
Kovac, Eugen; Mylovanov, Tymofiy

Working Paper

Stochastic Mechanisms in Settings without Monetary
Transfers: Regular Case

Bonn Econ Discussion Papers, No. 23/2006

Provided in Cooperation with:
Bonn Graduate School of Economics (BGSE), University of Bonn

Suggested Citation: Kovac, Eugen; Mylovanov, Tymofiy (2006) : Stochastic Mechanisms
in Settings without Monetary Transfers: Regular Case, Bonn Econ Discussion Papers, No.
23/2006, University of Bonn, Bonn Graduate School of Economics (BGSE), Bonn

This Version is available at:
https://hdl.handle.net/10419/22968

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/22968
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Bonn Econ Discussion Papers

Discussion Paper 23/2006

Stochastic Mechanisms in Settings without
Monetary Transfers: Regular Case

by

Eugen Kovac, Tymofiy Mylovanov

December 2006

Bonn Graduate School of Economics

Department of Economics

University of Bonn

Adenauerallee 24 - 42

D-53113 Bonn



                                     The Bonn Graduate School of  Economics is
                                                             sponsored by the



Stochastic Mechanisms in Settings without
Monetary Transfers: Regular Case∗
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We study relative performance of stochastic and deterministic mechanisms
in a principal-agent model with hidden information and no monetary transfers.
We present an example in which stochastic mechanisms perform strictly better
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characterization of this mechanism.

JEL codes: D78, D82, L22, M54.

Keywords: optimal delegation, cheap talk, principal-agent relationship, no monetary
transfers, stochastic mechanisms.

∗We thank Georg Noldeke and Larry Samuelson for helpful comments. We are grateful to Ganguly
and Ray for making their survey on cheap talk available to us. Financial support from the Deutsche
Forschungsgemeinschaft through the project SFB/TR 15, Projektbereich A, is greatly appreciated.

†Department of Economics, University of Bonn and CERGE-EI, Charles University, Prague;
e-mail: eugen.kovac@uni-bonn.de.

‡Department of Economics, University of Bonn, and EERC-EROC and KEI, Kiev; e-mail:
mylovanov@uni-bonn.de.



1 Introduction

The literature on optimal mechanisms in the principal-agent model with hidden infor-
mation, no monetary transfers, and single-peaked preferences has restricted attention
to deterministic mechanisms (Alonso and Matouschek [3], Holmström [17], [18], Mar-
timort and Semenov [30], and Melumad and Shibano [31]). This may contain some
loss of generality since stochastic mechanisms can outperform deterministic ones.1

Nevertheless, very little is known about relative performance of stochastic and de-
terministic mechanisms in this setting. The purpose of our paper is to address this
question.

In order to illustrate a potential power of stochastic allocations, in Section 3
we provide an example in which stochastic mechanisms perform strictly better than
deterministic ones (Proposition 2) and can implement any outcome arbitrarily close
to the first-best (Proposition 1). In this example, the parties’ payoffs have different
degrees of curvature: the agent has a quadratic loss function, whereas the principal
has an absolute value loss function. This allows the principal to use variance to
improve agent’s incentives without imposing any cost on herself.

Our main results, however, are obtained for the environment with quadratic pref-
erences of both parties. This is the setting most frequently studied in the literature.2

Proposition 3 in Section 4 shows that under a certain regularity condition an optimal
stochastic mechanism is, in fact, deterministic; it explicitly characterizes this mech-
anism. The regularity condition in this proposition is satisfied in most applications
and is similar to the regularity condition in the optimal auction in Myerson [34] that
requires virtual valuation to be monotone.

The characterization of the optimal mechanism in Proposition 3 is closely related
to the existing results for deterministic mechanisms: Under the regularity condition,
this proposition implies Propositions 2–6 in Alonso and Matouschek [3] (henceforth,
AM), Propositions 2–3 in Martimort and Semenov [30] (henceforth, MS), and Propo-
sition 3 in Melumad and Shibano [31].3 Hence, our results complement the existing
literature by showing that the optimal deterministic mechanisms are also optimal on
the entire set of incentive-compatible mechanisms, including the ones that result in
stochastic allocations.

In a related paper, Goltsman and Pavlov [15] study optimal communication rules

1For example, this is the case in the standard principal-agent model with monetary transfers
(Stiglitz [36], Arnott and Stiglitz [6], and Strausz [37]).

2The setting with quadratic preferences is the leading example in Crawford and Sobel [10]. It has
applied in models in political science, finance, monetary policy, design of organizations. Quadratic
preferences have recently been used (i) as the main framework in Alonso [1], Alonso, Dessein and
Matouschek [2], Alonso and Matouschek [4], Ambrus and Takahashi [5], Dessein and Santos [12],
Ganguly and Ray [14], Goltsman and Pavlov [15], Kraehmer [23], Krishna and Morgan [24], [26], Li
[28], Li [29], Morgan and Stocken [32], Morris [33], Ottaviani and Squintani [35], and Vidal [39], and
(ii) to obtain more specific results in Blume and Board [8], Chakraborty and Harbaugh [9], Dessein
[11], Gordon [16], Ivanov [19], Kartik, Ottaviani and Squintani [21], Kawamura [22], Krishna and
Morgan [25], [27], and Szalay [38]. For a survey of the earlier literature see Ganguly and Ray [13].

3AM and Melumad and Shibano [31] provide results for the case in which our regularity condition
does not hold. Moreover, the environment in AM is more general than in this paper because their
results do not require quadratic preferences of the agent.
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that transform messages from the agent into recommendations for the principal. They
also consider a benchmark case, in which the principal can commit to a stochastic
mechanism, and demonstrate a result similar to Proposition 3 in this paper. Our
results have been obtained independently and our methods of proof are different.
Furthermore, the results in Goltsman and Pavlov [15] are obtained for the setting
with a uniform distribution of private information and a constant bias of the agent.
Proposition 3 in this paper allows for a significantly broader set of distributions and
conflict of preferences.

A growing literature studies multiple extensions of cheap talk communication
(Crawford and Sobel [10]): For instance, Krishna and Morgan [26] consider two rounds
of communication. Ganguly and Ray [14], Goltsman and Pavlov [15], and Krishna
and Morgan [26] analyze communication through a mediator. Finally, in Blume and
Board [8] and Kawamura [22] there is exogenous noise added to the messages of the
agent. This literature identifies equilibria that are Pareto superior to the equilibria in
Crawford and Sobel [10]. In these equilibria, the players’ behavior induces a lottery
over decisions. By contrast, the equilibrium allocation in Crawford and Sobel [10]
is deterministic. This raises a question whether optimal stochastic allocations can
outperform optimal deterministic ones if the principal could commit to a mechanism.
Proposition 3 in this paper and Theorem 1 in Goltsman and Pavlov [15] answer this
question negatively.

