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Abstract

We study a process of bargaining over alternatives represented by points in the unit interval. The pa-
per focuses on the asymptotic behavior of the subgame perfect equilibrium in stationary strategies as the
continuation probability approaches one. We give a complete characterization of the limit of the equilib-
rium proposals as the generalized fixed point of the decumulative distribution of the players’ ideal points as
induced by the recognition probabilities. In contrast to the existing literature, we find no general relation-
ship between the limit equilibrium proposals and either the Nash bargaining solution or the median voter
outcome.
© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

We consider the situation where a group of players has to choose an alternative out of a set of
alternatives represented by points in a one-dimensional space. This problem features prominently
in the literature on collective decision making and typical examples concern the choice of the
taxation level, the location of a facility, or the amount of money devoted to a particular investment
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opportunity. A famous solution within this setting is the median voter result (Black [4]). This
result establishes conditions under which the chosen alternative corresponds to the one most
preferred by the player with median preferences.

As in Banks and Duggan [1], Imai and Salonen [15], Cho and Duggan [8], Kalandrakis [16,
18], and Cardona and Ponsatí [6], we analyze the situation from a bargaining perspective. Prob-
lems in collective decision making are often solved by bargaining. Politicians bargain about
public good levels, tax rates, and issues in the traditional left–right spectrum in political deci-
sion making. Within firms bargaining takes place by executives to choose among a variety of
investment opportunities. Unions have to aggregate heterogeneous member preferences, which
may involve bargaining, and next bargain with firms on terms of employment. These bargaining
problems often involve a one-dimensional set of alternatives.

Banks and Duggan [1] consider bargaining over a set of social outcomes equal to an arbitrary
compact convex subset of a Euclidean space. They examine a bargaining protocol where the
proposer is selected according to a time-invariant probability distribution and they consider a
general voting rule that determines whether a particular proposal is accepted or not. They prove
the existence of a subgame perfect equilibrium in stationary strategies.

We restrict attention to the case where the set of alternatives is the unit interval and where
acceptance of a proposal requires unanimity of all the players involved in the decision making
process. The process by which the proposer is selected follows a general Markov process as
in Kalandrakis [16]. The probability by which a certain player is selected as proposer is also
referred to as the recognition probability.

We would like to emphasize the importance of a general model for the proposer selection
process. Romer and Rosenthal [27] is among the most influential papers emphasizing the role of
proposal making on the selected alternative. Kalandrakis [17] shows in a bargaining framework
that the proposer selection process is more important than voting rights, impatience, or complex
equilibrium strategies in explaining political power. Empirical support for this feature in the
context of the allocation of transportation funds in the US is provided by Knight [19].

Two important special cases of our proposer selection model are the ones where the proposer
is selected according to some time-invariant probability distribution as in Banks and Duggan
[1] and Kalandrakis [18], or where the proposer is chosen according to some deterministically
rotating scheme as in Cardona and Ponsatí [6]. Also the alternating offer bargaining model in
Rubinstein [28] is an example of a deterministically rotating scheme and is a special case of
our more general model. Merlo and Wilson [22] have generalized the Rubinstein set-up substan-
tially and allow for a proposer selected by a Markov process. But since they consider bargaining
problems where the dimension of the bargaining space equals the number of players minus one,
one-dimensional bargaining with more than two players is not covered by their analysis.

The bargaining process we study proceeds as follows. At the beginning of a period one player
is selected by means of a Markov process to make a proposal. The players react to the proposal
sequentially and can each either accept or reject the proposal. If all players accept, the proposal is
implemented, the game ends, and each player receives the payoff of the chosen alternative. Oth-
erwise, with some probability negotiations break down and some disagreement outcome results,
or, with the remaining probability, the next period begins.

We study subgame perfect equilibria in stationary strategies. In a stationary strategy, each
player makes a unique history-independent proposal and has a unique proposer-dependent accep-
tance set. The acceptance set specifies which proposals are accepted by a player. The intersection
of all the individual acceptance sets is called the social acceptance set. Like the individual accep-
tance set, the social acceptance set is proposer-dependent, but otherwise history-independent.
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We show that subgame perfect equilibria in stationary strategies are essentially unique. All
equilibria have the same equilibrium proposals, the same equilibrium payoffs, and the same
social acceptance sets. In equilibrium, proposals are immediately accepted, so in equilibrium no
delay occurs. Any two equilibria can only differ with respect to the individual acceptance sets.
The difference is only relevant off the equilibrium path and may occur when a player is indifferent
between accepting or rejecting a particular proposal. The unique subgame perfect equilibrium in
stationary strategies where players accept if they are indifferent between rejecting and accepting
is referred to as the bargaining equilibrium.

Our uniqueness result complements the uniqueness results by Cho and Duggan [8] and Car-
dona and Ponsatí [6] in related frameworks, and the uniqueness result in Merlo and Wilson [23]
for the extension of Rubinstein [28] to the n-person case that involves a stochastic cake under
a contraction condition. Eraslan and Merlo [11] show for the latter model that uniqueness does
not generally hold when approval of a proposal is not required to be unanimous. Eraslan [10]
obtains a uniqueness result in the legislative bargaining approach of Baron and Ferejohn [2]. Ka-
landrakis [18] establishes a number of determinacy results (the number of equilibria is finite, and
under some assumptions odd) for a quite general bargaining model.

We continue by studying the asymptotic behavior of subgame perfect equilibrium proposals
as the continuation probability converges to one. As an illustration, consider the special case of
time-invariant recognition probabilities. These recognition probabilities give rise to a cumulative
distribution function on the set of alternatives, by assigning to each alternative the mass of players
whose most preferred alternative is less than or equal to that alternative. We prove that in the limit
the bargaining equilibrium proposals of all players converge to the same proposal, being the
(generalized) fixed point of the function equal to one minus the cumulative distribution function.

For the general case, consider a sequence of continuation probabilities converging to one. The
induced sequence of bargaining equilibria converges to some limit, which we call the limit equi-
librium. It is not necessarily the case that limit equilibrium proposals of players are all the same.
The configuration of limit equilibrium proposals depends on the partition of the set of players
into absorbing sets and transient states, based on the proposer selection process. Starting from
any transient state, the proposer selection process eventually enters one of the absorbing sets.
The probability to enter a given absorbing set starting from a given transient state is called the
absorption probability. The proposer selection process determines a unique stationary distribu-
tion on each absorbing set. This stationary distribution determines a generalized fixed point in a
similar way as illustrated for the case of time-invariant recognition probabilities.

The limit equilibrium proposals can therefore be described as follows:

(A) Players in the same absorbing set make the same proposal.
(B) The proposal of a player in an absorbing set is the related generalized fixed point.
(C) The proposal of a player in a transient state is the weighted average of the absorbing set

proposals, with weights given by the absorption probabilities.

It follows from conditions (A) and (C) above that if there is only one absorbing set, then all
players make the same limit equilibrium proposal. In particular, if the transition matrix of the
proposer selection process is irreducible, the only absorbing set is the entire set of players. Also,
if the recognition probabilities are time-invariant, the only absorbing set is the set of players with
strictly positive recognition probabilities. Condition (B) provides a simple procedure to calculate
limit equilibrium proposals.



192 P.J.J. Herings, A. Predtetchinski / Journal of Economic Theory 145 (2010) 189–215
The median voter theorem (Black, 1958) identifies the median of the players’ ideal points as
the alternative chosen. The median voter outcome has been given non-cooperative foundations
in Banks and Duggan [1] and Cho and Duggan [9], who present a bargaining model similar to
ours, but with unanimous approval replaced by approval by the majority of players. Cho and
Duggan [9] show under very weak conditions that the median voter outcome corresponds to the
limit subgame perfect equilibrium of such a bargaining process. Surprisingly, the median voter
outcome does not depend on the specifics of the proposer selection process, under the proviso
that each player’s recognition probability has a strictly positive lower bound, a sharp contrast to
our limit equilibrium proposals. When the cumulative distribution function related to the players’
ideal points coincides with the cumulative distribution function induced by the proposer selec-
tion process, for instance when all players are recognized according to a uniform time-invariant
probability distribution, we can show that our limit equilibrium proposals are always closer to
the midpoint of the two most extreme ideal points than the median voter outcome.

The Nash bargaining solution is the solution that maximizes the sum over the players of
the logarithms of their gains with respect to the disagreement payoff. Nash [25] shows that the
axioms of scale invariance, symmetry, efficiency, and independence of irrelevant alternatives
uniquely determine this solution for the case of two players. The Nash bargaining solution has
also been given non-cooperative underpinnings. Nash [26] is the starting point of what is known
today as the Nash program, and provides a non-cooperative demand game whose equilibrium
corresponds to the Nash bargaining solution for the case of two players. Also for the two-player
case, Binmore, Rubinstein and Wolinsky demonstrate that the limit equilibrium corresponding to
the alternating offers bargaining procedure of Rubinstein [28] corresponds to the Nash bargaining
solution.

