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Abstract

This paper assumes that in addition to conventional preferences over outcomes, players in a strategic
environment have preferences over strategies. It provides conditions under which a player’s preferences over
strategies can be represented as a weighted average of the utility from outcomes of the individual and his
opponents. The weight one player places on an opponent’s utility from outcomes depends on the players’
joint behavior. In this way, the framework is rich enough to describe the behavior of individuals who repay
kindness with kindness and meanness with meanness. The paper identifies restrictions that the theory places
on rational behavior.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The notion that economic agents act rationally is a premise that unites most work in economic
theory. The rationality assumption is often stated broadly and implemented narrowly. The broad
version of the assumption is that agents are goal oriented and seek to maximize preferences
subject to constraints. The narrow version of the assumption is that the domains of individuals’
preferences depend only on those aspects of an allocation that directly influence their material
well-being.
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This paper lays the foundations for an extension of the narrow view of rationality in strategic
settings. No modification of game theory is needed to permit individuals to be motivated by some-
thing other than material well-being. The utility in standard game theory may be derived from
arbitrary preferences over outcome distributions. Our theory goes beyond this. We present a rep-
resentation theorem in games that incorporates the possibility that preferences will be influenced
by the behavior of others.

Game theory always assumes that players have preference relations defined on lotteries over
outcomes. Our starting point is to assume in addition that players have preferences over strategies.
Since the space of (mixed) strategies is a mixture space, it lends itself to the expected utility setup.
In other words, we assume that for any three strategies �1, �2, and �3, and for all � ∈ (0, 1],
�1��2 iff ��1 + (1 − �)�3���2 + (1 − �)�3. This, together with continuity and transitivity,
implies that preferences over strategies can be represented by an expected utility functional. This
utility does not have to agree with the expected utility from payoffs obtained when the player uses
this strategy.

Section 2 presents the basic representation theorem. We show that in a fixed game G, and given
that a strategy profile �∗ describes the expected pattern of play, player i’s preferences over his own
strategies �i , given that the rest of players are playing �∗−i , are represented by a utility function
of the form:

ui(�i , �
∗−i ) +

∑
j �=i

a
j
i,�∗uj (�i , �

∗−i ).

The representation is a weighted sum of the players’ utilities, where the weight player i gives to
player j’s utility, a

j
i,�∗ , depends on the entire strategy profile �∗. This result is a consequence of a

theorem due to Harsanyi [23]. The critical assumption is that if, given a fixed strategy profile of
player i’s opponents, two of player i’s strategies lead to the same distribution of expected utility
(from outcomes) for all players, then player i is indifferent between these two strategies. The
coefficients a

j
i,�∗ represent the degree to which player i is willing to take person j’s interests into

consideration. In standard theory, a
j
i,�∗ ≡ 0 for j �= i. Positive values of the coefficient suggest

that player i is willing to sacrifice his non-strategic payoff from outcomes in order to increase the
payoff of player j. Negative values suggest a willingness to sacrifice non-strategic payoff in order
to lower player j’s payoff. Since player i’s coefficient depends on player j’s strategy, the players
may exhibit preferences for reciprocity. A player may be willing to make sacrifices (lowering his
utility from outcomes) to increase or decrease his opponent’s payoff in the same strategic setting.

The analysis in Section 2 relaxes the assumption that a player’s preferences over outcomes
completely determine his preferences over strategies. Consequently, the theory permits a much
wider range of preferences than standard theory. In Section 3 we ask whether the theory provides
any restrictions at all. We place no restrictions on the functional form identified in Section 2 and
show that there are outcomes that an outside observer, knowing the players’ preferences over
payoffs, but not their preferences over strategies, could rule out either on the basis of rationality
or equilibrium behavior. We characterize dominance relationships when players have general
preferences over strategies.

Section 4 shows how our model can be used to organize some experimental results in which
players systematically exhibit behavior that is not consistent with standard game theory. Section
5 discusses a few examples that illustrate important features of our model. In particular, we
argue that equilibrium outcomes depending on whether mixed strategy equilibria are viewed as
equilibria in beliefs or the result of deliberate randomization.
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Section 6.1 discusses the relationship between our model and psychological games. Psycholog-
ical games were introduced by Geanakoplos et al. [21] to study strategic situations in which the
beliefs that players have about their opponents enter independently into preferences. Rabin [27]
and others have used psychological games to model attitudes towards fairness and reciprocity
in games. Our approach amounts to a reformulation of an interesting class of psychological
games. The representation theorem provides an axiomatic foundation for preferences that are
linear in opponents’ utilities over outcomes. By identifying our model with psychological games,
we demonstrate that one cannot reproduce our results under standard assumptions.

A number of papers have proposed models of extended preferences designed to describe
and organize experimental findings that are inconsistent with narrow notions of rationality.
A comprehensive survey is provided in Sobel [29]. We describe some of these contributions in
Section 6.2.

2. Representation theorems

This section introduces our model, states the basic axioms, and provides a representation the-
orem for preferences over strategies.

Let Xi be the space of outcomes to player i, i = 1, . . . , I . Each player has preferences �out
i over

�(Xi), the space of lotteries over Xi . A game is a finite collection si = {s1
i , . . . , s

ni

i } of strategies

for player i, i = 1, . . . , I , together with the payoff function O : ∏I
j=1 sj → ∏I

j=1 Xj . Let
∑

i

be the space of mixed strategies of player i and extend O to be from
∏I

j=1
∑

j to
∏I

j=1 �(Xj ).

Throughout the paper,
∑ = ∏I

j=1
∑

j . 1

Given a game, player i has a complete and transitive preference relation over
∑

i . These prefer-
ences depend of course on �−i , the strategies of other players, and possibly also on i’s interpretation
of these strategies or the “context” in which the game is being played. We assume that the context
is summarized by a mixed strategy profile �∗, which we interpret as a description of the conven-
tional way in which the game is played. 2 It is within this context that players rank their available
strategies. Formally, given �∗ = (�∗

i , �
∗−i ), player i has preferences �i,�∗ over

∑
i . The statement

�i �i,�∗ �′
i says the given the context �∗, player i would prefer to play �i rather than �′

i .
Preferences over outcomes do not depend on the strategic context and can be elicited (in

principle) by observing choices over lotteries over outcomes. Similarly, an agent’s preferences
over strategies can be elicited by asking him to choose between lotteries over strategies. Once
preferences are elicited, it is possible to check whether they satisfy the axioms we impose below. 3

In this framework, two solution concepts are relevant.

Definition 1. A Nash equilibrium is a strategy profile �∗ in which agent i’s strategy, �∗
i , is maximal

according to �i,�∗ .

In the definition of Nash equilibrium player i selects �i , treating the context �∗ as fixed. Player
i can vary his strategy, but potential deviations do not influence the context that he uses to judge

1 Strategies (si ), strategy sets (
∑

i ), outcome functions (O) and preferences over strategies (see below) can vary with
the game. Our analysis always concentrates on a fixed game, however, so we suppress this dependence in our notation.

