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1 Introduction

This paper calculates asymptotic learning rates when agents are informed through both

public and private observation of other agents’ actions.

We provide an explicit solution for the dynamics of the distribution of posterior

beliefs for settings in which a large number of asymmetrically informed agents are ran-

domly matched into groups over time, exchanging their information with each other

when matched, and in which the information of randomly selected agents is also publicly

revealed over time. We show that any agent’s posterior beliefs converge in distribution

to a common posterior at an exponential rate. With both public and private learning,

the convergence rate is the sum of the mean arrival rate of public information and the

mean rate at which an individual agent is matched with other agents. If, however, there

is no private information sharing, then convergence is exponential at a rate strictly lower

than the mean arrival rate of public information. We emphasize how the component of

the asymptotic learning rate that is attributed to public announcements depends on the

presence of private information sharing.

Our model works roughly as follows. A continuum of agents are initially endowed

with signals that are informative about a random variable X. Given X, the signals

endowed to one agent are independent of those endowed to another. Each agent enters

private information sharing sessions at a mean rate of λ private meetings per year. At

each such meeting, say an auction, other agents are randomly selected to attend. Each

agent at the meeting reveals to the others a summary statistic of his or her posterior,

such as a bid for an asset, reflecting the agent’s originally endowed information and any

information learned prior to the meeting. As an additional source of information, there

are randomly timed public releases of the posterior beliefs of a randomly selected group

of agents. Such public releases occur η times per year, in expectation.

Over time, as an agent gathers more and more information, the agent’s posterior

probability of the event that X has a particular outcome converges in distribution to one

if the event is true, and to zero if the event is false. We calculate explicitly the proba-

bility distribution of an agent’s posterior beliefs. With both private and public learning

channels, we show that the convergence in distribution of the posterior is exponential at

the rate λ+η, regardless of the sizes of the groups of agents that participate in meetings

or have their information publicly revealed. If, however, there is no private information

sharing, then the convergence rate is strictly lower than η, and depends non-trivially on

the number of agents revealing information at each public release, the initial information
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endowment, and the realization of X.

As argued by Hayek (1945) and Arrow (1974), an important role of markets and

organizations is the aggregation of information that is dispersedly held by its partici-

pants. Information aggregation occurs through the public observation of variables that

reflect other agents’ actions (such as prices or public bids for an asset) or through the

private observation of other agents’ actions (such as bilateral bargaining in a decentral-

ized market). Our results suggest that, in terms of rates of convergence, the private

channel of learning is at least as effective as the public channel of learning. If private

information sharing is active, any increases in the mean arrival rates η and λ of public

and private information events are translated one for one into the belief convergence

rate. Without the benefit of private information sharing, however, an increase in the

mean rate η of public information releases is less than fully converted to an increase in

the belief convergence rate.

Information aggregation has received significant attention in the economics litera-

ture. Several papers focus on public information. Grossman (1976), Townsend (1978),

and Grossman and Stiglitz (1980) introduce the notion of rational-expectations equilib-

rium to capture the idea that prices aggregate information that is dispersed in the econ-

omy. Wilson (1977), Milgrom (1981), Vives (1993), Pesendorfer and Swinkels (1997),

and Reny and Perry (2006) provide strategic foundations for the rational-expectations

equilibrium concept. Another strand of literature investigates information aggregation

when agents learn only through private interactions. For example, in over-the-counter

markets, agents learn from the bids of other agents in privately held auctions. Wolinsky

(1990), Blouin and Serrano (2001), Duffie and Manso (2007), Duffie, Giroux, and Manso

(2008), and Golosov, Lorenzoni, and Tsyvinski (2008) study information percolation in

these markets. Word-of-mouth communication, studied for example by Banerjee and

Fudenberg (2004), is another form of learning through private interactions. In contrast

to the above papers, our paper studies information aggregation when learning occurs

through both public and private interactions. Other approaches to modeling social learn-

ing through public and private interactions include Amador and Weill (2008), and Duffie,

Malamud, and Manso (2009).

Our search-and-matching technology is familiar from search-theoretic models that

have provided foundations for models of competitive general equilibrium and for equilib-

rium in markets for labor, money, and financial assets.1 Going beyond prior studies, we

1Examples of theoretical work using random matching to provide foundations for competitive equi-
librium include that of Rubinstein and Wolinsky (1985) and Gale (1987). Examples in labor economics
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allow for information asymmetry about a common-value component, with learning from

public and private interactions.

Section 2 provides the model setup. The dynamic equation for the distribution

of posterior beliefs is derived in Section 3. Section 4 gives an explicit solution for the

distribution of beliefs at each time. Section 5 obtains rates of convergence and discusses

why the presence of private learning is crucial for the contribution of public announce-

ments to the information convergence rate. Unless otherwise indicated, proofs are found

in appendices.

2 A Private-Public Model of Information Sharing

We study the evolution of the cross-sectional distribution of posterior beliefs in a large

market with both private and public information releases. In prior work, Duffie and

Manso (2007) and Duffie, Giroux, and Manso (2008) allowed only private information

sharing. Further, rather than fixing the sizes of groups sharing information privately

as in prior work, we allow randomly sized groups. This is natural; if the particular

individuals that meet to share information are randomly selected from the population,

one might suppose that the number of agents that meet is also uncertain.

A probability space (Ω,F ,P) and a “continuum” (a non-atomic finite measure

space (G,G, γ)) of agents are fixed. Without loss of generality, the total quantity γ(G)

of agents is 1. A random variable X of potential concern to all agents has two possible

outcomes, H (“high”) and L (“low”), with respective probabilities pH and pL = 1− pH .

Agents are informed by observing signals that may be correlated with X. Condi-

tional on X, every pair of distinct signals is independent with outcomes 0 and 1. The

signals need not have the same probability distributions. Each agent i is initially en-

dowed with a finite sequence {s1, . . . , sNi
} of signals. We allow the number Ni of signals

of agent i to be random, with Ni and Nj independent for i 6= j, and independent of

signals. Without loss of generality, we suppose that

P(si = 1 |H) ≥ P(si = 1 |L).

A signal si is informative if P(si = 1 |H) > P(si = 1 |L). For any pair of agents, their

sets of originally endowed signals are disjoint.

include Pissarides (1985) and Mortensen (1986); examples in monetary theory include Kiyotaki and
Wright (1993) and Trejos and Wright (1995); examples in finance include Duffie, Gârleanu, and Peder-
sen (2005), Lagos and Rocheteau (2008), and Weill (2008).

3



By Bayes’ rule, the logarithm of the likelihood ratio between states H and L

conditional on an arbitrary finite set {s1, . . . , sn} of distinct signals is

log
P(X = H | s1, . . . , sn)

P(X = L | s1, . . . , sn)
= log

pH

pL
+ θ, (1)

where the “type” θ of this set of signals is

θ =

n
∑

i=1

log
P(si |H)

P(si |L)
. (2)

The higher the type θ of the set of signals, the higher the posterior probability that X

is high.