The technical approach in this paper is different from the rest of the literature
on optimal mechanisms in the settings with single-peaked preferences. AM, for ex-
ample, derive the optimal deterministic mechanism by considering effects of adding
and removing decisions available to the agent in a mechanism. As they observe,
this is equivalent to a difficult optimization problem over the power set of available
decisions. We do not know how to extend their method to stochastic allocations
considered in this paper. In a setting with single-peaked preferences and monetary
transfers, Krishna and Morgan [27] characterize the optimal deterministic mechanism
using optimal control. Their method is applicable to our setting. It would require,
however, a technical assumption that an optimal allocation is piecewise differentiable.
The arguments in this paper are simpler; they do not deal with power sets, do not
require piecewise differentiability of an allocation, and avoid differential equations.
Nevertheless, we have to restrict attention to quadratic payoffs.

On the other hand, our approach is similar to the one in the optimal auction
literature (e.g., Myerson [34]). For instance, a byproduct of our proof is a charac-
terization of incentive-compatible allocations, analogous to the one in the literature
on mechanism design with monetary transfers.4 Nevertheless, there is a problem of
incorporating constraint of non-negative variance; this difficulty is absent in auction
models. We resolve this problem by expressing the principal’s payoff in terms of a
derivative of a function, whose value can be interpreted analogously to the virtual
valuation. The regularity condition requires this function to be monotone, which in
turn guarantees that the optimal allocation is deterministic.5

4The necessary and sufficient conditions for incentive compatibility of deterministic allocations
in the setting without transfers are given in MS and Melumad and Shibano [31].

5Our regularity condition is connected with conditions used in AM and MS. It is also related to
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The remainder of the paper is organized as follows: Section 2 introduces the
model. Section 3 presents the example. Section 4 derives the main results. Section 5
concludes. The proofs omitted in the main text are presented in the appendix.

2 Environment

There is a principal (she) and an agent (he). The agent has one-dimensional private
information ω ∈ R called a state of the world. The principal’s prior beliefs about ω are
represented by a cumulative distribution function F (ω) with support Ω = [0, 1] and
atomless density f(ω) that is positive and absolutely continuous on Ω. The parties
must make a decision p ∈ R. There are no outside options. The agent has a quadratic
loss function, ua(p, ω) = −(p− ω)2. The principal’s payoff is up(p, ω) = u

(
p− z(ω)

)
,

where u : R → R is a single-peaked function and z : Ω → R is an absolutely
continuous function. The value z(ω) represents principal’s ideal decision and the
difference b(ω) = ω − z(ω) represents the agent’s bias. We will consider two versions
of the principal’s payoff: In Section 3 we assume that the principal has an absolute
value loss function, up(p, ω) = −|p− z(ω)|. In Section 4 we consider a principal with
a quadratic loss function, up(p, ω) = −[p− z(ω)]2.

2.1 Allocations

Let P be the set of probability distributions on R with a finite variance. An allocation
M is a (Borel measurable) function M : Ω → P that maps the agent’s information
into a lottery over decisions. An allocation M is deterministic if for every ω ∈ Ω the
lottery M(ω) implements one decision with certainty. Let M denote the set of all
allocations.

An allocation has two interpretations. First, it can describe the outcome of inter-
action of the agent and the principal in some game. Second, it can describe a decision
problem for the agent in which he chooses a report ω ∈ Ω and obtains a lottery M(ω)
over p. If this interpretation is used, we call M a (direct) mechanism and let EM(ω)

denote the expectation operator associated with this lottery.
A function r : Ω → Ω that maps the agent’s information into a report is an

equilibrium in a direct mechanism M if it maximizes the agent’s expected payoff, i.e.,

r(ω) ∈ arg max
s∈Ω

EM(s)ua(p, ω) for all ω ∈ Ω.

An allocation M is incentive-compatible if truth-telling, i.e., r(ω) = ω for all ω ∈ Ω,
is an equilibrium in the mechanism M . By the Revelation Principle we can restrict
attention to incentive-compatible allocations.

Consider an allocation M and let µM(ω) = EM(ω)p and τM(ω) = VarM(ω) p denote
the expected decision and the variance of the lottery M(ω). Allocation M is deter-
ministic if and only if τM(ω) = 0 for all ω ∈ [0, 1]. Since the agent’s loss is quadratic,

the sufficient condition for the optimality of deterministic mechanisms in the principal-agent problem
with monetary transfers in Strausz [37]. We discuss the relationship between our results and the
existing literature in detail in Section 5.
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his payoff in a state ω from a report ω′ in the mechanism M can be expressed using
µM and τM :

UM
a (ω, ω′) = EM(ω′)ua(p, ω) = −[µM(ω′)− ω]2 − τM(ω′). (1)

In addition, let V M
a (ω) = UM

a (ω, ω) denote the agent’s expected payoff from truth-
telling if the state is ω. The following lemma provides a characterization of incentive-
compatible allocations in terms of (µM , τM).

Lemma 1. An allocation M is incentive-compatible if and only if:

(IC1) µM is non-decreasing,

(IC2) for all ω ∈ Ω:

τM(ω) = −V M
a (0)− [µM(ω)− ω]2 − 2

∫ ω

0

[µM(s)− s] ds,

(IC3) τM(ω) ≥ 0 for all ω ∈ Ω.

Proof. See Appendix A.

An allocation M is optimal in M if it is a solution of the following program

(E) max
M∈M

Eup(p, ω)

s.t. (IC1), (IC2), and (IC3),

where E denotes the expectation operator associated with the cumulative distribution
function F . An optimal allocation maximizes the principal’s ex-ante payoff on the
set of incentive-compatible allocations. As illustrated by Proposition 1 in the next
section, an optimal allocation might fail to exist.

3 Absolute value loss function and constant bias

Consider a principal with an absolute value loss function up(p, ω) = −|p − (ω − b)|,
where b > 0. The principal’s ex-ante payoff is maximized by the first-best allocation
that implements p = ω − b for almost all ω ∈ Ω. This allocation, however, is not
incentive-compatible: In the direct mechanism corresponding to this allocation, the
agent’s payoff is maximized by the report ω′ = min {ω + b, 1} for almost all ω ∈ [0, 1].

In this setting, the variance of the lottery does not have any effect on the principal’s
payoff if all decisions in a lottery are higher than the principal’s preferred decision
p = ω− b. This is not true for the agent. Consider two lotteries, one with an average
decision close to the agent’s preferred decision, pa = ω, and the other with an average
decision close to the principal’s preferred decision, pp = ω − b. If the variance of
the first lottery is relatively high, then the agent prefers the second lottery. This
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suggests that the principal can use variance to implement decisions closer to her
most preferred alternatives. Proposition 1 shows that there exist stochastic incentive-
compatible allocations in which the principal obtains a payoff arbitrarily close to the
first-best payoff of zero. In these allocations, the agent selects a lottery that with
high probability implements the principal’s preferred decision; he avoids lotteries
with more attractive decisions because they are associated with higher variance. In
order to state this proposition, consider some ε > 0 and an allocation M such that

µM(ω) = ω − b + ε, τM(ω) = 2(b− ε)ω, and supp M(ω) ⊆ [ω − b,∞), (2)

for all ω ∈ Ω.6

Proposition 1. For any ε ∈ (0, b), the allocation M satisfying (2) is incentive-
compatible and yields the principal’s ex-ante payoff −ε.

