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Abstract

This paper uses laboratory experiments to test the implications of the theory

of repeated games on equilibrium payoffs and estimate strategies in an infinitely
repeated prisoners’ dilemma game with imperfect public monitoring. We find
that subjects’ payoffs (i) decrease as noise increases, and (ii) are lower than
the theoretical maximum for low noise, but exceed it for high noise. Under
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which uses thresholds on the public signal for transition between cooperation
and punishment states, we find that the best fitting strategy simply compares
the most recent public signal against a single threshold.
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1 Introduction

Imperfection in monitoring is an integral part of many competitive situations in real-

ity. It is a particularly important topic in the field of industrial organization, where

the signals are subject to various external shocks. Firms’ ability to cooperate in such

environments is of clear interest to researchers as well as regulation authorities. A

key prediction of the theory of repeated games is that when players are patient, a

simple strategy can sustain collusion even under imperfect public monitoring, where

opponents’ actions are observed only through a noisy public signal. In the repeated

prisoners’ dilemma (PD), for example, it is known that a wide range of symmetric

equilibrium payoffs can be achieved by a grim-trigger strategy, which reverts to the

one-shot Nash equilibrium in the event of particular signal realizations.

This paper is aimed at testing the theory of imperfect public monitoring in

infinitely repeated games: It provides a characterization of the maximal equilibrium

payoff as a function of noise in monitoring, and then uses laboratory experiments to

test these predictions. The main focus of the paper is on the comparative statics of

the effect of noise on the players’ payoffs, and on the strategies they use to achieve

collusion.

While imperfect monitoring has attracted much attention in economic theory,

empirical work on the subject has been limited because of some fundamental dif-

ficulties. For example, it is not easy to identify the exact public signal the firms

use to coordinate their actions: it could be price, shares in a nationwide or regional

market, industry output, or the combination of any of these and other indicators.

There are also difficulties with identifying the firms’ strategic variables and their

payoff structure. Free from these problems, a laboratory experiment in a controlled

environment is considered an ideal alternative for the study of the subject.

Green and Porter (1984) are the first to provide a theoretical analysis of re-

peated games with imperfect public monitoring: In their model of quantity-setting

oligopoly, the market price serves as a noisy public signal of firms’ output quantities

because of demand fluctuations. They put forth an equilibrium based on the trigger

strategy as follows: The firms produce at the jointly monopolistic level as long as

the realized price is above a certain threshold, but revert to the one-shot Cournot

quantity for a fixed number of periods when it falls below the threshold. Because

of the random component in demand, periodic price wars occur on the equilibrium

path.

In this paper, the stage game is given by a standard symmetric PD with two
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players: The action set of each player consists of an efficient cooperative action and

an inefficient action which gives rise to a (one-shot) Nash equilibrium. We charac-

terize the set of symmetric equilibrium payoffs when the two players’ repeated game

strategies are public in the sense that today’s actions are determined only by past

public signals, and perfect in the sense that they form a Nash equilibrium after every

public history. In each period, the players’ actions determine the distribution of a

public signal in that period. In line with the price-quantity interpretation of Green

and Porter (1984), we suppose that the public signal is a one-dimensional continuous

variable, and that the higher the public signal, the more likely the opponent has

chosen the cooperative action. More precisely, we assume that the likelihood ratio

of the cooperative action versus the non-cooperative action monotonically increases

with the signal. Under this assumption, it is natural to suppose that players’ action

choice is determined by whether the observed signal is high or low. In other words,

a natural class of strategies is given by those that use thresholds as a coordination

device: The players agree to take one action profile if the realized public signal is

above a certain value but take another action profile if it falls below it. We refer to

such a strategy as a threshold strategy in this paper. Using the bang-bang property

(Abreu et al. (1990)), which states in this case that the highest equilibrium payoff

is sustained by a grim-trigger strategy, we identify sufficient conditions for the op-

timal grim-trigger strategy to be a threshold strategy. We then derive an explicit

and testable link between the maximal symmetric equilibrium payoff and the level

of noise in monitoring.1

In our experiments, we use an exponential signal distribution for analytical

tractability and parameterize it by the level of noise in monitoring. We have five

treatments varying the level of noise from zero to infinity in addition to a one-shot

game treatment with perfect monitoring. In theory, positive cooperation is possible

for the three low noise treatments, while the best equilibrium entails no coopera-

tion for the two high noise treatments. We have two major objectives in analyzing

data from our experiments. First, we compare the players’ actual payoffs against

the theoretical maximum derived as above, and examine how they change with the

noise in monitoring. Our findings are as follows:

1Kandori (1992) shows that the set of (symmetric and asymmetric) perfect public equilibrium

payoffs expands as monitoring becomes more accurate. Note, however, that his conclusion is qual-

itative and not directly testable. When the public signal has a Poisson distribution, Abreu et al.

(1991) describe the relationship between the equilibrium payoff and monitoring accuracy. Sannikov

(2007) also analyzes the effect of noise on the equilibrium payoff set in continuous time.
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1) The level of cooperation is positive for any noise level.

2) The level of cooperation is lower than the theoretical maximum for low noise

but higher than that for high noise.

3) The level of cooperation decreases as noise increases.

4) For high but finite noise, the level of cooperation is no higher than that in the

one-shot game.

5) For infinite noise (i.e., no public signal), the level of cooperation is lower than

that in the one-shot game.

We also find a distinctive pattern in the evolution of play. In the low noise treat-

ments, we observe that subjects increase the level of cooperation as they accumulate

experience. In the high noise treatments, on the other hand, the subjects begin to

behave more non-cooperatively as they become more experienced.

As stated above, we find that reducing noise in monitoring increases the level of

cooperation. It should be emphasized that this is the first experiment to identify

such a relationship between the noise in monitoring and the level of cooperation in

the standard imperfect public monitoring setting. This result is far from obvious for

the following reasons: First, as is well known, experiments on the one-shot PD often

generate positive levels of cooperation. Given that the subjects of those experiments

cooperate even with no histories, these results may be interpreted as suggesting that

decision making in repeated games is independent of histories and that cooperation

is generated through some other mechanism. The present experiment rejects this

view. Second, our finding is at odds with those of some experiments on imper-

fect monitoring. These experiments, which model imperfect monitoring in ways

significantly different from the present one, find no increase in cooperation when

monitoring becomes “more accurate.”2 Third, sustaining cooperation in a repeated

game requires the ability to perform non-trivial reasoning even if it only involves

a simple strategy. Our finding suggests that the subjects do in fact possess such

capabilities.

Our second objective is to estimate the subjects’ repeated game strategies. For

this, we suppose that they play threshold strategies with regime shifts between the

cooperation and punishment states. These strategies start out in the cooperation
2As discussed in the next section, these experiments deviate in some important ways from the

standard models of imperfect public monitoring.
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state, switch to the punishment state when the public signal falls below a certain

threshold, and return to the cooperation state when the signal exceeds another

threshold. Specifically, the threshold may depend on the current state and the

own action choice. In all but one noise treatment, we find that the data is best

described by the simplest threshold strategies which only have a single threshold.

In other words, those strategies simply check the most recent public signal and plays

the cooperative action if is above some threshold, and the non-cooperative action

otherwise.

It should be noted that our laboratory experiments replicate the framework of

the tested theory as closely as possible. First, by the standard identification of

the continuation probability with the discount factor, an infinitely repeated game

is replaced by a repeated game with a random termination point.3 The noise is

taken to be independent and identically distributed across periods and has full

support regardless of actions. Payments to subjects are designed so that they are

bounded and reveal no more information than the public signal during the course

of play.4 Each pair of subjects understand that they observe the same stochastic

signal after every period, and how its probability distribution is related to their

actions. In particular, while the exponential signal distribution may not necessarily

be something familiar to the undergraduate subjects, the instruction includes a

simple chart illustrating how the likelihood of the opponent’s action is related to

the observed signal and their own action.

The organization of the paper is as follows. In the next section, we present a brief

review of the related literature. Section 3 presents a model of a repeated PD with

imperfect public monitoring and characterizes the highest symmetric perfect public

equilibrium payoff. Section 4 describes the design of our experiments and Section 5

reports their results: We first test the theoretical prediction on the players’ payoffs

and then estimate their strategies. We conclude in Section 6 with some discussions.

2 Related Literature

Most empirical work on repeated games with imperfect monitoring analyzes the data

from the 1880’s Joint Executive Committee (JEC) railroad cartel, with a special

emphasis on the specification of the timing of regime shifts, i.e., switches between

3As is true with all repeated game experiments, however, the length of the game must be

constrained by the practical time limit for each session.
4See Section 6.
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cooperation and punishment phases in the repeated game.5 Early work assumes that

regime shifts follow a Bernoulli distribution (Porter (1983), Lee and Porter (1984)),

while some later work uses the Markovian chain in the estimation (Cosslett and Lee

(1985)). Porter (1985) takes a detailed look into what triggers the regime shifts,

the effect of market structure, and the determinants of price war duration. Ellison

(1994), again using the JEC data, tests the Green and Porter (1984) model. In

contrast to the prior estimates that were closer to the Cournot level, he finds collusive

behavior to be much closer to the monopoly level. He identifies several factors as

statistically significant determinants (i.e. triggers) of regime shifts. However, the

estimated mechanism is not strong enough to deter cheating. Furthermore, he finds

evidence of secret price cutting, which is not predicted by the model.

