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1. Introduction

This paper examines the problem of equilibrium selection in games played by
large populations. Since the pioneering work of Foster and Young (1990), Kandori
et al. (1993) and Young (1993) there has been much interest in the idea that introducing
noise in players’ actions may help to select between equilibria in games where there are
multiple equilibria. Most of this literature has proceeded by considering a fixed finite
population of players who play a game repeatedly using some myopic but noisy learning
rule. It then examines whether if the noise is small the resulting system spends most
of its time near one of the equilibria of the underlying unperturbed game.

This paper also looks at the problem of equilibrium selection but rather than in-
troducing exogenous noise in players’ choices and examining what happens as this noise
becomes small, it asks what happens if players’ choices are persistently noisy but the
population size is large, so that in the aggregate noise is small. This paper therefore be-
longs to the line of research pioneered by Binmore and Samuelson (1997), Blume (1994)
and Amir and Berninghaus (1996). These authors have previously considered the prob-
lem of learning in large populations, but under quite special assumptions.

This paper presents a more general analysis. It considers the evolution of strategies
in a population with noisy choices which evolves according a one-dimensional jump
Markov chain. It shows that the theory of large deviations allows one to determine
which equilibrium is selected in a large population simply by solving a polynomial
equation, even though the exact equilibrium distribution may be intractable. It also
provides estimates of waiting times for the selected equilibrium to be reached. It shows
that an increase in the noise about an equilibrium, in the sense of first-order stochastic
dominance, makes it less likely to be selected. It also clarifies the role of the form of
the limiting deterministic dynamic in equilibrium selection.

Although much of the recent literature has been interested in equilibrium selection
in simple coordination games, the relevance of equilibrium selection in large population
games is much wider. Models of search or congestion, for example, often have multiple
equilibria and are studied when populations are large. The results of this paper can be
used to study these more general dynamic games.

In a large population one might expect that noise will average out and that the
motion of the system can be well approximated by that of an ordinary differential equa-
tion. This is indeed so if one is interested in behaviour over a finite horizon — see for
example Binmore et al. (1995) and Sandholm (1999) for proofs in an economic context
or more generally Ethier and Kurtz (1986). Nevertheless differential equations are not
satisfactory if one is interested in the long-run behaviour of the system, which involves
behaviour over an infinite one. As Binmore et al. (1995) point out it is quite possible
for the system to have a unique stationary distribution for each finite population size
but the differential equation approximation to have multiple stable steady-states. The
differential equation approximation is therefore inadequate as a guide to to long-run
finite population behaviour.



One reaction to this problem is to find models where the finite population sta-
tionary distributions can be computed explicitly and then examine their behaviour as
the population size becomes large. This strategy is followed by Binmore and Samuel-
son (1997), Blume (1994) and Amir and Berninghaus (1996). They look at the case
of birth-death processes where the number of players playing each strategy can change
by at most one at a given time. A motivating example given by Binmore and Samuel-
son (1997) is that every so often a player becomes discontented and chooses to change
strategy.

Although the assumption of unit changes in the number of players playing a strat-
egy may seem innocuous, it does rule out a number of plausible learning stories. For
example consider a large population where pairs of players are randomly matched at
different times. Suppose that when a match occurs, each player in the pair reviews their
strategy. If both players were playing the same strategy and then choose to switch, the
number of players playing that strategy will change by two.

Once one relaxes the assumptions of unit jumps and leaves the world of birth-death
processes, however, it becomes very hard to solve for the stationary distributions. Kan-
dori (1999) analyses a finite version of the Diamond (1982) search model. Here if a pair
of traders meet, they exchange goods and become inactive. Inactive agents become ac-
tive with a certain probability. This model violates the birth-death assumption as pairs
of traders leave the market, although agents enter only singly. The finite distribution
is intractable but Kandori obtains some equilibrium selection results by considering an
approximation to the stationary distribution.

This paper aims to provide a more general analysis of equilibrium selection in
large population models. To do so it goes back to ideas introduced by Freidlin and
Wentzell (1998). Suppose that the differential equation approximation has a finite
number of equilibria. If the population size is large the system will spend most of its
time in the neighbourhood of these equilibria, with occasional escapes between them.
One can therefore think of the system as describing a Markov chain between these
states. To estimate the transition probabilities one needs to find the most likely way
for the system to leave a given equilibrium — which involves the theory of rare events,
that is of large deviations.

This paper shows that this approach leads to a clean approach to the problem of
equilibrium selection. It considers a general class of models whose evolution in a finite
population is described a Markov process with jumps whose state is one-dimensional
(say the fraction of players playing a given strategy in a 2 x 2 game). It shows that in a
large population almost all the weight of the stationary distribution will be put on the
equilibrium which has the highest value of a certain quasi-potential function. To find
this function simply requires solving a polynomial equation (and integrating), which is
considerably easier than trying to solve for the equilibrium distribution directly.

The paper also provides general results on the nature of equilibrium selection. It
makes precise the idea that an equilibrium which is noisier is less likely to be selected,
as escape is easier. It also clarifies the role of the deterministic dynamic in equilib-
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rium selection. In the literature on equilibrium selection there has been interest in
the observation that equilibrium selection is often independent of the underlying de-
terministic dynamic (see for example Kandori et al. (1993), though not if mutations
can be strongly state-dependent (see Bergin and Lipman (1996)). In contrast, with
a continuous-state space the underlying dynamic seems to matter — see for example
Fudenberg and Harris (1992) and Binmore and Samuelson (1997). The paper observes
that many deterministic dynamics are in fact simply time changes of one another and
therefore have equivalent selection properties. Apparent dependence on the deter-
ministic dynamic can often be thought of as instead resulting from applying different
perturbations to the same dynamic.

The paper also investigates when the conclusions of models based on birth-death
processes generalise. It shows that if players take actions which do not depend on the
players with whom they are currently matched, for example take a perturbed best reply
to the aggregate distribution of play, then the conclusions generalise. In particular it
shows that Blume (1994)’s result that the risk-dominant equilibrium is selected in 2 x 2
coordination games is robust to allowing simultaneous revisions.

The theory of large deviations is quite technical and for simple models such as
birth-death processes it brings in unnecessarily heavy armoury. Nevertheless it has
several advantages apart from mere generality. In the first place although justifica-
tion of the theory is involved, the actual application is straightforward. Secondly, the
formulae it yields are simple and intuitive and yield insight into the nature of the prob-
lem. Thirdly, it allows ready calculation of other quantities beyond those needed for
equilibrium selection results.

If the population size is large, so aggregate noise is small, one may be sceptical
about the relevance of the equilibrium selection results: if one starts near a stable
equilibrium then it will take a very long time for the system to perturbed away from it,
even it is not the one selected in the long run. For this reason, much of the literature on
large deviations (see for example Shwartz and Weiss (1995) and the references therein)
concentrates on the exit problem: to calculate how long (and in what way) the process
is likely to take to exit from a stable equilibrium. Mean exit times are easy to calculate
using the apparatus of large deviations and may be more relevant in practice.

Ellison (2000) and Binmore and Samuelson (1997) have stressed the importance
of estimating the waiting time until a selected equilibrium is reached in order to gain
some idea of its relevance. Exit times calculations can be used to do this and the paper
does so.

Foster and Young (1990) first introduced the ideas of Freidlin and Wentzell into the
economics literature. They considered equilibrium selection in the case of a differential
equation perturbed by a small Brownian motion. Most of the work since them has
concentrated on fixed finite populations or cases where equilibrium distributions can
be calculated explicitly. Sargent (1999) uses exit time calculations via large deviations
in another context.