Any particular agent is matched to other agents at each of a sequence of Poisson

arrival times with a mean arrival rate (intensity) λ that is common across agents. At

each meeting time, `− 1 other agents are randomly selected. That is, each of the `− 1

matched agents is chosen at random from the population, without replacement, with

the uniform distribution, which we can take to be the agent-space measure γ. Meeting

group sizes are identically and pairwise independently distributed across meetings, and

independent of all else. For each meeting size outcome l, we fix ql = P(` = l). We

assume that, for almost every pair of agents, the matching times and the counterparties

of one agent are independent of those of the other. We do not show the existence of such

a random matching process.2 We assume throughout the joint measurability of agents’

type processes {θit : i ∈ G} with respect to a σ-algebra on Ω×G that allows us to apply

the Fubini property that, for any measurable subset A of types,
∫

G

P(θit ∈ A) dγ(i) = E

(
∫

G

1θit∈A dγ(i)

)

.

This is consistent with the exact law of large numbers for a continuum of pairwise

independent random variables under the technical assumptions of Sun (2006).

When agents meet they communicate to each other their posterior probabilities,

given all of the information that they have collected up to the point of that encounter, of

the event thatX is high. Duffie and Manso (2007) provide an example of a market setting

in which this revelation of beliefs occurs through the observation of bids submitted by

risk-neutral investors in an auction for a forward contract on an asset whose payoff is X.

Proposition 3 of Duffie and Manso (2007) implies that whenever a collection of

signals of type θ is combined with a disjoint collection of signals of type φ, the type

2For the case of groups of size ` = 2, Duffie and Sun (2007) show existence for the discrete-time
analogue of this random matching model.
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associated with the combined set of signals is θ+φ. By induction, we have the following

useful result.

Lemma 2.1 Let S1, . . . , Sn be disjoint sets of signals with respective types θ1, . . . , θn.

Then the union S1 ∪ · · · ∪ Sn of the signals has type θ1 + · · · + θn.

In addition to private information sharing events, there are public information

releases at random times {T1, T2, . . .} that are independent of all else. At the n-th public

release, Kn randomly selected3 agents reveal their posterior probabilities to all agents.

The probability pk = P(Kn = k) that k agents are selected is fixed.

For simplicity, we assume symmetry in the initial distribution of information across

agents. That is, given X, every agent’s initial type has the same conditional probabil-

ity distribution µ0. We later comment on how to re-interpret our results without this

symmetry assumption.

Under the technical assumptions of Sun (2006), the law of large numbers implies

that, almost surely, for each outcome ofX, the initial cross-sectional distribution of types

is equal to each agent’s conditional type distribution µ0 given X. We assume that there

is a positive probability that each agent has at least one informative signal. This implies

that the first moment
∫

x dµ0(x) of µ0 is strictly positive on the event {X = H}, and

strictly negative on the event {X = L}.
For any initial cross-sectional distribution m of types, we let h(m, t) denote the

new cross-sectional type measure that would apply in a model without no public releases

after t units of time. We will later show how to compute h(m, t) by extending the results

of Duffie, Giroux, and Manso (2008). Almost surely, h(µ0, t) has two outcomes, one on

the event {X = H}, and the other on the event {X = L}.
For any measurable set A ⊂ R of types, we let µt(A) denote the fraction of agents

whose posterior type at time t is in A. We can view µ as a stochastic process whose out-

comes are probability measures on the space of types. In order to model the convergence

of posterior beliefs, we will begin with an analysis of the evolution of µt.

At any time t before the first public information release, we know that µt = h(µ0, t).

With the first public information release of K1 agents’ posterior beliefs at T1, Lemma

2.1 implies that every agent’s posterior type jumps by the sum Z1 of the K1 publicly

revealed types. For a real number z and a type measure m, the translation T (m, z) of

3That is, the number and set of agents selected is independent of signals, of X , and of the outcomes
of prior private and public information releases. The agents are selected by independent draws from the
space G of all agents with the agent-distribution measure γ.
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m by z is the measure defined, at any interval (a, b) of types, by

[T (m, z)]((a, b)) = m((a− z, b− z)).

Thus,

µT1
= T (h(µ0, T1), Z1).

At any time t ∈ [T1, T2), any agent’s type θ may be viewed as the sum of Z1 and

the privately acquired type θ̂ = θ − Z1. Thus, at such a time, when agents of respective

types θ1, . . . , θ` meet and exchange their conditional probabilities of the event {X = H},
the i-th agent knows that the j-th agent’s announced type θj can be viewed as the sum

of the publicly revealed type Z1 and the privately acquired type θ̂j = θj − Z1. Thus,

again by Lemma 2.1, all of the agents leave the meeting with a type equal to Z1 plus the

sum of the privately acquired types θ̂1 + θ̂2 + · · ·+ θ̂`. Thus, for t ∈ [T1, T2),

µt = T (h(T (µT1
,−Z1), t− T1), Z1) = T (h(µ0, t), Z1).

More generally, the cross-sectional type measure evolves randomly according to the

following rule.

Lemma 2.2 At any time t between the times Tn and Tn+1 of the n-th and (n + 1)-

th public releases of information, almost surely, µt = T (h(µ0, t), Zn), where Zn is the

aggregate type revealed at Tn.

This result follows from the fact that the aggregate type Zn revealed publicly at

time Tn is the sum Z1 +(Z2−Z1)+ · · ·+(Zn−1−Zn−2) = Zn−1 of the net aggregate type

associated with previously revealed public information and the aggregate Zn − Zn−1 of

the privately acquired types of the set of those agents who collectively reveal the new

aggregate type Zn at Tn. Thus, the incremental type associated with the information

that is publicly revealed to all agents at time Tn is merely Zn − Zn−1. Thus, for any

t ∈ [Tn, Tn+1),

µt = T (h(µ0, t), Zn−1 + (Zn − Zn−1)) = T (h(µ0, t), Zn),

as claimed.

Lemma 2.2 gives a simple characterization: The belief types in a model with public

releases of information are merely the translation of the belief types associated with

a model with purely private information by the aggregate type Zn revealed in very

last public release of information. The distribution of Zn is not obvious, because it
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incorporates the effects of information that was received before the latest public release

through both private and public sources, which are recursively determined. Shortly, we

will unravel the implications of this recursion.

We will eventually show that all agents’ posterior beliefs converge in law to com-

plete information, that is, to the posterior 1 on the event {X = H}, and to zero on the

event {X = L}. Our particular concern is how the speed of convergence depends on the

parameters (λ, (qk)) of the private learning model and on the parameters (η, (pk)) of the

public learning model.