Proof. It is straightforward to verify that M satisfies (IC1)–(IC3) and hence is incentive-
compatible. Because the support of M(ω) belongs to [ω − b,∞), the principal’s ex-
pected payoff from this allocation equals to the expected value of E

(
ω − b− µM(ω)

)
=

−ε.

Thus, the upper bound of the payoffs that can be achieved by stochastic alloca-
tions is zero. By contrast, the upper bound of the payoffs that can be achieved by
deterministic allocations is negative.

Proposition 2. The upper bound of the principal’s ex-ante payoff on the set of
incentive-compatible deterministic allocations is negative.

Proof. See Appendix A.

4 Quadratic payoffs

In this section we consider a principal with a quadratic loss function up(p, ω) =
−[p− z(ω)]2. The same argument as in the previous section implies that there is no
incentive-compatible allocation that implements the first-best. This section derives
the optimal stochastic mechanism under a regularity condition (Assumption 1). We
proceed in three steps. First, we observe that without loss of generality one can
concentrate on allocations that are continuous at 0 and 1 (Lemma 2). Second, we
show that the optimal allocation is constant for a set of low values and a set of
high values of ω (Lemmata 3 and 4). Finally, in Proposition 3 we characterize the
optimal mechanism by applying integration by parts twice to the objective function
in program (E).

6Such an allocation exists. For instance, an allocation that implements the decision p = ω − b
with probability q = 2(b− ε)ω/[ε2 + 2(b− ε)ω] and the decision p = ω − b + [ε2 + 2(b− ε)ω]/ε with
probability 1− q for all ω ∈ [0, 1] satisfies (2).
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Let M be an incentive-compatible allocation. Because the principal’s loss is
quadratic, her payoff given the allocation in a state ω can be expressed as

UM
p (ω) = EM(ω)up(p, ω) = −[µM(ω)− z(ω)]2 − τM(ω),

where the expectation is taken over p. After the substitution of the value of τM(ω)
from (IC2) and taking the expectation over ω, we obtain that the principal’s ex-ante
expected payoff from allocation M is

V M
p = EUM

p (ω) = 2

∫ 1

0

µM(ω)g(ω) dω + hM(0), (3)

where

g(ω) =

(
1− F (ω)

f(ω)
+ z(ω)− ω

)
f(ω) = 1− F (ω) + [z(ω)− ω]f(ω), (4)

hM(ω) = V M
a (ω) + ω2 − E[z(ω′)]2, (5)

and the expectation E[z(ω′)]2 is taken over ω′. The function g defined in (4) is
absolutely continuous. We also impose a regularity assumption.

Assumption 1. If 0 ≤ g(ω) ≤ 1, then g is decreasing in ω.7

This assumption is satisfied, for example, if the distribution function F has in-
creasing hazard rate f(ω)/[1−F (ω)] and the agent’s bias b(ω) = ω− z(ω) is positive
and non-decreasing. Furthermore, Assumption 1 is satisfied if z(ω) = ω, because in
this case g(ω) = 1 − F (ω) ∈ [0, 1]. Therefore, as we will show in Proposition 4, it is
also satisfied if the preferences of the agent and the principal are sufficiently close.

Assumption 1 is somewhat similar to the regularity assumption in the optimal
auction setting in Myerson [34] that requires (1 − F (ω))/f(ω) + z(ω) − ω to be
decreasing. In Myerson’s setting ω is the valuation of the buyer and z(ω) is a revision
effect function (Myerson [34], p. 60) that captures the effect of ω on the payoffs of
other players. Finally, Assumption 1 is related to some of conditions used in AM and
MS; this will be discussed in more detail in Section 5.

LetMc denote the set of all incentive-compatible allocations M where both µM(ω)
and τM(ω) are continuous from the right at ω = 0 and continuous from the left at
ω = 1. In what follows, we restrict our analysis to allocations in Mc. The next
lemma shows that this is without loss of generality.8

7We say that function g is decreasing in point ω if there exists some open neighborhood O of
ω such that for all ω′ ∈ Ω ∩ O: If ω′ < ω, then g(ω′) < g(ω), and if ω′ > ω, then g(ω′) > g(ω).
An alternative (stronger) definition would be to require the function g to be decreasing on some
neighborhood of this point.

8More precisely, we may consider an equivalence relation on the set of all incentive-compatible
allocations M. We say that two allocations M1 and M2 are equivalent if µM1(ω) = µM2(ω) and
τM1(ω) = τM2(ω) for all ω ∈ (0, 1). Lemma 2 then claims that every equivalence class contains an
allocation M c ∈Mc. Therefore, we may identify each equivalence class with an allocation from Mc.
Next, if we know the set of optimal allocations inMc, then the set of all optimal incentive-compatible
allocations can be found by perturbing µM (0), τM (0), µM (1) and τM (1) such that conditions (22)
and (21) in the proof of Lemma 2 hold.
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Lemma 2. Let M be an incentive-compatible allocation. Then there exists an incentive-
compatible allocation M c such that

(i) V Mc

p = V M
p and V Mc

a (ω) = V M
a (ω) for all ω ∈ [0, 1],

(ii) M(ω) = M c(ω) for all ω ∈ (0, 1),

(iii) µMc
(ω) and τMc

(ω) are continuous at 0 and 1.

Proof. See Appendix A.

Now consider an allocation M ∈ Mc. The principal’s ex-ante payoff from this
allocation is given by (3). By incentive compatibility, µM is non-decreasing. It follows
that the principal will be (weakly) better off given an allocation M ′ with µM ′

that is
constant whenever g(ω) is negative. In order to determine the optimal intervals on
which µM ′

is constant let

G(ω) =

∫ ω

0

g(s) ds = E[z(ω′) | ω′ ≤ ω] F (ω) + ω[1− F (ω)]. (6)

This function is clearly continuous. A possible shape of function G is illustrated on
Figure 1.

ω10 β1β0α1 α0

G(β0) = G(1)

G(α0) = α0

45◦

G(ω)

Figure 1: Shape of function G

Let us now assume that the allocation M ∈ Mc has µM(ω) constant on (ω̃, 1].
The principal’s expected payoff from this allocation equals

V M
p = 2

∫ ω̃

0

µM(ω)g(ω) dω + 2µM(ω̃)[G(1)−G(ω̃)] + hM(0), (7)

where hM(0) is defined in (5) and does not depend on ω̃. Next, consider the effect of an
infinitesimal decrease in ω̃ on the principal’s payoff, in the case when G(1)−G(ω̃) < 0.
The first term of (7) decreases at the rate 2µM(ω̃)g(ω̃). There are two effects on the
second term. First, there is an increase at the same rate due to the change in G(ω̃),
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which cancels out with the previous effect. Second, there is an increase due to a
decrease in µM(ω̃). Hence, the principal’s payoff improves. This suggests that it is
optimal to set ω̃ to the value for which the last effect is zero, given by

β0 = inf {ω ∈ [0, 1] : G(ω) ≥ G(1)}. (8)

Because M is an arbitrary allocation in Mc, in the optimal allocation µM is constant
on (β0, 1].