Experimental economics has focused much attention on the possibility of coop-

eration in various models of oligopolies including the PD and public goods games.6

For repeated games with perfect monitoring, the results of laboratory experiments

generally indicate that repeated play generates cooperation strictly above the one-

shot Nash equilibrium level and below the first-best level. However, there is no

definitive conclusion on the strategies that players use to achieve cooperation. For

example, there exists conflicting evidence as to the use of trigger strategies.7 It

should also be noted that most of the early results need to be interpreted with cau-

tion as they pertain to repeated games with an “unknown horizon,” where subjects

are not informed of how long the game will last.8

Experiments on imperfect monitoring include Feinberg and Snyder (2002), Cason

and Khan (1999), and Holcomb and Nelson (1997). These papers introduce monitor-

ing imperfection in rather specific ways. Cason and Khan (1999) study a repeated

public good experiment and compare standard perfect monitoring with perfect, but

delayed monitoring of past actions. They do not find any significant difference in

the levels of contributions between the two treatments. Feinberg and Snyder (2002)

consider a version of the repeated PD where each subject observes his own payoff

5Green and Porter (1984) suggest that such regime shifts follow a Markov process of order equal

to the length of punishment periods.
6See Holt (1995) for a literature review.
7See, for example, Sell and Wilson (1991), Feinberg and Husted (1993), and Engle-Warnick and

Slonim (2006).
8See Roth and Murnighan (1978), who point out that such a game yields significantly different

results from an infinitely repeated game. They propose, to properly replicate an infinitely repeated

game with discounting in an experimental setting, to terminate the game after each period with a

fixed probability.
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in each period. They introduce imperfection by occasionally manipulating those

payoff numbers, and compare the treatments with and without the ex post revela-

tion of such manipulation. Less collusive behavior is found in the latter treatment.

Holcomb and Nelson (1997), on the other hand, study a repeated duopoly model in

which information about the opponent’s quantity choice is randomly changed 50%

of the time. They conclude that such manipulation “does significantly affect market

outcomes” (p. 79). It should be noted that the formulation of imperfect monitoring

in these papers is not in line with the assumptions of the standard theory. For ex-

ample, in Feinberg and Snyder (2002) and Holcomb and Nelson (1997), monitoring

is imperfect but private since players in these models do not necessarily observe the

same signal.9

As mentioned earlier, formulation of imperfect monitoring in this paper fol-

lows the standard theory much more closely than that in the above models. The

distinguishing feature of our model is the assumption that the public signal is a

one-dimensional real variable. This assumption has the following advantages: First,

it closely replicates the oligopoly models where price serves as the public signal.

Second, this specification naturally incorporates a monotone relationship between

the signal and action: the higher the public signal, the more likely the other player

has cooperated. This relationship is easy for the subjects to understand, and also

justifies the use of the threshold strategy.

Besides imperfection in monitoring, some recent experiments look at factors

that affect players’ cooperative behavior. Duffy and Ochs (2007) study the effects

of fixed versus random pairing in a repeated game. For parameter values that can

sustain cooperation even with random matching, they find cooperation emerge only

in the fixed pairing case. Dal Bo (2003) compares a repeated game with random

termination against that with a fixed and known length. He finds that cooperation in

the former treatment is at a higher level.10 Dal Bo and Fréchette (2007) investigate

the conditions that lead subjects to coordinate on a cooperative or non-cooperative

equilibrium.11 They find that if coordination cannot be supported in equilibirum,

9Cason and Khan (1999) and Holcomb and Nelson (1997) use finite horizon games but do not

specify what information was given to their subjects about the duration of the game.
10A much earlier experiment by Roth and Murnighan (1978) also studies the effect of the con-

tinuation probability on the level of cooperation. However, their experiment matches subjects to

computerized opponents.
11See the references therein for a more complete list of experiments on infinitely repeated games

with perfect monitoring.

7



subjects learn to defect, while if coordination is an equilibirum they may or may

not coordinate on an equilibrium that supports cooperation. They also find that

coordination may not arise even if it can be supported as part of a risk-dominant

equilibirum.

One of the main focuses of the present paper is the analysis of the players’

strategies in repeated games. This is the subject of some recent experiments as

follows. Mason and Phillips (2002) study the use of trigger strategies in a repeated

Cournot duopoly game with perfect monitoring. They estimate the duration and

severity of punishment by changing the stage payoffs corresponding to deviations.

They conclude that evidence is consistent with the use of trigger strategies and that

behavior is more consistent with the use of a strategy with long and mild punishment

phases. Engle-Warnick and Slonim (2006) study the strategies played by subjects

in repeated trust games with perfect monitoring. They look for the strategy that

best fits the observed play from the set of pure strategies that can be expressed as

deterministic finite automata, and conclude that some subjects use a grim-trigger

strategy.12,13

In comparison with the above papers, the threshold specification in the present

paper allows for a direct estimation of the subjects’ strategies based on a standard

econometric technique.

3 Prisoners’ Dilemma with Imperfect Public Monitor-
ing

Two players play a symmetric PD game infinitely often. Player i’s action ai in the

stage-game is chosen from the set Ai = {a0i , âi}, where âi is the cooperative action
and a0i is the non-cooperative action. Let A = A1 × A2 denote the set of action

profiles a = (a1, a2). After each period, players observe only a random public signal

z ∈ R whose probability distribution is determined by the action profile a ∈ A

in that period. In a Cournot model with stochastic demand, for example, ai and

z correspond to firm i’s output quantity and the realized price level, respectively.

Denote by h(z | a) the density of the public signal z under the action profile a.

12 It should be noted that this estimation technique is not practical for games with a long expected

horizon. In Engle-Warnick and Slonim (2006), the continuation probability is such that the expected

length of the repeated game is five periods. It is ten in our case.
13Engle-Warnick, McCausland, and Miller (2004) propose a Bayesian method for the estimation

of repeated game strategies in a perfect monitoring environment.
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Player i’s stage-payoff equals wi(ai, z) when his own action is ai and the signal

realization is z. Assume that wi is continuous in z, and note that the payoff does

not provide more information about the other player’s action than the public signal

z itself. Player i’s expected stage-payoff from any action profile a, gi(a), can be

computed as

gi(a) =

Z
R

wi(ai, z)h(z | a) dz.

The assumption that the stage-game is a PD translates to

gi(a
0
i , âj) > gi(â) > gi(a

0) ≥ gi(âi, a
0
j ).

As noted above, â = (â1, â2) is the symmetric efficient profile, and a0 = (a01, a
0
2) is the

one-shot Nash equilibrium of the PD. Note also that a0i is a minmax action as well

as a profitable one-shot deviation from the efficient profile â. Denote g0 = gi(a
0)

and ĝ = gi(â). A t-length public history is the history of signals z in periods 1

through t. A t-length private history of player i is the sequence of i’s actions in

periods 1 through t. The set of t-length public histories is given by Rt, while the set

of t-length private histories of player i is given by At
i. Player i’s (pure) strategy is a

function σi :
S∞
t=0 (R

t × At
i) → Ai. It is a public strategy if it is a function of the

public history alone. Let δ < 1 denote the players’ common discount factor. Player

i’s expected payoff in the repeated game from a strategy profile σ is given by

πi(σ) = (1− δ)
∞X
t=1

δt−1 gti ,

where gti is the expected stage-payoff in period t under the probability distribution

induced by σ. The strategy profile σ is a (pure) equilibrium if for every i, πi(σ) ≥
πi(σ

0
i, σj) for any strategy σ

0
i. An equilibrium σ = (σ1, σ2) is public if σi is a public

strategy for each i. A public equilibrium is perfect if σi is a best response to σj for

each i after every public history, and is (strongly) symmetric if σ1 = σ2.

Throughout the paper, we assume that the public signal z is related to the action

profile a in the following additive way:

z = s(a) + x,

where s : A → R is a deterministic function of a, and x is a real-valued random

variable whose distribution is independent of a. We assume that s is symmetric

(s(a) = s(a0) if (a01, a
0
2) = (a2, a1)), and that x has a strictly positive density f over

9



R. Denote the corresponding cumulative distribution by F . The density h(z | a) of
z under a can be expressed in terms of f and s as

h(z | a) = f(z − s(a)) for each z ∈ R and a ∈ A.

We make the following assumptions on s and f :

Assumption 1 s(a0i , âj) ≤ s(â).

Assumption 2 f(x−y) f(x0−y0) ≥ f(x−y0) f(x0−y) for any x ≥ x0 and y ≥ y0.14

It can be readily verified that these assumptions together imply that the devia-

tion a0i from â shifts down the distribution of the public signal as measured in the

likelihood ratio. In other words,

h(z0 | â)
h(z | â) ≥

h(z0 | a0i , âj)
h(z | a0i , âj)

for any z0 ≥ z.

In a Cournot model, for example, these assumptions imply that an increase in the

production level lowers the distribution of the price. It should be also noted that

Assumption 2 holds for a wide class of distributions including normal and gamma

distributions. Define

l =
gi(a

0
i , âj)− g0

ĝ − g0
> 1 and d = s(â)− s(a0i , âj) ≥ 0.

Namely, l is the (normalized) one-shot gain from a deviation from â to a0i , while d

is the sensitivity of the public signal measured by the change in its expected value

following such a deviation.