2 Alternatively, for each i, �∗−i
represents player i’s beliefs about how his opponents play the game.

3 Strictly speaking, we must maintain the self-interest assumption (stated below) in order to rule out the possibility that
elicited preferences reveal indifference rather than strict preference.
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his opponents’ behavior. When interpreting how nice an opponent j is, player i should evaluate j’s
action on the basis of what player j thinks i is going to do (�∗

i ), not on what he actually does (�i),
as player j cannot see i deviating. Of course, in equilibrium j’s beliefs about i’s choice of strategy
and i’s actual choice should agree.

As we discuss in Section 5 the interpretation of the equilibrium depends critically on whether
one believes that players consciously randomize. 4 For this reason, we define equilibrium in
beliefs.

Definition 2. The belief profile �∗ ∈ ∑
forms an equilibrium in beliefs if �∗

i (s
k
i ) > 0 implies

that sk
i �i,�∗si for all si ∈ si .

We interpret �∗−i as player i’s beliefs over his opponents’ strategy choice. In an equilibrium in
beliefs, each player believes his opponents place positive probability only on those pure strategies
that are maximal according to their preferences over strategies. That is, in equilibrium, a player
believes that his opponent only selects a strategy that is a best response to beliefs about how others
play. Player i may have non-degenerate beliefs about the behavior of his opponents’ strategy
because i does not know what pure strategy other players will play. Nash equilibrium, taken
literally, requires that the uncertainty be the result of conscious randomization. Equilibrium in
beliefs allows the possibility that other players do not randomize, but player i is uncertain about
which best responses they use.

We assume that the preferences �i,�∗ satisfy the following axioms.
(C) Continuity: For every �i ∈ ∑

i and �∗ ∈ ∑
, the sets {(�′

i , �
∗) : �′

i�i,�∗�i} and {(�′
i , �

∗) :
�i�i,�∗�′

i} are closed subsets of
∑

i × ∑
.

(IND) Independence: For every �i , �′
i , �

′′
i ∈ ∑

i , �
∗ ∈ ∑

, and � ∈ (0, 1], �i�i,�∗�′
i iff ��i +

(1 − �)�′′
i �i,�∗��′

i + (1 − �)�′′
i .

The following straightforward existence result, Lemma 1, follows from standard arguments. 5

Lemma 1. If, for a given game, all players’ preferences satisfy the continuity and the indepen-
dence axioms, then Nash equilibrium exists for this game.

We make two more assumptions.
(EU) Expected utility: The preferences �out

i over lotteries of payoffs satisfy the assumptions of
expected utility theory.

It follows by this axiom that there are vN-M utility functions ui : Xi → 	 such that the preferences
�out

i over �(Xi), the set of lotteries over Xi , are represented by the expected value of the utility ui

from their payoffs. These functions are unique up to affine transformations of the form �iui + �i ,
with �i > 0. To simplify notation, denote by ui(�) the expectation of the utility ui player i receives
from the lottery Oi(�) (Oi is the lottery person i receives from O). Let u(�) = (u1(�), . . . , uI (�)).
(SI) Self interest: Suppose that Oj(�i , �∗−i ) ∼out

j Oj (�′
i , �

∗−i ) for all j �= i. Then �i�i,�∗�′
i if,

and only if, Oi(�i , �∗−i )�out
i Oi(�′

i , �
∗−i ).

4 To our knowledge, the importance of the interpretation of mixed strategies in models of reciprocity has not received
detailed attention in the literature. Dufwenberg and Kirchsteiger [12] are certainly aware of the issue. They interpret
randomization in their model as a result of incomplete information about population behavior rather than individual
choice.

5 All proofs are contained in the Appendix.
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In terms of utilities, this axiom can be expressed as

• Suppose that uj (�i , �∗−i ) = uj (�′
i , �

∗−i ) for all j �= i. Then �i�i,�∗�′
i if, and only if,

ui(�i , �∗−i )�ui(�′
i , �

∗−i ).

The self-interest axiom implies in particular,

If u(�i , �
∗−i ) = u(�′

i , �
∗−i ) then �i ∼i,�∗ �′

i . (1)

The axioms are weaker than the assumptions on preferences in standard game theory and, as we
show below in Fact 1, yield a correspondingly weaker representation theorem. Standard game the-
ory does not assume that players have preferences over strategies, but it assumes that players act to
maximize their utility over outcomes given the behavior of opponents. Preferences over outcomes
induce preferences over strategies in a natural way: �i�i,�∗�′

i iff ui(�i , �∗−i )�ui(�′
i , �

∗−i ). The
preferences over strategies derived from standard game theory therefore satisfy the continuity,
independence, expected utility, and self-interest axioms. The continuity axiom is weaker in our
framework because it assumes that preferences over strategies do not change too much in response
to small changes in the context �∗, while standard game theory assumes that these preferences
are independent of �∗. The standard self-interest axiom requires that player i’s preferences over
strategies always agree with his preferences over outcomes. We require agreement only when
other players are indifferent (relative to their preferences over outcomes) between him playing �′

i

and �′′
i . 6

The structure of the model so far resembles that of Harsanyi’s social choice theory [23]. In
his model, members of society have preferences over (lotteries) over social states, and these
preferences are expected utility. There are social preferences over the same domain, and these
preferences too are expected utility. Finally, a Pareto assumption connects these preferences,
where it is assumed that if all members of society are indifferent between two social policies,
then so is society. From these assumptions Harsanyi got the “utilitarian” social welfare function∑

�iui . Similarly, we obtain the following fact.

Fact 1. Assume expected utility, continuity, independence, and condition (1). For any given choice
of the utilities u1, . . . , un, the preferences �i,�∗ over

∑
i can be represented by

Vi,�∗(�i ) =
∑
j

a
j
i,�∗uj (�i , �

∗−i ). (2)

Moreover, if the utility allocations induced by person i’s strategies

Ai(�
∗−i ) =

{
u(�i , �

∗−i ) : �i ∈
∑

i

}
has non-empty interior in 	I then the coefficients a

j
i,�∗ , j = 1, . . . , I , are unique up to multipli-

cation of all by the same positive number.

If we replace condition (1) with the self-interest axiom we get the following further restriction
on the representation function.

6 There is a sense in which the self-interest axiom is restrictive. The premise of the axiom is that player i’s attitudes
towards an opponent j depend on j’s preferences over outcomes. The axiom essentially rules out an interdependence in
which player i’s preferences over strategies depend on player j’s preferences over strategies.
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Theorem 1. Given the expected utility, continuity, independence, and self-interest axioms, ai
i,�∗

can be chosen to be equal to one. That is, the preferences �i,�∗ can be represented by

Vi,�∗(�i ) = ui(�i , �
∗−i ) +

∑
j �=i

a
j
i,�∗uj (�i , �

∗−i ). (3)

Moreover, if Ai(�∗−i ) has non-empty interior in 	I , then the coefficients a
j
i,�∗ , j �= i, are unique.