Similarly, it might be optimal to have µM constant on [0, ω̃) for some ω̃ ∈ [0, 1].
For this allocation using (IC2) we obtain that

V M
p = 2

∫ 1

ω̃

µM(ω)g(ω) dω + 2µM(ω̃)[G(ω̃)− ω̃] + hM(ω̃). (9)

An argument similar to the one above suggests that it is optimal to set ω̃ to

α0 = sup {ω ∈ [0, 1] : G(ω) ≥ ω}. (10)

The conditions G(ω) ≥ G(1) in (8) and G(ω) ≥ ω in (10) are equivalent to
E[z(ω′) | ω′ ≥ ω] ≤ ω and E[z(ω′) | ω′ ≤ ω] ≥ ω respectively. In Appendix B, we
prove several facts, (F1)–(F9), about properties of α0, β0 and function g.

In order to prove that α0 and β0 are indeed the optimal values of cutoffs in (7)
and (9), let M be an allocation in Mc and define a new allocation

M(ω) :=





M(α0), if 0 ≤ ω < α0;

M(ω), if α0 ≤ ω ≤ β0;

M(β0), if β0 < ω ≤ 1.

(11)

The values of µ in these two allocations are depicted in Figure 2. Observe that the
value of α0 and β0 are independent of a specific allocation M and depend only on
the principal’s prior beliefs and the agent’s bias. The following Lemma establishes
incentive compatibility of M .

ω10 β0α0

µM(ω)

µM(ω)

Figure 2: Expected decisions in allocations M and M
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Lemma 3. Allocation M is incentive-compatible.

Proof. See Appendix A.

Our next result, Lemma 4, demonstrates that the principal prefers M to M .

Lemma 4. If M is an allocation in Mc, then V M
p ≥ V M

p . If, in addition, µM(0) <

µM(α0) or µM(β0) < µM(1), then V M
p > V M

p .

Proof. See Appendix A.

Let M be the set of all incentive-compatible allocations M ∈ Mc with µM con-
stant on [0, α0) and constant on (β0, 1]. Lemmata 3 and 4 imply that we may restrict
attention to allocations in M.

Corollary 1. An allocation is optimal if and only if it maximizes the principal’s
payoff among allocations from M.

This corollary immediately implies that in an optimal allocation µM(ω) is constant
if α0 > β0. Let now α0 ≤ β0. The payoff in an allocation from M equals

V M
p = 2

∫ β0

α0

µM(ω)g(ω) dω + hM(α0). (12)

It follows from the facts (F1) and (F6)–(F8) proven in Appendix B that g(ω) ∈ (0, 1)
for all ω ∈ (α0, β0). Therefore, g is decreasing on (α0, β0) by Assumption 1. As
the next proposition shows, this implies that an optimal allocation exists and is
deterministic. Furthermore, this allocation is unique in Mc. The implemented de-
cision in this allocation is continuous in ω and takes the minimax form µM(ω) =
min {max {α0, ω}, β0}. This allocation is well-known to be optimal among determin-
istic allocations (Propositions 2–5 in AM, Proposition 3 in MS, and Proposition 3 in
Melumad and Shibano [31]. It is also known to be optimal among stochastic alloca-
tions in the special case of a uniform distribution and a constant bias (Theorem 1 in
Goltsman and Pavlov [15]).

Proposition 3. An optimal allocation in Mc exists and is unique. If α0 < β0, then
the optimal allocation M from Mc is deterministic. It implements the decision

µM(ω) =





α0, if 0 ≤ ω < α0;

ω, if α0 ≤ ω ≤ β0;

β0, if β0 < ω ≤ 1.

(13)

If α0 ≥ β0, then the optimal allocation in Mc is deterministic and is independent of
ω. It implements the decision µM(ω) = Ez(ω′) for all ω ∈ [0, 1].

9



Proof. Case α0 < β0. Let M be an allocation in M. From (12), the principal’s payoff
from M is

V M
p = 2

∫ β0

α0

[µM(ω)− ω]g(ω) dω + V M
a (α0) + C, (14)

where

C = α2
0 − E[z(ω′)]2 + 2

∫ β0

α0

ωg(ω) dω (15)

is a constant independent of a particular allocation M . Since function g is absolutely
continuous, it is differentiable almost everywhere and we can use integration by parts:

2

∫ β0

α0

[µM(ω)− ω]g(ω) dω =

= 2g(β0)

∫ β0

α0

[µM(s)− s] ds− 2

∫ β0

α0

g′(ω)

(∫ ω

α0

[µM(s)− s] ds

)
dω =

(IC2)
= g(β0)V

M
a (β0)− g(α0)V

M
a (α0)−

∫ β0

α0

g′(ω) V M
a (ω) dω.

The substitution of this expression into (14) gives

V M
p = g(β0)V

M
a (β0) + [1− g(α0)]V

M
a (α0)−

∫ β0

α0

g′(ω) V M
a (ω) dω + C. (16)

Now recall that V M
a (ω) ≤ 0 for all ω ∈ [0, 1], where equality holds if and only if

µM(ω) = ω and τM(ω) = 0. In addition, as follows from the discussion preceding
this proposition, function g is decreasing on (α0, β0). Therefore, g′(ω) < 0 almost
everywhere on (α0, β0). This and the fact that g(α0) < 1 and g(β0) > 0 imply that
the first three terms of the right hand side of (16) are non-positive. Therefore, we
obtain

V M
p ≤ C for any M ∈M,

where equality holds if and only if

µM(ω) = ω, τM(ω) = 0, (17)

for ω = α0, ω = β0, and for almost all ω ∈ (α0, β0).

It follows that M is optimal if and only if it satisfies (17).
We can now prove the statement of the proposition. First, the allocation given by

(13) satisfies (17). It also satisfies (IC1)–(IC3) and is, therefore, incentive-compatible.
Thus, it is optimal.

Conversely, consider an allocation M ∈ M that satisfies (17). We will show that
it satisfies (13). The monotonicity condition (IC1) implies that µM(ω) = ω for all
ω ∈ [α0, β0]. The constraint (IC2) together with continuity imply that τM(ω) = 0
for all ω ∈ [α0, β0]. It remains to show that µM(ω) = α0 for all ω ∈ [0, α0) and
µM(ω) = β0 for all ω ∈ (β0, 1]. Because M ∈ M, the value of µM is constant on
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[0, α0) and on (β0, 1]. Let k1 and k2 denote these constants respectively. Then for any
ω ∈ [0, α0), we obtain from (IC2) that

V M
a (α0)− V M

a (ω) = ω2 − α2
0 + 2

∫ α0

ω

µM(s) ds.