Freidlin and Wentzell develop their theory in detail for processes perturbed by

3



Brownian motion. It is, however, straightforward to adapt it to the case of jump
Markov processes as is done in this paper. The models considered are essentially one-
dimensional. The same ideas can be used in higher dimensions but are less useful as
the equations obtained, though still much simpler than the full equilibrium conditions,
are much harder to solve than in the one-dimensional case.

The paper is organised as follows. Section 2 gives examples to motivate the frame-
work and sketches the main ideas behind the analysis. Section 3 lays out the main
assumptions. Section 4 gives the basic results on large deviations and equilibrium se-
lection. It also provides results on exit times from stable equilibria and waiting times to
hit the selected equilibrium. Section 5 applies the results to some examples. Section 6
shows that if choices of players do not depend upon whom they are matched with, then
results obtained with birth-death processes generalise. Section 7 gives general results
on the effect of noise on and the role of deterministic dynamic in equilibrium selection.
Section 8 concludes.

2. Examples and Informal Sketch

The paper considers a finite population of N players. Each player is assumed to
have two available actions 1 and 2 and at each time plans to play one of these. The
fraction of the population playing action 1 is denoted x. Time is continuous and players
switch occasionally between strategies.

A motivating example would be a population playing a 2 x 2 co-ordination game,
as shown in Figure 1. Players are assumed to revise their strategies according to some
boundedly rational model of learning. Some models consistent with the framework of
the paper might be:

Example 1: Binmore and Samuelson (1997) In this model all players play against
each other simultaneously at each moment. Each player’s expected payoff is therefore
determined by the strategy he plays and the fraction of players playing strategy 1 ().
Players become discontented according to a Poisson process at a rate which depends on
their current payoff (and thus z and their type). A discontented player picks another
player at random and imitates him with some probability. Since, under a Poisson
process, players are exceedingly unlikely to become discontented at the same time, this
yields a model where per unit time the number of players picking strategy 1 increases
by 1 with probability NAY and decreases by 1 with probability NAY,. The factor N
reflects the fact that as population size increases revisions happen more often. The
superscripts denote any further dependence on population size. This yields a birth-
death process.

Example 2 Suppose instead that pairs of players are selected at random (perhaps
meet) according to a Poisson process. When they meet they know the distribution of
strategies in the population, =, but not their opponent’s action in advance. Assume
that they take a best response to this distribution, but their payoffs may be subject to
random noise, so the best response is noisy (cf. stochastic fictitious play, see for example
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Fudenberg and Kreps (1993)). The number of players playing strategy 1 therefore may
change at any integer between -2 and 2, with rates NAY,(x), NAY, (z), NAY (x) and
NAY(z) (in obvious notation). This is a Markov jump process but not a birth-death
process.

Example 3 A variation on Example 2 would be K players selected at random to play
a K x 2 game (with K independent of N). One might also imagine K players selected
to play a 2 X 2 game in round-robin fashion against one another (cf. Young (1993))).
After the round is completed they revise their strategies. These models yield a jump
process with jumps between K and —K possible.

Example 4 A rather different dynamic is obtained if one supposes as above that pairs
of players are selected to play the game (perhaps meet) according to a Poisson process
but only revise strategies after the game is played. After playing the game, they revise
their strategies in the light of their payoffs attained (but have no memory of the past
payoffs before this). The payoffs they achieve depend on their own strategy and whom
they are matched against, the probability of which depends on z. This yields a jump
Markov process with jumps between -2 and 2 possible. One could generalise this along
the lines of Example 3 and allow groups of K players to meet and revise strategies after

playing the game. This would again yield a jump process with jumps between —K and
K.

Example 5 One could also consider a more symmetric version of the learning process
considered in Example 1. Suppose that pairs of players occasionally meet and compare
the performance of their strategies, perhaps only observed with noise (compare for
example Weibull (1995) Section 4.4). If one assumes that the player with the worse
strategy switches to the better one with a probability increasing in the payoff difference,
this yields a birth-death process. If one adds the feature that players may randomly
experiment even if the person they meet is using the same strategy, however, this yields
a jump process with jumps between -2 and 2. If one allows large groups of players to
meet and compare payoffs (cf. Schlag (1999)), this yields a general jump process also.

More generally one can consider dynamic games whose state is one-dimensional.
For example

Example 6: Kandori (1999) Kandori considers a version of the Diamond (1982)
search model where players are either inactive or active. Players become active at a
rate, A\1(z), which depends on the fraction of players active, x. Pairs of active players
meet at random according to a Poisson process and if they meet become inactive. The
rate at which pairs meet depends on the fraction of the population active. The number
of active players therefore increases by 1 at rate NAN(z) and decreases by 2 at rate
NAN,(z). This is not a birth-death process.

These models can all be described as jump Markov processes. Now the total
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number of players playing strategy 1 changes by

N Y ixY ()b +o(h) (1)

—K<i<K

where o(h) denotes a term of order smaller than h. The change in the fraction of players
playing strategy is therefore

Az =) iAN(z)h + o(h) (2)

7

If N is large and the \’s converge, one would expect, by a law of large numbers, the
motion of the system to be well-described by the differential equation:

=Y 8

This is indeed so if one is interested in behaviour over a finite horizon. Nevertheless
this is not satisfactory if one is interested in equilibrium selection. It is quite possible
for (3) to have multiple steady states and yet the model to have a unique stationary
distribution for each N.

One might be tempted to improve the approximation by appealing to the central
limit theorem and to obtain a diffusion approximation. While this is possible, this is
not accurate enough for equilibrium selection — Binmore et al. (1995) give examples
in an economic context. Kushner (1982) discusses this issue more generally.!

Freidlin and Wentzell (1998) suggest approaching the problem by noting that for
large N the system will spend most of its time in the neighbourhood of the stable
points of (3). The system will occasionally escape, on account of the finite population
randomness, to another equilibrium. One can therefore think of the system as moving
according a Markov chain between equilibria and one needs to estimate the probability
of these rare events in order to determine its transition matrix. This leads to the theory
of large deviations.

To gain some intuition, consider for a moment an i.i.d. sequence of random vari-
ables X; with mean 0. Let X denote a random variable with this distribution. By the
law of large numbers, X,, = >, Xi/n converges. Suppose one wishes to estimate the
probability that X,, > u, where u > 0. Now by Chebyshev’s inequality for any a > 0,

P (X, >u) < Eexpn(—au+ aX) (4)
Equivalently, B
InP (X, >
nb “Loww—mMm» (5)
n

1Sandholm (1999) suggests diffusion approximations may be useful for local stability analysis.
Beggs (2002a) shows that they may be useful for characterising long-run behaviour if selection is weak
in the sense that Ay is small for large N.



where M (t) is the moment generating function of X. To obtain as tight a bound as

possible, one optimises over a, s0?

nli_{l(f)lo In P ():;n > u) < —A*(u) (6)
where
A*(u) = sup au — C(a) (7)

«

is the Fenchel-Legendre transform of C'(«) = In M («), that is of the log of the moment-
generating function (the cumulant-generating function). The limit in (6) is redundant
but is added for conformity with other results.

(6) gives an upper bound on the probability that X exceeds u in terms of A*(u). A
slightly more intricate argument shows that A*(u) also yields a lower bound. In more
general cases, the lower and upper large deviations bounds do not coincide (see Section
4).