If the preferences �i,�∗ can be represented by (3) we say that player i has reciprocity preferences.

Note that some (or even all) of the a
j
i,�∗ , j �= i, may be negative.

Theorem 1 states conditions under which the coefficients a
j
i,�∗ , j �= i, are uniquely determined

by the utility functions over outcomes. Since our basic assumptions are restrictions on material
preferences, not utility functions, one could ask whether these coefficients are uniquely determined
by preferences. In our framework, the answer is no. To see this, suppose that we write ũk =
�kuk + �k with �k > 0. It follows that the utility function ui(�i , �∗−i ) + ∑

j �=i a
j
i,�∗uj (�i , �∗−i )

represents the same preferences as

ũi (�i , �
∗−i ) +

∑
j �=i

ã
j
i,�∗ ũj (�i , �

∗−i ),

where ã
j
i,�∗ = �ia

j
i,�∗/�j .

In the sequel we fix the vNM utilities u1, . . . , un. The values of the coefficients a
j
i,�∗ are

irrelevant (beyond their sign). However, changes in their values are relevant, for example, when
�∗ changes.

3. Predictions with extended preferences

This paper expands the set of allowable preferences in strategic settings. Since we impose
fewer restrictions on preferences than standard theory, it is obvious that the model permits more
predictions. In this section, we investigate the restrictions on behavior placed by the model.
In order to do so, we ask two questions: What restrictions does rationality place on individual
behavior in our model? Given these restrictions, what kinds of outcomes would an observer expect
to see? A complete theory would predict a single strategy profile for every game. A weak theory
would place no restrictions at all on observations. Standard game theory falls somewhere between
these extremes. We will show that our theory also falls between the extremes, but is weaker than
standard game theory.

There is an extensive literature in standard game theory that takes a decision-theoretic view of
behavior in games. At one extreme is the approach associated with Bernheim [6] and Pearce [26].
They demonstrate that common knowledge of rationality leads to the conclusion that players will
only use rationalizable strategies. 7 Other authors have justified equilibrium predictions under
more restrictive assumptions about beliefs. Aumann [2] demonstrates that common knowledge
of rationality and a common prior assumption lead to correlated equilibria. Aumann’s model
assumes that there is common uncertainty about the state of the world, and the state of the world
includes the strategies to be played in the game. Our decision-theoretic model of preferences

7 In two-player games, rationalizable strategies are precisely those that survive iterative deletion of strictly dominated
strategies.
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over strategies makes no assumption about the structure of preferences when there is (individual)
uncertainty about the context. The profile �∗ must be fixed in order to deduce the representation
(3). Consequently, the approach of Aumann [2] goes beyond the scope of this paper.

There is an alternative epistemic approach that is consistent with our model. Aumann and
Brandenberger [3] show, for two-player games, if there is mutual knowledge of the payoff func-
tions, rationality, and conjectures over opponent’s strategies, then the conjectures constitute a
Nash equilibrium. 8 The essential difference between these results is that Aumann and Branden-
berger [3] assume that players share common beliefs about strategies. The assumption that players
have common beliefs about strategies is natural in our setting, where these shared beliefs become
the “context” used to determine preferences over strategies. Hence, Aumann and Brandenberger’s
framework is an appropriate starting point for our model. With that understanding that conjectures
over strategies determine strategic context, Aumann and Brandenberger’s result extends to our
framework without change. Consequently, there are epistemic foundations for looking at Nash
equilibria as the set of predictions in our model.

We next seek an understanding of the size of the set of Nash equilibria. In standard games, the
set of Nash equilibria is typically a small set of the feasible strategy profiles. Not surprisingly, the
set is larger in our setting. The main result of the section provides a characterization.

We take the perspective of an outside observer who wishes to make predictions given a strategic
setting. It is natural to assume that the observer knows the players’ preferences over outcomes.
Standard analysis makes this assumption and it is difficult to see how one can make predictions
about strategic behavior without it. In standard analysis, once preferences over outcomes are
known, preferences over strategies are determined. In our approach, it is possible for an outside
observer to know preferences over outcomes without knowing preferences over strategies. We
ask, therefore, what would an outside observer view as the set of possible outcomes of a game
under the assumption that players have mutual knowledge of payoff functions, rationality, and
conjectures over opponent’s strategies when the observer knows the strategy sets, the material
preferences, and that preferences over strategies are characterized by a function of the form (3).
That is, we seek to describe the set of possible Nash equilibria when preferences over strategies
obey our axioms, preferences over outcomes are known, but the weights ai,Q are unknown.

We find that the observer thinks that rational players can play precisely those strategies that
are, in a sense we make precise, undominated. We begin the investigation by looking at which
strategies can be rational responses to beliefs. Strategies that are never best responses will not be
played in equilibrium.

We say that �i is a best response to beliefs �j if there exists an a such that

ui(�i , �j ) + auj (�i , �j )�ui(�
′
i , �j ) + auj (�

′
i , �j ) (4)

for all �′
i ∈ ∑

i . �i is a best response if there exists �j and a for which (4) holds.
Our first result, Lemma 2, provides necessary and sufficient conditions on utilities over out-

comes for a mixed strategy �i to be a best response to some strategy of player j. Theorem 2,
generalizing results from standard game theory, relates best responses to undominated strategies:
in two-player games a strategy is undominated if, and only if, it is a best response to some mixed
strategy choice of the opponent. Theorem 3 characterizes the set of strategy profiles that can be
Nash equilibria for some preferences over strategies.

8 Slightly stronger conditions are needed to obtain the same conclusion in n-player games.
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Recall that we say that player i has reciprocity preferences if �i,�∗ can be represented by

Vi,�∗(�i ) = ui(�i , �
∗−i ) + a

j
i,�∗uj (�i , �

∗−i ).

Lemma 2. There exist reciprocity preferences for player i such that �i is a best response to �j

if, and only if, {u(�′
i , �j ) : �′

i ∈ ∑
i} ∩ {(wi, uj (�)) : wi > ui(�)} = ∅.

Notice that the sets compared in the statement of Lemma 2 are subsets of 	2 representing pairs
of utilities. In words, Lemma 2 states that a mixed strategy �i for player i can be a best response to
his opponent’s strategy �j for some supporting weights ai,�∗ unless given his opponent’s strategy,
player i can improve his payoff without changing player j’s payoff. In standard game theory,
whether �i is a best response does not depend on uj .

