zero across n and s � a. To see this, we argue that
Pr (Yn � sjV = v) is bounded away from zero across s and v such thatG (sjv) > 1�
+Æ2.
Consider n i.i.d Bernoulli random variables fXig

n
i=1 where Pr (Xi = 1) = p � 1� 
+ Æ2:

Let X =
P
Xi: Then

Pr (Yn � sjV = v) � Pr (X � n(1� 
))

Note thatEX = (1� 
 + Æ2)n and var (X) = np (1� p) :We note also that Pr (X < (1� 
)n) =
Pr (X < EX � Æ2n). Chebyshev's bound then implies that

Pr (X < EX � Æ2n) �
var (X)

(Æ2n)
2 =

1

n

(1� 
 + Æ2) (
 � Æ2)

(Æ2)
2 ;

which is bounded away from 1, which means that Pr (X � n(1� 
)) is bounded away
from 0. Thus, so is Pr (Yn � sjV = v). Part (ii) now follows since GV jSi (v(s)� Æ1js) >
Æ1.

Proof of Theorem 1: A direct extension of the results of Milgrom and Weber
(1982) for �rst price auctions leads to the derivation of a symmetric equilibrium for the
discriminatory auction as follows. If a type s pretends to have a slightly higher signal,
then the additional cost is b0n (s) times the probability that s was among the highest kn
signals. The expected bene�t from such a deviation is winning an object in the marginal
event where s was tied with the kn-th signal. The probability of this is the density of
the kn-th highest signal at s conditional on observing si = s: The bene�t conditional on
this event is the di�erence between value and bid. This leads to the following di�erential
equation.

b0 (s)G
�
Y n
�i = sjSi = s

�
= g

�
Y n
�i = sjSi = s

�
(vn (s; s)� b (s)) (1)

where vn (t; s) � E
�
V jY n

�i = t; Si = s
�
: The solution to the above di�erential equation

combined with the boundary condition bn (0) = 0 yields a pure strategy, increasing,
symmetric equilibrium.

We �rst prove the convergence claim for signals that in the limit expect to receive
an object with probability that is strictly between zero and one. That is, we consider
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signals s 2 (s� (0) ; s� (1)) and argue that

bn (s)! v (s)�
Z s

s�(0)
L (�jx) dt (�) ;

where
L (�jx) = e�

R x
�
gY jSi

(sjs)=GY jSi
(sjs)ds;

t(�) = v(�), v(s) = limn vn(s; s) = [s�]�1(s), and where we take L to be 0 whenever the
integral diverges.6

By the same reasoning as in Milgrom and Weber (1982), for a given n we can express
an equilibrium bidding function as:

bn (s) = bn (s
�(0)) + vn (s; s)� vn (s

�(0); s�(0)) +
Z s

s�(0)
Ln (�jx) dtn (�) ;

where tn(�) = vn(�; �) and

Ln (�jx) = e�
R x
�
gYnjSi

(sjs)=GYnjSi
(sjs)ds:

Given the convergence of vn(s; s) to v(s), we need only check thatZ s

s�(0)
Ln (�jx) dtn (�)!

Z s

s�(0)
L (�jx) dt (�)

for any s 2 (s� (0) ; s� (1)).

Consider any �; x 2 (s� (0) ; s� (1)). We know that gYnjSi (sjs) ! gY jSi (sjs) for any
s > s� (0) (where gY jSi(sjs) = gV jSi(v(s)js)) , GYnjSi (sjs)! GY jSi (sjs) for any s > s� (0)
(where GY jSi(sjs) = GV jSi(v(s)js)) , and the gYnjSi's are bounded above uniformly and
the GYnjSi are bounded away from zero uniformly (across s > �, noting � > s�(0)) by
Lemma 3. Therefore, we can apply the Dominated Convergence Theorem to conclude
that Ln (�jx)! L (�jx) : Note that Ln (�jx) is nonnegative and bounded uniformly above
(across n) by e�0 = 1. We also know that that tn(�) converges to t(�) and that these are
bounded above uniformly. We can apply the Dominated Convergence Theorem again to
conclude that Z s

s�
Ln (�js) dtn (a)!