Extensions of such a result to the multiple-player case are also available. Krishna and Serrano
[20] and Chae and Yang [7] provide alternative extensions of the alternating offers procedure to
the multiple-player case and show that in the limit the Nash bargaining solution results. These
authors relax the requirement of unanimous agreement and study so-called exit games. For the
bargaining procedure as used in this paper, Britz, Herings, and Predtetchinski [5] show that under
weak conditions the limit equilibrium corresponds to the weighted Nash bargaining solution, with
weights given by the stationary distribution corresponding to the proposer selection process. This
result extends the results by Miyakawa [24] and Laruelle and Valenciano [21], who also obtain
convergence to the Nash bargaining solution for more specific proposer selection processes and
stronger assumptions on the space of alternatives.

A natural conjecture is therefore that our limit equilibrium can alternatively be described as
an appropriately defined weighted Nash bargaining solution. Notice, however, that all the papers
that give non-cooperative support to the Nash bargaining solution make the assumption of strict
comprehensiveness of the set of feasible payoff vectors. Such an assumption does not hold in
the case of one-dimensional bargaining. We will argue that our limit equilibrium does NOT
correspond to an appropriately defined Nash bargaining solution.

Imai and Salonen [15] introduce the concept of the representative Nash bargaining solution
for the situation of two-sided bargaining. In a two-sided bargaining problem the alternatives are
represented by points in the interval and the players are divided into two groups with diamet-
rically opposite preferences. The authors provide an axiomatization of the representative Nash
bargaining solution and the non-cooperative characterization of it as a limit of stationary equi-
libria in a game of bargaining when the probability of the breakdown of negotiations vanishes.
Unlike Imai and Salonen [15], we allow for players to have intermediate preferences.
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The paper has been organized as follows. Section 2 introduces the model and the notion of
bargaining equilibrium. In Section 3 we show that each bargaining equilibrium is a subgame per-
fect equilibrium in stationary strategies, and conversely that each subgame perfect equilibrium
in stationary strategies is essentially a bargaining equilibrium. In Section 4 we characterize bar-
gaining equilibria by means of a specific system of equations and prove that for each value of the
continuation probability below one there is a unique bargaining equilibrium. Section 5 analyzes
bargaining equilibria in a number of special cases, including the case of time-invariant recogni-
tion probabilities and a deterministically rotating scheme of proposers. Section 6 presents two
results on stochastic matrices that are needed to show the main result of the paper, which is the
full characterization of the limit equilibrium and its relation to the generalized fixed point of the
function generated by the stationary distribution of the proposer selection process as presented
in Section 7. Section 8 studies the relationship between limit equilibrium proposals, the median
voter outcome, and the Nash bargaining solution. Section 9 concludes the paper.

2. Bargaining equilibrium

We study an environment where the set of available alternatives or social states is represented
by the unit interval. A finite set of players N has to choose one alternative from the set Z =
[0,1]. The implementation of an alternative z ∈ [0,1] leads to payoffs ui(z) = 1 − |z − pi | for
player i. Thus pi is the ideal point of player i, and player i’s payoff decreases linearly with
the distance between the ideal point and the alternative. We assume that there are players for
which 0, respectively 1, are the ideal points. We use the notation i0 for a player with pi0 = 0 and
i1 for a player with pi1 = 1. Our results can be generalized to the case where the set of possible
alternatives is a smaller set that does not contain some of the ideal points. In this case one should
replace the proposals we derive by projections of these proposals on the smaller set.

Given a continuation probability δ ∈ [0,1), we define the bargaining game Γ = Γ (δ) as fol-
lows. The game Γ is a dynamic game of almost perfect information. The game starts in period
t = 0. In each period t nature selects a player to make a proposal and the selected player proposes
one of the alternatives from Z. Then all players respond to the proposal. Each player can either
reject or accept it. The players respond to a proposal sequentially, the order of the responses being
history-independent. For simplicity, we assume that all players respond to the proposal, includ-
ing the proposer himself. If the responders unanimously agree to a proposal, the game ends and
the proposal is implemented. As soon as the first rejection occurs, time period t + 1 begins with
probability δ and negotiations break-down with probability 1 − δ and the disagreement outcome
results.2

If an alternative z is implemented, the payoff to player i is ui(z). The payoff of the
disagreement outcome and of perpetual disagreement is zero for every player. Players have
von Neumann–Morgenstern utility functions.

The selection of proposers is determined by a Markov process on N as in Kalandrakis [16].
The transition probability from state k to state i is π(i|k). When player k makes a proposal
in period t , and negotiations do not break down, then with probability π(i|k) player i will be
selected to make a proposal in period t +1. Transition probabilities are collected in the matrix Π ,
with π(i|k) in row k and column i. In period t = 0 the process is initialized by an arbitrary
probability distribution on the set N . Our analysis carries over to exogenously given Markov

2 One can reinterpret δ as the common discount factor.
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processes that are defined on a larger state space. All one has to do is to redefine the set of
players as the states of the Markov process and associate the utility function of the proposing
player to the state.

Two important special cases of the proposer selection process are time-invariant recognition
probabilities and deterministic recognition rules. Recognition probabilities are time-invariant if
there is a probability distribution μ on N such that π(i|k) = μ(i) for all (i, k) ∈ N × N . Recog-
nition is deterministic if there is a function r : N → N such that π(i|k) equals one if i = r(k)

and zero otherwise. The function r is called a recognition rule. When N consists of players i0
and i1 only and recognition is deterministic with the rule r(i0) = i1 and r(i1) = i0, we obtain the
famous model of alternating offers bargaining of Rubinstein [28] as a special case.

We will analyze subgame perfect equilibria in stationary strategies. In a stationary strategy a
player chooses the same action at information sets with an identical continuation game. A sta-
tionary strategy of player i consists of a proposal xi ∈ [0,1] and a collection Ai of acceptance
sets Ai|k ⊂ [0,1] for k ∈ N . The set Ai|k is the set of proposals of player k that are accepted by
player i. The stationary strategy (xi,Ai) therefore determines a unique behavioral strategy σi .
A stationary strategy profile is a pair (x,A), where x = (xi)i∈N and A = (Ai)i∈N .

A tuple of collections of acceptance sets A induces the social acceptance set Xk = ⋂
i∈N Ai|k

for k ∈ N , i.e. the set of proposals by player k that are unanimously accepted. We write X =
(Xk)k∈N .

Consider the case where all players make proposals that belong to the respective social accep-
tance set. Then there is no delay before a proposal is accepted. Such a strategy profile (x,A) is
called a no-delay strategy profile. A no-delay strategy profile (x,A) induces a matrix of contin-
uation payoffs Y with element yi|k in row k and column i defined by

yi|k =
∑
j∈N

π(j |k)ui(xj ).

The continuation payoff yi|k is the expected payoff to player i conditional on the proposal made
by player k being rejected and the next period being reached. Player i should reject a proposal
xk by player k if ui(xk) < δyi|k . These considerations motivate the definition of a bargaining
equilibrium below.

Definition 2.1. A stationary strategy profile (x,A) is a bargaining equilibrium of Γ if

Ai|k = {
z ∈ Z

∣∣ ui(z) � δyi|k
}

for each (i, k) ∈ N × N, (1)

yi|k =
∑
j∈N

π(j |k)ui(xj ) for each (i, k) ∈ N × N, (2)

Xk =
⋂
i∈N

Ai|k and Xk �= ∅ for each k ∈ N, (3)

xk = arg max
z∈Xk

uk(z) for each k ∈ N. (4)

In a bargaining equilibrium no delay ever occurs as all equilibrium proposals xk lie in the
respective social acceptance sets Xk . The number yi|k is the equilibrium continuation payoff to
player i after a proposal of player k has been rejected. Player i accepts a proposal xk of player
k if and only if the payoff of xk is at least as high as the continuation probability times the
continuation payoff.
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3. Subgame perfect equilibria in stationary strategies

In this section we show that a bargaining equilibrium is a subgame perfect equilibrium in
stationary strategies. Moreover, we show the converse result that if (x,A) is a subgame perfect
equilibrium in stationary strategies, then there is a bargaining equilibrium where all equilibrium
proposals, all social acceptance sets, and all continuation payoffs coincide with those induced by
(x,A). In particular, any subgame perfect equilibrium in stationary strategies has the immediate
agreement property. As a consequence of the results in this section, we may restrict our analysis
of Γ to a study of its bargaining equilibria.

The results of this section do not depend on the specific functional form of the utility functions
assumed in Section 2. All results of this section hold if (a) the set of alternatives is Z = [0,1],
(b) the utility functions ui : Z → R are continuous, concave, single-peaked and non-negative
on Z, and (c) there is a player i0 whose ideal point equals 0 and a player i1 whose ideal point
is 1.

Theorem 3.1. A bargaining equilibrium σ = (x,A) of Γ is a subgame perfect equilibrium in
stationary strategies.