Remark 1. Lemma 2 requires that the set of pure strategies be finite. For example, assume that∑
i = [−1, 1], ∑

j = {0}, and that u(x, 0) = (x, −x2). In this game, player j is a dummy. It is
clear that

{u(x, 0) : x ∈ [−1, 1]} ∩ {(wi, 0) : wi > 0} = ∅
so the condition in Lemma 2 is satisfied. On the other hand, there is no a such that x = 0 solves
maxx∈[−1,1] x−ax2. That is, there is no a that makes xi = 0 a best response (to xj = 0). The proof
of Lemma 2 fails because it is only possible to separate the disjoint sets {u(x, 0) : x ∈ [−1, 1]}
and {(w, 0) : w > 0} with a horizontal line. We could salvage the conclusion of Lemma 2
if we permitted player i’s preferences over strategies to place zero weight on his utility from
outcomes.

Consider now the notion of dominance. With no restrictions on ai,�∗ , the appropriate notion of
dominance is:

Definition 3. �′
i ∈ ∑

i strictly dominates �i ∈ ∑
i if for all �j ∈ ∑

j , ui(�′
i , �j ) > ui(�i , �j )

and uj (�′
i , �j ) = uj (�i , �j ). If there does not exist a strategy �′

i that strictly dominates �i , then
we say that �i is undominated.

In order for a strategy of player i to be dominated in our setting, there must be another strategy
that provides, for each strategy of player j, a higher payoff from outcomes to player i and the same
payoff from outcomes to player j.

The next lemma generalizes the connection between dominance (a decision-theoretic implica-
tion of rationality) and best responding (a strategic implication of rationality) that is familiar from
standard game theory. Dominated strategies are those strategies that are never best responses.

Theorem 2. The strategy �i ∈ ∑
i is undominated if, and only if, there exist reciprocity prefer-

ences for player i and �j ∈ ∑
j such that �i is a best response to �j .

Just as in standard game theory, rational players will assume that their opponents never play
strictly dominated strategies. Once strictly dominated strategies are deleted, it may be possible to
delete further strategies. In this way, one can develop a theory of rationalizability for games with
reciprocal preferences that is completely analogous to the standard theory.

We now turn to Nash equilibrium. Lemma 2 has an immediate consequence.
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Theorem 3. The strategy profile � = (�i , �j ) can be a Nash equilibrium for some reciprocity
preferences if, and only if,

(1) {u(�′
i , �j ) : �′

i ∈ ∑
i} ∩ {(wi, uj (�)) : wi > ui(�)} = ∅; and

(2) {u(�i , �′
j ) : �′

j ∈ ∑
j } ∩ {(ui(�), wj ) : wj > uj (�)} = ∅.

In standard game theory, 2 × 2 games with generic preferences over outcomes have at most
two pure-strategy equilibria. By contrast, Theorem 3 states that an undominated strategy profile
� can be a Nash equilibrium of the game with an appropriate choice of weights. It follows that for
generic preferences over outcomes, all pure strategy combinations of a 2 × 2 game with generic
preferences over outcomes can be Nash equilibria. 9

Remark 2. Let S∗ be the set of pairs of pure strategies for which the two conditions of Theorem
3 hold. Then, unless we put some restrictions on the functions a

j
i,Q and ai

j,Q, we can define these
functions in such a way that all elements of S∗ become Nash equilibria.

The following example demonstrates that we cannot guarantee that there exist functions a
j
i,Q

and ai
j,Q such that all mixed strategies that satisfy the two conditions of Theorem 3 are Nash

equilibria. That is, Remark 2 does not extend to the entire set of mixed strategies.

Example 1. Consider the game:

s1
j s2

j

s1
i 0, 0 2, 2

s2
i 1, 2 1, 1

Observe that condition (1) of Theorem 3 holds when �j �= ( 1
3 , 2

3 ) or � = ((1, 0), ( 1
3 , 2

3 )).
Similarly, Condition (2) holds when �i �= (0, 1) or when � = ((0, 1), (1, 0)). Hence, the set
of mixed strategies for which the conditions in Theorem 3 hold is neither open nor closed. It
follows from the continuity axiom, however, that the set of Nash equilibria of a game must be
closed. Therefore it is not possible to find functions a

j
i,Q and ai

j,Q such that the entire set of mixed
strategies for which the conditions in Theorem 3 hold are Nash equilibria.

Remark 3. Straightforward generalizations of Lemma 2 and Theorems 2 and 3 exist for games
with more than two players. In this case the preferences �i,� can be represented by

Vi,�(�′
i ) = ui(�

′
i , �−i ) +

∑
j �=i

a
j
i,�uj (�

′
i , �−i ). (5)

9 There are non-generic 2 × 2 games with unique Nash equilibrium. For example, no matter how players weigh their
opponent’s payoff from outcomes, (2, 2) is the only Nash equilibrium of the game:

s1
j

s2
j

s1
i

1, 1 1, 2

s2
i

2, 1 2, 2
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As in the case of standard game theory, the relationship between dominance and the best-response
property needs to be modified when there are more than two players. 10 Theorem 2 must be
modified to read: the strategy �i ∈ ∑

i is undominated if, and only if, there exists preferences
satisfying Eq. (5) such that �i is a best response to a (possibly correlated) distribution over

∑
−i .

The next example illustrates the results of this section in a 3 × 3 game.

Example 2. Consider the game:

s1
j s2

j s3
j

s1
i 1, 1 2, 0 0, 3

s2
i 2, 2 2, −1 2, 3

s3
i 0, −3 5, 4 1, 3

We first discuss dominance. The strategy s1
i is strictly dominated (by a mixture of 4

5 of s2
i and 1

5 of
s3
i ), hence player i will not play s1

i in any equilibrium. None of player j’s strategies are dominated
(even after s1

i is deleted). Therefore, the remaining strategies of the players are rationalizable. 11

Next, we identify the possible pure-strategy Nash equilibria of the game. We noted that s1
i

cannot be used in any Nash equilibrium because it is strictly dominated. (s3
i , s3

j ) cannot be NE

because player i can play s2
i and (s2

i , s2
j ) and (s2

i , s1
j ) cannot be NE because player j can play s3

j .

In fact, (s2
i , s3

j ) must be a NE of this game, since for each player playing anything else will reduce
his own outcome without changing that of his opponent.

In standard game theory (that is, a ≡ 0), the pair (s3
i , s1

j ) is not a NE, therefore it does not
have to be NE when the reciprocity preferences are permitted. However, it may be a NE when
such preferences are assumed. To support this equilibrium, let ai,(s3

i ,s1
j ) = −1 and aj,(s3

i ,s1
j ) = −7.

Finally, is standard game theory (s3
i , s2

j ) must be a NE, while here it may not (for example, when
ai,(s3

i ,s2
j ) = −1).