We now turn to the characterization of the set of equilibrium payoffs in this

setup. As shown by Abreu et al. (1990), this can be accomplished by examining

the following class of “grim-trigger” equilibria: player i starts with âi, and keeps

playing âi as long as the realized public signal z falls in a certain (Borel) subset

Q of R but reverts to the minimax action a0i forever otherwise. As verified in the

proof of Proposition 1 below, under Assumptions 1 and 2, we can take the set Q

of admissible signals to be of the form [k,∞) for some k. That is, the highest

14The function f satisfying this condition is known as a Polya function of degree 2 (PF2) (Karlin,

1968). Note that f is PF2 if and only if the function f̂ : R2 → R+ defined by f̂(x, y) = log f(x−y)
is supermodular.
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symmetric perfect public equilibrium payoff is generated by a threshold grim-trigger

strategy, which reverts to the punishment if and only if the public signal falls below

a certain threshold k. Suppose then that σ̂ = (σ̂1, σ̂2) is the threshold grim-trigger

strategy profile that begins with â and reverts to a0 when z falls below k. As seen

in the proof of Proposition 1 in the Appendix, the payoff v associated with σ̂ can

be obtained as a solution to the standard recursive equation:

v =
(1− δ)ĝ + δg0 F (k − s(â))

1− δ {1− F (k − s(â))} . (1)

It is also a standard exercise to verify that the incentive condition for player i to

choose âi on the equilibrium path can be written as:

1− δ {1− F (k − s(â) + d)}
1− δ {1− F (k − s(â))} ≥ l. (2)

Let K(δ) denote the set of thresholds k for which the above incentive compatibility

condition holds:

K(δ) = {k ∈ R : k satisfies (2)} .

By construction, K(δ) is a closed set. In the Appendix, it is also shown that K(δ)

is an interval. There exists a threshold grim-trigger equilibrium that supports the

action profile â if and only if K(δ) 6= ∅.15 By (1), the optimal threshold k = k∗(δ)

that maximizes v is the smallest element of K(δ):

k∗(δ) = min K(δ). (3)

It is also clear from (2) that K(δ) 6= ∅ requires d > 0. The following proposition

summarizes our observation.

Proposition 1 Suppose that Assumptions 1 and 2 hold and let v∗(δ) denote the
maximal symmetric perfect public equilibrium payoff of the repeated PD. If K(δ) = ∅,
v∗(δ) = g0. On the other hand, if K(δ) 6= ∅, then

v∗(δ) =
(1− δ) ĝ + δg0F (k∗(δ)− s(â))

1− δ + δF (k∗(δ)− s(â))
.

In the latter case, v∗(δ) is achieved by a (pure) stationary grim-trigger strategy

profile σ̂ which begins with âi and continues with âi as long as the realized public

signal z is at or above the threshold k∗(δ) (i.e., Q = [k∗(δ),∞)), but reverts to a0i
otherwise.
15By Proposition 1, if there exists no threshold grim-trigger equilibrium, then there exists no

grim-trigger equilibrium which supports v > g0.
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Proof. See the Appendix.

In interpreting the results of our experiments described in Section 5, the following

points should be noted. First, while the grim-trigger equilibrium yields a clear

description of the bound, the bound applies to all types of perfect public equilibria

whether grim-trigger or not. Conversely, the theorem does not preclude the (near)

efficiency of other types of perfect public equilibria, which may return to cooperation

after some contingency.

For comparison across different payoff numbers, the following normalization of

v∗(δ) is useful:

y∗(δ) =
v∗(δ)− g0

ĝ − g0
.

It can be verified that y∗(δ) ∈ [0, 1] is unaffected by a positive affine transformation
of the payoff numbers.16 By Proposition 2, y∗(δ) can be explicitly written as

y∗(δ) =
1− δ

1− δ + δF (k∗(δ)− s(â))
(4)

if K(δ) 6= ∅ and y∗(δ) = 0 otherwise.

4 Experimental Design

The experiment tests the theory developed in the previous sections in the following

environment. The expected stage payoffs are specified as follows:

1 \ 2 L H

L 25, 25 15, 28

H 28, 15 16, 16

.

As seen, L (“low output”) corresponds to the cooperative action and H (“high

output”) represents the opportunity for a profitable one-shot deviation.17 Note that

â = (L,L) and a0 = (H,H) in the notation of the previous section.

The public signal z is generated through z = s(a) + x with the deterministic

function s of the action profile and a random variable x specified as follows: The

16That is, y∗(δ) stays the same when a positive constant is added or multiplied to, or subtracted

from, the stage-payoffs.
17Our choice of this particular stage-game is based on the fact that it scores high on the indexes

proposed by Rapoport and Chammah (1965) and Roth and Murnighan (1978) that correlate with

the level of cooperation in the infinitely repeated PD with perfect monitoring.
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function s is given by
1 \ 2 L H

L 20 18

H 18 16

and the random variable x has the following distribution:

f (x) =
1

2β
e−

|x|
β , and F (x) =

(
1− 1

2e
− x
β if x ≥ 0

1
2e

x
β if x < 0,

(5)

where β > 0. As can be readily verified, s satisfies Assumption 1 and f satisfies

Assumption 2. Moreover, the parameter β represents the level of noise in the public

signal since

E[x] = 0 and Var(x) = 2β2.

From (4), we can write the normalized maximum symmetric equilibrium payoff as

y∗(δ) =

⎧⎨⎩
1−δ

1−δ+ δ
2
e
k∗(δ)−20

β

if K(δ) 6= ∅

0 otherwise.

The explicit description of the set K(δ) of admissible thresholds is found in the

Appendix.

In the actual treatment, we need to bound the subjects’ payoffs while allowing z

to have full support as assumed by the theory. For this, we have the subjects receive

the expected stage payoffs gi(a) at the conclusion of the experiment instead of having

them receive the (stochastic) payoffs wi(ai, z) after each period.18 We simulate the

infinitely repeated game with the discount factor δ = 0.9 by terminating the game

after each period with a fixed probability of 0.1.19

The experiments proceed in the following steps. First, subjects are provided

with the basic information about the game they will play. They are then matched

18 In this specification, hence, the public signal z indicates the opponent’s action choice but does

not directly affect the players’ payoffs. This design hence abstracts from the psychological impact

of the payoffs as analyzed by Bereby-Meyer and Roth (2006). Alternatively, we could have paid the

subjects wi(ai, z) after each period of play for some (bounded) function wi. This payment method,

however, would have added complexity to the instructions to the subjects.
19One possible concern with a fixed time design is that subjects hurry their decisions so as to

increase the payment. To address this concern, we forced a pause between periods. The pause

began only after every subject in the session had finished their play, and lasted for 25 seconds

during which subjects were asked to write down their decision and the public signal z on a record

sheet.
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Figure 1: y∗ as a function of β (δ = 0.9)
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in pairs to play a repeated game with imperfect public monitoring. As mentioned

earlier, this repeated game has stochastic length and terminates in finite time almost

surely.20 The sequence of play between any pair of subjects is referred to as a cycle.

At the conclusion of every cycle, the subjects see on the screen their own payoffs in

that cycle. They are then randomly rematched to play a new cycle. The information

provided to the subjects at the outset includes: (i) The length of a cycle is randomly

determined by the termination probability 0.1. (ii) They play against a randomly

chosen subject in the session. (iii) The distribution of the random shocks to the

public signal is given by (5).21 The random matching for each new cycle is done

in a round robin manner: A subject is matched with someone new as long as it is

possible, and matched with someone they have played with previously thereafter.22

The first cycle to end after one hour of play marks the end of the session. Therefore,

different sessions have different numbers of cycles.

In the experiments, we use four different values of β: They are β = 0 (no noise

= perfect monitoring), β = 1 (low noise), β = 4 (medium noise), and β = 10

(high noise). Figure 1 plots y∗ ≡ y∗(0.9) as a function of β. In addition to the

above four treatments, we conduct two control treatments. The first control admits

perfect monitoring of the opponent’s action but matches subjects anonymously and

randomly after every period of play. Since this control eliminates the repeated game

effect (i.e., δ = 0), it is referred to as “one-shot" and symbolized as β = OS.23 The

second control uses the same continuation probability as in the first four treatments

but eliminates the public signal. Since this treatment is equivalent to having subjects

observe infinitely noisy public signal, it is referred to as β =∞.24 Given that both
controls support no cooperation in theory, they should provide a benchmark for the

first four treatments with respect to the level of cooperation.