The proof of Theorem 3.1 is straightforward. It is sufficient to show that no player has a
profitable one-shot deviation from the strategy σ . It then follows from the one-shot deviation
property that there are no profitable deviations from the strategy σ .

Let σ = (x,A) be a stationary strategy profile in the game Γ . Let Na = {k ∈ N | xk ∈ Xk}
denote the set of players whose proposal is accepted and Nr = {k ∈ N | xk /∈ Xk} denote the
set of players whose proposal is rejected. We now compute the matrix Y of continuation payoffs
associated with σ . The matrix Y contains yi|k in row k and column i. If nature chooses a proposer
k from the set Na , the payoff to player i is ui(xk), while if the proposer is chosen from Nr , then
the payoff to player i is δyi|k . We have thus a system of equations

yi|k =
∑
j∈Na

π(j |k)ui(xj ) + δ
∑
j∈Nr

π(j |k)yi|j for all (i, k) ∈ N × N.

Given a subset S of N, let 1S be the vector in R
N with coordinates i ∈ S equal to 1 and

coordinates i ∈ N \ S equal to 0. Let Ω(S) be a square matrix with entries indexed by elements
of the set N × N . The only non-zero entries of Ω(S) are diagonal entries corresponding to the
elements of the set S. These entries are equal to one. The matrix Ω(N) is equal to the identity
matrix and is also denoted by I . Let u(x) denote the matrix with element ui(xk) in row k and
column i. Then the above system can be written in vector-matrix notation as

Y = ΠΩ(Na)u(x) + δΠΩ(Nr)Y.

We can now solve for the continuation payoffs:

Y = Λu(x), where Λ = [
I − δΠΩ(Nr)

]−1
ΠΩ(Na).

The matrix [I − δΠΩ(Nr)] is invertible and has a non-negative inverse, because the spectral
radius of δΠΩ(Nr) is at most δ < 1. The matrix Λ is therefore non-negative. Columns of Λ

corresponding to players in Nr are equal to zero. The matrix Λ equals the matrix Π if Nr is
empty and has all entries equal to zero if Na is empty.

Furthermore, the sum of the entries of the matrix Λ in any given row is at most 1, that is
Λ1N � 1N . To prove this inequality, consider the following chain of equations:
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[
I − δΠΩ(Nr)

][I − Λ]1N = [
I − δΠΩ(Nr) − ΠΩ(Na)

]
1N

= [
I − δΠΩ(Nr) − δΠΩ(Na) − (1 − δ)ΠΩ(Na)

]
1N

= [
I − δΠ − (1 − δ)ΠΩ(Na)

]
1N

= 1N − δ1N − (1 − δ)Π1Na

= (1 − δ)(1N − Π1Na )

= (1 − δ)(Π1N − Π1Na )

= (1 − δ)Π1Nr .

The equation in the third line follows from the fact that Ω(Na) + Ω(Nr) = I . The equation
in the fourth line uses that Π1N = 1N and Ω(S)1N = 1S . The equation in the sixth line again
uses the fact that Π1N = 1N . The equation in the last line uses the equation 1Na + 1Nr = 1N .
Premultiplying the obtained equality by the matrix [I − δΠΩ(Nr)]−1 yields

1N − Λ1N = (1 − δ)
[
I − δΠΩ(Nr)

]−1
Π1Nr ,

which is non-negative because [I − δΠΩ(Nr)]−1 is non-negative. This proves that Λ1N � 1N .
With λ(j |k) denoting the entry in row k and column j of the matrix Λ, we can write the

continuation payoff as

yi|k =
∑
j∈Na

λ(j |k)ui(xj ).

Theorem 3.2. Suppose δ ∈ [0,1). Let σ = (x,A) be a stationary subgame perfect equilibrium
of the game Γ with continuation payoffs Y and social acceptance sets X. Then there exists a
bargaining equilibrium (x,B) with continuation payoffs Y and social acceptance sets X.

Proof. For a subset S of Z we write IntS to denote the interior of S in the Euclidean topology
of the real line. Define the following sets:

Bi|k = {
z ∈ Z

∣∣ ui(z) � δyi|k
}

and Bk =
⋂
i∈N

Bi|k,

Ci|k = {
z ∈ Z

∣∣ ui(z) > δyi|k
}

and Ck =
⋂
i∈N

Ci|k.

Step 1. We prove that IntBk ⊂ Ck ⊂ Xk ⊂ Bk for each k.
To prove the first inclusion, observe that IntBi|k ⊂ Ci|k because the function ui is concave

and single-peaked. It follows that IntBk ⊂ ⋂
i∈N IntBi|k ⊂ ⋂

i∈N Ci|k = Ck .
To prove the second inclusion let z be an element of Ck . Suppose z is not an element of Xk .

Let i be the last player in the response order such that z is not an element of the individual
acceptance set Ai|k .

Consider any node h of the game Γ where player i has to react to the proposal z of player k. If
all players follow the profile of strategies σ , then z is rejected with player i being the last player
in the response sequence to reject z. Thus under strategy σ the payoff at node h to player i is
δyi|k .

Consider a strategy σ̄i of player i that coincides with σi on all nodes of the game Γ except
node h where it assigns that player i accept the proposal z. Because all players following i in the
response sequence accept z, playing σ̄i against σ in the subgame that starts at node h leads to a
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payoff ui(z) for player i. Since z ∈ Ci|k we know that ui(z) > δyi|k . Thus σ̄i is a profitable one-
shot deviation from σ at node h for player i. This contradicts the hypothesis that σ is a subgame
perfect equilibrium.

To prove the third inclusion let z be an element of Xk and suppose z is not an element of Bk .
Let i be any player such that z is not an element of the set Bi|k . Then ui(z) < δyi|k .

Consider any node h of the game Γ where player i has to react to the proposal z of player k.
If all players follow the profile of strategies σ , then z is accepted, resulting in payoff ui(z) for
player i. Consider a strategy σ̄i for player i that coincides with σi on all nodes of the game Γ

except node h where it assigns that player i reject the proposal z. Playing σ̄i against σ results in
a payoff of δyi|k for player i. Thus σ̄i is a profitable one-shot deviation from σ at node h. This
contradiction proves the second inclusion.

Step 2. We prove that the set Ck is non-empty for each k.
Fix some k ∈ N . Let N0 = {i ∈ N | yi|k = 0} and N+ = {i ∈ N | yi|k > 0}. Since all util-

ity functions ui are assumed to be concave, single-peaked and non-negative on [0,1], they are
positive on (0,1). We have therefore the inclusion

(0,1) ⊂
⋂

i∈N0

Ci|k.

Let λ(N |k) denote the sum of all entries in row k of Λ. Suppose first that λ(N |k) = 0. Then
row k of Λ is zero, and therefore yi|k = 0 for all i ∈ N . Thus N0 = N and we have the inclusion
(0,1) ⊂ Ck . In this case the claim has been proven.

Suppose now that λ(N |k) > 0. Define the element z of Z by

z =
∑

j∈Na
λ(j |k)xj

λ(N |k)
.

For each i ∈ N+ we then have the following inequalities:

ui(z) �
∑

j∈Na
λ(j |k)ui(xj )

λ(N |k)
= yi|k

λ(N |k)
� yi|k > δyi|k,

where the first inequality follows from the concavity of ui , the second inequality from the fact
that λ(N |k) � 1, and the third inequality from the fact that δ < 1 and yi|k > 0. We have thus
established the inclusion

z ∈
⋂

i∈N+
Ci|k.

Each Ci|k is an open subset of Z. Since the set N+ is finite,
⋂

i∈N+ Ci|k is also an open subset
of Z. As we have just shown, it is a non-empty set. Being a non-empty open subset of Z, it has
to have a non-empty intersection with the interior of Z. The result follows.

Step 3. We prove that Na = N .
Suppose not. Take some k in Nr . We show that player k has a profitable one-shot deviation

from σ at any node h where he has to make a proposal.
Under strategy σ , player k makes a proposal xk that is rejected, resulting in a payoff of δyk|k

for player k. Take an arbitrary point z in Ck and consider a strategy that agrees with σk on all
nodes of the game Γ except node h, where it assigns that player k make a proposal z. Since
Ck ⊂ Xk , the alternative z is unanimously accepted, resulting in the payoff uk(z). Since z ∈ Ck|k ,
we have the inequality uk(z) > δyk|k . Proposing z at node h is therefore a profitable one-shot
deviation from σ .
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Step 4. We show that xk = arg maxz∈Xk
uk(z) for all k ∈ N .

From Step 3 we know that xk ∈ Xk for all k. If xk does not maximize the function uk on
the set Xk , there exists an alternative z ∈ Xk such that uk(z) > uk(xk). But then player k has a
profitable one-shot deviation from σ at any node h where he has to make a proposal, namely to
propose the alternative z. Since z ∈ Xk , the alternative z is unanimously accepted, resulting in
the payoff uk(z). This contradicts the fact that σ is a subgame perfect equilibrium.