A full analysis of mixed strategy NE is tedious, and without restrictions on the functions a,
many such equilibria may exist. None place positive probability on s1

i . Another strategy will never
be a part of a NE. Let �∗

j = 1
2 s1

j + 1
2 s2

j . Then i’s response to �∗
j must be s3

i . However, �∗
j cannot

be the optimal response to s3
i . To see why, observe that unless aj,(s3

i ,�∗
j ) = − 7

5 , either s1
j or s2

j are

better than �∗
j when (s3

i , �∗
j ) is played. But when aj,(s3

i ,�∗
j ) = − 7

5 , s3
j is even better.

4. Reciprocity

There is considerable evidence that behavior in games is not consistent with the joint assump-
tions of equilibrium behavior and maximization of monetary payoffs. Some widely replicated
findings from the literature include: proposers typically do not demand all of the surplus in dicta-
tor games; first movers in ultimatum game experiments rarely demand the entire surplus (and when

10 A textbook treatment of this case for standard game theory appears in Fudenberg and Tirole [20, p. 52].
11 This means that any mixture of s2

i
and s3

i
is a best response to a probability distribution over player j’s strategies and

any mixed strategy of player j is a best response to a probability distribution over s2
i

and s3
i

.



U. Segal, J. Sobel / Journal of Economic Theory 136 (2007) 197–216 207

they do, their proposals are often rejected); experimental subjects contribute positive amounts in
public goods games; and players frequently repay transfers and punish greed in trust games. For
more detailed reviews of this literature see, for example, Camerer [9], Fehr and Schmidt [18],
Ledyard [24], Roth [28], and Sobel [29].

Within the framework of optimizing agents and equilibrium behavior, there are two broad
approaches to these anomalies. The first approach, introduced and developed in papers by Bolton
and Ockenfels [7] and Fehr and Schmidt [17], assumes that the preferences of agents depend
non-trivially on the distribution of material payoffs. Levine [25] proposes a variation of this
approach. In his model, individuals differ in their intrinsic “niceness” and people care more about
the material payoffs of nice people. 12 While Bolton and Ockenfels [7] and Fehr and Schmidt
[17] provide evidence that some simple parametric forms of interdependent preferences account
for some of the experimental findings, there is strong evidence that preferences over outcomes
are not fixed, but vary with the game. We discuss below an example that demonstrates the need
to go beyond interdependent preferences.

The other approach considers models in which preferences over outcomes can reflect some
form of reciprocity. Rabin [27] developed a model of reciprocity based on Geanakoplos et al.’s
[21] theory of psychological games. Charness and Rabin [10] and Falk and Fischbacher [14]
build on Rabin’s model to provide alternative models of strategic behavior in which intentions
matter and players have interdependent preferences over outcomes. Dufwenberg and Kirchsteiger
[12] and Falk and Fischbacher [14] adapt Rabin’s model to extensive-form games. 13 Cox et al.
[11] describe a model that combines distributional preferences with concerns about status and
reciprocity.

To get an idea of the importance of assuming preferences depend on more than outcomes,
consider two variations of the ultimatum game. In the first (“three-split”) variation, one player
can propose that he receives 80%, 50%, or 20% of a fixed surplus and the second player can either
accept or reject the proposal. In the second (“two-split”) variation, only first player must choose
between the two unequal proposals. In both cases, if individuals have preferences that depend only
on (and are strictly increasing in) their own material payoffs, then the unique subgame-perfect
equilibrium outcome is for the proposer to ask for 80% of the surplus and for the responder to
agree. Experiments of Falk et al. [13] confirm this prediction for the two-split game, but find that
when a 50–50 proposal is feasible, the proposer frequently makes it (and some responders reject
offers of only 20% of the surplus). To explain these results, it is not enough to assume that players
have preferences that depend on the entire distribution of payoffs. In one case, the responder
rejects an 80–20 division; in the other, he accepts it. 14 The experimental results are intuitive and
are inconsistent with equilibrium models in which preferences depend only on the distribution of
monetary payoff. They suggest that preferences do depend on more than the final division of the
surplus. It is plausible that the responder will view an unequal division of the surplus as “unfair”
when the equal split is available, but not when there are only two proposals available. If unfair

12 Gul and Pesendorfer [22] provide foundations for the models of interdependent preferences and an axiomatization of
the utility function used by Levine [25].

13 Battigalli and Dufwenberg [4] extend the theory of psychological games to extensive form.
14 Levine [25] assumes that agents are uncertain about their opponent’s preferences. In his framework, it is possible that

the first player would use the equal split, if available, to convey information about preferences. Therefore, under some
conditions, responses to the 80–20 division may depend on whether the equal-split proposal is available. These differences
would disappear after players learned their opponent’s preferences.
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offers lead to a large enough (in absolute value) weight on the payoff of the proposer in the utility
function of the responder, then these proposals will be rejected.

It is clear that it is possible to find preferences that satisfy our assumptions in which unequal
offers are rejected in the three-split game but not in the two-split game. It is worth discussing a
potential specification in some detail, however, because the functional form proposed in Rabin’s
[27] model implies that the responder will accept an offer of 20 in the two-split game if and only
if he accepts it in the three-split game.

The weight placed on opponent’s utility in Rabin’s model is the product of a term that summa-
rizes the fairness of the expected outcome and a scaling factor. The specific functional form used
by Rabin does not distinguish between the two- and three-split ultimatum game because, roughly,
in both cases an equal division is treated as the benchmark for a fair outcome. 15 Consequently,
if it is not an equilibrium for the responder to accept a 20% share when the proposer has three
splits available, it will also not be an equilibrium for the responder to accept this share when the
proposer has only two choices available. Dufwenberg and Kirchsteiger [12] specification also has
this property. On the other hand, in Falk and Fischbacher’s [14] model it is possible for the second
mover to accept a small share in the two-split game but not in the three-split game and the status
and reciprocity parameters can be adjusted to permit the responder’s reaction to the (80, 20) split
to depend on the existence of the (50, 50) offer in the model of Cox et al. [11].

The simple way to modify the model is to maintain Rabin’s assumption that whether a weight
is positive or negative depends on some measure of fairness, but to refine the notion of fairness
to distinguish between the two situations. We will now propose simple weights. We concentrate
on the weights used by the responder and assume (simplifying Rabin’s approach), that the weight
depends only on the expected play of the proposer. Modifying our general notation to the example,
let aG(O) denote the weight that the responder places on the proposer’s material payoff in game
G (where G is either II in the two-split game or III in the three-split game), where O = 80, 50,
or 20 is the fraction of the surplus that the proposer offers to the responder. We propose that

aG(O) = �
O − FG

80
, (6)

where FG is a fair outcome for the game G and � > 0 is a normalization.
It is natural to assume that F III = 50 since the utility possibility set of the three-split game

is symmetric and equal division is the symmetric efficient outcome. With this assumption, it
follows from Eq. (6) that aG(20) < 0, so that if � is large enough, it is optimal for the responder
to reject a low offer. On the other hand, unless public randomization is available (to convexify
the set of feasible payoffs), it is reasonable to assume that F II < 50. A full theory of fairness
in this situation would take into account the set of feasible distributions and the first-mover’s
advantageous position. Provided that 20�F II < F III it will be the case (for some choices of �)
that the (80, 20) split is an equilibrium in the two-split game but not in the three-split game. 16

This specification of the coefficient aG leads refutable predictions: if an agent rejects an offer of
20 in the two-split ultimatum game, then he will reject the same offer in the three-split game. In
general, a refinement of our theory that specifies how aG changes with the game G could lead to
refutable hypotheses of behavior over families of games.