In the more complicated setting of this paper, one wishes to estimate the proba-
bility that the process finite population process deviates from its large sample average,
(3). Omne might hope to do this by looking for analogues of the moment-generating
function.

The function

H(z,0) = Z Xi(z) (e — 1) (8)

can be thought of as the logarithm of the ‘instantaneous’ moment-generating for the
finite process. Recall that the moment-generating function of a Poisson random variable
with parameter A is exp (A (e* — 1)).

The Fenchel-Legendre transform of H is

L(:L‘,B):sgpﬁa—H(:L',a) (9)

and one might hope this measures the likelihood of an instantaneous jump of size [3.
Now the cost of a path should be the sum of the cost of its jumps so the (log of the)
likelihood of a path of duration T should be measured by

T
I(z) = / Lz, &) dt (10)
t=0
where I is defined to be oo if the path x is not absolutely continuous. This turns out
to be the case. A precise statement is given in the next section.

For the mean path, L(z,%) = 0, that is following it is costless. If the system is
at a stable equilibrium then, for large N, it is likely to stay near it. If the system
escapes from it, then it seems plausible that it will do so by the route which makes (10)

2(5) was derived under the assumption that o > 0, but it turns out this can be ignored in the
optimisation.



smallest. Other escape routes are possible but for large N their relative probability
goes to zero at an exponential rate.

L does not have a closed form expression in general. For the case of the Poisson
process with constant rate A\, H(x,a) = A (exp(Aa) — 1) and it is easy to check that

for g > 0.

L(,B) = f1n" —p+ 2 (11)

As X tends to zero, L is ill-behaved. This will cause some technical problems later
as jumps in some directions must go to zero near the boundaries if the process is to
remain in the unit interval.

To implement the Freidlin-Wentzell theory, and estimate the transition probabil-
ities of the approximate Markov chain between equilibria, it seems one needs to solve
a variational problem involving (10) to find the cheapest escape route from an equi-
librium. In the one-dimensional case this turns out to be remarkable easy and simply
involves solving a polynomial, as is shown in Section 4. Given this it is easy to de-
termine which equilibrium in selected in the one-dimensional case, since the induced
Markov chain has a rather simple structure (one can only exit to adjacent equilibria).

The following sections make these ideas precise.

3. The Model

The paper considers a family of stochastic processes indexed by N. For each N the
state of the system is the number of agents, L, taking a certain action, say strategy 1,
or equivalently the fraction of agents taking that action, 2z = L/N. Time is continuous.

Assumption 1 For each N, L evolves according to a jump Markov process with
parameters NAYN (z) with i an integer between —K; and K, independent of N.

This assumption implies that the number of agents changing strategy is bounded
independently of V. It is satisfied in the examples of the previous section. It guarantees
that, for large population sizes, the change in the fraction of agents playing strategy
strategy 1 in a small length of time is negligible. It could be relaxed to allow the
possible jumps to grow with IV, provided they do so sufficiently slowly. Without some
such assumption, the process could make large jumps in small time periods and so
would not yield a differential equation in the limit.

Assumption 2 For each i, AN (z) converges to \;(x) uniformly in z.

For finite N, only multiples of 1/N are possible values of z. This is unimportant
in the statements of the assumptions.

This assumption implies that for large N, the rate of change of x only depends
on x, not N. This cannot be exactly true near the boundaries. For example in Kan-
dori (1999)’s model (Example 6) the number of active agents decreases by 2 when a
pair meets. This cannot, however, be true if only 1 agent is playing that strategy.
One therefore needs to modify the jump rates near the boundary for finite N. This is
allowed for in Assumption 2.



Assumption 3 For each i, \;(x) is a Lipschitz-continuous function of x on [0, 1].

This is a standard technical assumption. It guarantees, amongst other things, that
(3) has a unique solution.

The slightly complicated phrasing of the next assumption is to allow for the fact
that some jumps between —K; and K may not be possible. Let ® = {i : \;(z) =
0 for all z}.

Assumption 4 (a) For some i < 0, i ¢ ®. For all i < 0 with i ¢ ®, \;(z) =0 if and
only if z = 0. (ii) For some i > 0, i ¢ ®. For all i > 0 withi ¢ ®, X\;(z) = 0 if and only
ifrx=1.

This assumption implies that the differential equation (3) does not have any equi-
libria on the boundary. It is satisfied in the applications above. It is stronger than
this, however. As discussed in Section 2, points where transition rates vanish cause
some technical difficulties. This cannot be avoided at the boundaries, since the process
cannot leave the unit interval, but this rules out any other points where this occurs. It
could be relaxed somewhat (see the discussion in Shwartz and Weiss (1995) Chapter 6),
but in the applications it is quite natural as away from the boundaries there is usually
some minimal rate of switching (for example due to error or mutation). It is satisfied
in the examples in Section 2.

Assumption 5 Fori < 0, i ¢ ®, zln \;(x) tends to 0 as x tends to zero. For i > 0,
i ¢ ®, (1 —z)In)\;(z) tends to zero as x tends to 1.

This assumption requires that rates not go to zero too fast near the boundary
and is needed for technical reasons. It is fairly natural as, in most economic examples,
the transition rates away from a strategy (considering the case —i < 0) can usually
be written in the form A_;(z) = xy;(x) with p;(z) bounded away from zero. This
is because to have i people switching away from strategy 1, there must be at least ¢
people playing it amongst the group revising strategies, and the probability of such a
group is usually proportional to z*. So long as there is some minimal rate of switching
of individual players, for example due to error or mutation, then y;(z) is bounded away
from zero. It is satisfied in the examples in Section 2.3

Assumption 6 For each N, the process is an ergodic Markov chain.

This assumption implies that for each N, there is a unique stationary distribution.
It is evident in the examples in Section 4, but at this level of generality needs to be
imposed.

Assumption 7 The differential equation (3) has finitely many equilibrium points.

This assumption is natural in most applications, where in games of interest, for
example those of Section 2, there are usually a finite number of equilibria. It implies
that for large N, the process essentially executes a finite Markov chain with states

3Kandori (1999)’s assumptions imply it in the case of Example 6.
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corresponding to these equilibria. The analysis would go through unchanged if one
allowed intervals of equilibria, provided there are only finitely many (essentially all
points in an interval are treated as equivalent). In higher dimensions, this would be
re-drafted as a finite number of limit sets, but equilibria are the only possible limit sets
in one dimension.

4. Formal Results

This section presents the main technical results. They are applied in later sections.
It uses the ideas of Freidlin and Wentzell (1998) together with results for Markov jump
processes. An accessible reference for the latter is Shwartz and Weiss (1995). More
advanced treatments can be found in Dupuis and Ellis (1997) and Wentzell (1990)
(see also Freidlin and Wentzell (1998) Chapter 5.2 for an introduction to the latter’s
results).

4.1 Preliminary Results

The first result confirms that for large NV, the model of Section 3 yields an ordinary
differential equation limit. Let ¥ (¢) denote a sample path of the random process and
z(t) that of the differential equation (3). Let P, denote probability conditional on
starting at x at time 0.

Theorem 1 Under Assumptions 1-3, for all finite T' > 0, there exists a constant C'y
and a function Cy(€), with lime_,oci—ge) € (0,00) and lime_,ooc%(e) = 00, such that for

all N >1 and e > 0,

P, ( sup |rn(t) —x(t)] > e) < Cle~NC:2(e) (12)
0<t<T

where Cy and Cy can be chosen independently of x.