We pick an arbitrary agent, and let pH(t) denote that agent’s posterior probability

at time t of the event {X = H}. This posterior is a random variable that depends on

the endowed signals of the agent as well as all signals publicly and privately observed by

that agent until time t. We let Ft denote the cumulative distribution function (CDF) of

pH(t) conditional on the event {X = H}. That is,

Ft(p) = P(pH(t) ≤ p |X = H), p ∈ [0, 1]. (3)

By our symmetry assumption on initial signal distributions, Ft does not depend on the

identity of the agent. As time passes, the number of signals that are gathered by the

agent is likely to get large, so we anticipate that Ft converges to the CDF F∞ that places

all mass on the posterior probability 1 that X = H . That is, F∞(p) = 0 for p < 1 and

F∞(1) = 1. Our convergence analysis applies equally to the event {X = L}.
Because types and beliefs are one-to-one, using (2) we can calculate the belief

distribution Ft from the conditional probability distribution νt of the type at time t of

an arbitrary agent, given X. Specifically, on the event {X = H},

Ft(p) = νt

(

−∞, log
p

(1 − p)
− log

pH

pL

)

. (4)

Lemma 2.3 At any time t, νt = E(µt |X).

Proof. The claim is that, for each measurable subset A of types, νt(A) = E[µt(A) |X].

This follows from the fact that the probability νt(A) that the type θit of an arbitrary

agent i is in A, given X, is

P(θit ∈ A |X) = E (1θit ∈A |X)

=

∫

G

E (1θit ∈A |X) dγ(i)

= E

(
∫

G

1θit ∈A dγ(i)

∣

∣

∣

∣

X

)

= E (µt(A) |X) ,
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using symmetry and the Fubini property, respectively.

If we were to generalize by allowing that the agents do not get the same initial

quality of information, then E[µt |X] is the probability distribution, given X, of the

type of a randomly selected agent (that is, an agent randomly selected according to

the probability measure γ on the agent space). Thus, even without our assumption of

symmetry in the initial information across agents, one can view our convergence results

as a characterization of the convergence of the beliefs of a “typical” agent.

3 Dynamics of the Distribution of Beliefs

In order to calculate the type distribition νt, we first condition on the times T1, . . . , TN(t)

at which public information has been revealed up until time t. Later, we will average

over a particular joint distribution of the release times in order to calculate νt explicitly.

The aggregate type Z1 of the initial public release has a probability distribution

equal to that of the sum of K1 independently drawn private types, which, given K1, is

h(µ0, T1)
∗K1, using the superscript ∗k to denote k-fold convolution. Thus,

E[µT1
| T1, X] = E[h(µ0, T1) ∗ h(µ0, T1)

∗K1 | T1, X] =

∞
∑

k=0

pkE[h(µ0, T1)
∗k+1 | T1, X].

Just before the second release at T2, the expected cross-sectional distribution of

types, given T1 and T2, is h(h(µ0, T1), T2 − T1) ∗ h(µ0, T1). Thus,

E[µT2
| T1, T2, X] = h(µ0, T1) ∗

∞
∑

k=1

pkh(µ0, T2)
∗k.

In general, letting N(t) denote the number of public information releases that have

occurred up to time t, induction implies the following characterization.

Lemma 3.1 Almost surely,

E[µt | T1, T2, . . . , TN(t), X] = h(µ0, t) ∗ Γ
N(t)
n=1

∞
∑

k=1

pkh(µ0, Tn)
∗k,

where, for any probability measures α1, . . . , αk, we write Γk
i=1αi = α1 ∗ α2 ∗ · · · ∗ αk.

We now suppose that the counting process N for the number of public releases is

a Poisson process with intensity η > 0. From Lemma 3.1 and the Poisson property of

N , we have following result.
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Theorem 3.2 Given the variable X of common concern, the probability distribution of

each agent’s type at time t is νt = αt ∗ βt, where αt = h(µ0, t) is the type distribution in

a model with no public releases of information, satisfying the differential equation

dαt

dt
= λ

(

∞
∑

l=2

ql α
∗l
t − αt

)

, α0 = µ0, (5)

and where βt is the probability distribution over types that solves the differential equation

dβt

dt
= −ηβt + ηβt ∗

∞
∑

k=1

pk α
∗k
t , (6)

with initial condition given by the Dirac measure δ0 at zero.

We see that νt has two outcomes, one on the event {X = H} and one on the

event {X = L}, because it depends on µ0, which likewise has two outcomes. The

purely-private type distribution αt is calculated explicitly by Duffie, Giroux, and Manso

(2008) for cases in which the number ` of agents sharing information at each meeting is

a fixed integer. The equation (5) for αt is thus somewhat familiar from Duffie, Giroux,

and Manso (2008). The equation (6) for βt, folding in the effects of public information

releases, reflects the characterization given by Lemma 3.1 as well as the mean rate η at

which βt gets replaced by a new public release. Corresponding to the public release at

time t of the beliefs of k agents, βt is replaced by the convolution of itself with α∗k
t .

4 Solving for Type Distributions as Wild Sums

In order to calcuate the probability distribution νt of an agent’s type at time t, we first

analyze the evolution of αt and βt.

For cases in which there is a fixed number n of agents at each private meeting,

Duffie, Giroux and Manso (2008) prove that equation (5) has a unique solution, given

explcitly by an expansion in convolution powers of α0, in a form of summation originated

by Wild (1951). We now provide a similar result for any distribution of meeting sizes.

Theorem 4.1 The unique solution to the dynamic equation (5) for the distribution of

types in a model with no public information is

αt = e−λt
∞
∑

n=1

an(t)µ∗n
0 , (7)
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where the coefficients an(t) are nonnegative, monotone increasing, and bounded, and can

be defined recursively by a1(t) = 1 and

aj(t) = λ

j
∑

k=2

∫ t

0

e−λ (k−1) s qk
∑

j1 + ···+ jk=j

k
∏

h=1

ajh
(s) ds, j ≥ 2. (8)

Moreover, limt→∞ an(t) = ψn exists and the power series

f(z) =

∞
∑

n=1

ψn z
n

has a radius of convergence of 1.

We now turn to a characterization of βt. Since (6) is linear, one can take Fourier

transforms to show the following.

Proposition 4.2 The unique solution to (6) is

βt = exp

(

η

(

∫ t

0

∞
∑

k=1

pk α
∗k
s ds − t

))

def
= e−η t

∞
∑

n=0

ηn

n!

(

∫ t

0

∞
∑

k=1

pk α
∗k
s ds

)∗n

. (9)

Thus,

βt = e−ηt
∞
∑

n=0

bn(t)µ∗n
0 , (10)

where b0(t) = 1 and

bn(t) =
n
∑

k=1

ηk

k!