15 More precisely, Rabin’s fairness measure looks at deviations from the average between the largest and smallest Pareto-
efficient material payoffs available given the players’ beliefs. When the responder is expected to accept all offers, then
this average is 50% of the surplus whether or not an equal split is available.

16 The result would be clearest if we set F II = 20 so that the second player will accept all offers in equilibrium in the
two-split game.
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Two simple modifications generalize Eq. (6) to arbitrary games. First, one should replace
O by the maximum payoff that the player could obtain given his opponent’s strategy. Second,
one should normalize by dividing by the range of possible payoffs in the game. If uh

j (�i ) =
maxsj ∈Sj

uj (sj , �i ), ūj = maxs∈Si×Sj
uj (s), and uj = mins∈Si×Sj

uj (s), then

a(�i ) =

⎧⎪⎨
⎪⎩

�
uh

j (�i ) − FG

ūj − uj

if ūj − uj > 0,

0 if ūj − uj = 0.

(7)

A more complete theory would specify a fair outcome (FG) and a normalization. Charness
and Rabin [10], Dufwenberg and Kirchsteiger [12], Falk and Fischbacher [14], and Rabin [27]
all propose specific functional forms for � and FG. Unlike our simple model, the values of the
normalization and fair outcome depend not only on the game, but on the context (�∗).

5. Examples

In this section we present some examples to illustrate important ways in which our approach
differs from standard game theory. The following example shows that in our model, Definitions
1 and 2 do not have to lead to the same analysis.

Example 3. Consider the game:

AM PM

AM 10, 10 0, 0

PM 0, 0 10, 10

All 7, 10 7, 10

Column is a plumber and Row is a homeowner with a leaky faucet. Column can come Monday
in the AM or in the PM, while Row can cancel appointments and arrange to be at home Monday
in the AM, in the PM, or all day. The plumber earns 10 if she coordinates with the homeowner,
but nothing otherwise. The homeowner receives a payoff of 10 if he can meet the plumber and
only cancel half of his appointments; he receives 7 if he stays home all day; and he receives 0 if
he fails to coordinate with the plumber. If players’ preferences over strategies agreed with their
preferences over outcomes, then the game has three equilibrium outcomes: (AM, AM), (PM, PM),
and a continuum of equilibria in which the homeowner stays home all day and the plumber places
probability of at least 0.3 on each pure strategy.

Now assume that the homeowner has preferences over strategies that lead him to put a positive
weight on the plumber’s payoff in response to nice behavior (apparent coordination) and a negative
weight in response to nasty behavior. (We assume that the plumber cares only about her own
payoffs.) Clearly, the two pure-strategy equilibria will continue to be equilibria. But if we assume
that randomization by the plumber is purposeful, then the homeowner may well think that a
plumber who randomizes equally between AM and PM is nasty, because this behavior minimizes
the probability of coordination. With a sufficiently negative weight on the plumber’s payoffs, the
homeowner may prefer to play either AM or PM rather than to stay at home all day. Consequently,
there may be an equilibrium in which both the homeowner and the plumber randomize equally
between AM and PM, while (All, 1

2 AM + 1
2 PM) is no longer anequilibrium.
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The above analysis depends on the interpretation of mixed strategies, because how the home-
owner interprets the plumber’s behavior determines the weight that he puts on the plumber’s
payoffs over outcomes. In many applications, it is appropriate to treat the homeowner as if he is
matched against a population of plumbers, some with a tendency to come in the morning, others
with a tendency to come in the afternoon. If the homeowner does not attribute his uncertainty to
a deliberate strategy of the plumber, then it is reasonable to assume that he places a non-negative
weight on the plumber’s payoff. In this case, however, there will be an equilibrium in beliefs in
which the homeowner always stays at home (and she believes with probability greater than 0.3
that the plumber will come at any time).

In standard game theory preferences over strategies are independent of interpretation of mixed
strategies. In this example we suggest that different interpretations of mixed strategies lead to a
different notions of what is a sensible preference over strategies, which in turn leads to differ-
ent predictions. As this paper makes minimal assumptions on preferences over strategies, it is
completely consistent with our approach for preferences over strategies to be independent of the
interpretation of mixed strategies. It is, of course, also consistent with our approach for preferences
over strategies to be different depending on the interpretation of mixed strategies.

In standard game theory, if player i strictly prefers s1
i to s2

i for every pure strategy selected by
j, then s2

i is strictly dominated and will not be used in any equilibrium. In Example 4 there is a
reasonable specification of preferences over strategies in which this relationship does not hold.

Example 4. The players are going to eat dinner together. Row will bring the main course, either
beef or pheasant, and Column will bring the wine, either red or white. Row prefers red wine to
white and pheasant to beef, while Column prefers to drink red wine with beef, but hates a beef,
white-wine menu:

Red White

Beef 15, 30 9, 10

Pheasant 20, 20 10, 20

If the weight that the row player gives to the column player’s utility when Column brings red wine
is sufficiently positive (greater than 1

2 ), then the optimal response of Row to red wine is to supply
beef. On the other hand, if Column brings white wine, Row may give Column’s utility a negative
weight, and if it is sufficiently negative (that is, less than − 1

10 ), he will “punish” her by making
her eat beef with the wrong wine. In standard game theory, if it is a strict best response for Row to
bring beef no matter what Column’s pure strategy choice is, then pheasant is a dominated strategy
and will not be used with positive probability in any equilibrium. This is not so in our model. There
can be an equilibrium in which Row brings pheasant and Column randomizes between red and
white. Specifically, assume that Column brings each wine with probability 1

2 . Column will receive
the expected payoff of 20 from outcomes no matter what Row does. Consequently, Row’s best
response is to bring pheasant, the strategy that maximizes his payoff over outcomes. Assuming
that Column places no weight on her opponent’s payoffs, the game has two Nash equilibrium
outcomes, one in which the meal consists of beef and red wine, the other in which the main course
is pheasant while the choice of wine is uncertain. The same conclusion holds if Row believes that
Column is not purposefully randomizing, but is uncertain about what Column is going to do.

With general preferences over strategies, this game can have an equilibrium in which Row
offers pheasant and Column randomizes, (Pheasant, 50–50). At the same time, Row prefers
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to bring beef in response to either choice of wine. In standard game theory, however, if it is
a strict best response for Row to bring beef no matter what Column’s pure strategy choice,
then pheasant is a dominated strategy and will not be used with positive probability in any
equilibrium.