This follows from Theorem 5.3 of Shwartz and Weiss (1995) (Kurtz’s Theorem).
The proof given there is for the case of AN (z) independent of N but it is easy to check
that it goes through under Assumption 2. (12) states that the probability that the
sample path is ever more than € away from that of the ordinary differential equation
goes to zero at an exponential rate in N. The conditions on Cs give information on
the dependence of the bound on e.

The theorem is essentially a law of large numbers result. The next result estimates
the probabilities of fluctuations away from the mean path.

The sample paths of zn(¢) on [0,T] belong to D[0,T], the set of real-valued func-
tions on [0, 7] which are right-continuous and have limits to the left at every point.
DJ0,T] can be made into a topological space under the Skorokhod topology. On the set
of continuous functions this coincides with the uniform metric but it allows processes
which have jumps at nearby points to be close, which the uniform metric does not. A
formal definition can be found in Shwartz and Weiss.
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Theorem 2 Let G and F be open and closed sets of paths respectively in D[0, T| under
the Skorokhod topology which do not hit x = 0 or x = 1. Under Assumptions 1-4, if
I(z) is the function defined in (10) then

Jim % P, (en(t) € G) > —inf{I(z): 2 € G, 2(0) =z} (13)
Jim % InP, (en(t) € F) < —inf{I(z): 2 € F, 2(0) =} (14)

The bound in (13), for given G, holds uniformly over x in compact subsets of the
interior of [0, 1]. The bound in (14) also holds uniformly if, for given F', the right-hand
side is continuous in x.

This result is implied by Shwartz and Weiss (1995) Theorems 5.51 and 5.54 and
Corollary 5.65— they prove the result for the case when AN (x) is independent of N
but it is easy to check that the result goes through. Alternatively, see Wentzell (1990)
Theorems 3.2.2 and 3.2.3 (with the use of Theorem 4.1.1 to verify the hypotheses),
which allow for dependence on N.

To interpret this result, note that for the mean path I(z) = 0. If the set of paths
does not include the mean path, then loosely the theorem says that its probability goes
to zero exponentially with N, at a rate which depends on the cost of the least costly
path in the set. The different bounds for open and closed sets arise for similar reasons
to those occurring in the theory of weak convergence. Indeed one can develop some
analogies between the theory of large deviations and that of weak convergence — see
for example Dupuis and Ellis (1997).

T is finite in the Theorem. Nevertheless the Theorem can be used to estimate,
for example, escape probabilities from a neighbourhood of an equilibrium point, which
may take place over an unbounded horizon, as these events will with high probability
take place quickly if at all.

The restriction to paths not hitting the boundaries, and the need for Assumption
4, arises because as discussed in Section 2, the rate function is not well-behaved as
rates hit zero. It is not immediate that one can extend Theorem 2, though one can in
some cases. For a detailed discussion of the problem of boundaries, see Shwartz and
Weiss (1995) (especially chapters 6, 8 and 11).

Here this is not a problem. Firstly, the fact that the boundaries are not absorbing
implies the process spends little time there for large N. Secondly, in order to estimate
the probability of moving between equilibria, one needs to estimate the probability
of paths that start at one equilibrium and end at the other without returning to the
original or hitting any other equilibrium. In the one-dimensional case such paths cannot
touch the boundary (see Figure 2) and so one does need a large deviations principle
that applies there. In higher dimensions, however, such paths may touch the boundary
and so one requires a more delicate argument.
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4.2 Equilibrium Selection

Theorem 2 allows the derivation of the equilibrium selection results. The key ideas
are outlined in the text. Rigorous proofs are in the Appendix.

Under Assumption 7, the limiting ordinary differential equation has finitely many
equilibria. The latter will be indexed by consecutive positive integers ¢ = 1,2, ..., with
the ith equilibrium occurring at = z;, in increasing order of = (so z; > z; if and only
if i > j).

For large N, the process spends most of its time near these equilibria with oc-
casional rare exits between them. Movements between them follow an approximate
Markov chain. When N is large, one cannot pass between two equilibria which are not
adjacent without passing close to an equilibrium — close because of the discreteness of
x for finite N — so only nearest neighbour transitions are possible (see Figure 2).

Let j and k be adjacent equilibria at =; and xy, respectively with, j stable (at least
from the direction of k), k unstable. Note that an equilibrium will be called stable if
the flow of (3) converges from to it from an open set of initial points containing it,
unstable otherwise. Stable on the left and right have the obvious definitions. Note
that if two equilibria are adjacent, one of them must be unstable in the direction of the
other (since the equilibria are finite in number).

Let

Vi = iz?]g{/o L(z2)dt: 2(0) = 25, 2(T) = x5} (15)

Intuitively, Vj;, measures the cost of moving between j and k. For large IV the pro-
cess is approximately a Markov chain with transition probabilities p;, = exp (—NVjy)
for adjacent j and k. Vj; and Vj; therefore need to be determined.

Now Vi; = 0 as travel in the direction of the flow of the differential equation is
free. To determine Vj;, consider the more general problem of moving from a point z to
xr, and replace inf by sup for convenience:

V(z) = szu%){ ; —L(z,2)dt : z2(0) =z, 2(T)=x} (16)

Clearly V(x) = 0. Now the Bellman equation for this problem is
max —L(z,u) + uV’' =0 (17)

For if one moves at rate u for a length of time dt, this has instantaneous payoff —Ldt
and one moves a distance udt closer to the desired destination. Yet, (17) is simply
the Fenchel-Legendre transform of L(z,u). Now L was itself the Fenchel-Legendre
transform of H, and, since H is continuous and convex, taking the transform again
gets back to H (see for example Rockafellar (1970) Theorem 12.2, p. 104). Hence (17)
is equivalent to

H(z, V') =0 (18)
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Equivalently
Z Ai(x) (ewl(m) - 1) =0 (19)
or putting V'(z) = Iny,

Z Ai(z) (y' =1) =0 (20)

For fixed z, this is a polynomial equation in y. It always has a trivial root y = 1 or
V' = 0: this corresponds to the fact that moving in the direction of the flow is costless.
Ounly roots with y > 0 are meaningful, and it is easy to show (see Appendix) that

Lemma 1 For each z in the interior of [0, 1], (20) has a root y = 1 and one other positive
root, U(x). U(x) is continuous = and U(x) — 1 has the opposite sign to ) . i)\;(z).

The condition on the sign simply reflects the fact that it is costly to move against
the flow (L > 0) and that the total cost falls as one moves closer to one’s destination
(V' =1Iny and recall that in (16) one is maximising minus the costs).

Now -

V(z) :/ InU(&) d¢ (21)
Tk

or since costs are the negative of this and Vj; = 0,

Lemma 2 For adjacent j and k

Tk
Vi Vig = [ mU©)de (22)
zj

For this kind of chain — one-dimensional with only nearest neighbour transitions
possible — one must have

TjiPjk = TkPkj for all j, k (23)

where 7; and m, are its stationary probabilities, that is it is reversible — see for example
Kelly (1979). Note that the original process is not itself reversible in general, except in
the birth-death case. Hence if j and k are adjacent and Vj, — Vi; > 0, my is negligible
in comparison to 7; for large V.

For non-adjacent j and k£ with k& > j one has for large N approximately, using
(23),

Th
—=exp{ -N Y (Vg — Vi) (24)
™ 5 R
j<I<k
where the sum is over equilibria [ that lie between 5 and k.
To determine which equilibrium is selected one therefore needs to calculate
> Vii+1 — Vigg1. To do this one simply patches together the formulae found above.