∑

i1+···+ik=n

di1(t) · · · dik(t), (11)

with

dj(t) =

j
∑

k=1

pk

∫ t

0

(

e−λ k s
∑

i1+···+ik=j

ai1(s) · · · aik(s)

)

ds. (12)

Equation (9) has a simple interpretation. Public signals arrive at the rate η. For

any time t and any number n of public releases, the public information arrival times are

uniformly distributed on [0, t]. From (7) and (9), we obtain a representation of βt as the

Wild sum (10).

We now use the explicit solutions for αt and βt to characterize the probability

distribution of an agent’s type, for cases with both public and private signals. The main

result of this section is the following.
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Theorem 4.3 The probability distribution of any agent’s type at time t, given X, is

νt = e−(λ+η)t
∞
∑

n=1

cn(t)µ∗n
0 , (13)

with coefficients cj(t) defined by c1 = 1 and

cn(t) =

n−1
∑

k=1

ak(t) bn−k(t).

These coefficients are nonnegative and monotone increasing in t. The limit

lim
t→+∞

cj(t) = φj

exists for each j. Furthermore, the power series

g(z) =
∞
∑

j=1

φj z
j

has a radius of convergence of 1.

The Wild summation (13) implies that, at each point in time, the probability

distribution of an arbitrary agent’s type is a mixture of convolutions of the initial dis-

tribution µ0. The coefficient e−(λ+η)t cn(t) associated with the n-th convolution of µ0 is

the probability that the agent has observed the initially endowed information of (n− 1)

other agents, whether through public or private interactions.

In Duffie, Giroux, and Manso (2008), the coefficients φ1, φ2, . . . are uniformly

bounded. This is not generally true in our setting. We illustrate with the following

result.

Proposition 4.4 Suppose that the number of agents in any private information sharing

meeting is 2, and that the number Kn of agents revealing their beliefs at any public

information release is always 1. Then the probability distribution of an agent’s type at

time t, given X, has the Fourier transform

ν̂t =
e−(η+λ) t µ̂0

(

1 − µ̂0 (1 − e−λt)
)

η+λ

λ

,

where µ̂0 is the Fourier transform of µ0. Hence,

νt = e−(η+λ) t
∑

n≥1

(η + λ) (η + 2λ) · · · (η + (n− 1)λ)

λn−1 (n− 1)!
(1 − eλt)n−1µ∗n

0 .
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In particular, if η = λ, then the probability distribution of any agent’s type at time t,

given X, is

νt = e−2λt
∑

n≥1

n(1 − eλt)n−1µ∗n
0 . (14)

In the case treated by the proposition, we have a particularly simple explicit solu-

tion for the distribution of posterior beliefs, using (4). In this case, the limiting weight

φn = n placed on acquisition of the information initially endowed to n agents grows

linearly with n. It is possible to construct examples in which φn grows as any power of

n.

5 Convergence Results

We now calculate the rate of convergence of an agent’s posterior beliefs to the limit of

perfect information. We divide our analysis into the cases with and without private

information sharing.

In our setting, it turns out that all agents’ posterior beliefs converge in law to

complete information. Without loss of generality, we characterize the speed of learning

on the event {X = H}. An identical characterization applies on the event {X = L}.
We recall that Ft is the CDF of the posterior of an arbitrary agent, given {X = H}.

By definition, Ft converges in distribution to the perfect-information CDF, F∞, if, for all

p, Ft(p) → F∞(p). (Because F∞ is the CDF of a constant random variable, convergence

in distribution is equivalent to convergence in probability.) We say that the convergence

of beliefs to perfect information is exponential at the rate r > 0 if, for any p in [0, 1],

there are constants κ0 > 0 and κ1 such that,

e−rtκ0 ≤ |Ft(p) − F∞(p)| ≤ e−rtκ1.

If there is a rate of convergence, it is unique.

Further, we say that the convergence of posterior beliefs to perfect information is

exponential at “almost” the rate r > 0 if for any ε > 0 and p in [0, 1], there are constants

κ0 > 0 and κ1 such that

e−(r+ε)tκ0 ≤ |Ft(p) − F∞(p)| ≤ e−rtκ1.

Thus, if there is an almost-rate of convergence, it is unique.

We will use the following technical assumption on the moment generating function

s 7→M(s) =
∫

esx dµ0(x) of the initial type distribution µ0 on the event {X = H}.
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Assumption 5.1 There exists a constant c > 0 such that M(s) is finite for s ∈ [−c, 0].

A focal point of the paper is the following result, which states that when both

private and public learning channels are active, the rate of convergence of beliefs to

perfect information is merely the sum λ + η of the mean arrival rates of private and

public learning events, and does not depend at all on the distribution of the number of

agents releasing information at each of these types of events. This will be contrasted

with the case of purely public learning.

Theorem 5.2 Under Assumption 5.1, if the mean arrival rate λ of an agent’s private

information meetings is strictly positive, then the convergence of posterior beliefs to per-

fect information is exponential at the rate λ+ η.

We now study rates of convergence without private information sharing (that is,

with λ = 0). In this case, αt = µ0 for all t and (9) implies that

νt = µ0 ∗





∞
∑

k=0

(ηt)k

k!
e−ηt

(

∞
∑

n=1

pn µ
∗n
0

)∗k


 . (15)

If M( · ) is finite everywhere, we can let

R = sup
y∈R

(− logM(y)) . (16)

Because M(0) = 1, we see that R > 0. The importance of the quantity R is justified by

a technical result based on Cramèr’s Large Deviations Theorem.

Lemma 5.3 If the moment generating function M is finite everywhere, then, for any

a > 0 and any ε > 0 there exist strictly positive constants κ0 and κ1 such that, for any

k ∈ N,

κ0 e
−(R+ε) k ≤ µ∗k

0 ((−∞, a)) ≤ κ1 e
−R k.

We let

Φ(z) =
∞
∑

n=1

pn z
n,

and note that Φ maps [0, 1] onto [0, 1].

13



Theorem 5.4 Suppose that the moment generating function of the initial type distribu-

tion µ0 is finite everywhere. If λ = 0 (that is, without private information sharing), the

convergence in distribution of posterior beliefs to perfect information is exponential, at

almost the rate

ρ = η
(

1 − Φ
(

e−R
) )

. (17)

In contrast to the case treated by Theorem 5.2, if there is no private information

sharing, then the rate of convergence of beliefs to perfect information depends on the

probability distribution of the number of agents’ whose posteriors are revealed at each

public information release. It also depends through R on the initial information endow-

ment and on the realization of X. Moreover, as opposed to the case in which there is

some private information sharing, the contribution of public information releases to the

convergence rate is less than the mean rate η of arrivals of public information.

Example. We take the case η = 1 and suppose that any agent, say i, is initially en-

dowed with one signal, say si, with P(si = 1 |H) = 2/3 and P(si = 1 |L) = 1/3. The

initial distribution of types on the event {X = H} is then µ0 = 1/3δ{− log 2} + 2/3δ{log 2}.