The next example demonstrates that permitting preferences over strategies to change with the
game creates possibilities that do not exist in standard game theory. We describe a situation in
which a strictly dominated strategy for one player becomes an equilibrium strategy when the
opponent is given a new strategy.

Example 5. Consider the following 2 × 1 game:

Nice

Transfer 10, 30

Keep 20, 10

This game is a decision problem for the row player. The row player starts with $20 and the column
player starts with $10. Row can either transfer $10 to Column or keep the entire $20 for himself.
If Row does give $10 to Column, Column also receives $10 from a third party. Selfish row players
(and even players with preferences for equitable outcomes) will keep the money.

Now imagine that Column could (at a personal cost of $5) take Row’s money. This creates a
game in which the monetary payoffs are

Nice Greedy

Transfer 10, 30 0, 35

Keep 20, 10 0, 25

(If Column plays her G strategy, then Row gets nothing, while Column gets her original $10 plus
Row’s $20 minus the $5 she spends to take Row’s money. She receives an additional $10 from
the third party when Row plays T.) (T , N) could be a strict Nash equilibrium of this game when
players have preferences over strategies. If the players anticipate that the outcome of the game
is (T , N), then Row has reason to believe that Column is being nice to him—she is forgoing the
opportunity to take his money. Consequently Row may place a sufficiently large positive weight
on Column’s payoff (greater than 1

2 ) to guarantee that T is a best response to N. On the other hand,
a column player who places weight more than 1

2 on Row’s payoffs will respond to T by playing N.
It follows that (T , N) can be an equilibrium of the 2×2 game even though it is not an equilibrium
of the 2 × 1 game. That is, by deleting the strategy G one eliminates the (T , N) equilibrium. This
could not happen in standard game theory where it is not possible to eliminate a Nash equilibrium
by deleting a strategy that is not used with positive probability in the equilibrium. 17 The example
is a simplification of models of gift exchange that give rise to similar qualitative behavior in
experiments. 18

17 Stated generally, if � is a Nash equilibrium of a game G and one obtains the game G′ by deleting strategies in G that
are not in the support of �i for all i, then � is a Nash equilibrium of G′. The same result holds for standard refinements.

18 Experimental studies include Abbink et al. [1], Berg et al. [5], Fehr and Gächter [15], and Fehr et al. [16].
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6. Related approaches

In this section, we compare our approach to related literature.

6.1. Relationship to psychological games

Geanakoplos, Pearce, and Stacchetti (GPS) [21] introduced the concept of psychological games.
Other authors have used their formulation to model preferences for fairness and reciprocity in
strategic settings. In this section, we discuss the connection between GPS’s work and our paper.
We argue that the results in Section 2 provide a reformulation and representation theorem for
psychological games.

Psychological games have players, strategies, and preferences. They differ from standard games
in that preferences are defined on the product space of outcomes and “collectively coherent”
beliefs. 19 Permitting preferences to depend on beliefs makes it possible to use psychological
games to model intentions. A psychological equilibrium consists of a strategy profile and collec-
tively coherent beliefs with the property that the equilibrium strategy is common knowledge 20

and, given beliefs, each player’s strategy choice is a best response. GPS’s [21] central contribution
is to examine the implications of preferences in games that depend on more than the outcomes of
the game. To this extent, our approach is identical. In our model, the extended preferences depend
on a strategy profile (how the game is expected to be played), which we have called “context”
and denoted by �∗. Common knowledge that players use a particular strategy profile identifies a
hierarchy of beliefs (in psychological games) and a context (in our model). Equilibrium requires
both the standard best-response property, but also that the additional argument of utility functions
be the one determined by the putative equilibrium strategy profile.

Our context �∗ truncates the hierarchy of beliefs after just one level. Consequently, the domain
of preferences in GPS [21] is much larger than in our model. This difference is not significant
for our theory or in the existing applications. Theoretically, there are no barriers to extending our
representation theorem to models in which “context” is an element of an arbitrary space (that
is, it is not limited to strategy sets or the space of collectively coherent beliefs). Provided that
the continuity axiom holds when arbitrary hierarchies of beliefs replace context (�∗), the general
topological conditions provided in Border’s [8] treatment of Harsanyi’s [23] theorem still hold
so the results in Section 2 still hold. That is, one can view Fact 1 as a representation theorem
that applies to a class of games that includes an interesting class of psychological games. Our
results do not apply to all psychological games because there is no reason for the preferences over
strategies and beliefs in GPS to satisfy our assumptions. In particular, the separation of material
and non-material utility derived in Theorem 1 does not apply to all psychological games.

6.2. Comparison to other papers

Rabin [27] introduced the idea of using psychological games to study fairness and reciprocity.
Our paper does two things that Rabin does not do. We provide a representation theorem for
preferences over strategies, thereby giving an axiomatic foundation to Rabin’s approach and we

19 An individual’s belief hierarchy is coherent if the marginal distribution of a belief of order k + 1 is equal to the
corresponding belief of order k. A profile of belief hierarchies—one for each player—is collectively coherent if it is
common knowledge that all beliefs are coherent.

20 This condition determines the hierarchy of beliefs for each player.
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have general results on dominance. In addition, the discussion in Section 4 suggests that the
specific functional form proposed by Rabin is limited.

Several recent papers [10,14] combine models of context-dependent strategic preferences with
preferences over outcomes that depend non-trivially on the distribution of material payoffs. Our ap-
proach posits two different preference relationships, making the distinction between strategic and
non-strategic preferences clear. The first relationship, preferences over outcomes, is non-strategic.
In principle, one should be able to identify these preferences by examining the behavior of individ-
uals in decision-theoretical problems. To highlight the distinction, consider the following. Suppose
given a strategy profile, player one could generate any of the monetary payoffs: (3, 4, 0), (3, 0, 4)

and (3, 2, 2) by using his first, second, or third pure strategy, respectively. If these monetary payoffs
were (material) utilities and player 1 was indifferent between his first two strategy choices, then by
(3) he must also be indifferent between all three. One might think that this means that representation
(3) prevents a player from exhibiting preferences over the distribution of payoffs. This is false. If
player 1 prefers the monetary payoffs (3, 2, 2) to the other profiles (because it treats his opponents
equally), then these preferences must be exhibited by his preference over outcomes. If this player’s
preferences over outcomes exhibited inequity aversion (as in [17,7]) then according to his material
preferences (3, 2, 2) would be strictly preferred to (3, 4, 0) and (3, 0, 4). The example in Section
4 demonstrates that interdependent preferences alone are not sufficient to describe experimental
regularities.
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Appendix A. Proofs

Proof of Fact 1. For the linear form, see Border [8] or Fishburn [19]. Uniqueness is similar to
standard uniqueness results of the vN&M utility function. �

Proof of Lemma 1. For each �∗ ∈ ∑
define the correspondence � : ∑ → ∑

by

�i (�
∗) =

{
�i ∈

∑
i

: �i�i,�∗�′
i for all �′

i ∈
∑

i

}
.