Step 5. We show that Xk = Bk for all k ∈ N .
We know from Step 1 that IntBk ⊂ Xk ⊂ Bk and from Step 2 that IntBk �= ∅. Since Bk is a

convex set, the set Xk is also convex and its closure equals Bk . It is therefore sufficient to show
that both a = infXk and b = supXk are contained in Xk .

From Step 4 we know that xi0 maximizes the utility function ui0 of player i0 on Xk , and xi1

maximizes the utility function ui1 of player i1 on Xk . But ui0 is a decreasing function and ui1 is
an increasing function. Thus, we must have that xi0 = a and xi1 = b. This proves the claim.

Step 6. We prove that (x,B) is a bargaining equilibrium with continuation payoffs Y and
social acceptance sets X.

Eqs. (1) and (3) hold by definition of Bi|k and Bk = Xk . We know from Step 3 that Na = N .
Therefore, the matrix Λ equals Π and Y = Πu(x), which is Eq. (2). Step 4 yields Eq. (4). �
4. A characterization of bargaining equilibria

In this section we show that each game Γ has a unique bargaining equilibrium. Together with
Theorems 3.1 and 3.2 of Section 3, this implies that all subgame perfect equilibria in stationary
strategies have the same equilibrium proposals, equilibrium utilities, and social acceptance sets.

Herings and Predtetchinski [13] analyze a one-dimensional bargaining model where players
can be clustered in two coalitions, one group having z = 0 as the most preferred point, the other
z = 1. In that special case, there is no need to rely on stationarity of strategies to obtain a similar
uniqueness result as in this section, and an analysis of subgame perfect equilibria suffices to
obtain the desired result. Within the more general setting of this paper, it is possible to construct
examples with multiple subgame perfect equilibria, as is also common in the literature on the
extension of the Rubinstein model to the n-player case, see Herrero [14] and Haller [12].

Consider a bargaining equilibrium (x,A) with continuation payoffs Y and social acceptance
sets X. Since the utility functions ui are concave, all individual acceptance sets are closed inter-
vals. We shall use the notation [a−

i|k, a
+
i|k] to denote the individual acceptance set Ai|k of player i

for the proposals of player k. The social acceptance set Xk for the proposals of player k is also a
closed interval, denoted by [x−

k , x+
k ].

We now present the two main theorems of this section. Theorem 4.1 is a characterization of
bargaining equilibria by means of a system of equations in terms of the equilibrium proposals
and the social acceptance sets. Theorem 4.2 states that the bargaining equilibrium is unique.

The system (5)–(6) below is referred to as the characteristic system of equations:

x− = δΠx, x+ = (1 − δ)1N + δΠx, (5)

xk =
⎧⎨
⎩

x−
k , if pk � x−

k ,

pk, if x−
k � pk � x+

k ,

x+
k , if x+

k � pk,

for all k ∈ N. (6)

Theorem 4.1. Let (x,A) be a bargaining equilibrium with social acceptance sets Xk = [x−
k , x+

k ].
Then the triple (x, x−, x+) is a solution to the characteristic system of equations. Conversely,
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suppose the triple (x, x−, x+) is a solution to the characteristic system of equations. Then there
exists a bargaining equilibrium with equilibrium proposal profile x and social acceptance sets
[x−

k , x+
k ].

Theorem 4.2. There is a unique bargaining equilibrium.

Cardona and Ponsatí [6] show the uniqueness of bargaining equilibrium in the one-
dimensional model of bargaining assuming that the utility functions are concave, single-peaked
and symmetric around the peak, that is for utility functions of the form ui(z) = fi(|z − pi |),
however they restrict their attention to the case where the proposer is chosen according to some
deterministically rotating scheme. While the proof Theorem 4.2 relies on the specific functional
form of the utility functions assumed in this paper, its contribution is to cover the case where
the identity of the proposer follows a general Markov process. It might be possible to show
the uniqueness of bargaining equilibrium for the class of concave, single-peaked and symmet-
ric around the peak utility functions as in Cardona and Ponsatí [6] and the general Markov
recognition process. It is clear, however, that the uniqueness result cannot be extended the class
of concave single-peaked preferences, an example of a game having a continuum of equilibria
being given in Kalandrakis [18].

The remainder of the section is devoted to the proof of these two results. If xk is an equilib-
rium proposal of player k in a bargaining equilibrium, then it is the point of Xk closest to the
ideal point pk , whence Eq. (6). To derive Eq. (5) we rely on Propositions 4.1 and 4.2 below.
Proposition 4.1 essentially says that the players whose ideal points are 0 and 1 determine all
social acceptance sets. Player i1 whose ideal point is 1 determines the lower endpoint of each
social acceptance set, while player i0 with ideal point 0 determines the upper endpoint.

Proposition 4.1. Suppose the tuple (x,A,Y,X) satisfies Eqs. (1), (2), and (3). Let Ai|k =
[a−

i|k, a
+
i|k] and Xk = [x−

k , x+
k ]. Then

(a) x−
k = maxi∈N {a−

i|k} and x+
k = mini∈N {a+

i|k},
(b) if pi � pj , then a−

i|k � a−
j |k and a+

i|k � a+
j |k ,

(c) the equations x−
k = a−

i1|k and x+
k = a+

i0|k hold, and
(d) Xk = Ai0|k ∩ Ai1|k .

Proof. Claim (a) follows directly from Eq. (3).
To prove claim (b), notice that a−

i|k = max{0, z−
i|k} and a+

i|k = min{1, z+
i|k}, where

z−
i|k = pi − (1 − δyi|k) and z+

i|k = pi + (1 − δyi|k).

As max{0, ·} and min{1, ·} are non-decreasing functions, it is sufficient to show that z−
i|k � z−

j |k
and z+

i|k � z+
j |k whenever pi � pj .

For all real z and ż the inequality |z| − |ż| � |z − ż| holds. Consequently, for each i and j in
N and each z in Z we have ui(z)−uj (z) = |pi − z|− |pj − z| � |pi −pj |, so |ui(z)−uj (z)| �
|pi − pj |. It follows that

|yi|k − yj |k| �
∑
l∈N

π(l|k)
∣∣ui(xl) − uj (xl)

∣∣ � |pi − pj |.

Now suppose that pi � pj . Then
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z−
i|k − z−

j |k = pi − pj + δ(yi|k − yj |k) � pi − pj + δ|pi − pj | = (1 − δ)(pi − pj ) � 0,

z+
i|k − z+

j |k = pi − pj − δ(yi|k − yj |k) � pi − pj + δ|pi − pj | = (1 − δ)(pi − pj ) � 0.

Claim (c) follows immediately from (a) and (b).
Claim (d) follows from (c) and from the fact that Ai0|k = [0, a+

i0|k] and Ai1|k = [a−
i1|k,1]. �

Proposition 4.2. Suppose the tuple (x,A,Y,X) satisfies Eq. (1), (2), and (3). Let Xk = [x−
k , x+

k ].
Then x− = δΠx and x+ = (1 − δ)1N + δΠx.

Proof. We already know from Proposition 4.1 that x−
k = a−

i1|k and x+
k = a+

i0|k . The utility

function of player i1 is ui1(z) = z. Thus yi1|k = (Πx)k . It follows that a−
i1|k = δ(Πx)k . The

utility function of player i0 is ui0(z) = 1 − z. Therefore, yi0|k = 1 − (Πx)k . It follows that
a+
i0|k = 1 − δ + δ(Πx)k . The result follows. �

Now the proof of Theorem 4.1 is immediate. Suppose (x,A) is a bargaining equilibrium
with continuation payoffs Y and social acceptance sets X = ([x−

k , x+
k ])k∈N . Eq. (6) then holds

because xk is the point of the social acceptance set [x−
k , x+

k ] closest to the point pk . Eq. (5) holds
by Proposition 4.2. Conversely, suppose the triple (x, x−, x+) is a solution to the characteristic
system of equations. Define Y , A, and X by Eqs. (2), (1), and (3), respectively, and let Xk =
[ẋ−

k , ẋ+
k ]. We must show that Eq. (4) holds and that ẋ− = x− and ẋ+ = x+. Now, since the

tuple (x,A,Y,X) satisfies Eqs. (1), (2), and (3), Proposition 4.2 implies that ẋ− = δΠx and
ẋ+ = (1− δ)1N + δΠx. Eq. (5) now implies that ẋ− = x− and ẋ+ = x+. Eq. (6) implies Eq. (4).
Thus (x,A) is a bargaining equilibrium.

Now we turn to the proof of the uniqueness result. Given i ∈ N and z ∈ Z, let hi(z) be the
point of the interval [δz,1− δ + δz] closest to the point pi . Define the function F : ZN → ZN by
letting Fi(x) = hi((Πx)i) for each x in ZN. It follows from Theorem 4.1 that x is an equilibrium
proposal profile in a bargaining equilibrium if and only if x is a fixed point of the function F .
Proposition 4.3 below shows that the function F is a contraction with respect to the norm on
ZN given by ‖x‖ = max|xi |. It then follows that F has a unique fixed point, thus establishing
Theorem 4.2.