Let 0
W () = / InU(€) de (25)

where x is an arbitrary point in the interior of [0,1]. Then it follows from the above
that:
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Lemma 3 > . ;4 Viit1 — Vier = W(zj) — W(zy).

The argument above suggests that the equilibrium for which W is largest will be
selected. (Note that no non-equilibrium point can have W (z) maximal as one can move
for free from it to a non-equilibrium point). This is indeed the case:

Theorem 3 Under Assumptions 1-7, any limit points of the sequence of stationary
distributions as N — oo in the weak topology are contained in the set of distributions
which have support contained in the set of x for which W (z) is maximal. In particular,
if W (x) is maximised at a unique point x*, the stationary distributions converge to a
point mass at r*.

The proof is in the Appendix. It is a straightforward adaptation of the Freidlin
and Wentzell’s result for differential equations perturbed by Brownian motion to the
case of jump processes.

W (x) is usually referred to a a quasi-potential function (quasi because except in
special cases the transition rates are not simply related to it).* Note that since one can
leave an unstable equilibrium for free:

Corollary No unstable equilibrium can belong to the support of any limit point of the
finite stationary distributions.

4.3 Waiting Times

For large N, if one starts near a stable equilibrium, then even it is not selected it
will take a long time to move away from it, so one might doubt the relevance of the
stationary distribution. One might be interested in estimating how long it will take to
leave a small neighbourhood of the equilibrium. Let 7 the time of first escape from
F starting at .

Theorem 4 Let z* be a stable equilibrium and let F = [a,b] be a closed interval,
containing it and contained in the closure of its domain of attraction. If a = 0 or
b =1, set V, = co or V}, = oo respectively. Otherwise, let V, = W(x*) — W(a) and
Vo = W(x*) — W(b). and V* = min{V,, V,}. Then under Assumptions 1-7 for x in
any compact subset of the interior of F' and any € > 0,

1 F
()  Jim B kIR Yo (26)
1 F
(i)  lim P, ( “]\T;” e (V- e,v+e)> =1 (27)

In other words, mean escape times go to infinity at an exponential rate determined
by V* and realisations of escape times are strongly concentrated around V*. The proof

4Freidlin and Wentzell’s results are phrased in terms of minimising the quasi-potential, which
corresponds to taking the opposite sign for W.
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is in the Appendix. It can also be shown that with probability tending to 1, escape
occurs by the side where exit is cheapest.

The above result restricts attention to escape from a domain containing a single
equilibrium (except possibly on its boundary). One might be interested in estimat-
ing how long the system will take to reach the equilibrium selected in Theorem 3.
Ellison (2000) and Binmore and Samuelson (1997), for example, have stressed the im-
portance of estimating waiting times to determine the relevance of selection results.
This problem may involve estimating the exit time from a domain containing several
equilibria. This can also be estimated using the Freidlin and Wentzell theory.

To simplify the statement of the result suppose that W has a unique maximum,

%

z*. In order to determine the relevance of the selected equilibrium it is desirable to
estimate the expected time to reach a neighbourhood of x* from another point.

Theorem 5 Let F = [a,b] be a closed neighbourhood containing x* and no other
equilibria. Let o be the first time the process enters F starting from z. Let

H* = o nax W(z) — W(y) (28)
then if 0 < x < a,
Ino?
M X < *k
N B s H (29)

with equality for the x where the maximum in (28) is attained. A symmetric formula
holds for b < = < 1.

A formal proof is in the Appendix. Intuitively, H* is the greatest difference in
potential occurring between points between 0 and a and so measures the difficulty of
escaping to a. Note that if there is an equilibrium in [0,a), then the maximum is
attained at an equilibrium point as the Assumptions imply the left-most equilibrium is
stable from the left. If there are no equilibria, the maximum is zero — in this case the
system is rapidly attracted to the nearest equilibrium, at x*.

It is straightforward to generalise Theorem 5 to the case of multiple global maxima
of W. In the general case, one needs to consider intervals from which exit is possible
to the left or the right. The exit time from one of these intervals is bounded by the
lesser of the greatest potential difference incurred moving to the left and the greatest
incurred moving to the right.

The result obtained is weaker than that in Theorem 4: here only the expectation
of the exit time is estimated. Other features of its distribution, for example quantiles
such as the median, may go to infinity at a much slower rate. To understand this, note
that in order to estimate the expectation one must take into account the possibility
that an unlikely transition results in the system moving from the current equilibrium
to another equilibrium with long escape times. Such a transition may be rare enough
that it does not affect probabilities much, but may make a large contribution to ex-
pected waiting times. A further discussion of this point can be found in Freidlin and
Wentzell (1998) Chapter 6, Section 5. For this reason, Theorem 5 is a relatively weak
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statement about the behaviour of waiting times, though it a weakness shared by the
results in Ellison (2000), who also only estimates expected waiting times.

The results of this Section can in principle be extended to higher dimensions. The
obstacles are first that as noted the problem of behaviour near boundaries poses more
technical obstacles. Secondly, the equation corresponding to (18) is harder to solve -
it is an example of the Hamilton-Jacobi equation. Numerical solution is necessary in
general.

These results are applied to the examples of Section 2 in the next two Sections.
They are used to give general characterisations in Section 7.

Section 5. Examples

This Section applies the results to the examples of Section 2.

Example 1 (Binmore and Samuelson) Here only unit jumps to the left and right
are possible. (20) therefore becomes

Ai(@) (™ = 1) + A2y - 1) =0 (30)

or equivalently
(y = 1) (=A-1(z) +yha(z)) = 0 (31)

The root y =1 is, as noted, irrelevant and so taking the other root, one obtains,

W) = / RN (32)

Theorem 3 implies that the equilibrium with the greatest value of W is selected as
N — oo, which is exactly the result obtained by Binmore and Samuelson (1997) by
direct calculation.

Example 6 (Kandori) Here jumps to the left by two units and to the right by one
unit are the only ones possible. (20) therefore becomes

Aa(z)(y™* = 1) + Xi(2)(y — 1) =0 (33)

or equivalently
(y = 1) (-A=2(@) (1 +y) + Mi(2)y?) =0 (34)

The positive root not equal to one is again the relevant one, so one obtains

O S AR S RN GIEG .

2M1(6)

Again Theorem 3 implies that the equilibrium with the largest value of W is selected as
N — o0, as obtained by Kandori (1999) by approximating the stationary distribution.
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Waiting times can be calculated in this and the previous example using Theorems 4
and 5.

Examples 2 to 5 If jumps may take place by up to K to the left and K5 to the right,
then one obtains, after removing the factor y — 1, a polynomial of degree K; + K5 — 1:

Kl—l Kl K1+K2—1 K2
T=p) [ D v D 2@ |— X v X N@]|=0 (6
=0 1=Ki1—1 1=K j=i—K;+1

For the case of pairs meeting at random and revising strategies before or after an en-
counter, K1 = Ky = 2, so this yields a cubic equation, which is soluble analytically.
In general of course one would need to resort to numerical solution, but these equa-
tions are more tractable than the difference equations required to find the steady-state
distributions directly.

In the case of Examples 2 and 3 (36) is soluble analytically and this case is consid-
ered in detail in the next section. Section 7 considers general properties of equilibrium
selection obtainable even when analytical solutions are not available.

6. Match-Independent Choices

This section shows that the case of Examples 2 and 3 can be analysed rather simply.
These dynamics share the feature that when a player changes strategy, the action he
takes, there a perturbed best-reply to the the current distribution of strategies, is
independent of the strategies of the players with whom he is actually matched. This
contrasts with Examples 4 and 5. The analysis will apply to any dynamic with the
property of match-independent choices, not just ones where players take perturbed best
replies.