Since V M
a (α0) = 0, this reduces to τM(ω) = −(k1−α0)

2, which implies that τM(ω) = 0
and k1 = α0. Similarly, for ω ∈ (β0, 1], we have

V M
a (ω)− V M

a (β0) = β2
0 − ω2 + 2

∫ ω

β0

µM(s) ds,

which reduces to τM(ω) = −(k2 − β0)
2. Hence, τM(ω) = 0 and k2 = β0.

Case α0 ≥ β0. If either α0 > β0 or α0 = 1 or β0 = 0, then any allocation M ∈M
has µM ≡ k constant on [0, 1]. The principal’s payoff from such an allocation is

V M
p = −[k − Ez(ω′)]2 + [Ez(ω′)]2 − E[z(ω′)]2 − τM(0).

It is maximized on the set M if and only if

k = Ez(ω′) and τM(0) = 0.

The remainder of the argument is analogous to the case α0 < β0.
Finally, if α0 = β0 ∈ (0, 1), then Ez(ω′) = G(1) = G(β0) = G(α0) = α0. The

principal’s expected payoff reduces to

V M
p = hM(α0) = V M

a (α0) + α2
0 − E[z(ω′)]2.

It is maximized by V M
a (α0) = 0 or, equivalently, by µM(α0) = α0 = Ez(ω′) and

τM(α0) = 0. The reminder of the argument is analogous to the case α0 < β0.

Proposition 3 shows that there is a unique optimal allocation in Mc. If α0 ≥ β0,
this allocation gives the principal the ex-ante payoff of −Var z(ω′). In this case,
the conflict of preferences between the parties is so severe that it is optimal for the
principal to disregard the agent and make a decision based on her prior beliefs.

If α0 < β0, the optimal allocation gives the principal the payoff of C as given by
(15). In this allocation, the implemented decision depends on the agent’s information.
It is equal to the agent’s most preferred decision if ω ∈ (α0, β0) and is independent
of ω otherwise. The following corollaries describe the conditions under which α0 = 0
and β0 = 1. They are the counterpart of Proposition 3–5 in AM for the case of
deterministic mechanisms.

Corollary 2. The optimal allocation M in Mc implements µM(ω) = max {α0, ω}
for all ω ∈ [0, 1] if and only if z(1) ≥ 1.

Corollary 3. The optimal allocation M in Mc implements µM(ω) = min {ω, β0}
for all ω ∈ [0, 1] if and only if z(0) ≤ 0.

11



Corollary 4. The optimal allocation M in Mc implements µM(ω) = ω for all
ω ∈ [0, 1] if and only if z(0) ≤ 0 and z(1) ≥ 1.

All corollaries follow directly from Proposition 3 and facts (F6)–(F8) proven in
Appendix B.

The next proposition demonstrates that Assumption 1 is satisfied if the parties’
preferences are sufficiently aligned. It also provides comparative statics results for α0

and β0. In order to state the proposition, consider an absolutely continuous function
z̃ : [0, 1] → R. Now let us analyze the principal’s maximization problem (E) under
the assumption that her optimal ideal decision is zλ(ω) = λz̃(ω) + (1 − λ)ω, where
λ ∈ [0, 1].9 In this case, gλ(ω) = 1− F (ω) + λ[z̃(ω)− ω]f(ω).

Proposition 4. If both functions f and z̃ are differentiable and, furthermore, have
bounded derivatives on [0, 1], then:

(i) There exists some λ̄ > 0 such that gλ satisfies Assumption 1 for all λ < λ̄.

(ii) If z̃(0) > 0 and 0 < λ < λ̄, then αλ
0 is increasing in λ.

(iii) If z̃(1) < 1 and 0 < λ < λ̄, then βλ
0 is decreasing in λ.

(iv) If λ → 0, then αλ
0 → 0 and βλ

0 → 0.

Proof. See Appendix A.

For the case of deterministic mechanisms, the result in part (i) of this proposition
has been obtained in Proposition 6 in AM.

5 Related literature

We conclude the paper with a discussion of the related literature. The first part of
this section connects our results with results in AM, MS, and Strausz [37]. The second
part of this section compares our approach with the approach in Krishna and Morgan
[27] who study optimal mechanisms in the setting with single-peaked preferences and
monetary transfers.

AM analyze optimal deterministic mechanisms for the environment in which the
principal’s preferences are quadratic while the agent’s preferences are described by
a symmetric single-peaked payoff function. If we additionally impose that the pref-
erences of the agent are quadratic and Assumption 1 is satisfied, then Proposition
3 implies Propositions 2–6 in AM. Following AM, define the effective backward bias
T (ω) = ω − G(ω) and the effective forward bias S(ω) = G(ω) − G(1). Observe
that Assumption 1 can be equivalently stated as the condition that T (ω) is convex if
T ′(ω) ≥ 0 and S ′(ω) ≥ 0.

9For this problem we will modify our notation by adding the superscript λ.
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Let us now consider Proposition 2 in AM. It states that the optimal deterministic
allocation is independent of ω if and only if

there is no ω ∈ (0, 1) such that T (ω) > 0 and S(ω) < 0. (18)

This condition implies that α0 ≥ β0. Furthermore, if Assumption 1 is satisfied, then
α0 ≥ β0 if and only if (18) is satisfied (this follows from fact (F5) proven in Appendix
B). Thus, under Assumption 1, the statement of Proposition 2 in AM coincides with
the second part of Proposition 3 in our paper and therefore holds also for stochastic
mechanisms.

Proposition 3–5 in AM provide conditions under which the optimal deterministic
mechanism is continuous and characterize this mechanism. Under Assumption 1, the
statements of these propositions follow from the first part of Proposition 3 and are
given in Corollaries 2-4. This is straightforward to check for Proposition 3 and 4 in
AM. Proposition 5 in AM states that the allocation satisfying µM(ω) = ω is optimal
if and only if

max
ω

z(ω) ≥ 1 and min
ω

z(ω) ≤ 0,

T (ω) and S(ω) are increasing, and

T (ω) is convex on [0, 1].

Under Assumption 1, these conditions are necessary and sufficient for α0 = 0 and
β0 = 1. To establish sufficiency, observe that

T (ω) = F (ω) (ω − [z(ω′) | ω′ ≤ ω])

and hence T (0) = 0. Furthermore, α0 = sup {ω ∈ [0, 1] : T (ω) ≤ 0} by definition.
Hence, if T (ω) is increasing, then α0 = 0. A symmetric argument demonstrates that
β0 = 1 if S(ω) is increasing. The necessity of these conditions follows from facts
(F7) and (F8) proven in Appendix B that imply that either α0 > 0 or β0 < 1 if
maxω z(ω) ≥ 1 or minω z(ω) ≤ 0 is not satisfied.

Proposition 6 in AM demonstrates that the optimal deterministic allocation is
given by (13) if preferences of the principal and the agent are sufficiently similar.
This result corresponds to part (i) of Proposition 4 in our paper.