Subjects were recruited through announcements in undergraduate classes, adver-

tisements in the student newspaper, flyers posted on campus, and e-mail advertise-

20All games played in the same session terminate simultaneously.
21The instructions given to the subjects can be found at http://homepages.nyu.edu/~gf35/

print/Aoyagi_2008a_inst.pdf.
22As it happened, the subjects were matched with someone they played with previously in only

14% of the cases.
23For the one-shot treatment, the length of each session equals 75 periods, approximately the

average number of periods in the other treatments. For this control, the term cycle refers to the

block of initial 15 periods and every successive block of 10 periods.
24The second control was suggested by one of the referees. The two controls differ from each

other also by the existence of the feedback of outcomes.
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Treatments

β = 0 β = 1 β = 4 β = 10 β = OS β =∞
Sessions 2 2 2 2 2 2

Subjects 24 14 26 16 20 20 20 26 16 20 20 18

Cycles 8 10 6 7 4 5 5 8 − − 10 10

Periods 74 91 73 78 66 75 73 69 74 75 69 83

Table 1: Subjects, cycles and periods per session

ment at the Ohio State University. This resulted in recruiting a broad cross section

of undergraduate students. At the end of each experimental session, subjects were

paid $0.017 for every point they accumulated in the experiment. Earnings ranged

from $20.20 to $36.55. Details about the number of subjects and periods in each

treatment are provided in Table 1.25

5 Results

5.1 Payoffs

We first examine the subjects’ payoffs. Note that in the continuation probability

formulation, the sum of stage payoffs for the duration of the game corresponds to

the average discounted payoff of the infinitely repeated game. For each given value

of β, let v̄(β) be the sum of stage payoffs averaged over all cycles and sessions, and

let

ȳ(β) =
v̄(β)− g0

ĝ − g0

be the normalization of v̄(β). When the subjects play a symmetric equilibrium of

the repeated game, then ȳ(β) should lie between the one-shot NE level 0 and the

maximal symmetric equilibrium level y∗(β) for each β.26

We refer to the three treatments (β = 0, 1, 4) for which cooperation is possible

according to the theory (i.e., y∗(β) > 0) as the cooperation treatments, and the three

treatments (β = 10, ∞, and OS) for which it is not (i.e., y∗(β) = 0) as the non-

cooperation treatments. The general evolution of play between the cooperation and

non-cooperation treatments is strikingly different: Figure 2 plots ȳ(β) by treatment

25The β = 0 session with 14 subjects had a crash after the end of cycle 8, and was re-started for

two additional cycles. The β = OS session with 16 subjects had 1 crash.
26 In the experiment, β is changed while δ = 0.9 is fixed. Hence, y∗ is indexed by β instead of δ.
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Figure 2: Evolution of ȳ by treatments

and by cycle. This figure shows that ȳ has an upward trend over time for β = 0, 1,

and 4, and an opposite, downward trend for β = 10, ∞, and OS. In other words,
subjects appear to improve their ability to cooperate over time when cooperation is

theoretically possible, but learn not to cooperate otherwise. As seen, ȳ(β) is much

higher in the first set of treatments, and seems to increase as noise decreases. As

for the second set, both treatments have relatively close ȳ(β). Diagrammatically,

we have:

ȳ(0) > ȳ(1) > ȳ(4) >> ȳ(10) ≈ ȳ(OS) > ȳ(∞) > 0,

indicating that ȳ has the same relative ordering as y∗ except for OS and β = ∞,
which should create no difference in theory. A few more aspects of this figure are

worth noting: For all treatments, the average payoffs start out almost identically,

yet begin to differ substantially by cycle 3. Furthermore, by cycle 3 they almost

reach the level they will eventually keep in the end.

In order to concentrate on stable behavior, the analysis in what follows excludes

data from the first two cycles or the cycles that occur in the first 20 periods of

play.27

Table 2 lists the values of y∗(β) and ȳ(β) for each treatment. ȳ(β) is positive

27Note that 20 is the expected number of periods for 2 cycles. In all but one session, the first 2

cycles last at least 20 periods. The exception is one session of the β = 0 treatment where the first

2 cycles only had a total of 3 periods of play.
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Treatment y∗(β) ȳ(β)

β = 0 1 0.845

(0.129)

β = 1 0.948 0.774

(0.163)

β = 4 0.486 0.695

(0.208)

β = 10 0 0.467

(0.182)

OS 0 0.418

(0.101)

β =∞ 0 0.270

(0.149)

Standard deviations in parentheses.

Table 2: y∗(β) and ȳ(β) by treatments

Treatments β = 1 β = 4 β = 10

β = 0 0.017 0.000 0.000

β = 1 0.031 0.000

β = 4 0.000

Table 3: p-values of the one-sided Mann-Whitney test that ȳ decreases with noise

for both the cooperation and non-cooperation treatments at the 1% significance

level. ȳ(β) lies in the predicted interval [0, y∗(β)] for two of the three cooperation

treatments, but not for the non-cooperation treatments. In either case, it is not

close to y∗(β): it is too low when β = 0 and 1, and too high for all other treatments.

It should also be noted that ȳ(10) and ȳ(OS) appear comparable, but that ȳ(∞) is
lower. Each of these observations will be analyzed in turn.

That ȳ(β) decreases with β is formally established in Table 3, which gives the

p-values of a Mann-Whitney test of the hypothesis that the ȳ(β) for β on the left

(row) is equal to the ȳ(β) for β in the top (column) against the one sided hypothesis

that the former is greater than the latter.28 Every test is statistically significant

28For all such tests, per subject averages are used instead of all the subject-cycle averages because

it is likely that ȳi are correlated across cycles for a given individual.
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Figure 3: Evolution of cooperation: Rates of L and (L,L) by cycles

at the 5% level. On the other hand, the hypothesis that ȳ(10) = ȳ(OS) cannot

be rejected (p = 0.108, two-tailed Mann-Whitney test) while the hypothesis that

ȳ(10) = ȳ(∞) is rejected (p-value < 0.01).29 The results of these tests support the
general theoretical predictions that cooperation is easier to sustain when noise is low,

and that cooperation under high but finite noise is as difficult as in the one-shot

case.30 It does not immediately follow from the theory however that cooperation

under infinite noise (i.e., no public signal) is more difficult than in the one-shot case.

On the other hand, a sign test rejects the hypothesis that ȳ is equal to y∗ at the 1%

level for each treatment, implying that the subjects’ play does not conform to the

most efficient symmetric equilibrium.

In contradiction to the theory, both ȳ(10), ȳ(∞), and ȳ(OS) are significantly

positive. This result is in line with the positive levels of cooperation observed in

experiments on the one-shot PD. To be precise, Figure 3 describes the evolution

of the rate of the cooperative action ai = L as well as that of the action profile

(L,L). The observed level of cooperation is relatively high when compared to those

in related experiments on the PD. For example, it is significantly higher than that

29Both ANOVA and Kruscal-Wallis tests reject at the 1% level the null hypothesis that the

treatment has no effect on y for β = 0, 1, 4, and 10.
30This conclusion does not change even if each session is treated as the unit of observation: If

observations are correlated within a session, one could argue that each session should be treated as

a single data point. To address this concern we can average ȳ by session and use a Mann-Whitney

test to show that ȳ is higher for β = 1 and β = 4 than for β = 10, β =∞, and OS. The one-sided
null hypothesis is rejected with a p-value of 0.01. In fact, ȳ in any session of the cooperation

treatments is higher than that in any session of the non-cooperation treatments.
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Figure 4: Rates of the cooperative choice L in period 1 by cycles

Treatments β = 1 β = 4 β = 10 β =∞
β = 0 0.630 0.287 0.000 0.000

β = 1 0.441 0.000 0.000

β = 4 0.000 0.000

β = 10 0.230

Table 4: p-values of the two-sided Mann-Whitney test that the rates of the cooper-

ative choice L in period 1 are equal across treatments

reported by Duffy and Ochs (2007) or Dal Bo (2003): In the random matching

treatment of Duffy and Ochs, the rate of cooperation drops to almost 0% by the

end. In the one-shot treatment of Dal Bo, the rate of cooperation is a little more

than 5% by the end. We believe that this difference is attributed to the selection of

the payoff matrix: Our payoff numbers, which are designed to generate high levels of

cooperation under the perfect monitoring treatment, raised the level of cooperation

in the non-cooperation treatments as well.31

When the subjects play the most efficient symmetric equilibrium, their period

1 action should equal ai = L when β = 0, 1, or 4. Under this hypothesis, hence,

31According to all four indices proposed by Rapoport and Chammah (1965) and Roth and

Murnighan (1978), our PD is expected to generate more cooperation than any of the three PD

matrices used by Duffy and Ochs (2007) and Dal Bo (2003).
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the data must always exhibit action L in period 1 of any cycle in any cooperation

treatment. Having found that the rate of cooperative action in period 1 is only

39.1% in their repeated public goods experiments, Sell and Wilson (1991) reject the

hypothesis that their subjects use trigger strategies. In comparison, the rates of

period 1 cooperation in our cooperation treatments are higher. Furthermore, the

level of period 1 cooperation in those treatments increases over the course of each

session (Figure 4). By the last cycle, the rate of period 1 cooperation is 85% in

the cooperation treatments. On the other hand, the rate of period 1 cooperation

in the non-cooperation treatments is much lower at 41% in the last cycle. Table

4 reports the p-values for the test of the hypothesis that period 1 cooperation is

the same across different treatments. The hypothesis that they are the same across

all cooperation treatments cannot be rejected.32 Neither can be the hypothesis

that they are the same across the non-cooperation treatments. On the other hand,

we can reject the hypothesis that they are the same between the cooperation and

non-cooperation treatments. However, for all treatments, sign tests reject at any

conventional level the hypothesis that the rates of period 1 cooperation equal unity.

5.2 Strategies

We next turn to the analysis of the strategies. A particular focus is on threshold

strategies with regime shifts between cooperation and punishment states. This class

includes trigger and tit-for-tat strategies, which are most often discussed in the

experimental analysis of repeated game strategies. We use standard likelihood ratio

tests to examine if any particular specification of a threshold strategy describes the

observed pattern of play. In all but one treatment, we find that the data is best

described by the strategy which uses the same threshold in both the cooperation

and punishment states.33 For numerical analysis in this subsection, we identify 1

with the cooperative action L and 0 with the non-cooperative action H. We also

denote by cit ∈ {0, 1} subject i’s actual action choice in period t.

Note first that any strategy that supports cooperation must condition the current

choice on the past public signals. In fact, this is what we observe in this experiment.

In the perfect monitoring (β = 0) treatment, for example, if both players cooperated

in the last period, each player cooperates in the current period 94% of the time. On

32Neither ANOVA nor Kruscal-Wallis rejects the null hypothesis that the treatment has no impact

on the rate of period 1 cooperation for β = 0, 1, and 4 (p-value > 0.1).
33The analysis in this subsection excludes data from the control treatments.
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the other hand, if one player cooperated and the other defected in the last period,

then the rate of cooperation by the former in the current period decreases to 43%.