The general framework considered is that a group of K players revises strategy at
a time. Revisions take place at rate 1 per unit time (as will be seen in the next section,
this is without loss of generality, since it is assumed that players are selected purely
randomly from the population). If a player is currently playing strategy 2, he plays
strategy 1 with probability p(z), if he is playing strategy 1 he switches to strategy 2
with probability ¢(z).’> In the case of perturbed best-reply dynamics, ¢(z) = 1 — p(z),
but the current formulation allows for some inertia in behaviour.

If K = 1, this yields a birth-death process with rates A1(z) = (1 — z)p(z) and
A1 = zq(x). p(zr) and ¢(x) are assumed strictly positive and Lipschitz-continuous
on [0, 1], so that the Assumptions of Section 3 are satisfied. These restrictions rule
out pure best-reply dynamics and the Kandori et al. (1993) mistakes model, but are
consistent with the models of perturbed best-replies considered by Blume (1994) and
in another context Fudenberg and Kreps (1993). In this case of course, one finds just

5For convenience it is assumed that a player includes himself in the population average. The
Lipschitz-continuity assumptions on p and g imply this does not affect the limiting results.
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as in (32)

B ”On £q(6)
W) = [ e (37)

Blume (1994) has considered this dynamic in the case of 2 x 2 symmetric co-

ordination games with p =1 — ¢ and

P
1—p

In

= Bg(Ar) (38)

where A is the difference in payoffs between the strategies 1 and 2 and 3 is a parameter.
The larger 8 the closer to pure best-replies choices are.

In a 2 x 2 symmetric co-ordination game there are three equilibria: x =0, z = 1,
and a mixed equilibrium z*. If * < 1/2, then = 1 is the risk-dominant equilibrium
since it has the larger basin of attraction (see Figure 3). Blume (1994) shows that if
only the difference in payoffs affects choices, so g is an odd function g(y) = —g(—y),
then for large 8 the risk-dominant equilibrium is selected. This is easy to show in the
current framework:

Lemma 4 Assume that g is a C* increasing function of Ar with ¢’ > 0 in a neighbour-
hood of 0. For large 3, (3) has three zeroes xo(3), 1(3) and x3() with limg_,~ x¢ = 0,
limg_yo0 1 = 1, and limg_, o x3 = z*. If2* < 1/2, then for large 8, W(x) is maximised
at x1, so x1 is the selected equilibrium.

The proof is in the Appendix. The first part of the statement states for large f,
the equilibria of the system are close to those of the original game.
To analyse the general case, note that (20) can be re-written as

S X@)y ) Xyt =D Nil@) + > Xilx) (39)

>0 <0 >0 1<0

Explicit expressions for \;(z) rapidly become very messy, so a more elegant ap-
proach will be used. (39) can be written more symmetrically by introducing dummy
jumps of size 0. If Adg(z) =1 — 37, Ai(z), then (39) is equivalent to

G(y) =1 (40)

where

Gly) = Y M@y (a1)

is the probability generating function of the distribution defined by the A;.

In the cases under consideration, by assumption each player’s revision of strategy
is independent of the choices of the other players revising strategy at the same time.
If a single player playing strategy 2 is chosen to revise his strategy and switches to 1,
the number of players playing 1 increases by 1. This event has probability p(1 — z).
With probability gz a player playing strategy 1 switches to 2, so the number playing
1 decreases by 1. In the remaining cases, the change is zero. Now the K players revise
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independently, so the distribution of total change in numbers playing 1 is that of the
sum of K independent random variables, each taking value 1 with probability p(1 —x),
—1 with probability gz and 0 with probability 1 — p(1 — z) — qz.

(40) can therefore be re-written as

(Gi(y) " =1 (42)

where
Gi(y) = p(x)(1 — 2)y + zq(z)y ™" + (1 = p(e) (1 — ) — zq(x)) (43)

is the probability generating function when a single player is chosen to revise strategy.
It is easy to see that the only roots of (42) with y > 0 are those of G1(y) = 0,
namely y = 1 and y = (1 — z)p/qz. It follows that

Theorem 6 With match-independent choices, the quasi-potential function for any K
is the same as for the K = 1, the birth-death case. The equilibrium selection properties
are therefore exactly the same.

In particular, Blume (1994)’s result in Lemma 4 on the selection of the risk-
dominant equilibrium is robust to allowing simultaneous revisions.

One reaction might be that this is not very surprising. If N is large,  changes
rather slowly so K players changing action simultaneously should not be very different
from K changing in quick succession. Nevertheless, it is not at all obvious if one writes
down the explicit equilibrium distributions. A virtue of the current approach is that it
gives a clean and simple proof of this fact.

It follows that with match-independent choices the conclusions of the birth-death
model are robust. For other models, for example those of Examples 4 and 5, this
need not be so. If it is assumed that large groups sample one another or play one
another in round-robin fashion, then this should not be very different from sampling
independently from the whole population, so the birth-death conclusions should also be
robust, though this will depend on the particular model. For small samples, however,
a more detailed analysis is required.

7. General Characterisation Results

This section explores how equilibrium selection can be characterised when the
quasi-potential function cannot be found explicitly. It makes precise the idea that an
equilibrium which is noisier is less likely to be selected, as escape is easier. It also
clarifies the role of the deterministic dynamic in equilibrium selection. In the literature
of equilibrium selection there has been interest in the observation that equilibrium
selection is often independent of the underlying deterministic dynamic (see for example
Kandori et al. (1993), though not if mutations can be strongly state-dependent (see
Bergin and Lipman (1996)). In contrast, with a continuous-state space the underlying
dynamic seems to matter — see for example Fudenberg and Harris (1992) and Binmore
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and Samuelson (1997). This section observes that many deterministic dynamics are
in fact simply time changes of one another and therefore have equivalent selection
properties. Apparent dependence on the deterministic dynamic can often be thought
of as instead resulting from applying different perturbations to the same dynamic.

7.1 Noise

It is convenient to introduce a change of variables. For each z, let A(z) =
Zl_(i(l Ai(x) and p;(x) = X\i(z)/A(z), i = —K4,...,K2. A(z) can thought of as the
rate at which events take place at . When an event occurs, the process jumps to
another state with probabilities given by P(z) = (p;(x)). Note that, in contrast to the
previous section, the device of dummy jumps of size zero is not used here. Dividing
through by A(x), (19) becomes

S ipil) explih) = 1 (4)

i

where h is the variable to be determined.

An immediate observation is that equilibrium selection depends only on the p;,
the jump probabilities, not A. This will be interpreted further below. For the moment
hold A fixed and consider variations in p;. Suppose ). ip;(z) is also held fixed for each
x. This holds the mean drift constant and so from (3), the deterministic drift is left
constant.

Consider comparing a stable equilibrium x* with another equilibrium z’. Now

W(z*) —W(z') = / InU(z)dz (45)
Suppose without loss of generality that 2’ > z*. For x > z* in the basin of attraction
of z*, the desired root h = InU (x) of (44) is positive (escape is costly— see Lemma 1).
exp is a convex function, so a mean-preserving spread (see for example Diamond and
Rothschild (1978)) of the p’s raises the right-hand side for each h, and the desired root
falls (see Appendix for proof). Hence the integrand in (25) is reduced at z. It follows
that W (z*) — W(z') falls.