It is straightforward to calculate that R, as defined by (16), is log
(

3/2
√

2
)

. We suppose

that a fixed number n of agents’ posteriors are publicly revealed at each public infor-

mation release. From Theorem 5.4, the probability distribution of any agent’s posterior

beliefs converges exponentially at almost the rate η
(

1 −
(

2
√

2/3
)n
)

. As opposed to

the case in which there is private information sharing, Table 1 shows that the rate of

convergence depends on the number n of agents whose posteriors are revealed at each

public information release. Moreover, the rates of convergence shown are substantially

lower than η for small n.

We now offer some intuition for the importance of non-zero private information

sharing for the contribution of public information to belief convergence rates. From

Theorem 3.2, information that is publicly released at time t has a type drawn from the

distribution αt. If the private matching intensity λ is strictly positive, then the privately-

gathered type distribution αt converge exponentially at the rate λ. Thus, regardless of

the quality of the initially endowed information distribution µ0, and regardless of the

magnitude of λ so long as it is strictly positive, the distribution of publicly released

posteriors are converging exponentially fast to perfect information. Thus, with λ > 0,

the contribution to the overall information convergence rate of public information is the

mean arrival rate η of public information releases.

14



n ρ
1 0.025
2 0.049
3 0.073
4 0.097
5 0.120
6 0.142
7 0.164
8 0.185
9 0.205
10 0.226
100 0.923

Table 1: Almost-rates of convergence, ρ, for various cases of n, the number of agents
whose posteriors are revealed at each arrival of public information. In this example, we
assume no private information sharing and take the mean arrival rate η of public releases
to be 1. Each agent i is initially endowed with one signal, say si, with P(si = 1 |H) = 2/3
and P(si = 1 |L) = 1/3.5

In contrast, when the private matching intensity λ is zero, the privately acquired

type measure αt is merely µ0 for all t. The informativeness of public information re-

leases is then constant over time, and is merely a property of the quality of the initial

distribution µ0 of types, which is bounded away from perfect information. Thus, with

λ = 0, it is not surprising that the contribution of public information releases to the rate

of convergence depends on the initial distribution µ0 of types and is strictly lower than

η.

We can further analyze this discontinuity, at λ = 0, in the dependence of the

information convergence rate on λ by examining the convergence of the moment gener-

ating function Mt( · ) of the type distribution νt. For the case of no private information

sharing, we have

Mt(y) = M0(y) e
− t η (1−Φ(M0(y))). (18)

By definition, M0(y) ≥ e−R. Thus

Mt(y) = M0(y) e
− t η (1−Φ(M0(y))) ≥ M0(y) e

− t η (1−Φ(e−R)).

It follows that Mt(y) cannot converge to zero any faster than the rate given in Theorem

5.4.

Now we compare to a setting with private information sharing. Because νt = αt∗βt,

15



we have

Mt(y) = Mα
t (y)Mβ

t (y), (19)

where Mα
t ( · ) and Mβ

t ( · ) are the moment generating functions of αt and βt, respectively.

We have

Mβ
t (y) = e− ηt + η

∫ t

0
Φ(Mα

s (y)) ds. (20)

For imaginary y ∈ iR (that is, extending to the characteristic function), we have

|Mα
t (y)| ≤ K e−λt for some constant K, so Mα

t (y) converges to zero at the rate λ. The

contribution of the term η
∫ t

0
Φ(Mα

s (y)) ds in the exponent of Mβ
t (y) is bounded, for

λ > 0, by

η

∣

∣

∣

∣

∫ t

0

Φ(Mα
s (y)) ds

∣

∣

∣

∣

≤ K̃

∫ ∞

0

e−λs ds =
K̃

λ
, (21)

for some constant K̃ that does not depend on t. Thus, for λ > 0, the term η
∫ t

0
Φ(Mα

s (y)) ds

has no influence on the convergence rate η of Mβ
t (y). As we move from a non-zero rate

λ of private learning to the limit case of no private learning, however, this bound K̃ λ−1

explodes.
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Appendices

A Proof of Theorem 4.1.

We will start with

Lemma A.1 Let B(R) be the space of all signed measures γ on R of globally bounded

variation

Var(γ) = sup

N−1
∑

i=1

|γ((xi , xi+1])|,

where the supremum is over all sequences −∞ < x1 < · · · < xN < ∞ and all

N ∈ N . Then, the Fourier transform γ̂, defined by

γ̂(s) =

∫

R

ei s t dγ(t),

is continuous as a map from B(R) to C(R) , the set of continuous functions on R

equipped with the supremum norm.

Proof. The proof follows from the standard inequality

|γ̂1 − γ̂2| ≤ Var(γ1 − γ2).

Another important observation is

Lemma A.2 Var(γ1 ∗ γ2) ≤ Var(γ1) Var(γ2). Further, for a positive measure γ ,

Var(γ) = γ(R).

Proposition A.3 Suppose that there exists a unique solution α̂t to the equation

d

dt
α̂t = −λ α̂t + λ

∞
∑

k=2

qk α̂
k
t , (22)

for any initial condition α̂0 , |α̂0| ≤ 1 , which is analytic in the disk

D = {α̂0 ∈ C : |α̂0| < 1}

and continuous on its closure. Let α̂0 be the Fourier transform of µ0 and

α̂t =
∞
∑

j=0

Bj(t) α̂
j
0, (23)
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where all coefficients Bj(t) are nonnegative. Then, the measure

αt =

∞
∑

j=0

Bj(t)α
∗j
0

is the unique solution to (5).

Proof. Suppose that

αt =

∫ t

0

(

−λαs + λ

∞
∑

k=2

qk α
∗k
s

)

ds.

Since
∑

k qk = 1 , the infinite series converges in the Var -norm, because

Var

(

∞
∑

k=2

qk α
∗k
t

)

≤
∞
∑

k=2

qk Var(α∗k
t ) = 1.

By the continuity of the Fourier transform,

α̂t =

∫ t

0

(

−λ α̂s + λ

∞
∑

k=2

qk α̂
k
s

)

ds.

Conversely, suppose that α̂ satisfies this equation and has the expansion (23). Then,

define the measure

αt =
∞
∑

j=0

Bj(t)α
∗j
0 .

Since, by assumption,
∑

j Bj < ∞ , this indeed defines a measure. By continuity, the

Fourier transform of this measure satisfies the above equation and, since the solution is

unique, coincides with α̂t .