Proposition 4.3.

(a) For each i ∈ N , each z and ż in Z, |hi(z) − hi(ż)| � δ|z − ż|.
(b) For each x in R

N , ‖Πx‖ � ‖x‖.
(c) For each x and ẋ in ZN , ‖F(x) − F(ẋ)‖ � δ‖x − ẋ‖.

Proof. To prove claim (a) write the function hi as

hi(z) =
{1 − δ + δz, if z ∈ Z1 = [0, (pi + δ − 1)/δ],

pi, if z ∈ Z2 = [(pi + δ − 1)/δ,pi/δ],
δz, if z ∈ Z3 = [pi/δ,1].

The function hi is affine with a slope of δ on Z1 and Z3 and it is a constant on Z2. The result
follows.

To prove claim (b), observe that for each k ∈ N we have the inequalities∣∣(Πx)k
∣∣ =

∣∣∣∣∑π(i|k)xi

∣∣∣∣ �
∑

π(i|k)|xi | �
∑

π(i|k)‖x‖ = ‖x‖.

i∈N i∈N i∈N
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The result follows.
To prove claim (c) we compute∣∣Fi(x) − Fi(ẋ)

∣∣ = ∣∣hi

(
(Πx)i

) − hi

(
(Πẋ)i

)∣∣
� δ

∣∣(Πx)i − (Πẋ)i
∣∣

= δ
∣∣(Π(x − ẋ)

)
i

∣∣
� δ‖x − ẋ‖.

The result follows. �
5. Some special cases

Motivated by Theorem 4.1, we refer to the solution (x, x−, x+) of the system (5)–(6) of
characteristic equations as a bargaining equilibrium.

5.1. Time-invariant recognition probabilities

When the recognition probabilities are time-invariant, the continuation payoff yi|k of player
i does not depend on the identity of the proposer, so yi|k is independent of k. In particular,
a rejection of a proposal by player k leads to the same continuation payoff as a rejection of
a proposal by player j . It follows that the individual acceptance set Ai|k of player i for the
proposals of player k does not depend on k. Therefore, also the social acceptance sets Xk do not
depend on k and are all equal to some interval [a, b].

Let the time-invariant recognition probabilities be given by the probability distribution μ

on N. The characteristic system of equations then simplifies as follows:

a = δμx, b = 1 − δ + δμx, (7)

xk =
{

a, if pk � a,

pk, if a � pk � b,

b, if b � pk,

for all k ∈ N, (8)

where μx = ∑
i∈N μ(i)xi . The equilibrium proposals are given by Fig. 1 below. Notice that the

equilibrium proposal xi is non-decreasing in pi . An interesting feature of a bargaining equilib-
rium in the model with time-invariant recognition probabilities is that it is fully characterized by
two numbers, namely a and b, the endpoints of the common social acceptance set.

Given a continuation probability δ ∈ [0,1), we let (x(δ), a(δ), b(δ)) denote the unique bar-
gaining equilibrium in a model with time-invariant recognition probabilities μ. The limit of the
bargaining equilibrium as δ approaches one, if it exists, is called the limit equilibrium. Now we
compute the limit equilibrium for the case of time-invariant recognition probabilities. In Sec-
tion 7 we compute the limit equilibrium for the general case.

Definition 5.1. A point z ∈ Z is said to be a generalized fixed point of a non-increasing function
f : R → Z if f (z + ε) � z � f (z − ε) for all ε > 0.

It is clear that each non-increasing function has at most one generalized fixed point.
Define a cumulative distribution function F : R → Z by the equation

F(z) = μ
({i ∈ N | pi � z}).
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Fig. 1. Equilibrium proposal xi in the case of time-invariant recognition probabilities.

Thus F(z) is the mass of players with ideal point belonging to the interval [0, z]. It is clear that F

is a non-decreasing function. Theorem 5.1 characterizes limit equilibria as the generalized fixed
point of the function 1 − F . The proof of the theorem relies on the following result.

Proposition 5.1. Let (x, a, b) be a bargaining equilibrium in a model with time-invariant recog-
nition probabilities. Then 1 − F(b) � μx � 1 − F(a).

Proof. Define the elements z− and z+ of ZN as follows:

z−
i =

{
a, if pi ∈ [0, b],
b, otherwise,

and z+
i =

{
a, if pi ∈ [0, a],
b, otherwise.

It is obvious that z− � x � z+. Therefore μz− � μx � μz+. Now, we use Eq. (7) to compute:

μz− = F(b)a + (
1 − F(b)

)
b = (1 − δ)

(
1 − F(b)

) + δμx,

μz+ = F(a)a + (
1 − F(a)

)
b = (1 − δ)

(
1 − F(a)

) + δμx.

This yields the desired inequalities 1 − F(b) � μx � 1 − F(a). �
Theorem 5.1. The limits limδ↑1 xi(δ) for i ∈ N , limδ↑1 a(δ), and limδ↑1 b(δ) exist. All limits are
equal to the unique generalized fixed point of the function 1 − F .

Proof. Let δn be a sequence in [0,1) converging to 1. We must show that the sequences xi(δn)

for each i ∈ N , a(δn) and b(δn) converge to the generalized fixed point of the function 1 − F .
Without loss of generality, assume that the sequences xi(δn) for each i ∈ N , a(δn), and b(δn)

converge. From Eq. (7) of the characteristic system for the model with time-invariant recognition
probabilities we know that b(δn) − a(δn) = 1 − δn, so the sequences a(δn) and b(δn) converge
to the same limit. Denote this common limit by z. Since a(δn) � xi(δn) � b(δn) the sequence
xi(δn) converges to z for each i ∈ N and so does the sequence μx(δn).

To prove that z is generalized fixed point of the function 1 − F , let ε > 0. Then for n large
enough

z − ε � a(δn) � b(δn) � z + ε.

Because F is a non-decreasing function,

F(z − ε) � F
(
a(δn)

)
� F

(
b(δn)

)
� F(z + ε).
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Applying Proposition 5.1, we find that

1 − F(z + ε) � 1 − F
(
b(δn)

)
� μx(δn) � 1 − F

(
a(δn)

)
� 1 − F(z − ε).

Taking the limit we obtain the desired inequality

1 − F(z + ε) � z � 1 − F(z − ε).

The result follows because ε > 0 is arbitrary. �
As we see from Theorem 5.1, in the model with time-invariant recognition probabilities, the

common social acceptance set collapses to a point as the continuation probability approaches
one. As a consequence, the limit equilibrium proposals of all players are the same.

With general Markov recognition probabilities, different proposers face different social accep-
tance sets. While it is still true that a social acceptance set for the proposal of a given proposer
collapses to a point, this point is in general different for different proposers and Theorem 5.1
does not simply carry over to the general case.

5.2. Symmetric recognition probabilities

In this subsection we assume that N ⊂ Z and pi = i for all i ∈ N . The player set N is said to
be symmetric (around 1/2) if 1 − i ∈ N whenever i ∈ N . Suppose N is symmetric. The recogni-
tion probabilities Π are said to be symmetric (around 1/2) if π(1 − i|k) = π(i|k) for all i and k

in N .

Proposition 5.2. Assume N ⊂ Z and pi = i for all i ∈ N. Assume the player set N and the
recognition probabilities Π are symmetric. Let x−

i = δ/2 and x+
i = 1−δ/2 for all i ∈ N and let x

be given by Eq. (8) with a = δ/2 and b = 1 − δ/2. Then (x, x−, x+) is a bargaining equilibrium.

Proof. We verify that the tuple (x, x−, x+) satisfies Eqs. (5)–(6).
It is clear from Fig. 1 that Eq. (6) holds. Since b = 1 − a, the function x is symmetric in the

sense that x1−i = 1 − xi for all i ∈ N . Therefore, for any k ∈ N ,

2(Πx)k =
∑
i∈N

π(i|k)xi +
∑
i∈N

π(1 − i|k)x1−i

=
∑
i∈N

π(i|k)xi +
∑
i∈N

π(i|k)x1−i

=
∑
i∈N

π(i|k) = 1,

where the first equality holds because N is symmetric, the second one holds because Π is sym-
metric, and the third one holds because x is symmetric. We see that Πx is identically equal to
1/2. It follows that Eq. (5) holds. �

Thus, when N and Π are symmetric, the bargaining equilibrium resembles the one in the case
of time-invariant recognition probabilities in that all players face the same social acceptance set.
As δ approaches one, the equilibrium proposals of all players converge to 1/2. Notice however,
that, unlike the case of time-invariant recognition probabilities, the expected payoffs yi|k and the
individual acceptance sets Ai|k depend on k.
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Fig. 2. Illustration of x, x− and x+ as in claim (b) of Proposition 5.3.