Hence

Theorem 7 A mean-preserving increase in noise at points in the basin of attraction
of stable equilibrium reduces the value of its quasi-potential relative to that of other
equilibria and so, other things equal, make it less likely to be selected.

The term ‘increase in noise’ seems reasonable as the mean jump size is preserved
but it becomes more variable. The intuition is clear: there is more noise, so jumps
away from the mean path become easier.

Note that with a birth-death model, such as Binmore and Samuelson (1997), or
any model with only two jump sizes, for example Kandori (1999), if one preserves the
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mean the p’s are determined, so this result is vacuous. The more general framework
here allows these features to be separated.

The alert reader may have noted that any transform of the p’s which preserves the
left-hand side of (44) will have the same equilibrium selection properties, regardless of
whether the drift is preserved. It is hard to give interpretable conditions for such a
utility or exponential-moment preserving transform, however, as which moment needs
to preserved is not known in advance. This line of enquiry will therefore not be pursued.

7.2 Deterministic Dynamic

As noted above,
Theorem 8 The equilibrium selected depends only on P(x), not A(x).

This is at first sight surprising. If one slows down events at a particular point a
jump Markov chain will spend more time there and so the stationary distribution will
put more weight there. The equilibrium distribution of a jump chain does not therefore
depend solely on P(x) — or the embedded Markov chain as it is often referred to as (see
Wolff (1989) for example). The difference here is that Assumption 3 restricts A(z) to
be a (Lipschitz-)continuous function of z. If one slows down the process at a particular
point x, so makes departures less frequent, it also slows it down at neighbouring points,
so making returns less frequent. For large N these effects exactly offset one another.

The waiting time estimates of Theorem 4 are also unaffected by changes in A. Of
course, actual waiting times cannot be unaffected. The point is that the estimates of
Theorem 4 only give an estimate of their rate of growth as N becomes large and not
an estimate of their levels.

Although changing A(z) does not affect the equilibrium selection results it does
affect the form the limiting differential equation. This can be written as

W20 Y inil) (46)

(3

Nevertheless, since A(z) > 0 everywhere, this has exactly the same orbits as

=Y o) (47)

7

The factor A(x) simply corresponds to changing the time scale — possibly at a rate
depending on z. At points where A(z) is large, time is measured in smaller units than
at points where it at small. See for example Chicone (1999) p. 14-17 for further details.

From the point of view of equilibrium selection, (46) and (47) are equivalent. They
both can be generated by the same noise process P(z). They simply differ according
to the time scale used. Any difference in equilibrium selection must therefore result
from using different noise processes. This however stems from the fact that different
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noise process can give different equilibrium selection results from the same equation,
not from the form of the deterministic dynamic.

It is therefore natural to ask when two deterministic dynamics are equivalent in
this sense. Now consider

W @ (48)
W) (49)

Definition 1 (48) is equivalent to (49) if f(x) = A(x)g(x) for some Lipschitz-
continuous \(x) with A(x) > 0 all z.

This definition of equivalence implies that (48) can be obtained from (49). The
Lipschitz continuity hypothesis guarantees that if Assumption 3 is satisfied for a finite
model yielding (49), it is also satisfied if rates are rescaled by A(z) to obtain (48). The
other Assumptions also carry over.

The only candidate for A(z) is f(z)/g(x). For A(x) to be always positive f and
g must always have the same sign and vanish at the same points. That is, in the
terminology of Kandori et al. (1993), they must be sign-preserving transformations of
one another. To obey the continuity conditions, however, it must be possible to extend
the definition of f(x)/g(x) in a Lipschitz-continuous way to the common zeroes of of
f and g.

Definition 2 f and g have the same order at a common zero x, if f(x)/g(x) can be
extended to a strictly positive Lipschitz continuous function in a neighbourhood of x.

Essentially this condition says that f and g must go to zero at the same rate. This
puts some restriction on which sign-preserving dynamics are equivalent. One obvious

remark is:

Lemma 5 If f and g are C? and their derivatives are non-zero, that is f and g are
hyperbolic at zeroes, and have the same sign, then they have the same order at common
ZEeroes.

Hyperbolic equilibria are in a sense generic. On the other hand, economic restric-
tions may place restrictions on the nature of f and g, so the assumption of genericity
may sometimes be unreasonable — see for example Binmore and Samuelson (1999) for
further discussion.

If the derivatives of both f and g both vanish then one can look at higher-order
derivatives to settle the matter (by L’Ho6pital’s rule). The condition amounts to the
requirement that the order of the first non-zero higher order derivative, if any, be the
same (and have the same sign). When f and g are analytic, this is equivalent to
requiring that the first non-zero term of their Taylor series expansions be of the same
degree and have the same sign.

In any case, note that the order condition is purely a local condition. To see if f
and g are equivalent one needs know the details of f and g only around equilibria.

To summarise
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Theorem 8 If two deterministic dynamics are sign-preserving transforms of one an-
other and have the same order at zeroes, then they have the same equilibrium selection
properties.

This is an analogous result to that of Kandori et al. (1993) who show that the
same equilibrium is selected in their model for any sign-preserving transform of the
Darwinian dynamic. It is weaker in that one needs to restrict behaviour around zeroes
and there is no need (or natural analogue) for this in the discrete space model they
analyse. On the other hand it suggests, that the dependence on the deterministic
dynamic is less in one-dimensional continuous space models than has been supposed.

In discrete space models the result does not generalise to higher dimensions as the
sign of the dynamic is not enough to determine basins of attraction (see for example
Ellison (2000), Hahn (1995)). Similarly here, even if every component of two vector
fields have the same sign, they cannot in general be written as scalar multiples of one
another. A sign-preserving transform of a given dynamic need not therefore be a time
transform of the original.

Even for a single dynamic, different noise processes P(z), may yield different se-
lection results. The continuous framework yields state-dependent noise in the sense of
Bergin and Lipman (1996) rather naturally. The point is simply that apparent differ-
ences between deterministic dynamics may actually be equivalent to applying different
noise processes to the same dynamic.

8. Conclusion

This paper has presented a general approach to equilibrium selection in one-
dimensional games with large populations. The birth-death approach has many virtues,
including simplicity. It leaves open, however, the question of the generality of the results
obtained. The current approach allows one to assess this. It requires more technical
apparatus but the end results are simple and transparent.
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Appendix

Proof of Lemma 1

The assertion on the number of positive roots follows easily from Descartes’ rule
of signs applied to the equivalent form (36). Let y* = U(z). Call the left-hand side of
(20) h. The derivative of h at y =1 equals ) . iA;(x) and the assertion on the sign of
y* — 1 follows from this.

At a point where ). iX;(z) # 0, the derivative of h at y* must be non-zero,
since the root is simple. Continuity in the coefficients, and so x, follows from the
implicit function theorem. Consider a point z* where ). iX;(z*) = 0. Since A;(x)
are continuous by Assumption 3, it follows from Assumption 4 that one can find a
neighbourhood of z*, N, such that any coefficient of h which is non-zero at z* is
uniformly bounded away from zero in N. Any coefficients zero at x* are zero for all x
in NV. It follows that one can find positive M and k such that if y > M, then h > k and
ify <1/M, h < —k in N. It follows that U(z) € [1/M, M] for z € N'. Considering
convergent subsequences as x tends to z* shows that U(z) must tend to U(z*) = 1.

Proof of Lemma, 2

Lemmas C.9 and C.11 of Appendix C of Shwartz and Weiss (1995) justify the
variational formula. The remainder is immediate.