Thus, we first need to prove that the solution to (22) is analytic in the disc D and

continuous in the closed disc as a function of the initial value α̂0 . We will start with the

following

Lemma A.4 Let f(z) be analytic in the unit disc D . Then the function g defined by

g(z) =

∫ z

0

f(ξ) dξ

is a well defined, analytic function in D . The power series

g(z) =
∞
∑

j=0

g(j)(0)

j!
zj

has the same radius of convergence as the power series for f(z).
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Proof. The integral
∫ z

0
f(ξ) dξ does not depend on the path from 0 to z because, for

an analytic function,
∫

γ
f(ξ) dξ = 0 for any closed contour γ . Now, it is not difficult

to check that
∂g(z)

dz
= f(z),

and hence g is analytic.

Proposition A.5 There exists an ε > 0 such that the solution to the equation (22) is

an analytic function of α̂0 for α̂0 in Dε = {z ∈ C : |z| < ε}, for any t ∈ R+ , and

admits the expansion

α̂t = e−λ t
∞
∑

j=0

aj(t) α̂
j
0 . (24)

Proof. We have
d

dt
α̂t = (α̂tQ(α̂t) − 1)λ α̂t,

where

Q(x) =
∞
∑

k=2

qk x
k−2.

Integrating, we get
∫ α̂

α̂0

dx

(xQ(x) − 1) x
= λ t.

Using the identity
1

(xQ(x) − 1) x
=

1

x
− Q(x)

xQ(x) − 1
,

and exponentiating, we get

e−λ t α̂0 exp

(

−
∫ α̂0

0

Q(x) dx

xQ(x) − 1

)

= α̂t exp

(

−
∫ α̂t

0

Q(x) dx

xQ(x) − 1

)

. (25)

Now, the function

f(α̂) = α̂ exp

(

−
∫ α̂

0

Q(x) dx

xQ(x) − 1

)

(26)

is analytic for α̂ ∈ D . The last claim follows because

|z Q(z)| <
∞
∑

k=2

qk = 1

for all z ∈ D , so
Q(z)

z Q(z) − 1
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is analytic in D . Therefore, by Lemma A.4, f(z) is also analytic. Now,

f ′(0) = 1 6= 0.

Therefore, by the implicit function theorem, there exists a unique function ψ = ψ(z) ,

analytic in a small disc Dδ such that

f(ψ(z)) = ψ(f(z)) = z.

Since f(0) = 0, we can choose ε so small that |f(z)| < δ for |z| < ε. Then,

α̂t(α̂0) = ψ( e−λ t f(α̂0) ) (27)

is analytic for |µ̂0| < ε, which is what had to be proved.

To proceed further, we will get information about the Taylor-series coefficients of

the analytic function α̂t(z). To this end, we will calculate higher derivatives of the right-

hand side of (27). The combinatorial structure of these derivatives is quite complicated.

We will make use of the Faa-di Bruno formula (see, Riordan (1958), pp. 35-37), providing

an expression for the higher derivatives of a composition of two functions.

Lemma A.6 (Faa-di Bruno formula) Let F : C → C and V : C → C be analytic.

Then,

(F (V (x)))(n) =

n
∑

k = 1

F (k)|V (x)

∑

Q(n , k)

n!

n
∏

i=1

1

(λi!)

(

V (i)

i!

)λi

,

(28)

where

Q(n , k) =

{

(λ1 , . . . , λn) : λi ∈ N0 ,

n
∑

i=1

λi = k ,

n
∑

i=1

i λi = n

}

and N0 is the set of nonnegative integers.

The following lemma is a direct consequence of the Faa-di Bruno formula.

Lemma A.7 The functions aj are finite polynomials in e−λ t and satisfy

lim
t→∞

aj(t) =
f (j)(0)

j!

def
= ψj ,

where the function f is given by (26).
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Proof. Rewriting the identity (27) as

f(α̂t(z)) = e−λt f(z)

and using the Fa-di Bruno formula at the point α̂0 = 0 , we get

n
∑

k = 1

f (k)(0)
∑

Q(n , k)

n!

n
∏

i=1

1

(λi!)

(

α̂
(i)
t (0)

i!

)λi

= e−λ t f (n)(0).

Since f ′(0) = 1 ,

α̂
(n)
t (0) = f ′(0) α̂

(n)
t (0)

= e−λ t f (n)(0) −
n
∑

k = 2

f (k)(0)
∑

Q(n , k)

n!

n
∏

i=1

1

(λi!)

(

α̂
(i)
t (0)

i!

)λi

.

For n = 1,

α̂
(1)
t (0) = e−λ t.

An induction argument then shows that for each n ≥ 2 , there exists a polynomial

Pn = Pn(z1 , . . . , zn−1) , not containing constant and linear terms, such that

α̂
(n)
t (0) = e−λ t f (n)(0) − Pn(α̂

(1)
t (0) , . . . , α̂

(n−1)
t (0)).

Consequently, as t→ ∞,

α̂
(n)
t (0) = O(e−λ t).

Since Pn does not contain constant and linear terms, for any n ≥ 2,

Pn(α̂
(1)
t (0) , . . . , α̂

(n−1)
t (0)) = O(e−2λt)

as t → ∞ . Thus,

lim
t→∞

eλ t α̂
(n)
t (0) = f (n)(0),

as claimed.

Lemma A.8 The coefficients an(t) in (7) are nonnegative, monotone increasing and

bounded, and can be defined recursively as a1(t) = 1 and

aj(t) = λ

j
∑

k=2

∫ t

0

e−λ (k−1) s qk
∑

j1 + ···+ jk=j

k
∏

h=1

ajh
(s) ds, (29)

for all j ≥ 2 .
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Proof. Let

α̂t = Ât e
−λ t.

Substituting α̂t into (22), we get that

d

dt
Ât =

∞
∑

k=2

e−λ (k−1) t qk Â
k
t .

Thus, Ât solves the equation

Ât = F (Ât),

where

F (Ât) = Â0 +

∞
∑

k=2

∫ t

0

e−λ (k−1) s qk Â
k
s ds.

Substituting the power-series expansion

Âs =
∞
∑

j=1

aj(t) Â
j
0,

we get

F (Ât) = Â0 +

∞
∑

k=2

∫ t

0

e−λ (k−1) s qk

(

∞
∑

j=1

aj(s) Â
j
0

)k

ds

= Â0 +

∞
∑

k=2

∫ t

0

e−λ (k−1) s qk

∞
∑

j=1

Âj
0

∑

j1 + ···+ jk=j

k
∏

h=1

ajh
(s) ds

= Â0 +

∞
∑

j=2

Âj
0

j
∑

k=2

∫ t

0

e−λ (k−1) s qk
∑

j1 + ···+ jk=j

k
∏

h=1

ajh
(s) ds,

where interchanging summation and integration is justified because of uniform conver-

gence. Since Ât = F (Ât) , the coefficients in the power series expansions must coincide

and the identity (29) follows.