MS consider a setting with a constant bias ω−z(ω) = −δ < 0 for all ω ∈ [0, 1]. In
this setting, z(1) > 1 and, therefore, β0 = β1 = 1 by fact (F6) proven in Appendix B.
Proposition 2 in MS demonstrates that in the optimal deterministic allocation µM(ω)
is continuous if f(ω) − δf ′(ω) ≥ 0 for almost all ω. Observe that this condition
is equivalent to requiring g(ω) to be non-increasing almost everywhere and hence
is similar to Assumption 1. Under the additional assumption that F is strictly log-
concave, Proposition 3 in MS shows that if α0 < 1 the optimal deterministic allocation
satisfies µM(ω) = max{ω, α0}, and that if α0 ≥ 1 the optimal deterministic allocation
is independent from ω. Proposition 3 in this paper extends their result to stochastic
mechanisms and distribution functions that are not log-concave.

The result that Assumption 1 is sufficient for the optimality of deterministic mech-
anism is analogous to the result in Strausz [37] for the principal-agent model with
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monetary transfers. Strausz demonstrates that if an optimal deterministic mecha-
nism includes no bunching, then this mechanism is also optimal among stochastic
mechanisms. In that environment, the bunching does not occur if a monotonicity
constraint similar to (IC1) can be relaxed. In our setting, Assumption 1 guarantees
that (IC1) can be ignored for ω ∈ (α0, β0).

Section 5 in Krishna and Morgan [27] (henceforth, KM) studies optimal determin-
istic allocations in the setting with monetary transfers, single-peaked payoff functions,
and a constant bias. They describe qualitative properties of the optimal allocation
and explicitly characterize it for the case of quadratic preferences and a uniform dis-
tribution. The formal structure of our models are closely related. In their model, the
principal’s and agent’s payoffs are given by

up(µ, ω)− τ and ua(µ, ω, b) + τ,

where up, ua are single-peaked, ω is the agent’s private information, b is the agent’s
bias, µ is the implemented decision, and τ is a positive transfer from the principal to
the agent. In Section 4 in our paper, the principal’s and agent’s payoffs are given by

up(µ, z(ω))− τ and ua(µ, ω)− τ,

where up, ua are quadratic, ω is the agent’s private information, z(ω) is the most
preferred alternative of the principal, µ is the expected implemented decision, and τ
is the variance of the implemented decision. Hence, in our model τ is a cost imposed on
both players, whereas in KM τ is a (positive) payment from the principal to the agent.
KM demonstrate that payments to the agent may improve the principal’s expected
payoff. By contrast, Proposition 3 in this paper shows that under Assumption 1 and
quadratic preferences the principal cannot improve her expected payoff if costs are
imposed on both players.10

A Proofs omitted in the text

Proof of Lemma 1. Let M be an incentive-compatible allocation. Select any ω, ω′ ∈
Ω. By incentive compatibility,

−[µM(ω)− ω]2 − τM(ω) ≥ −[µM(ω′)− ω]2 − τM(ω′),

−[µM(ω′)− ω′]2 − τM(ω′) ≥ −[µM(ω)− ω′]2 − τM(ω).

Adding the above inequalities gives

[µM(ω)− µM(ω′)] (ω − ω′) ≥ 0,

which implies (IC1). Because µM is non-decreasing on Ω, the derivative of the agent’s
payoff with respect to ω,

∂UM
a (ω, ω′)
∂ω

= 2[µM(ω′)− ω]

10It is known, however, that if the principal cannot commit to a mechanism, imposing costs only
on the agent may improve the payoffs of both players (Austen-Smith and Banks [7] and Kartik [20]).

14



is uniformly bounded.11 Therefore, the integral form envelope theorem (Milgrom,
2004, Theorem 3.1) implies

UM
a (ω, ω) = UM

a (0, 0) +

∫ ω

0

∂UM
a (s, s′)
∂s

|s′=s ds for all ω ∈ Ω. (19)

We obtain (IC2) by substituting (1) with ω′ = ω into (19). Finally, condition (IC3)
means that variance of M(ω) must be non-negative.

Now assume that (IC1)–(IC3) are satisfied. By substituting (IC2) with ω = ω′

into (1), we obtain

UM
a (ω, ω′) = UM

a (0, 0)− ω2 + 2µM(ω′)(ω − ω′) + 2

ω′∫

0

µM(s) ds for all ω, ω′ ∈ Ω,

Therefore,

UM
a (ω, ω)− UM

a (ω, ω′) = 2

ω∫

ω′

[µM(s)− µM(ω′)] ds for all ω, ω′ ∈ Ω, (20)

By monotonicity of µM the right hand side of (20) is non-negative.

Proof of Proposition 2. Let M be an incentive-compatible deterministic allocation.
Define ω̄ = min{b, 1} and consider a function ε̃ : R× [0, ω̄] → R such that

ε̃(p, ω) = −
∫ ω

0

|p− (s− b)|f(s) ds−
∫ ω̄

ω

(b− s)f(s) ds

for all p ∈ R and all ω ∈ [0, ω̄].
By (IC1), the function µM is non-decreasing and the limit m = limω→0+ µM(ω)

exists. If m ≥ 0, it follows from (IC1) that µM(ω) ≥ 0 for all (0, ω̄]. In this case,
up

(
µM(ω), ω

)
= −|µM(ω)−(ω−b)| ≤ b−ω for all ω ∈ [0, ω̄]. Therefore, the principal’s

expected payoff is bounded from above by − ∫ ω̄

0
(b− s)f(s) ds = ε̃(0, 0).

Let m < 0. Then, µM(ω) < 0 for some ω ∈ (0, ω̄]. Now define

ω∗ = sup {ω ∈ [0, ω̄] : µM(ω) < 0}.
Clearly, ω∗ > 0. Furthermore, incentive compatibility implies that µM(ω) = m for all
ω ∈ (0, ω∗).12 Finally, if ω∗ < ω̄, then µM(ω) ≥ 0 for all ω ∈ (ω∗, ω̄]. Therefore, the
principal’s expected payoff is bounded from above by

−
∫ ω∗

0

|m− (s− b)|f(s) ds−
∫ ω̄

ω∗
(b− s)f(s) ds = ε̃(m,ω∗).

11The lower bound is 2[µM (0)− 1] and the upper bound is 2µM (1).
12Assume otherwise. Then there exists ω′, 0 ≤ ω′ < ω, such that µM (ω′) < µM (ω) < 0. This

implies µM (ω′) − ω′ < µM (ω) − ω′ < 0 and, hence, Ua(ω′, ω′) < Ua(ω′, ω) in contradiction with
incentive compatibility.

15



The function ε̃ is continuous and negative on R× [0, ω̄]. Let ε̄ denote its maximum
on the (compact) set [−b, 0]×[0, ω̄]. Clearly, ε̄ < 0. Furthermore, ε̃(p, ω) < ε̃(−b, ω) ≤
ε̄ for all p < −b and all ω ∈ [0, ω̄]. Therefore, ε̄ < 0 is the minimum of ε̃ on
(−∞, 0] × [0, ω̄] and is an upper bound on the principal’s expected payoff of the set
of deterministic incentive-compatible allocations.