5.3. Deterministic recognition rules

Let r : N → N be a recognition rule. Eq. (5) can then be rewritten as

x−
i = δxr(i), and x+

i = 1 − δ + δxr(i) for all i ∈ N. (9)

Claim (a) of Proposition 5.3 below presents the case where a player, once chosen to be the
proposer, remains the proposer for the rest of the game. The result is, not surprisingly, that each
player proposes his own ideal point. Claim (b) contains the model of Rubinstein [28] as a special
case. It deals with the case where any player i, once chosen to be the proposer, alternates with
player 1 − i in being the proposer for the rest of the game.

Proposition 5.3. Assume N ⊂ Z and pi = i for all i ∈ N . Consider a game Γ with a determin-
istic recognition rule r :

(a) Let r be the identity. The bargaining equilibrium (x, x−, x+) is given by x−
i = δi, x+

i =
1 − δ + δi and xi = i for all i ∈ N .

(b) Suppose the set N is symmetric around 1/2 and r(i) = 1 − i. Let a = δ/(1 + δ) and b =
1/(1 + δ). Then the bargaining equilibrium (x, x−, x+) is given by

xi =
{

a, if i � a,

i, if a � i � b,

b, if b � i,

x−
i =

{
δ/(1 + δ), if i � a,

δ − δi, if a � i � b,

δ2/(1 + δ), if b � i,

x+
i =

⎧⎨
⎩

(1 + δ − δ2)/(1 + δ), if i � a,

1 − δi, if a � i � b,

b, if b � i.

Proof. Claim (a) is obvious. Consider claim (b). Fig. 2 illustrates the bargaining equilibrium. It
is clear from the figure that xi is the point of [x−

i , x+
i ] closest to i, so that Eq. (6) holds. Notice

that because b = 1 − a, x is symmetric in the sense that x1−i = 1 − xi for all i ∈ N . Using this
property, it is straightforward to verify that Eq. (9) holds as well. �
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Fig. 3. Transition probabilities. There is a double arrow from j to i if the one-step probability π(i|j) of transition from j

to i is non-zero. The depicted Markov process has two absorbing sets, {1,2,3} and {6,7}. The states 4 and 5 are transient
states. Starting from state 5 there is a non-zero probability to enter either absorbing set, while starting from state 4 the
process enters the absorbing set {1,2,3} with probability 1.

In part (a) of Proposition 5.3, the equilibrium proposals do not depend on δ.
Fig. 2 illustrates the bargaining equilibrium in part (b) of Proposition 5.3. Observe that both

x−
i and x+

i are non-increasing functions of i. The equilibrium proposal xi is non-decreasing in i.
The equilibrium proposal of each player converges to 1/2 as δ approaches one.

6. Two results on stochastic matrices

This section provides the mathematical results needed to analyze the asymptotic behavior of
bargaining equilibria. Given a set S ⊂ N, let Sc denote the set N \S. Let π(S|i) = ∑

j∈S π(j |i).

6.1. Absorbing sets and transient states

The state j is said to lead to state i, written as j → i, if i = j or if there exists a natural
number n such that πn(i|j) > 0. The states j and i communicate, written as j ↔ i, if j → i and
i → j . The relation ↔ is an equivalence relation. An equivalence class S of the relation ↔ is
called an absorbing set if π(S|i) = 1 for all i ∈ S. A state i is said to be transient if it is not an
element of any absorbing set. We let A be the collection of absorbing sets and D be the set of
transient states. Fig. 3 illustrates.

Given a subset S of N, let ΠS denote the restriction of Π to the states in S. Notice that if S is
an absorbing set, then ΠS is a stochastic matrix, i.e. the elements in each row of ΠS add up to 1.
A stochastic matrix Π is said to be irreducible if N is the only absorbing set. If S is an absorbing
set, then the stochastic matrix ΠS is irreducible.

Given an absorbing set S, an element μS of R
S is said to be a stationary distribution on S

if μSΠS = μS and
∑

i∈S μS(i) = 1. By convention, μS is a row vector. For each absorbing set
S there exists a unique stationary distribution on S, see Theorem 4.1 in Seneta [29]. It will be
convenient to extend μS to an element of R

N by letting μS(i) = 0 for all i ∈ Sc.

6.2. The convergence of the matrix Ψ (δ)

Given δ ∈ [0,1), define the matrix Ψ = Ψ (δ) as follows:

Ψ = (1 − δ)

∞∑
n=0

δnΠn = (1 − δ)(I − δΠ)−1.

The following is a well-known result.
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Theorem 6.1. Let Π be a stochastic irreducible matrix. Let μN denote the unique stationary
distribution on N . As δ approaches one from below, each row of the matrix Ψ (δ) converges
to μN .

We shall use the following straightforward corollary of Theorem 6.1.

Corollary 6.1. Let S be an absorbing set and let μS be the corresponding stationary distribution
on S. As δ approaches one from below, each row of the matrix Ψ (δ) corresponding to a state in
S converges to μS .

6.3. The Perron–Frobenius Theorem and absorption probabilities

We state a version of the Perron–Frobenius Theorem for a stochastic irreducible matrix that
will be sufficient for our purposes (see Theorem 1.5 in Seneta [29]).

Theorem 6.2. Let Π be a stochastic irreducible matrix. An element x in R
N satisfies the equation

Πx = x if and only if it is constant on N .

Using Theorem 6.2 we obtain a characterization of the eigenspace of a general stochastic
matrix associated with eigenvalue one.

Starting from any transient state i ∈ D, the Markov process eventually leaves D and enters
one of the absorbing sets where it stays forever. Given an absorbing set S and a transient state i,
let ϕ(S|i) denote the probability for the process to eventually enter the set S given the initial
state i. Let ϕ(S|D) be the column vector of absorption probabilities ϕ(S|i) as the index i ranges
over all transient states. Let π(S|D) be the column vector of probabilities π(S|i) as the index
i ranges over all transient states. The result quoted below combines Theorems 4.3 and 4.4 from
Seneta [29].

Theorem 6.3. Let Π be a stochastic matrix. Then the matrix ID −ΠD is invertible. Furthermore,
ϕ(S|D) = [ID − ΠD]−1π(S|D) for each absorbing set S.

The following corollary provides a characterization of the eigenspace of a general stochastic
matrix Π associated with eigenvalue one.

Corollary 6.2. Let Π be a stochastic matrix. An element x of R
N satisfies the equation Πx = x

if and only if (a) the vector x is constant on each absorbing set, and (b) for each state i ∈ D

xi =
∑
S∈A

ϕ(S|i)xS,

where xS is the value of x on an absorbing set S.

Proof. Suppose Πx = x.
Let S be an absorbing set and let x|S denote the restriction of x to S. It follows that

ΠSx|S = x|S . Since S is an absorbing set, the matrix ΠS is a stochastic irreducible matrix. By
Theorem 6.2, the vector x|S is constant on the set S.

Let xS denote the value of x on S and x|D denote the restriction of x to D. Then the equations
corresponding to the transient states can be written as
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∑
S∈A

π(S|D)xS + ΠDx|D = x|D.

Solving the system, we obtain

x|D = [ID − ΠD]−1
∑
S∈A

π(S|D)xS =
∑
S∈A

ϕ(S|D)xS.

The result follows. The converse direction is now easy to prove. �
Consider a Markov process as in Fig. 3. If the vector x satisfies the equation Πx = x, then

x1 = x2 = x3 and x6 = x7, since {1,2,3} and {6,7} are the absorbing sets of the process. Fur-
thermore, x4 = x1, because, starting from state 4, the process enters the absorbing set {1,2,3}
with probability 1. Finally, x5 is a convex combination of x1 and x6 with weights equal to the
respective absorption probabilities.

7. The limit equilibrium

In this section we study the limit of the bargaining equilibrium when the continuation proba-
bility tends to one. The limit is shown to exist and is called the limit equilibrium. We characterize
the limit equilibrium as a generalized fixed point of a particular function. We study under what
conditions all players make the same proposal in the limit equilibrium.

Given x ∈ ZN , let B(x) = {i ∈ N | xi < pi}. Notice that B(x) ⊃ B(ẋ) whenever x � ẋ.

Proposition 7.1. Let (x, x−, x+) be a bargaining equilibrium. Then Ψ 1B− � x � Ψ 1B+ where
B− = B(x+) and B+ = B(x−).

Proof. Define the elements z− and z+ of ZN as follows:

z−
k =

{
x−
k , if pk � x+

k ,

x+
k , otherwise,

and z+
k =

{
x−
k , if pk � x−

k ,

x+
k , otherwise.

Using Eq. (6) of the characteristic system, it is easy to see that z− � x � z+. Since Π preserves
the relation �, we also have Πz− � Πx � Πz+, and, for each natural n

Πnz− � Πnx � Πnz+.

The set of players k ∈ N such that x+
k < pk is by definition B− = B(x+). For each k in B−

we have z−
k = x+

k and for each k in the complement of B− we have z−
k = x−

k . By Eq. (5) of the
characteristic system x− = δΠx and x+ = (1 − δ)1N + δΠx. Recall that 1B− is a vector in R

N

with coordinates in B− equal to 1 and other coordinates equal to zero. We can therefore rewrite
z− as

z− = δΠx + (1 − δ)1B− and similarly z+ = δΠx + (1 − δ)1B+ .