Lemma A.9 Let f be the function, defined in (26). The function α̂t(α̂0) can be ana-

lytically continued to the whole disc D and

| α̂t(α̂0) | ≤ e−λ t f( |α̂0| ),

for any t ∈ R+ and any α̂0 ∈ D .
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Proof. By Lemmas A.7 and A.8,

| α̂t(α̂0) | ≤ e−λ t
∞
∑

j=1

aj(t) |α̂0|j ≤ e−λ t
∞
∑

j=1

f (j)(0)

j!
|α̂0|j = e−λ t f( |α̂0| ).

The claim follows.

We will also need the following auxiliary

Lemma A.10 For any initial value r ∈ (0 , 1) , the solution kt to the equation

d

dt
kt = −λ kt + λ

∞
∑

k=2

qk k
k
t , k0 = r

exists on the whole half-line R+ and satisfies

r > kt > lim
t→+∞

kt = 0.

Proof. Note that the function

q(x) = −λ x + λ
∞
∑

k=2

qk x
k (30)

has no zeros in (0 , 1) because, for x ∈ (0, 1) ,

∞
∑

k=2

qk x
k−1 < 1.

That is, q(x) < 0 on (0, 1) . By the uniqueness theorem for ODE’s, any solution kt

with initial data r ∈ (0, 1) must stay in the segment (0, 1) forever. Since kt can not

blow up to ±∞ , it exists on the whole R+ (Dieudonné (1960), Theorem 10.5.6). Since

d

dt
kt = q(kt) < 0,

kt is monotone decreasing in t and converges to zero.

We are now ready to prove the final step of the proof of Theorem 4.1. By Proposi-

tion A.5, the power series α̂t(α̂0) coincides with the unique solution to (22) when |α̂0| is

sufficiently small. By Proposition A.3, to complete the proof of Theorem 4.1 it remains

to show that α̂t solves (22) for all α̂0 ∈ D and that α̂t(α̂0) is continuous in the closure of

D. The next proposition shows that this is indeed true.
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Proposition A.11 The unique solution to (22) coincides with α̂t(α̂0) for any α̂0 ∈ D.

The function α̂t(α̂0) is analytic for α̂0 ∈ D and is continuous on its closure, and maps

D into itself. The radius of analyticity of f(z) is exactly one.

Proof. By Lemma A.9, α̂t(α̂0) is analytic in D . Since q(x) defined in (30) is analytic in

D, it remains to show that α̂t maps D into itself. Indeed, if this is the case, the function

q(α̂t(α̂0)) is analytic for α̂0 ∈ D and, by Proposition A.5,

α̂t(α̂0) =

∫ t

0

g(α̂s(α̂0)) ds (31)

for all α̂0 ∈ Dε. The left- and the right-hand sides are analytic functions in D and, by the

uniqueness theorem for analytic functions, (31) holds for all α̂0 ∈ D. Furthermore, by

Lemma A.8, α̂t(α̂0) has nonnegative Taylor coefficients at zero and therefore, by Lemma

A.10,

|α̂t(α̂0)| ≤ α̂t(|α̂0|) ≤ 1. (32)

Inequality (32) and non-negativity of the coefficients imply that the power series is also

well defined on the cirle |α̂0| = 1 and therefore α̂t(α̂0) is continuous on the closure of

D . Finally, α̂t(1) = 1 implies
∑

j

aj(t) = eλt,

and therefore, by the monotone convergence theorem,

∑

j

ψj =
∑

j

lim
t→∞

aj(t) = lim
t→∞

∑

j

aj(t) = +∞.

Hence, the radius of analyticity of f(z) is exactly one.

Suppose now that, for some T > 0, α̂T does not map D into itself, that is, |α̂T (z0)| >
1 for some z0 ∈ D. Let Z(r) = maxt∈[0,T ] α̂t(r). Standard compactness arguments imply

that Z(r) is well-defined, increasing in r and continuous. By (32), Z(|z0|) > 1 and

r0 = inf{r ∈ (0, 1) : Z(r) ≥ 1} is well-defined. By Proposition A.5 and Lemma A.10,

r0 > 0. Furthermore, by definition, Z(r) < 1 for all r ∈ [0, r0) and, by compactness

of [0, T ] and continuity of α̂t, there exists a T0 ∈ [0, T ] such that α̂T0
(r0) = 1. By

(32) and the argument in the previous paragraph, α̂t(α̂0) solves (22) for all |α̂0| ≤ r0

and t ∈ [0, T0). But, by Lemma A.10, α̂t(r0) is monotone decreasing in t and therefore

α̂T0
(r0) < α̂0(r0) = r0 < 1, which is a contradiction.
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B Proof of Proposition 4.2

Proof. An argument used by Duffie, Giroux and Manso (2008) implies that βt solves

(6) if and only if its Fourier transform β̂t solves

dβ̂t

dt
= −ηβ̂t + η β̂t

∞
∑

k=1

pk α̂
k
s ds. (33)

This is a linear ordinary differential equation whose unique solution, with β̂0 = 1, is

β̂t = exp

(

η

(

∫ t

0

∞
∑

k=1

pk α̂
k
s ds − t

))

.

Using the Taylor series for ex,

β̂t = e−η t
∞
∑

n=0

ηn

n!

(

∫ t

0

∞
∑

k=1

pk α̂
k
s ds

)n

. (34)

Now, by (7),

(α̂t)
k = e−λkt

(

∞
∑

l=1

al(t) µ̂
l
0

)k

= e−λkt
∞
∑

l=k

∑

i1+···+ik=l

ai1(t) · · · aik(t) µ̂
l
0. (35)

Therefore,
∫ t

0

∞
∑

k=1

pk α̂
k
s ds =

∞
∑

j=1

dj(t) µ̂
j
0,

with dj defined by (12). Substituting (35) into (34), we obtain

β̂t = e−ηt

∞
∑

n=0

bn(t) µ̂n
0 ,

with bn defined by (11). Taking the inverse Fourier transform of this identity, we arrive

at (10).

C Proofs of Theorem 4.3 and Proposition 4.4

We will use the well known Montel Theorem (Titchmarsh (1960), p. 170).

Theorem C.1 (Montel Theorem) Let D ⊂ C be an open set. A uniformly bounded

set A of analytic functions on D is compact. That is, if there exists a constant C

such that |f(z)| ≤ K for all z in D and all f ∈ A, then for any infinite sequence

{fk(z)} ⊂ A there exists subsequence {fnk
} and a function f(z) , analytic in D , such

that fnk
(z) → f(z) and f

(m)
nk (z) → f (m)(z) uniformly on compact subsets of D for

any m ≥ 0 .
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Proposition C.2 The function

e(λ+η)tν̂t(z) = eλt α̂t(z) exp

(

η

(

∫ t

0

∞
∑

k=1

pk α̂
k
s(z) ds

))

is analytic in the disc D for any t > 0, and the family {e(λ+η)tν̂t(z) , t > 0} is uniformly

bounded on compact subsets of D.