The same trend can be found in the imperfect monitoring treatments. Figure 5

shows for the β = 1 treatment how a player who cooperated in the previous period

chooses his action in the current period as a function of the most recent public

signal z. The increasing rate of cooperation with z is found in the β = 1 and β = 4

treatments, and also to some extent in the β = 10 treatment where the theory

predicts no cooperation.

We next examine the impact of the public signal on future actions through a

probit model which regresses subject i’s action choice cit ∈ {0, 1} in period t on the

following variables:34

zt−1 1{ci,t−1=1}, zt−1 1{ci,t−1=0}, zt−2 1{ci,t−2=1}, zt−2 1{ci,t−2=0}. (6)

That is, the estimated equation measures the impact of the pair (public signal,

action choice) in each one of the last two periods on the current action choice.35

In all but one treatment, the first two regressors in (6) are statistically significant

while the other two are not.36 In other words, the impact of the public signal on

34For any condition A, 1A denotes the indicator function which takes value 1 if the condition

holds and value 0 otherwise.
35Three or more lags are omitted since they lead to the loss of too many data. See the Appendix

for the precise specification of the estimated equation as well as for the table of estimation results

(Table 9).
36 In all treatments with β ≥ 1, a Wald test that both regressors for t− 2 have no impact cannot
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the subjects’ action choice is immediate but not persisting. The sole exception to

this is the β = 0 treatment where the other two regressors are also significantly

positive. However, their impacts are much smaller with the marginal effects of the

last two variables about one third of those of the first two. Note that the finding

here in particular suggests that the subjects’ strategies are not described by the

grim-trigger type.

5.2.1 Threshold strategies with regime shifts

Our ananlysis of strategies in this section focuses on a threshold strategy with regime

shifts, or simply a threshold strategy, which has two states 0 and 1, chooses L

(cooperation) in state 0 and H (non-cooperation) in state 1, begins in state 0, and

has the following rules of transition between the two states:

State 0: Stay in state 0 if the public signal z > a and the own action ci = 1 (⇔ L),

or if z > a+ b1 and ci = 0 (⇔ H). Move to state 1 otherwise.

State 1: Move to state 0 if z > a+ b2 and ci = 1, or if z > a+ b2 + b3 and ci = 0.

Stay in state 1 otherwise.

The second transition rule in each state accounts for a possible mistake where a

player fails to choose an intended action. The threshold strategy is illustrated in

Figure 6, where the condition above each arrow applies when the own action ci =

1, and the condition below applies when ci = 0. We allow each parameter to

be +∞ or −∞. The threshold grim-trigger strategy discussed in Section 4 is a
threshold strategy with b2 = ∞ and b1 = b3 = 0. In general, a threshold strategy

is public if b1 = b3 = 0. On the other hand, the tit-for-tat strategy in the perfect

monitoring environment is a leading example of a private threshold strategy. Note,

however, that the on-the-path action is publicly determined even if b1 6= 0 and/or
b3 6= 0. Therefore, if a threshold strategy gives rise to a symmetric equilibrium

with perfection after every public history, then the associated payoff is still bounded

from above by v∗ (or its normalization y∗) defined in Section 3. Proposition 3 in

the Appendix identifies when a pair of threshold strategies constitute a symmetric

perfect public equilibrium. With the identification of each state with the action

intended in it, we obtain an alternative representation of the threshold strategy

used in our analysis: Let zt be the public signal, and sit and cit be i’s intended

be rejected at the 10% level.
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Figure 6: Threshold strategy with regime shifts

and actual action choices, respectively, in period t. We then have si1 = 1 and si,t+1

(t ≥ 1) defined recursively by

si,t+1 = 1{zt>kit}, (7)

where

kit =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a if sit = 1 and cit = 1,

a+ b1 if sit = 1 and cit = 0,

a+ b2 if sit = 0 and cit = 1,

a+ b2 + b3 if sit = 0 and cit = 0.

(8)

Based on (7) and (8), we estimate a limited dependent variable model with lagged

dependent variables which incorporates the possibilities of mistakes and asymmetry

among subjects as follows:37 Specifically, for t ≥ 0,

si,t+1 = 1{γ0zt>κit}, (9)

ci,t+1 = 1{γ0zt>κit+uit}, (10)

37We have also tested a more general version of the threshold strategy in which the regime shifts

depend on the public signal up to T periods ago (T > 1). They did not have better fits than the

present specification with T = 1. The interested reader is referred to our working paper (Aoyagi

and Fréchette (2005)).
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where

κit =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
α+ νi if sit = 1 and cit = 1

α+ νi + γ1 if sit = 1 and cit = 0

α+ νi + γ2 if sit = 0 and cit = 1

α+ νi + γ2 + γ3 if sit = 0 and cit = 0.

(11)

In (11), note that the parameters α, γ1, γ2, and γ3 are all assumed common across

subjects, and that only νi is indexed by i. (9) is equivalent to (7) if γ0 > 0 and

κit = γ0kit, which will be restored if
38

a =
α+ νi
γ0

, b1 =
γ1
γ0

, b2 =
γ2
γ0

, b3 =
γ3
γ0

. (12)

The term νi represents the correlated random effects and captures possible asym-

metry across the subjects: The larger is νi, the higher the threshold and hence the

more likely is subject i to play the non-cooperative action H. Each νi is assumed

to have an independent normal distribution N(ψζi, σν) for some constants ψ, σν
and ζi. The variance σν and the factor of proportion ψ are assumed common across

subjects, and estimated from the data, while ζi is set equal to the fraction of times

that subject i chooses H in period 1 of each cycle under estimation: ζi serves as a

proxy for i’s tendency to play the non-cooperative action given that any threshold

strategy would play action L in period 1.39 On the other hand, the term uit in

(10) represents a random error made by subjects: i’s action choice ci,t+1 in period

t + 1 is determined in reference to κit + uit rather than κit itself. We assume that

uit is independent across subjects and across periods, and has the standard normal

distribution N(0, 1). One intended effect of specifying the shock term uit as in (10)

is the stronger tendency to make errors when the realized public signal zt is closer

to the threshold kit =
κit
γ0
.

38γ0 is required for a technical reason: It will allow the error term uit introduced later to have

the unit variance.
39We assume that the mean of νi is proportional to ζi in order to deal with the initial conditions

problem. (See Heckman (1981) or Chamberlain (1980) for the static case.) Under an alternative

assumption that νi ∼ N 0, σ2ν , the consistency of our estimate would require the (unlikely) inde-

pendence of ci1’s and νi’s. (See Wooldridge (2002) for a clear exposition of the initial conditions

problem and solutions to it.) The log likelihood is estimated using quadrature techniques with a

twelve points Gauss Hermit quadrature. Weights and abscisae can be found in Abramowitz and

Stegun (1972).
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β = 0 β = 1 β = 4 β = 10

α -1.437*** -0.819*** -0.569*** -0.430***

(0.127) (0.090) (0.102) (0.150)

ψ 1.698*** 1.313*** 1.278*** 1.393***

(0.210) (0.379) (0.250) (0.250)

ρ 0.265§ 0.363§ 0.295§ 0.183§

LL -781.234 -577.886 -809.018 -774.420

Obs. 1908 1112 1360 1258

*, **, *** indicate statistical significance at 10%, 5%, and 1% respectively.
§ indicates statistical significance at 1% using a likelihood ratio test.

Table 5: Estimates of the random choice strategy

5.2.2 Estimation of threshold strategies

We first estimate a benchmark model of a random choice strategy, which plays each

action (H and L) with a constant probability throughout the game. Formally, this

strategy is obtained by setting γ0 = γ1 = γ2 = γ3 = 0 in (9) and (10). Table 5

reports the estimates of this benchmark model.40

Table 6 reports the estimation results for the general threshold specification

(9) and (10).41 In comparison with the benchmark model, the general model has

explicative power. For each β ≤ 4, a likelihood ratio test rejects any of the random
choice model with p-value=0.01. On the other hand, for β = 10, the random choice

model cannot be rejected even at p-value=0.10. It should be noted that the random-

40 In Table 5, ρ = σ2ν
σ2ν+1

is used as a substitute for σ2ν as is customary for random effects estimates.

The estimate of the coefficient ψ on ζi is positive, indicating that someone who is less likely to

cooperate in period 1 is less likely to do so in any other period. The constant term α increases

with noise, which implies that increasing noise tends to decrease cooperation. The random-effects

specification is not rejected in any treatment. As for the base threshold level a in (8), the coefficient

estimates of α and γ0 both decrease with noise, and the ratio of those estimates (
α
γ0
) decreases

with noise. This indicates from (12) that the component of the base threshold a which is common

across subjects decreases with noise. On the other hand, the ratio of the estimates of ψ and γ0
(i.e., ψ

γ0
) increases with noise, indicating that the weight on the subject-specific component of a

increases with noise. In other words, as noise increases, the gap in the base threshold levels widens

across individuals.
41Although we do not place the restriction that γ0 > 0, it will be seen that the estimate of γ0 turns

out to be positive in every treatment. The standard errors are bootstrapped: Fifty replications

using the full sample size are computed.
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β = 0 β = 1 β = 4 β = 10

α 9.543 4.410*** -0.245*** -0.318*

(42.103) (1.157) (0.084) (0.168)

γ0 0.564 0.283*** 0.026*** 0.008*

(2.335) (0.988) (0.007) (0.005)

γ1 -0.237 0.010 0.804*** 0.079

(4.957) (0.011) (0.103) (0.065)

γ2 -0.167 -0.211 0.049* 0.010

(0.580) (0.245) (0.026) (0.009)

γ3 -0.147 -0.010 0.011* -0.003

(0.329) (0.024) (0.006) (0.002)

ψ 0.908 1.192* 0.010* 1.460***

(1.898) (0.126) (0.005) (0.498)

ρ 0.116§ 0.229§ 0.313§ 0.218§

LL -636.384 -520.464 -775.364 -771.442

Obs. 1908 1112 1360 1258

*, **, *** indicate statistical significance at 10%, 5%, and 1% respectively.
§ indicates statistical significance at 1% using a likelihood ratio test.