Proof of Lemma 2. We adopt the standard notation, where superscript “+” at func-
tion’s argument denotes the limit from the right and superscript “−” denotes the
limit from the left. For example, µM ′

(0+) = limω→0+ µM ′
(ω).

Let M ′ be an allocation that satisfies (IC1)–(IC3) for all ω ∈ (0, 1). By mono-
tonicity and continuity of the integral in (IC2), the limits µM ′

(0+), τM ′
(0+), µM ′

(1−),
and τM ′

(1−) exist. Moreover, (IC2) implies that

−[µM ′
(1−)− 1]2 − τM ′

(1−) = −[µM ′
(1)− 1]2 − τM ′

(1).

This together with (IC3) gives

τM ′
(1) = τM ′

(1−) + [µM ′
(1)− µM ′

(1−)] [2− µM ′
(1−)− µM ′

(1)] ≥ 0. (21)

Conversely, it is straightforward to establish that (21) implies that (IC1)–(IC3) hold
for ω = 1. Similarly we can show that (IC1)–(IC3) hold for ω = 0 if and only if

τM ′
(0) = τM ′

(0+) + [µM ′
(0+)− µM ′

(0)] [µM ′
(0+) + µM ′

(0)] ≥ 0. (22)

Now let M be an incentive-compatible allocation and M c be an allocation that
satisfies

µMc
(ω) = µM(ω) and τMc

(ω) = τM(ω) for all ω ∈ (0, 1),
µMc

(0) = µM(0+), τMc
(0) = τM(0+),

τMc
(1) = τM(1−), µMc

(1) = µM(1−).

Allocation M c satisfies conditions (21) and (22) and is, therefore, incentive-compatible.
Furthermore, it satisfies conditions (i)–(iii) by construction.

Proof of Lemma 3. Because M ∈ Mc, this allocation is incentive-compatible. By
construction the allocation M satisfies (IC1) and (IC3). In order to verify that M
satisfies (IC2) we rewrite it as

−[µM(ω)]2 − τM(ω) + [µM(0)]2 + τM(0) = 2

∫ ω

0

µM(s) ds− 2ωµM(ω). (IC′
2)

First, let ω ≤ α0. In this case M satisfies (IC2) because case both sides of (IC′
2)

are equal to zero. Second, let α0 < ω ≤ β0. Subtracting (IC′
2) for allocation M with

the state ω and the state ω = α0 and using M(0) = M(α0), we obtain that (IC′
2) is

satisfied for M . Finally, if ω > β0, (IC′
2) for allocation M is equivalent to (IC′

2) for
allocation M for ω = β0 and hence is satisfied.

16



Proof of Lemma 4. The difference of the principal’s payoffs from M and M is

V M
p − V M

p = 2

∫ 1

β0

[µM(ω)− µM(β0)] g(ω) dω+

+ 2

∫ α0

0

[µM(ω)− µM(α0)] g(ω) dω + V M
a (0)− V M

a (0). (23)

We may rewrite the first integral as

∫ β1

β0

[µM(ω)− µM(β0)] g(ω) dω +

∫ 1

β1

[µM(ω)− µM(β0)] g(ω) dω, (24)

where β1 is defined in Appendix B and β0 ≤ β1 follows from facts (F6) and (F8) proven
in Appendix B. By incentive compatibility, µM(ω) is non-decreasing. Furthermore, g
is positive on [β0, β1) and negative on (β1, 1] by fact (F1) proven in Appendix B. There-

fore, the first integral in (24) is lower than or equal to
∫ β1

β0
[µM(β1)−µM(β0)] g(ω) dω,

and the second integral in (24) is lower than or equal to
∫ 1

β1
[µM(β1)−µM(β0)] g(ω) dω.

Moreover, if µM(β0) < µM(1), then β0 < 1. In this case, at least one of these inequal-
ities is strict by continuity of µM at 1. We have,

∫ 1

β0

[µM(ω)− µM(β0)] g(ω) dω ≤ [µM(β1)− µM(β0)] [G(1)−G(β0)] ≤ 0,

where the first inequality is strict inequality if µM(β0) < µM(1).
We now derive an upper bound for the second part of (23). Observe that V M

a (α0) =

V M
a (α0) by construction of M . Thus,

V M
a (0)− V M

a (0) = [V M
a (0)− V M

a (α0)]− [V M
a (0)− V M

a (α0)] =

(IC2)
= −2

∫ α0

0

[µM(ω)− µM(α0)] dω.

This gives
∫ α0

0

[µM(ω)− µM(α0)] g(ω) dω + V M
a (0)− V M

a (0) =

=

∫ α0

0

[µM(ω)− µM(α0)] [g(ω)− 1] dω ≤

≤
∫ α0

0

[µM(α1)− µM(α0)] [g(ω)− 1] dω = [µM(α1)− µM(α0)] [G(α0)− α0] ≤ 0,

where the inequality in the second line follows from an argument analogous to the one
above. This inequality is strict if µM(0) < µM(α0). We obtain that V M

p − V M
p ≤ 0

with the strict inequality if either µM(0) < µM(α0) or µM(β0) < µM(1).
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Proof of Proposition 4. (i) We will prove a stronger statement that there exists λ̄ > 0
such that d

dω
gλ(ω) < 0 for all λ < λ̄ and ω ∈ [0, 1]. Let m denote the minimum of

function f on [0, 1]. It exists and is positive. By the assumption |z̃′(ω)| ≤ K1 and
|f ′(ω)| ≤ K2 for all ω ∈ [0, 1] and some K1, K2 > 0. Next, function gλ is differentiable
and

d

dω
gλ(ω) = −f(ω) + λ

[(
z̃′(ω)− 1

)
f(ω) +

(
z̃(ω)− ω

)
f ′(ω)

] ≤
≤ −m + λ[|K1 − 1|f(ω) + |z̃(ω)− ω|K2].

The function (K1 − 1)f(ω) + |z̃(ω) − ω|K2 is continuous on [0, 1] and, hence, is
bounded; let K3 > 0 be its upper bound. Then, d

dω
gλ(ω) < −1

2
m + λK3. Setting

λ̄ = min {1,m/(2K3)} completes the proof.