Z s

s�
L (�js) dt (a)

for any s 2 (s�(0); s�(1)), as claimed.7

6The Y is the limit of the Yn's, which becomes a degenerate random variable as a function of V in
the limit.

7We need to be a bit careful as both the functions and the measures of integration are changing with n.
However, both are bounded and converging and so a variation on the Dominated Convergence Theorem
can be used. In particular, let fhng ; fjng be two sequences of functions such that (i) 0 � hn � jn,
(ii)hn ! h; jn ! j almost everywhere, and let d�n be a sequence of measures that converge set wise to
a measure d�, then lim

R
jnd� =

R
jd� implies lim

R
hnd�n =

R
hd�. This follows from a generalized

version of Fatou's Lemma that appears in Royden p. 269. This lemma implies that lim inf
R
hnd�n �R

hd�; hence it is enough to show that lim sup
R
hnd�n �

R
hd�: Since jn � hn � 0 we can apply again

the generalized version of Fatou's Lemma to conclude that lim inf
R
jn � hnd�n �

R
j � hd�: However,

lim inf
R
jn � hnd�n =

R
jd�� lim sup

R
hd�n: hence, indeed lim sup

R
jnd� �

R
hd�:
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By the de�nition of h it follows that

h (s) =

R s
y=0 v(y)gY js (yjz) dz

GY js (sjs)
:

Thus,

h0 (s) =
gY js (sjs)

GY js (sjs)
(v(s)� h (s)) :

Again (as in Theorem 14 in Milgrom and Weber (1982)) we can write

h (s) = v (s)�
Z
L(�jx)dt (�) :

This is the same as the expression for limn bn(s), and thus establishes the claim.

Next, we consider s > s� (1) ; note that s� (1) < 1. Since the bidding function is
increasing in si, it follows that s� (1) is the asymptotic cuto� conditional on V = 1
for getting an object. The MLRP and the strong law of large numbers imply that in
equilibrium agents are \guaranteed" (with a probability converging to 1 as n grows) to
win an object if their signal is above s� (1). This implies that in a discriminatory auction
the bn (si) becomes 
at on [s� (1) ; 1]. That is, bn(s

0
i)�bn(si)!n 0 for any s

0
i > si > s�(1).

This follows since for large enough n, an agent who has signal s0i can bid as if she had
signal si with an arbitrarily small impact on the probability of getting an object, but a
savings of the di�erence in bids in terms of price paid conditional on winning.

5 References

Bali, V. and M.O. Jackson (2002), \Asymptotic Revenue Equivalence," Journal

of Economic Theory, Vol. 106, pp 161-176.

Jackson, M.O. and I. Kremer (2003a), \The Relevance of the Choice of an Auction
Format in a Competitive Environment," mimeo: California Institute of Technol-
ogy and Stanford University.

Jackson, M.O. and I. Kremer (2003b), \The Relationship between the Alloca-
tion of Goods and a Seller's Revenue," forthcoming: Journal of Mathematical

Economics.

Milgrom, P. (1979), \A Convergence Theorem for Competitive Bidding with Dif-
ferential Information," Econometrica, Vol. 47, pp. 670{688.

11



Milgrom, P. (1981), \Rational Expectations, Information Acquisition, and Com-
petitive Bidding," Econometrica, Vol. 49, pp. 921{944.

Milgrom, P. (1981a), \Good News and Bad News: Representation Theorems and
Applications," The Bell Journal of Economics, Vol. 12, pp. 380{391.

Milgrom, P. and R. Weber (1982), \A Theory of Auctions and Competitive
Bidding," Econometrica, Vol. 50, pp. 1089{1122.

Pesendorfer, W. and J. Swinkels (1997), \The Loser's Curse and Information
Aggregation in Common Value Auctions," Econometrica, Vol. 65, pp. 1247{
1282.

Wilson, R. (1977), \A Bidding Model of Perfect Competition," Review of Economic

Studies, Vol. 4, pp. 511{518.

12