Proof. By Proposition A.11, the function αs(z) maps D into itself, the infinite series

ls(z) =

∞
∑

k=1

pk α̂
k
s(z)

converges absolutely and satisfies

∣

∣

∣

∣

∣

∞
∑

k=1

pk α̂
k
s(z) ds

∣

∣

∣

∣

∣

≤
∞
∑

k=1

pk |α̂k
s(z)| ≤ 1.

By the Montel Theorem, ls(z) is analytic in D. Again, since ls(z) is uniformly bounded

by one,
∫ t

0
ls(z) ds is analytic in D by the Montel Theorem. The analyticity of ν̂t(z)

follows. Now, by Lemma A.9,

|α̂k
s(z)| ≤ e−λkt f(|z|)k.

Pick a T > 0 so large that e−λT f(|z|) < 1. Then, for all t > T,

∣

∣

∣

∣

∣

∫ t

0

∞
∑

k=1

pk α̂
k
s(z) ds

∣

∣

∣

∣

∣

≤ T +

∫ t

T

∞
∑

k=1

pk e
−λk(s−T )(e−λTf(|z|))k ds

≤ T +

∫ ∞

T

∞
∑

k=1

pk e
−λk(s−T ) ds

= T +

∞
∑

k=1

pk

λk
< ∞.

Thus, we have the uniform boundedness on compact subsets of D and Montel’s theorem

implies the required analyticity.

Lemma C.3 Let

ν̂t(z) = e−(λ+η)t

∞
∑

j=1

cj(t) z
j .
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Then, the coefficients cj(t) are nonnegative, monotone increasing, bounded from above

and satisfy

lim
t→∞

cj(t) = φj.

The function

φ(z) =
∞
∑

k=1

φj z
j (36)

is analytic in D.

Proof. By Lemma A.8, the coefficients aj(t) in the expansion

eλt α̂t(z) =
∞
∑

j=1

aj(t) z
j

are nonnegative and monotone increasing in t. Therefore, the coefficients of the Taylor

expansion of (α̂t(z))
k are nonnegative for any k and hence

∞
∑

k=1

pk α̂
k
s (z) =

∞
∑

j=1

Dj(t) z
j ,

for some nonnegative Dj(t). Therefore, the Taylor coefficients of

∫ t

0

∞
∑

k=1

pk α̂
k
s (z)ds =

∞
∑

j=1

(
∫ t

0

Dj(s)ds

)

zj

are nonnegative and monotone increasing in t. Since multiplying and adding nonnegative,

increasing functions generates nonnegative, increasing functions, we immediately get that

cj(t) are monotone increasing and nonnegative. By Proposition C.2,

cj(t)(0.5)j ≤
∞
∑

k=1

ck(t)(0.5)k < K,

for some constant K, independent of time. Hence, cj(t) is increasing and bounded from

above for each j, so the limit limt→∞ cj(t) = φj exists for each j.

Since the functions e(λ+η)t ν̂t(z) are uniformly bounded on compact subsets of D,

this family of functions is compact by the Montel Theorem and there exists a subsequence

e(λ+η)tj ν̂tj (z) converging uniformly on compact subsets of D to a function g(z), analytic in

D. By the Montel Theorem, the Taylor coefficients also converge, so the Taylor coefficients

of g(z) are given by limj→∞ c(tj) = φj. That is, g(z) is given by (36), as stipulated.
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Proof of Proposition 4.4. Using the solution for αt from equation (7) of Duffie

and Manso (2007), we note that

∫ t

0

α̂s ds = −1

λ
log
(

1 − µ̂0 (1 − e−λt)
)

. (37)

Therefore,

β̂t =
e−ηt

(

1 − µ̂0 (1 − e−λt)
)

η

λ

and

ν̂t = α̂t β̂t =
e−(η+λ)t µ̂0

(

1 − µ̂0 (1 − e−λt)
)

η+λ

λ

. (38)

D Proofs of Convergence Rates

Proof of Theorem 5.2. The argument is analogous to that of Duffie, Giroux, and

Manso (2008). We will provide the rate of convergence to zero of νt((−∞, a)) on the

event {X = H}. A like argument gives the same rate of convergence to 1 on the event

{X = L}.
Let Y1, Y2, . . . be random variables that, given X, are independent with distribution

µ0 = α0. By Theorem 4.3,

νt((−∞ , a)) = e−(λ+η)t

∞
∑

n=1

cn(t)µ∗n
0 ((−∞, a))

= e−(λ+η)t
N
∑

n=1

cn(t) P

[

n
∑

i=1

(

Yi −
a

n

)

≤ 0

]

+ e−(λ+η)t
∞
∑

n =N+1

cn(t) P

[

n
∑

i=1

(

Yi −
a

n

)

≤ 0

]

≤ β e−(λ+η) t + e−(λ+η) t
∞
∑

n = N+1

φn e
ac γn

≤ e−(λ+η) t (β + eac g(γ) ) ,

and the proof is complete.

Proof of Lemma 5.3. Let {Yi} be an iid sequence of random variables with the

distribution of µ0 on the event {X = H}. By Cramèr’s Large Deviations theorem
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(Deuschel and Stroock (1989), p. 6),

µ∗k
0 ((−∞, a)) = P(Y1 + · · ·+ Yk > a) = e−k (R+o(1))

as k → ∞. The lower bound immediately follows. For the upper bound, we will use the

Chernoff (1953) bound, stating that

P[Y1 + · · · + Yk > a] ≤ e−k S(a/k),

where

S(x) = sup
y∈R

(

y x − logE[eyY ]
)

.

It is known (for example, Deuschel and Stroock (1989), p. 6) that S( · ) is a strictly

convex function, attaining its minimal value 0 at x = E[Y ]. Therefore, S(x) is monotone

decreasing on [0, E[Y ]] and R > S(0) > S(a/k). But, since convex functions are locally

Lipschitz, S(0) − S(a/k) < C a/k for some constant C. Therefore,

e−k S(a/k) ≤ e−k (R−C a/k) = eCa e−kR,

and the proof is complete.

Proof of Theorem 5.4. By Theorem 4.3,

νt =
∞
∑

n=1

e−ηt cn(t)µ∗n
0

with nonnegative cn(t). By Lemma 5.3,

νt((−∞, a)) ≤ κ1

∞
∑

n=1

e−ηt cn(t) e−R n.

Now, gathering the terms and using representation (15),

∞
∑

n=1

e−ηt cn(t) e−R n = e−R





∞
∑

k=0

(ηt)k

k!
e−ηt

(

∞
∑

n=1

pn e
−R n

)k




= e−R

[

∞
∑

k=0

(ηt)k

k!
e−ηt

(

Φ(e−R)
)k

]

= e−R exp
(

− η
(

1 − Φ
(

e−R
))

t
)

.

The lower bound is proved similarly.
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