(ii) If z̃(0) > 0, then zλ(0) > 0 for all λ ∈ [0, 1]. Therefore, αλ
0 > 0 by (F7) and

(F8) proven in Appendix B. Furthermore, αλ
0 solves Gλ(ω) = ω by definition. For

ω > 0, this equation can be rewritten as

H(ω, λ) = 0, where H(ω, λ) =

∫ ω

0
F (s) ds∫ ω

0
[z̃(s)− s]f(s) ds

− λ. (25)

For ω = 0 we define H(0, λ) = −λ. (This extension is continuous.13) Part (i) and
(F5) proven in Appendix B imply that (25) has a unique solution for λ < λ̄. Next,

∂

∂ω
H(ω, λ) =

F (ω)∫ ω

0
[z̃(s)− s]f(s) ds

− [z̃(ω)− ω]f(ω)
∫ ω

0
F (s) ds(∫ ω

0
[z̃(s)− s]f(s) ds

)2 . (26)

After substitution ω = αλ
0 and using that H(αλ

0 , λ) = 0, we obtain

∂

∂ω
H(ω, λ)|ω=αλ

0
=

1− gλ(αλ
0)∫ αλ

0

0
[z̃(s)− s]f(s) ds

.

If 0 < λ < λ̄, the denominator equals 1
λ

∫ αλ
0

0
F (s) ds > 0. The numerator is positive

by (F8) proven in Appendix B. Using the Implicit function theorem we obtain

dαλ
0

dλ
= −

∂
∂λ

H(ω, λ)|ω=αλ
0

∂
∂ω

H(ω, λ)|ω=αλ
0

> 0.

(iii) The proof is analogous to part (ii).

(iv) Since λ = 0 implies αλ
0 = 0, it remains to show that αλ

0 is continuous in λ = 0.
Applying L’Hospital rule to (26), it is straightforward to verify that ∂

∂ω
H(ω, λ)

∣∣
λ=0
ω=0

=

1/[2z̃(0)] 6= 0. The remainder of the argument follows from the Implicit function
theorem.

13Using L’Hospital rule we obtain limω→0 H(ω, λ) = limω→0 F (ω)/
[(

z̃(ω)− ω
)
f(ω)

]− λ = −λ.
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B Additional proofs

Let

β1 = max
({ω ∈ [0, 1) : g(ω) ≥ 0} ∪ {0}),

α1 = min
({ω ∈ (0, 1] : g(ω) ≤ 1} ∪ {1}).

There are several useful facts about α0, β0, α1, and β1.

(F1) If ω ∈ [0, β1), then g(ω) > 0, and if ω ∈ (β1, 1], then g(ω) < 0. Similarly, if
ω ∈ [0, α1), then g(ω) > 1, and if ω ∈ (α1, 1], then g(ω) < 1.

(F2) β1 = 1 is equivalent to g(1) = [z(1)− 1]f(1) ≥ 0, or z(1) ≥ 1. Similarly, α1 = 0
is equivalent to g(0) = 1 + z(0)f(0) ≤ 1, or z(0) ≤ 0.

(F3) β1 = 0 is equivalent to g(ω) < 0 for all ω ∈ (0, 1]. Similarly, α1 = 1 is equivalent
to g(ω) > 1 for all ω ∈ [0, 1).

(F4) If 0 < β1 < 1, then g(β1) = 0. Similarly, if 0 < α1 < 1, then due to continuity
g(α1) = 1. Moreover, in both these cases α1 < β1.

(F5) If ω ∈ [0, β0), then G(ω) < G(1), and if ω ∈ (β0, 1), then G(ω) > G(1).
Similarly, if ω ∈ (0, α0), then G(ω) > ω, and if ω ∈ (α0, 1], then G(ω) < ω.

(F6) If z(1) ≥ 1, then β0 = 1 and β1 = 1. Similarly, if z(0) ≤ 0, then α0 = 0 and
α1 = 0.

(F7) If Ez(ω′) ≤ 0, then β0 = 0. Similarly, if Ez(ω′) ≥ 1, then α0 = 1.

(F8) If z(1) < 1 and Ez(ω′) > 0, then β0 ∈ (0, 1). Moreover, in this case β0 < β1

or equivalently g(β0) > 0, and G(β0) = G(1) or equivalently E[z(ω′) | ω′ ≥
β0] = β0. Similarly, if z(0) > 0 and Ez(ω′) < 1, then α0 ∈ (0, 1). Moreover, in
this case α1 < α0 or equivalently g(α0) < 1, and G(α0) = α0 or equivalently
E[z(ω′) | ω′ ≤ α0] = α0.

(F9) α0 ≥ β0 if and only if E[z(ω′) | ω′ ≥ ω] ≤ ω ≤ E[z(ω′) | ω′ ≤ ω] for some
ω ∈ [0, 1].

Proofs of (F1)–(F9). We will prove (F1)–(F8) for β1 and β0. The proofs for α1 and
α0 are analogous.

(F1) The second part follows directly from the definition of β1. The first part clearly
holds if β1 = 0. Let β1 > 0. By continuity of g, we have g(β1) ≥ 0. Then
Assumption 1 implies that there is ω′ ∈ (0, β1) such that g(ω) > 0 for all
ω ∈ [ω′, β1). Assume now (by contradiction) that the set {ω ∈ [0, ω′] : g(ω) ≤ 0}
is non-empty. This set is bounded and closed. Therefore, it is compact and has a
maximal element ω′′. By continuity of g, we have g(ω′′) = 0. Then ω′′ < ω′ and
g is decreasing at ω′′ by Assumption 1. This is a contradiction with maximality
of ω′′.
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(F2) Since f(1) > 0, then g(1) ≥ 0 is equivalent to z(1) ≥ 1. The equivalence
between β1 = 1 and g(1) ≥ 0 follows from (F1).

(F3) The equivalence follows from (F1).

(F4) This statement follows from (F1).

(F5) The first inequality follows from definition of β0. Clearly, G(β0) ≥ G(1). Let
G(ω′) ≤ G(1) for some ω′ ∈ (β0, 1). Then by the Lagrange mean value theorem
there exists ω′′ ∈ (β0, ω

′) such that g(ω′′) = [G(ω′) − G(β0)]/(ω
′ − β0) ≤ 0.

Then (F1) implies that G is decreasing on (ω′′, 1], which is a contradiction with
G(ω′) ≤ G(1).

(F6) By (F2), the inequality z(1) ≥ 1 implies β1 = 1. Then, by (F1), function G is
increasing on the whole interval [0, 1]. Therefore, G(ω) < G(1) for all ω ∈ [0, 1),
which implies β0 = 1.

(F7) This follows from the fact that G(0) = 0, G(1) = Ez(ω′), and the definition of
β0.

(F8) By (F2), we have that β1 < 1 if z(1) < 1. Since Ez(ω′) < 1, then β0 > 0 and
G(ω) < G(β0) for all ω ∈ [0, β0) by (F5). Therefore, G is non-decreasing at
β0, which implies g(β0) ≥ 0. Thus, β0 ≤ β1 < 1. The equality G(β0) = G(1)
follows from continuity. It remains to show that β0 < β1. If β0 = β1, then G is
decreasing on (β0, 1] by (F1). This is a contradiction with G(β0) ≥ G(1).

(F9) By the definitions of α0 and β0, we have that α0 ≥ β0 if and only if G(ω) ≥
max {G(1), ω}. This is equivalent to E[z(ω′) | ω′ ≥ ω] ≤ ω ≤ E[z(ω′) | ω′ ≤ ω].
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