Table 6: Parameter estimates of the general threshold strategy

effects specification is not rejected for any treatment, suggesting that tendencies to

cooperate vary across the subjects.42 It is also worth noting that γ0 is statistically

significant in the β = 10 treatment in contradiction to the theoretical prediction:

This suggests that the subjects use the public signal even when they should not.

Few coefficient estimates are statistically significant for the β = 0, β = 1 and β = 10

treatments, while all regressors are statistically significant for the β = 4 treatment.

Given the observations above, our next objective is test some parameter re-

strictions on the general threshold specification. First, we are interested in testing

whether the subjects’ strategies are public in the sense that their actions depend

only on the past public signals. Recall that a threshold strategy is public if and only

if b1 = b3 = 0. Alternatively, when the strategies are private and choose actions

based also on the own action choice in the past, b1 and/or b3 are non-zero. In this

42When testing for the significance of the random effects specification, the fact that the null

hypothesis is at the boundary of the parameter space is properly dealt with. See Gutierrez, Carter,

and Drukker (2001).
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case, we suppose that b1 and/or b3 are chosen so that they will cancel out the effect

of a player’s own deviation on the public signal. For example, suppose that a player

has deviated to H in state 0. This deviation causes the signal distribution to shift

down by 2 given our specification of s(a). In other words, the probability that z ≤ a

when the own action is L (as intended in state 0) exactly equals the probability that

z ≤ a− 2 when he has deviated to H. Hence, we use b1 = −2 as an alternative to
b1 = 0. Likewise, we use b3 = −2 as an alternative to b3 = 0. In summary, we test
four alternative specifications (Sa)-(Sd) as listed in part (1) of Table 7. As a fur-

ther motivation of these alternatives, consider the tit-for-tat strategy in the perfect

monitoring environment (β = 0). Since the signals are 20, 18 and 16 for sure after

the action profiles (L,L), (H,L), and (H,H), respectively, tit-for-tat is expressed as

the threshold strategy with a ∈ [18, 20), b1 = −2, b2 = 0 and b3 = −2. If a subject
plays tit-for-tat, hence, (Sd) should best fit the data. We find that in all treatments

with or without random effects, (Sa) fits the data best of all the four alternatives.

This, combined with the estimation results on b2 presented below, provides general

support for the use of public strategies except when β = 4.43 Among the other three

alternatives, (Sc) has the second best fit in all but one case (β = 0 with random

effects) where it has the third best fit. (Sd) has the worst fit in all treatments with

random effects, and in β = 0 without them. In the other cases it has the third best

fit and (Sb) has the worst fit.

Given the above results, we now assume that b1 = b3 = 0 and examine the

hypotheses on the value of b2, which has to do with the intended duration of the

punishment state. Specifically, we test (S0) and (S1) in part (2) of Table 7: (S0)

uses the same threshold in both states 0 and 1, implying that it chooses L if and

only if the most recent signal exceeds a. It is hence the simplest and most intuitive

of all the threshold strategies. Just like tit-for-tat or grim-trigger, a player can play

(S0) without explicit recognition of its formal definition. It can be seen from (21)

(in the Appendix) that when a = 20, a pair of (S0) is a symmetric perfect public

equilibrium if β ≤ 2/ log 6 ≈ 1.12. Furthermore, there exists a for which a pair of
43For β = 4, see the discussion later in this section.
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Names b1 b2 b3

(1) Sa 0 − 0

Sb 0 − −2
Sc −2 − 0

Sd −2 − −2
(2) S0 0 0 0

S1 0 −∞ 0

(3) Se − 0 0

Sf 0 0 −
The restrictions on b1 and b3 translate to those on γ1 and γ3 through (12):

b1 = 0⇔ γ1 = 0, b1 = −2⇔ γ1 = −2γ0,
b3 = 0⇔ γ3 = 0, b3 = −2⇔ γ3 = −2γ0.

We also impose γ0 > 0.

Table 7: Parameter restrictions on threshold strategies

(S0) is a symmetric Nash equilibrium if and only if β ≤ 2
³
log 5δ

5δ−2

´−1
≈ 3.4026.44

On the other hand, (S1) stays in state 1 just for one period and returns to state 0

afterward regardless of the realized public signal.45 (S1) can also be thought of as a

special case of the trigger strategy discussed by Green and Porter (1983).

In every treatment except for β = 4, we cannot reject at the 10% level the hy-

pothesis that (S0) fits the data as well as the general threshold specification does.

The results of two non-parametric tests reported in the Appendix also provide sup-

port for the use of the (S0) strategy for β = 0. On the other hand, (S1) fits the data

poorly: The hypothesis that it fits the data as well as the general specification does

44For δ > 2/5 and β ≤ 2 log 5δ
5δ−2

−1
, the optimal threshold is given by

k∗(β, δ) = 18 + β log

1
δ
− 1 + ( 1

δ
− 1)2 + e−

2
β (3− 4e−

2
β )

3− 4e−
2
β

≤ 18.

45Note that b2 = −∞ would translate to γ2 = −∞ through (12). However, in order to generate

randomness by uit even when b2 = −∞, we replace γ2 = −∞ by γ2 = γ0z−α−ψ, where z denotes

the lowest realization of z in the data: When γ2 = γ0z − α − ψ, the inequality between γ0zt and

κit + uit stays the same as when γ2 = −∞ for each realization of zt if νi and uit are at or below

their mean values, but is reversed when νi + uit takes a large positive value.
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β = 0 β = 1 β = 4 β = 10

α 8.391*** 4.220*** 0.309* -0.330**

(0.599) (0.511) (0.168) (0.159)

γ0 0.504*** 0.274*** 0.048*** 0.005*

(0.031) (0.027) (0.007) (0.003)

ψ 0.819*** 1.253*** 1.219*** 1.389***

(0.257) (0.375) (0.242) (0.250)

ρ 0.124§ 0.227§ 0.286§ 0.184§

LL -639.219 -520.528 -784.588 -772.695

Obs. 1908 1112 1360 1258

*, **, *** indicate statistical significance at 10%, 5%, and 1% respectively.
§ indicates statistical significance at 1% using a likelihood ratio test.

Table 8: Parameter estimates of the (S0) strategy

is rejected at the 1% level for most treatments. The β = 4 treatment presents the

sole exception to the general rule with (S0) rejected at the 1% level. The rejection

may in part be explained by the fact that β = 4 exceeds the maximal noise level

admitting a Nash equilibrium as mentioned above.

The fact that (S0) is not rejected for β = 10 indicates that some subjects may

condition their behavior on the public signal even though the theory suggests that

they should not. Again the random-effects and ψ both turn out to be statistically

significant, implying the existence of asymmetry across subjects. As with the general

threshold specification, the coefficient estimates of α and γ0, as well as the ratio of

those estimates ( αγ0 ) all decrease with noise, while the estimate of ψ and the ratio

of the estimates of ψ and γ0 both increase with noise.

Since the rejection of (S0) in the β = 4 treatment indicates that at least one

of the parameters b1, b2, and b3 is non-zero, we choose specifications (Se) and (Sf)

in part (c) of Table 7 as possible alternatives. As it turns out, both (Sa) and (Sf)

are rejected at the 1% level, whereas (Se) is not rejected at the 10% level.46 The

estimates for γ0 and γ1 both turn out positive, implying that b1 = γ1/γ0 > 0, or

that subjects have a higher threshold following an own deviation to H in state 0. It

is not clear why the estimated strategy only in this treatment conditions on private

actions.
46The coefficient estimates are α = 0.554, γ0 = 0.059, γ1 = 0.196, ψ = 1.048, and ρ = 0.339.
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6 Discussions

As discussed in the Introduction, this paper analyzes cooperation in infinitely re-

peated PD with imperfect public monitoring under the conditions of the standard

theory. It studies the effect of noise levels in a standard oligopolistic setting where

deviations monotonically shift the distribution of the one-dimensional public sig-

nal. Our findings suggest that subjects do cooperate in such an environment, and

their payoffs are a decreasing function of the level of noise as predicted. The paper

also analyzes the subjects’ strategies by focusing attention on threshold strategies,

which encompass trigger and tit-for-tat strategies that have been frequently dis-

cussed in the literature. Our estimates suggest that the subjects’ strategies in most

treatments have a remarkably simple representation: In every period, this strategy

chooses the cooperative action when the public signal in the last period is above a

certain threshold, and chooses the punitive action otherwise.