Applying Πn to each side of the system of equations, we obtain

Πnz− = δΠn+1x + (1 − δ)Πn1B− and Πnz+ = δΠn+1x + (1 − δ)Πn1B+ .

Now we have the following chain of inequalities:
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x � z+ = δΠx + (1 − δ)1B+

� δΠz+ + (1 − δ)1B+ = δ2Π2x + (1 − δ)1B+ + (1 − δ)δΠ1B+

� · · ·
� δn+1Πn+1x + (1 − δ)

n∑
i=0

δnΠn1B+ .

As n goes to infinity, the first term of the last expression vanishes, while the second term con-
verges to Ψ 1B+ . We thus obtain the upper bound x � Ψ 1B+ on x. To obtain the lower bound,
consider the chain of inequalities

x � z− = δΠx + (1 − δ)1B−

� δΠz− + (1 − δ)1B− = δ2Π2x + (1 − δ)1B− + (1 − δ)δΠ1B−

� · · ·
� δn+1Πn+1x + (1 − δ)

n∑
i=0

δnΠn1B− .

Taking the limit as n goes to infinity, we obtain the lower bound x � Ψ 1B− . �
For each absorbing set S define FS : R → Z by letting FS(z) = μS({i ∈ S | pi � z}). As

FS is a non-decreasing function, the function 1 − FS has a unique generalized fixed point, see
Definition 5.1.

Definition 7.1. The limit equilibrium x is the element of ZN satisfying the following condi-
tions: (A) The vector x is constant on each absorbing set S, (B) the value x

S of x on S is the
generalized fixed point of the function 1 − FS , and (C) the value of x on each transient state i

is given by

x
i =

∑
S∈A

ϕ(S|i)x
S. (10)

The conditions (A) and (C) of Definition 7.1 are equivalent to the requirement that Πx = x,
see Corollary 6.2.

Given a continuation probability δ ∈ [0,1), we let (x(δ), x−(δ), x+(δ)) denote the bargaining
equilibrium.

Theorem 7.1. The limits limδ↑1 x(δ), limδ↑1 x−(δ), and limδ↑1 x+(δ) exist. All three limits are
equal to x.

Proof. Let δn be a sequence in [0,1) converging to 1. We must show that the sequences x(δn),
x−(δn), and x+(δn) converge to x. Without loss of generality assume that the sequence x(δn)

converges to an element x of ZN .
The sequence Πx(δn) converges to Πx. By Eq. (5) of the characteristic system, x−(δn) =

δnΠx(δn) and x+(δn) = (1 − δn)1N + δnΠx(δn). It follows that the sequences x−(δn) and
x+(δn) converge to Πx. Since x−(δn) � x(δn) � x+(δn), it then follows that x(δn) converges to
Πx. But we know that x(δn) converges to x. Thus x = Πx.



P.J.J. Herings, A. Predtetchinski / Journal of Economic Theory 145 (2010) 189–215 209
We conclude that x is an eigenvector of the matrix Π associated with eigenvalue one. We
now use Corollary 6.2 in Section 6 that provides a complete description of the eigenspace of
the matrix Π associated with eigenvalue one. Corollary 6.2 implies that x is constant on each
absorbing set and that Eq. (10) holds. It remains to be shown that the value xS of x on each
absorbing set S is a generalized fixed point of the function 1 − FS .

We already know that the sequences x−(δn) and x+(δn) converge to x. Let ε > 0 be given.
Since N is a finite set, for n large enough the following inequalities hold:

x − 1Nε � x−(δn) � x+(δn) � x + 1Nε.

It follows that for n large enough we have the inclusions

B(x + 1Nε) ⊂ B
(
x+(δn)

) ⊂ B
(
x−(δn)

) ⊂ B(x − 1Nε).

These inclusions imply the inequalities

1B(x+1Nε) � 1B(x+(δn)) � 1B(x−(δn)) � 1B(x−1Nε).

We then also have the inequalities

Ψ (δn)1B(x+1Nε) � Ψ (δn)1B(x+(δn)) � x(δn) � Ψ (δn)1B(x−(δn)) � Ψ (δn)1B(x−1Nε),

where the middle inequalities follow from Proposition 7.1.
Now let S be an absorbing set and let xS be the value of x on S. Let k ∈ S and consider the

inequality[
Ψ (δn)1B(x+1Nε)

]
k
� xk(δn) �

[
Ψ (δn)1B(x−1Nε)

]
k
.

By Corollary 6.1 in Section 6, row k of the matrix Ψ (δn) converges to μS as n goes to infinity.
We thus obtain the inequalities

μS1B(x+1Nε) � xS � μS1B(x−1Nε).

Now, for any set B ⊂ N we have μS1B = μS(B ∩ S). Furthermore, B(x + 1Nε) ∩ S = {i ∈ S |
xS + ε < pi} and B(x − 1Nε) ∩ S = {i ∈ S | xS − ε < pi}. Thus, the preceding inequality can be
rewritten as

μS

({i ∈ S | xS + ε < pi}
)
� xS � μS

({i ∈ S | xS − ε < pi}
)
.

The left-hand side equals 1 − FS(xS + ε) and the right-hand side equals 1 − FS(xS − ε). Thus
we can once again rewrite the preceding inequality as

1 − FS(xS + ε) � xS � 1 − FS(xS − ε).

Since ε > 0 is arbitrary, it follows that xS is the generalized fixed point of the function 1 − FS ,
as desired. �

Now we identify some special cases where x is constant on the entire player set N . In these
cases every player makes the same proposal in the limit equilibrium.

Proposition 7.2. If the proposer selection process has a unique absorbing set, then x is constant
on N .
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Proof. The result follows directly from the definition of limit equilibrium. The vector x is
constant on the absorbing set S. Furthermore, starting from each state i outside S the process is
absorbed into S with probability 1, that is ϕ(S|i) = 1. �
Proposition 7.3. If the matrix Π is irreducible, then x is constant on N .

Proof. If the matrix Π is irreducible, then N is the only absorbing set. �
Proposition 7.4. Suppose the proposer selection process has time-invariant recognition proba-
bilities μ. Then x is constant on N and its value is the generalized fixed point of the function
1 − F , where F(z) = μ({i ∈ N | pi � z}).

Proof. If μ are the time-invariant recognition probabilities, then S = {i ∈ N | μ(i) > 0} is the
only absorbing set, and the stationary distribution corresponding to S is μ. The result now follows
from Proposition 7.2 and the definition of x. �
8. Comparison with alternative concepts

This section compares the limit equilibrium outcome with two solutions figuring prominently
in the literature, the median voter outcome and the Nash bargaining solution. We assume through-
out this section that the proposer selection process has a unique absorbing set S with cumulative
distribution function FS induced by the stationary distribution μS. According to Proposition 7.2,
the alternative z satisfying, for every ε > 0, z + FS(z − ε) � 1 � z + FS(z + ε) is proposed
by every player in the limit equilibrium.

8.1. The median voter outcome

There is an extensive literature related to the problem of choosing an alternative from the unit
interval by a population of players with single-peaked preferences. The median voter theorem
(Black, 1958) identifies the median of the players’ ideal points as the selected alternative.

Let G be the cumulative distribution function of the ideal points of the players, G(z) = |{i ∈
N | pi � z}|/|N |. The median voter result states that the group of players selects an alternative
zm that is one of the generalized zero points of the function G − 1/2, i.e. for every ε > 0,

G(zm − ε) � 1/2 � G(zm + ε). The set of such points is denoted Zm.

Indeed, when a political candidate proposes some zm ∈ Zm, then there is no alternative z that
is strictly closer than zm to the ideal point of more than half of the players. When the number
of players is odd, Zm consists of a single point. When the number of players is even, Zm is the
(possibly degenerate) interval with end points given by the two ideal points in the middle. Notice
that unlike z, zm may not be unique.

Since the functions FS and G are unrelated, there is no general connection between z and zm.

Notice that where zm does not depend on FS, z does not depend on G. Suppose, however,
that the functions FS and G coincide, which would for instance be the case when recognition
probabilities are time-invariant and uniform. We then have the following result.

Theorem 8.1. Assume the proposer selection process has a unique absorbing set S and FS = G.

There are three mutually exclusive cases to consider:
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If G(1/2) < 1/2, then for all zm ∈ Zm it holds that

1

2
< z � zm.

If limε↓0 G(1/2 − ε) � 1/2 and G(1/2) � 1/2, then

1

2
= z ∈ Zm.

If limε↓0 G(1/2 − ε) > 1/2, then for all zm ∈ Zm it holds that

zm � z <
1

2
.

Proof. A point zm ∈ Zm satisfies, for every ε > 0, G(zm − ε) � 1/2 � G(zm + ε). The point z

satisfies, for every ε > 0, z + G(z − ε) � 1 � z + G(z + ε).