�(·) satisfies all of the conditions of Kakutani’s Theorem (convexity follows from the indepen-
dence axiom). Consequently, �(·) has a fixed point, �∗. It follows from the construction that if
�∗

i (s
k
i ) > 0, then sk

i �i,�∗�′
i for all �′

i ∈ ∑
i . �

Proof of Theorem 1. For a given �∗ = (�∗
i , �

∗−i ), suppose first that Ai(�∗−i ) has non-empty inte-
rior in 	I . Let �i , �′

i ∈ ∑
i such that ui(�′

i , �
∗−i ) > ui(�i , �∗−i ) and u−i (�′

i , �
∗−i ) = u−i (�i , �∗−i ).

Hence, by axiom SI,�′
i �i,�∗ �i . By Eq. (2),ai

i,�∗ui(�′
i , �

∗−i )>ai
i,�∗ui(�i , �∗−i ) (sinceu−i (�′

i , �
∗−i )

= u−i (�i , �∗−i )). It follows from ui(�′
i , �

∗−i ) > ui(�i , �∗−i ) that ai
i,�∗ > 0. Multiply all the coef-

ficients by 1/ai
i,�∗ to get the desired result.
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Now suppose that Ai(�∗−i ) has an empty interior in 	I .

1. If there exist u−i and ui �= u′
i such that (ui, u−i ) and (u′

i , u−i ) ∈ Ai(�∗−i ), then, as in the
first part of the proof axiom SI implies that ai

i,�∗ > 0 and all coefficients can be multiplied by

1/ai
i,�∗ .

2. If ui is constant for all elements of Ai(�∗−i ), then ai
i,�∗ can be any number, in particular, it can

be one.
3. Otherwise, since Ai(�∗−i ) is convex and has an empty interior, it is contained in a set of the

form {u : kiui + ∑
j �=i kjuj = C} with ki �= 0 (since ui is a function of u−i on Ai(�∗−i )).

That is, there exists C′ and k′
j for j �= i such that on Ai(�∗−i ) we can write

ui = C′ −
∑
j �=i

k′
j uj . (A.1)

Define new coefficients āi
i,�∗ = 1 and ā

j
i,�∗ = a

j
i,�∗ + (1 − ai

i,�∗)k′
j . It follows that

ai
i,�∗ui(�i , �

∗−i ) +
∑
j �=i

a
j
i,�∗uj (�i , �

∗−i )

= ai
i,�∗C′ +

∑
j �=i

(a
j
i,�∗ − ai

i,�∗k′
j )uj (�i , �

∗−i )

= ai
i,�∗C′ +

∑
j �=i

(ā
j
i,�∗ − k′

j )uj (�i , �
∗−i )

= (ai
i,�∗ − 1)C′ + āi

i,�∗ui(�i , �
∗−i ) +

∑
j �=i

ā
j
i,�∗uj (�i , �

∗−i ),

where the first and last equations follow from (A.1) and the second equation comes from the
definition of āi

i,�∗ . It follows from Eq. (2) that �i,�∗ can be represented using the coefficients

ā
j
i,�∗ . �

Proof of Lemma 2. If the condition in the lemma does not hold, then there exists �′
i ∈ ∑

i such

that ui(�′
i , �j ) > ui(�) and uj (�′

i , �j ) = uj (�). Hence, regardless of the value of a
j
i,�,

ui(�
′
i , �j ) + a

j
i,�uj (�

′
i , �j ) > ui(�) + a

j
i,�uj (�)

so �i is not a best response to �j .
Suppose now that the condition of the lemma is satisfied. It follows that the convex subsets of

	2, {u(�′
i , �j ) : �′

i ∈ ∑
i} and {(w, uj (�)) : w > ui(�)} are disjoint. Therefore, there exists a

separating line between them. That is, there exists (p, q) �= (0, 0) such that for all w�ui(�) and
for all �′

j ∈ ∑
j ,

pw + quj (�)�pui(�
′
i , �j ) + quj (�

′
i , �j ). (A.2)

Since inequality (A.2) holds for all w�ui(�), it must be that p�0. Further, since {u(�′
i , �j ) :

�′
i ∈ ∑

i} is a polygon, we can take p > 0. Now set a
j
i,� = q

p
. It follows from inequality (A.2)

that for all �′
j ∈ ∑

j ,

ui(�) + a
j
i,�uj (�)�ui(�

′
i , �j ) + a

j
i,�uj (�

′
i , �j ). (A.3)
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Inequality (A.3) means that if player i has reciprocity preferences, then �i is a best response
to �j . �

Proof of Theorem 2. It is clear that if�′
i strictly dominates�i , then�i can never be a best response

to any probability distribution over player j’s pure strategies. To prove the converse, define for
each �j ∈ ∑

j , S(�j ) = {(ui(�′
i , s

1
j ), . . . , ui(�′

i , s
nj

j )) : �′
i ∈ ∑

i} and uj (�′
i , �j ) = uj (�)}.

Let v = (ui(�i , s
1
j ), . . . , ui(�i , s

nj

j )). Clearly, v ∈ S(�j ), so S(�j ) is non-empty. Also, S(�j ) is

convex. Let �(�j ) be the set of all p that satisfy p = (p1, . . . , pnj
), p�0, and

∑nj

k=1 pk = 1
such that

ui(�i , p) =
nj∑

k=1

pkvk �
nj∑

k=1

pkui(�
′
i , s

k
j ) = ui(�

′
i , p) (A.4)

for all �′
i ∈ ∑

i such that uj (�′
i , �j ) = uj (�). If �i is undominated, then v is undominated in

S(�j ). It follows that �(�j ) is non-empty (it contains the normal to a hyperplane that separates
S(�j ) from v). It is straightforward to verify that �(·) is an upper hemi-continuous, convex-valued
correspondence from the simplex to itself. Hence it has a fixed point, �∗

j . It follows from (A.4) with
p = �∗

j that ui(�i , �∗
j )�ui(�′

i , �
∗
j ) for all �′

i ∈ ∑
i such that uj (�′

i , �
∗
j ) = uj (�i , �∗

j ). Therefore,
{u(�′

i , �
∗
j ) : �′

i ∈ ∑
i} ∩ {(w, uj (�i , �∗

j )) : w > ui(�i , �∗
j )} = ∅ holds. From Lemma 2,

we see that there exists a such that �i is a best response to �∗
j . �

Proof of Theorem 3. It follows from Lemma 2 that �i is a best response to �j for some a
j
i,� if,

and only if, the first condition in the lemma holds. The second condition is necessary and sufficient
for �j to be a best response to �i for some ai

j,�. �
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