While the present paper limits its theory to symmetric equilibrium payoffs, the

data suggests a certain degree of asymmetry in the subjects’ strategies. A few com-

ments are in order regarding this point. First, a theory of asymmetric equilibrium

payoffs as a function of noise would be enormously complex. We think that the sim-

plifying assumption of symmetry provides a good approximation to our qualitative

findings on noise and cooperation.47 Second, while the consideration of asymmetric

strategy profiles raises efficiency, it appears to add little to our analysis of payoffs:

In the low noise treatments, the observed payoffs are lower than the maximal sym-

metric equilibrium payoff. Hence, they are also lower than the maximal asymmetric

equilibrium payoff. In the high noise treatments, on the other hand, the observed

payoffs do exceed the maximal symmetric equilibrium payoff. However, it is not easy

to explain this through asymmetric equilibria either. The case in point is the control

treatments where the subjects’ payoffs are strictly positive. In theory, however, the

unique (symmetric or asymmetric) equilibrium in those treatments is the repetition

of the one-shot Nash equilibrium, which yields zero.

One possible explanation for the observed deviations of the subjects’ payoffs

can be provided by trembling in choosing actions. Suppose, for example, that the

noise is low so that the efficient equilibrium strategy entails the cooperative action

L most of the time on the equilibrium path. Then, when a player trembles, he

47 In fact, symmetry is the working assumption of much of the experimental literature, which

often finds asymmetries across subjects. See, for example, Roth (1995) and Casari, Ham and Kagel

(2004).

31



switches from L to H more frequently, triggering a punishment and lowering his

payoff from the level without trembling. On the other hand, if the noise is high,

the efficient equilibrium strategy entails H most of the time, and trembling causes

switching from H to L more often. This raises the player’s payoff from the level

without trembling.

It comes to our surprise that the infinite noise treatment generated a significantly

lower level of cooperation than the one-shot treatment. One possible reason is

that the subjects make their decision contingent on the public signal in the one-

shot control as in the β = 10 treatment, but cannot do so in the infinite noise

control. Another possibility, perhaps less likely, is that the effectively smaller group

size associated with more frequent rematching in the one-shot control induces the

subjects to consider the consequence of their own action on the group.48

Our observation that the subjects in some treatments do not discount the thresh-

old after an own deviation indicates that they use the signal more as a switching

device rather than the source of information about the opponent’s play. This is con-

sistent with our interpretation of the public signal as a coordination device. On the

other hand, if only a private signal of the opponent’s play is available, we suspect

that the subjects would give more weight to its informational content and possibly

discount the effect of an own action on the signal.

The paper’s discussion is based on a one-dimensional continuous signal distrib-

ution. This formulation, coupled with the monotone likelihood ratio (Assumption

2), justifies the use of thresholds in constructing strategies. While the subjects of

the experiments may find the distribution function of a continuous signal with full

support less accessible than that of, say, a finite signal, we believe that this problem

is outweighed by the advantage of being able to focus on intuitive thresholds.

In comparison with the real industrial setting, the subjects in our experiments

play in an extremely simple environment with only two stage actions and a single

public signal. It remains to be seen whether the paper’s observation continues to

hold in a more complex environment that mimics the reality. In this sense, more

analysis is required for the discussion of its implications on social welfare.

48Such behavior, first explored by Kandori (1992), however runs counter to the experimental

finding of Duffy and Ochs (2007) that cooperation cannot be sustained in a randomly matching

population even though the group size is small. A yet different explanation has to do with the fact

that in all treatments but the one-shot control, the subjects were reminded before each new cycle

that they would be matched with somebody randomly.
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Appendix

Proof of Proposition 1. Since h(· | a) has full support for any a and wi is

continuous, the bang-bang property holds for a perfect public equilibrium (Abreu

et al. (1990, Theorem 3)), and the maximal symmetric perfect public equilibrium

payoff v can be generated by a stationary grim-trigger strategy profile σ, which plays

â throughout the cooperation phase and reverts to a0 if and only if z /∈ Q for some

Q ⊂ R.49

By the stationarity of play, v must satisfy

v = (1− δ)ĝ + δ
©
v P (z ∈ Q | â) + g0 P (z /∈ Q | â)

ª
, (13)

where P (z ∈ Q | â) =
R
z∈Q h(z | â) dz is the probability that the public signal falls

in set Q under the action profile â. Solving (13) for v, we get

v =
(1− δ)ĝ + δg0 P (z /∈ Q | â)

1− δP (z ∈ Q | â) . (14)

For σ̂ to be an equilibrium, playing âi in the cooperation phase must be incentive

compatible for player i: For any alternative action ai 6= âi, v and Q must satisfy

v ≥ (1− δ)gi(a
0
i , âj) + δ

©
v P (z ∈ Q | a0i , âj) + g0 P (z /∈ Q | a0i , âj)

ª
. (15)

Solving (15) for v, we get

v ≥ (1− δ)gi(a
0
i , âj) + δg0 P (z /∈ Q | a0i , âj)

1− δP (z ∈ Q | a0i , âj)
. (16)

Eliminating v from (14) and (16), we obtain

1− δP (z ∈ Q | a0i , âj)
1− δP (z ∈ Q | â) ≥ gi(a

0
i , âj)− g0

ĝ − g0
= l. (17)

Consider an alternative grim-trigger strategy profile σ̂ which begins with â and

reverts to a0 if and only if z < k, where k is such that

P (z ∈ Q | â) =
Z
Q
h(z | â) dz =

Z ∞

k
h(z | â) dz = P (z ≥ k | â). (18)

49To achieve a payoff below the maximal level v, we would need to consider a (semi) non-stationary

strategy for which the set of admissible signals in period 1 is different from that in subsequent

periods.
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It then follows from (14) that σ̂ and σ yield the same payoff. On the other hand,

the incentive constraint (17) for this strategy can be written as

1− δ{1−H(k | a0i , âj)}
1− δ{1−H(k | â)} ≥ l, (19)

where H(· | a) is the cumulative distribution corresponding to h(· | a). In what
follows, we show that σ̂ is also an equilibrium by verifying (19). Denote K = [k,∞)
and write for ai ∈ Ai,

M(ai) =

Z
K\Q

h(z | a0i , âj) dz and N(ai) =

Z
Q\K

h(z | a0i , âj) dz.

Note that M(âi) = N(âi) by (18), and that

P (z ≥ k | a0i , âj) = P (z ∈ Q | a0i , âj) +M(a0i )−N(a0i ).

Note that (19) follows from P (z ≥ k | a0i , âj) ≤ P (z ∈ Q | a0i , âj), or equivalently,
M(a0i ) ≤ N(a0i ). Assumption 1 implies that

M(a0i ) =

Z
K\Q

h(z | a0i , âj) dz

=

Z
K\Q

h(k | a0i , âj)
h(z | a0i , âj)
h(k | a0i , âj)

dz

≤
Z
K\Q

h(k | a0i , âj)
h(z | â)
h(k | â) dz

=
h(k | a0i , âj)
h(k | â) M(âi),

and that

N(a0i ) =

Z
Q\K

h(z | a0i , âj) dz

=

Z
Q\K

h(k | a0i , âj)
h(z | a0i , âj)
h(k | a0i , âj)

dz

≥
Z
Q\K

h(k | a0i , âj)
h(z | â)
h(k | â) dz

=
h(k | a0i , âj)
h(k | â) N(âi).

Therefore,

M(a0i )−N(a0i ) ≤
h(k | a0i , âj)
h(k | â) {M(âi)−N(âi)} = 0.

This completes the proof.
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Characterization of K(δ) and k∗(δ). Proposition 2 below provides a character-

ization of the set K(δ) of thresholds for which player i finds playing âi incentive

compatible.

Assumption 3 f is continuous, and f(0) = maxx∈R f(x).

Assumption 3 holds for many standard distributions as well as the one (5) used in

our experiment. The following proposition shows that the optimal threshold under

such a distribution is always below the expected value of the public signal.

Proposition 2 Suppose that Assumptions 1 and 2 hold. Then K(δ) is a (possi-

bly empty) closed interval. If, in addition, Assumption 3 holds, then the optimal

threshold k∗(δ) < s(â) when K(δ) 6= ∅.

Proof. Define

W (k) =

Z ∞

k−s(â)

½
l − f(x+ d)

f(x)

¾
f(x) dx.

After some algebra, we see that (2) is equivalent to

W (k) ≥ l − 1
δ

(20)

Since f satisfies Assumption 2 and d ≥ 0, it can be verified that f(x+d)
f(x) is weakly

decreasing in x. Take any k and k0 such that k < k0 and W (k), W (k0) ≥ l−1
δ . Then

for any k00 between k and k0,

W (k00) =W (k)−
Z k00−s(â)

k−s(â)

½
l − f(x+ d)

f(x)

¾
f(x) dx,

and

W (k00) =W (k0) +

Z k0−s(â)

k00−s(â)

½
l − f(x+ d)

f(x)

¾
f(x) dx.

Since the quantity inside the brackets in each integrand is weakly increasing in x, if

the first integral is positive, so is the second, and equivalently, if the second integral

is negative, so is the first. In either case, we have W (k00) ≥ l−1
δ . This implies that

the set of k’s which satisfy (8) is convex. That K(δ) is closed follows from the

continuity of W .

Suppose now that Assumption 3 holds. We then have

l − f(d)

f(0)
> 0.
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Since l − f(x+d)
f(x) is weakly increasing and continuous in x, if W (k) ≥ l−1

δ for some

k ≥ s(â), then W (s(â) − γ, ai) > W (s(â)) ≥ W (k) ≥ l−1
δ for a sufficiently small

γ > 0 as well. This shows that k∗(δ) < s(â).