Assume G(1/2) < 1/2. Since G is continuous from the right, it holds that

lim
ε↓0

G

(
1

2
+ ε

)
= G

(
1

2

)
<

1

2
,

so G(1/2 + ε) < 1/2 for ε sufficiently small and zm > 1/2 for every zm ∈ Zm. Now it holds that,
for every zm ∈ Zm,

lim
ε↓0

(
zm + G

(
zm + ε

))
>

1

2
+ lim

ε↓0
G

(
zm + ε

)
� 1,

so z � zm. Finally,

lim
ε↓0

(
1

2
+ G

(
1

2
+ ε

))
= 1

2
+ G

(
1

2

)
< 1,

so 1/2 < z.

Assume limε↓0 G(1/2 − ε) � 1/2 and G(1/2) � 1/2. We have that for every ε̄ > 0,

G

(
1

2
− ε̄

)
� lim

ε↓0
G

(
1

2
− ε

)
� 1

2
� G

(
1

2

)
� G

(
1

2
+ ε̄

)
, (11)

so 1/2 ∈ Zm. Inequalities (11) imply that for every ε̄ > 0

1

2
+ G

(
1

2
− ε

)
� 1 � 1

2
+ G

(
1

2
+ ε

)
,

so z = 1/2.

Assume limε↓0 G(1/2 − ε) > 1/2. It is immediate that, for every zm ∈ Zm, zm < 1/2. Also,
for zm ∈ Zm,

lim
ε↓0

(
zm + G

(
zm − ε

))
<

1

2
+ lim

ε↓0
G

(
zm − ε

)
� 1,

so it holds that z � zm. Moreover,

lim
ε↓0

(
1

2
+ G

(
1

2
− ε

))
= 1

2
+ lim

ε↓0
G

(
1

2
− ε

)
> 1,

so z < 1/2. �
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The alternative z is equal to 1/2 if and only if it belongs to Zm, i.e. 1/2 is a median voter
outcome. If G(1/2) < 1/2, then it follows that zm � z > 1/2, and if limε↓0 G(1/2 − ε) > 1/2,
then zm � z < 1/2. Median voter outcomes are more extreme than the alternative selected in
the limit equilibrium. The underlying intuition is that the bargaining model requires unanimous
agreement and therefore also the agreement of both the players i0 and i1. This causes a tendency
to select alternatives in the middle. For the median voter model, the votes of half of the players
are sufficient, and the opinion of the other players can be safely ignored.

Most striking is the case where the ideal point of each player is either 0 or 1 and G(0) =
(1 + ε)/2 for some ε > 0. Then Zm = {0} and z = (1 − ε)/2. When ε converges to zero, the
limit equilibrium outcome converges to 1/2, whereas the median voter outcome is 0.

8.2. The Nash bargaining solution

The Nash bargaining solution is the solution that maximizes the sum over the players of
the logarithms of their gains with respect to the disagreement payoff. Binmore, Rubinstein and
Wolinsky demonstrate for the two-player case that the limit equilibrium corresponding to the
alternating offers bargaining procedure of Rubinstein [28] corresponds to the Nash bargaining
solution. For the bargaining procedure as used in this paper, Britz, Herings, and Predtetchinski
[5] show that under weak conditions the limit equilibrium corresponds to the weighted Nash
bargaining solution, with weights given by the stationary distribution μS. A natural conjecture
is therefore that our limit equilibrium can alternatively be described as an appropriately defined
weighted Nash bargaining solution. We will argue next that when n � 3 our limit equilibrium
does NOT correspond to an appropriately defined Nash bargaining solution. The reason for this
perhaps counterintuitive result is the following. All the papers that give non-cooperative support
to the Nash bargaining solution make the assumption of strict comprehensiveness of the set of
feasible payoffs. Such an assumption does not hold in the case of one-dimensional bargaining.

The Nash bargaining solution with weights μS is defined as the solution zn to the program

max
z∈(0,1)

∑
i∈N

μi ln
(
1 − |z − pi |

)
,

where we assume for the sake of simplicity that μS(i0) > 0 for some player i0 with ideal point 0,
and μS(i1) > 0 for some player i1 with ideal point 1 to guarantee interior solutions.

For a given alternative z we define N−(z) = {i ∈ N | pi < z} and N+(z) = {i ∈ N | pi > z}.
Using the strict concavity of the objective functions, it follows by taking the first derivative at
points of differentiability that zn is given by the unique generalized zero point of the strictly
increasing function

H(z) =
∑

i∈N−(z)

μi

1

1 − |z − pi | +
∑

i∈N+(z)

μi

−1

1 − |z − pi | . (12)

That is for every ε > 0 we have that H(zn − ε) < 0 < H(zn + ε). In the typical case where zn

does not coincide with any of the players’ ideal points, it is the exact zero of the function H .
Thus ∑

i∈N−(zn)

μi

1 − |zn − pi | =
∑

i∈N+(zn)

μi

1 − |zn − pi | .

In the two-player case the condition that zn does not coincide with any of the players’ ideal points
is trivially satisfied. For that case we find that
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Table 1
The Nash bargaining solution in an example.

m 1 2 3 4 5 6 7 8 9 10

zn
m 0.500 0.500 0.446 0.412 0.389 0.372 0.359 0.349 0.340 0.333

μi0

1 − zn = μi1

zn ,

so zn = μi1 . In this case the limit equilibrium does coincide with the Nash bargaining solution,
since

zn + F
(
zn) = μi1 + μi0 = 1,

thereby generalizing the findings of Binmore, Rubinstein, and Wolinsky [3]. We have shown the
following result.

Theorem 8.2. If N consists of two players and the proposer selection process has absorbing
set N, then z = zn.

In the n-player case there is no general relationship between the Nash bargaining solution
and the other two solution concepts. The characterization of the Nash bargaining solution in (12)
cannot be rewritten in a form that depends only on either FS or G. In general, it depends on both
since the characterization in (12) depends on G via the ideal points pi and it depends on FS via
the weights μS.

As an example, consider the case where m players have an ideal point equal to 0, m players
have an ideal point at 1/2, and 1 player’s ideal point is at 1. Assume the proposer selection
process is such that FS = G. It is immediate from Theorem 8.1 that z = zm = 1/2, independent
from m. The Nash bargaining solution does depend on m and is denoted by zn

m.

It can be verified that for m = 1 it holds that zn
m is equal to 1/2. For m � 2, the Nash bargaining

solution zn
m is characterized by

m

1 − zn
m

= m

1
2 + zn

m

+ 1

zn
m

.

The unique solution to this equation is given by

zn
m =

1
2 (m + 1) +

√
1
4 (m + 1)2 + 2(2m + 1)

2(2m + 1)
.

As an example, it follows that zn
10 = 1/3. Table 1 gives an overview of zn

m for 1 � m � 10. It can
be proven that limm→∞ zn

m = 1/4.

If we modify the example to have one player with ideal point equal to 0, m players with ideal
point equal to 1/2, and m players with ideal point equal to 1, we obtain z = zm = 1/2 � zn

m,

with strict inequality if and only if m � 3.

9. Conclusion

We have formulated the important problem of how to select an alternative in a one-
dimensional set of alternatives as a non-cooperative bargaining problem. We consider the case
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where a proposal is only accepted if all players approve of it. Subgame perfect equilibrium in sta-
tionary strategies is unique up to unimportant details of individual acceptance sets and is called
bargaining equilibrium. We provide a simple characterization of the bargaining equilibrium. In
our model, proposers are selected according to a general Markov process. This captures two
cases that feature prominently in the literature: the one with time-invariant recognition probabil-
ities and the one with a deterministic proposer selection rule.

We study the limit equilibrium, the limit of a sequence of bargaining equilibria as the con-
tinuation probability tends to one. We give an explicit description of the limit equilibrium as the
generalized fixed point of a function that is intimately related to the time-invariant distribution
of the proposer selection process. All players make the same proposal in the limit equilibrium
under a wide variety of specifications of the proposer selection process.

When the proposer selection process has a unique absorbing set S with associated stationary
distribution μS and cumulative distribution function FS, and when we ignore the fact that FS

is not continuous, the limit equilibrium outcome is given by z + FS(z) = 1. Two other solu-
tion concepts that figure prominently in the literature are the median voter outcome zm and the
Nash bargaining solution zn. With G the cumulative distribution function associated to the play-
ers’ ideal points, again ignoring discontinuities, we have that G(zm) = 1/2, whereas the Nash
bargaining solution satisfies∑

i∈N−(zn)

μi

1 − |zn − pi | =
∑

i∈N+(zn)

μi

1 − |zn − pi | .

We show that the limit equilibrium outcome is closer to the midpoint of the two most extreme
ideal points than the median voter outcome when FS and G coincide. Both outcomes are in
general not related to the Nash bargaining solution. The only exception is the case with two
players, when it holds that z = zn.
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