Proof of Theorem 3

The proof of the Theorem follows that of Theorems 4.1 and 4.2 of Chapter 6 of
Freidlin and Wentzell (1998). The necessary changes are sketched below.

The proof relies on a series of auxiliary Lemmas in Section 1 of Chapter 6 of Freidlin
and Wentzell (1998). Lemma 1.1 follows from Lemmas 6.21 and 6.23 of Shwartz and
Weiss (1995) using Assumptions 1-5. Lemma 1.2 follows immediately. Lemmas 1.3
and 1.4 are not needed here (and in case are true away from the boundary of [0, 1]).
Lemmas 1.5 and 1.6 are immediate.

Lemmas 1.7 and 1.8, replacing e 2 with n here and subsequently, hold for compacta
away from the boundary. This is adequate as they are only needed in Theorem 4.1 for
equilibrium compacta and by Assumption 6 these lie away from the boundary. Theorem
2 of this paper supplies the necessary large deviations estimates.

Lemma 1.9 and its Corollary also hold. The necessary estimate PJ'(7x > kT) <
exp~"C*, for some C, follows from the argument of Lemma 6.32 of Shwartz and
Weiss (1995) for odd integers. Note that this argument requires only Kurtz’s The-
orem (Theorem 1 of this paper), which holds even near the boundary.

Theorem 4.1 also requires estimate (2.3) from Lemma 2.1 of Chapter 6 of Freidlin
and Wentzell (1998). This follows here with Theorem 2 providing the necessary large
deviations estimates — note that only paths joining equilibria directly are considered,
and these do not pass near the boundary. The necessary uniform continuity of the
upper bound holds as the right-hand side of (14) is continuous in z for the closed sets
required. This can be shown using Lemma 6.21 (extended in exercises 6.22 and 6.23)
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and Lemma 6.25 of Shwartz and Weiss (1995) (cf. the proof of Lemma 6.36 of Shwartz
and Weiss (1995)) since Assumptions 3-5 hold. The d-perturbation of the boundary is
irrelevant here. The boundaries of the sets indicated need to be replaced by thin bands
owing to the discreteness of the state space, but this does not affect the proof.

Theorem 4.1 now follows. The tree-characerisation there is easily seen to be equiv-
alent to the characerisation here, on account of the one-dimensional nature of the state.
Theorem 4.2 is immediate.

Proof of Theorem 4

This follows from Theorems 6.15 and 6.17 of Shwartz and Weiss (1995), together
with exercise 6.68 for the cases when a = 0 or b = 1. These results extend to allow
(unstable) equilibrium points at a or b by a similar argument to that in Dembo and
Zeitouni (1993) Corollary 5.7.16.

Proof of Theorem 5

The proof of the Theorem follows that of Theorem 5.3 of Chapter 6 in Freidlin
and Wentzell (1998). Most of the necessary changes are given in the proof of Theorem
2, the remainder are sketched below. Let G = [0, a).

Condition A of Freidlin and Wentzell (1998) is satisfied since any trajectory of (3)
starting in the domain either leaves it and does not return or is attracted to one of the
equilibrium points.

The necessary results from Lemmas 1.1 to 1.9 of Chapter 6 of
Freidlin and Wentzell (1998) follow as in the proof of Theorem 3. Note that Lemma
1.4 is now required but holds as the boundary of G relative to [0,1] is a, # 0, 1.

Estimates (2.3) and (2.4) of Lemma 2.1 of Chapter 6 of Freidlin and Wentzell (1998)
follow as in the proof of Theorem 3 (here using a §-perturbation of the boundary where
necessary). Estimates (2.8) and (2.9) of Lemma 2.2 also follow similarly. Note that for
x = 0or z = 1, the latter follow vacuously as the chain considered in the lemma will hit
the nearest equilibrium point with probability 1 and cannot reach the boundary (unless
there are no equilibria within G, in which case it hits the boundary with probability
1).

Theorem 5.3 now follows. The formula given by Freidlin and Wentzell (1998)
implies the one given in this particular case, as can be seen as follows. A more detailed
discussion can be found in Beggs (2002b).

The case when G contains no equilibria is immediate, so assume G contains equi-
libria {x1,..., 2y} with z; < 22 < ... < x,,. It is easy to see that the worst case for
exit times in the formula in Freidlin and Wentzell (1998), and here, occurs when the
process starts at an equilibrium, so concentrate on estimating the exit time starting
from an equilibrium.

The formula in Freidlin and Wentzell (1998) implies that for any point z; the
logarithm of the expected time to exit G divided by N converges to

Wa — Mg(w;) (50)
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where
m+1

i=1
with .
Clas, ) = { (W (2s) = W(ay))* j=i—Li+1 -
= +00 otherwise

and =41 = a. ()t denotes the positive part. In other words Wg gives the cost of
connecting all points in G to a.

Mg (z;) is the minimum cost of a graph without loops which connects x; to some
point x; # a (possibly itself), to be chosen, and all other points either to z; or to a. All
points to the left of z; must be connected to x;. Suppose that all points from z; > x;
are connected to a (if z; = a this means all points in G are connected to z;).

For fixed z; and zy, (50) becomes

EC(ZEZ,CL‘HJ) — C(ZEH_l,JJl) + C(l‘k_l, xk) (53)
I=j
= W(z;) = W(ar—1) + (W(zr—1) = W(zx))" (54)

using (52).

For given z;, calculating Mg(z;) is equivalent to choosing z; and zp > x; to
maximise this expression. An upper bound for all x; is obtained by maxmising it only
subject to the constraint x; > z;. The bound is exact when z; equals one of the
maximising values of x;. This yields the bounds in the text.

Proof of Lemma 4

The fact that g is C'' guarantees the Lipschitz continuity assumptions. Assumption
7 will follow from the proof below and the other assumptions are immediate. A rest
point of (3) is a point where p(z) = x.

__exp(Bg(Am))
PO) = 5 exp (g (Am) )
and p
ﬁ = ABg'p(1 - p) (56)

where A is a constant.

Since g(0) = 0 and g’ > 0 in a neighbourhood of 0, as 8 — oo, p(0) — 0 and p(1) —
1, while p(z*) = 1/2. The same assumptions imply one can find a neighbourhood, N/,
of x* such that ¢’ (A(w(x)) is bounded below by £ > 0 and so |g((A(n(z))| > € for
x & N, some € > 0. Given n > 0 small enough, one can therefore find 3* such that
for all B > g*, for all x ¢ N, min{p(z),1 — p(x)} < n and so, using (56), dp/dz < 1.
Enlarging * if necessary, from (56), dp/dx > 1 for all z € N for which p = x. The
assertions on the number and properties of the equilibria follow easily from this.
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W(a:l)—W(:EO):—/ 1lnlf5

The first term is bounded and can be neglected for large 8. For large enough 3, x¢

dé + / g (an(e) de (57)

and x; are close to 0 and 1 respectively. g (Ax(z)) is an odd function of x — z*, since
payoffs are linear in 2 (see Figure 3), and so for large /3 the second integral is positive
if z* < 1/2. It follows that for large enough 8, W (z1) > W (xo) and so z; is selected.

Proof of Theorem 7

As noted in Lemma 1, the derivative of the left-hand side of (20) at y = 1 is
negative if ). i\;(z) is negative, as it is for x > z* in the basin of attraction of z*.
Since y* = U(z) > 1, it follows that at y*, the slope of the left-hand side of (20) is
positive. The result follows from the remarks in the text.
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