Description of K(δ). When the distribution of the random variable x is as spec-

ified in (5) with β > 0, the set K(δ) of effective thresholds is explicitly given as

follows. Let

λ = log
δ2l

(δ l + 1− l)2
,

μ = log
δ l

δ(2l − 1)− 2(l − 1) ,

ν = log
δ

δ l − 2(l − 1) .

Note that μ is well-defined when δ > 2(l−1)
2l−1 , and ν is well-defined when

2(l−1)
l < δ <

1. Furthermore, whenever these quantities are well-defined, we have log l < λ <

μ < ν. There are the following three cases depending on the value of the discount

factor δ:

1) δ ∈
³
0, 2(l−1)2l−1

i
.

K(δ) = ∅.

2) δ ∈
³
2(l−1)
2l−1 , min

n
2(l−1)

l , 1
o´
.

K(δ) =

⎧⎪⎨⎪⎩
[k3, k2] if d

β ∈ [μ,∞),
[k1, k2] if d

β ∈ [λ, μ),
∅ if d

β ∈ (0, λ),

where

k1 = s(â) + β log l−1/2
n
e−λ/2 −

¡
e−λ − e−

d
β
¢1/2o

,

k2 = s(â) + β log l−1/2
n
e−λ/2 +

¡
e−λ − e−

d
β
¢1/2o

,

k3 = s(â) + β log
2(1− δ)(l − 1)
δ
n
e
d
β − l

o .

In this case, we have (a) k1 > s(a0i , â−i) ⇔ d
β < μ, (b) k3 < s(a0i , â−i) ⇔

d
β > μ, and (c) k2 < s(â).
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3) δ ∈
h
min

n
2(l−1)

l , 1
o
, 1
´
.

K(δ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[k3, k4] if d

β ∈ [ν,∞),
[k3, k2] if d

β ∈ [μ, ν),
[k1, k2] if d

β ∈ [λ, μ),
∅ if d

β ∈ (0, λ),
where k1, k2 and k3 are defined as above and

k4 = s(a0i , â−i) + β log
δ
n
le

d
β − 1

o
2(l − 1) .

In this case, we have (a) and (b) above, and (c0) k2 < s(â) ⇔ d
β < ν, and (d)

k4 > s(â) ⇔ d
β > ν.

Estimation results for (6) Besides those given in (6), we include in the explana-

tory variables the correlated random effects term νi and the constant term. νi is

assumed to have the normal distribution N(ψζi, σa), where ζi is set equal to the

fraction of times subject i chooses L in period 1 among all the cycles he plays. In

other words, the mean of the random-effects component is allowed to vary linearly

with the ratio of choice L in period 1. The coefficient ψ on ζi and the variance σa
are both estimated from data. The parameter estimates are given in Table 9, where

ρ = σ2a
σ2a+1

measures the degree of asymmetry across subjects.50

Proposition 3 Let σ be a public (i.e., b1 = b3 = 0) threshold strategy with regime

shifts. Then (σ, σ) is a perfect public equilibrium if and only if a and b2 satisfy:

{F (a− s(L,H))− F (a− s(L,L))}(ĝ − g0)

+
n
F (a+ b2 − s(H,H))− F (a− s(L,L))− 1

δ

o
{gi(H,L)− ĝ} ≥ 0,

{F (a+ b2 − s(H,H))− F (a+ b2 − s(L,H))}(ĝ − g0)

+
n
F (a+ b2 − s(H,H))− F (a− s(L,L))− 1

δ

o
{g0 − gi(L,H)} ≤ 0,

(21)

where ĝ = gi(L,L) and g0 = gi(H,H).

For our parametrization, a pair of threshold strategies is a perfect public equi-

librium if

3{F (a− 18)− F (a− 20)}+ F (a+ b2 − 16)− F (a− 20) ≥ 0.9−1

9{F (a+ b2 − 16)− F (a+ b2 − 18)}+ F (a+ b2 − 16)− F (a− 20) ≤ 0.9−1.
50ρ = 0 if there is no individual subject effect and ρ = 1 if all the variance is explained by

individual subject effects.
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β = 0 β = 1 β = 4 β = 10

zt−11{ct−1=1} 0.520*** 0.253*** 0.053*** 0.012***

(0.050) (0.033) (0.007) (0.004)

zt−11{ct−1=0} 0.537*** 0.245*** 0.031*** -0.001

(0.055) (0.036) (0.008) (0.004)

zt−21{ct−2=1} 0.145*** 0.014 -0.006 0.003

(0.051) (0.031) (0.007) (0.004)

zt−21{ct−2=0} 0.161*** 0.014 -0.006 0.003

(0.057) (0.035) (0.008) (0.004)

Constant -12.259*** -5.169*** -1.171*** -0.999***

(1.232) (0.874) (0.301) (0.176)

ψ 0.676** 1.064*** 0.982*** 1.163***

(0.309) (0.358) (0.280) (0.269)

ρ 0.153§ 0.198§ 0.225§ 0.169§

(0.050) (0.064) (0.059) (0.050)

Observations 1680 928 1240 1042

Number of subjects 38 42 40 46

**, *** indicate statistical significance at 5%, and 1% respectively.
§ indicates statistical significance at 1% using a likelihood ratio test.

Table 9: Effects of Past Public Signals and Choices on the Current Choice
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For example, when a ∈ [18, 20) and a + b2 ∈ R \ [12, 18] or when a = 20 and

a+ b2 > 18, there exists β̄(a, b2) > 0 such that a pair of public threshold strategies

σ with (a, b2) is a perfect public equilibrium under the noise level β < β̄(a, b2).

Proof. For simplicity, write

p = P (z ≤ a | L,L),
q = P (z ≤ a | L,H),
r = P (z ≤ a | H,H),

p0 = P (z ≤ a+ b2 | L,L),
q0 = P (z ≤ a+ b2 | L,H),
r0 = P (z ≤ a+ b2 | H,H).

Let v0 and v1 be the (average) repeated game payoff beginning from states 0 and

1, respectively, when both players play the threshold strategy σ. Then we have the

following recursive equations:

v0 = (1− δ) ĝ + δ{(1− p)v0 + pv1},
v1 = (1− δ) g0 + δ{(1− r0)v0 + r0v1}.

(22)

On the other hand, the incentive compatibility conditions can be written as:

v0 ≥ (1− δ) gi(H,L) + δ{(1− q)v0 + qv1},
v1 ≥ (1− δ) gi(L,H) + δ{(1− q0)v0 + q0v1}.

(23)

Solving (22) for v0 and v1, we obtain"
v0

v1

#
= (1− δ)

"
1− δ(1− p) −δp
−δ(1− r0) 1− δr0

#−1 "
ĝ

g0

#
. (24)

Upon substituting the right-hand side of (22) into the left-hand side of (23), we also

obtain the following inequalities in matrix form:

δ

"
q − p −q + p

−r0 + q0 r0 − q0

# "
v0

v1

#
≥ (1− δ)

"
gi(H,L)− ĝ

gi(L,H)− g0

#
. (25)

Substituting (24) into (25) and simplifying, we obtain (21).

Non-parametric tests of the (S0) strategy. First, we test the hypothesis that

b1 = b3 = 0 in the perfect monitoring treatment (β = 0) using the sign test (Snedecor

and Cochran 1980), which requires no parametric assumption. Suppose that a player

uses a threshold strategy with b1 = 0 in the perfect monitoring game. Then the

condition of transition from state 0 to state 1 should be neutral with respect to the

identity of the deviator. In other words, if the opponent’s deviation in state 0 moves
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the player to state 1, then so does his own deviation. This can be tested as follows.

Take any subject i and consider the following two sequences of play: In the first

sequence, both i and his opponent j play L in period t−2, and i plays L and j plays
H in period t− 1. In the second sequence, both play L in t− 2 and i plays H and j

plays L in t− 1. When b1 = 0, i’s action in period t should be the same conditional

on either sequence. We compare the rate that subject i plays action H after the first

sequence with that after the second sequence using a sign test. The null hypothesis

that they are the same cannot be rejected (p-value = 0.51): 6 subjects play H more

often when they played L in period t−1, 3 less often and 1 exactly the same number
of times. We can also test if b3 = 0 by comparing the rate that subject i plays L

after the sequence ((H,H), (H,L)) with that after the sequence ((H,H), (L,H)).

Again, the null hypothesis that they are the same cannot be rejected (p-value =

0.45): 2 subjects played L more often when they played L in t− 1, 5 less often, and
1 the same number of times. These results support the findings from the likelihood

ratio test. In particular they imply that the specifications (Sb)-(Sd), which all have

(b1, b3) 6= (0, 0), are unlikely.
We next check how well the deterministic specification of (S0) (i.e., b1 = b2 =

b3 = 0 in (8) and (7)) describes the data. Specifically, pick any subject, fix the base

threshold level a, and consider the sequence of actions this strategy would generate

given the sequence of the public signals and his own actions. For each value of a,

we compare the actions thus generated against the actions actually chosen by the

subject, and count the number of periods in which the former matches the latter.

We then choose a so as to maximize the hit rate, i.e., the ratio of periods for which

the two action choices coincide. It is 93% for the median player and 88% on average

in the β = 0 treatment.51 Likewise, the median and average hit rates are 80% and

82% in the β = 1 treatment, 77% and 77% in the β = 4 treatment, and 67% and

71% in the β = 10 treatment. All these numbers are statistically different from 50%

(a coin toss) at the 1% level.

51 In other words, when the subjects are ranked by their hit rates, the hit rate of the median

subject is 93%.
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