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Abstract

This paper focuses on organizational issues of allocating authority between an
uninformed principal and an informed expert. We show that the standard result that
delegating decisions to a perfectly informed expert is better than communication is
reversed if the principal can restrict the precision of the expert�s information (without
learning its content). We demonstrate that these organizational forms� informational
control and delegation� can be either complements or substitutes, depending on the
principal�s ability to a¤ect the expert�s discretion about the set of allowed policies.
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1 Introduction

Situations in which principals do not have enough information and have to consult experts
before implementing a policy can be found almost everywhere. Auctioneers consult experts
about an object�s value, managers consult analysts before making corporate decisions, and
politicians consult advisors on special subjects. However, the bene�ts of communication
are often impaired by a con�ict of interest. If the parties�interests do not match exactly,
the expert may want to strategically misrepresent information in an attempt to manipulate
a principal�s decision.

A potentially e¤ective solution to this communication problem is to delegate authority
to the expert herself and gain from her informational advantage. Then, even though the
expert�s decision is biased, the trade-o¤ between the loss of authority in delegation and the
loss of information in communication often favors the former (see Dessein, 2002). However,
despite the informational bene�ts of delegation, many companies today still centralize
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authority at the upper level of the hierarchy.1 To provide a possible explanation of this
fact, this paper analyzes the bene�ts of another instrument, sometimes available to the
principal� controlling the quality of the expert�s information without learning its content.
As shown by Fischer and Stocken (2001) for some special cases, restricting the amount of
information available to the expert be better for the principal. It is natural to ask whether
restricting the availability of information does better than full or partial delegation and how
the two modes of modifying the communication game interact with each other. This paper
addresses these questions. We demonstrate that informational control in communication is
generally bene�cial for the principal compared to both communication with the perfectly
informed expert and delegation. Moreover, restricting the expert�s information is bene�cial
even when combining these instruments; that is, when the principal restricts the expert�s
information and delegates decision making afterwards. This �nding is counterintuitive,
because the expert�s superior information is a major factor that bene�ts the principal in
delegation.

In many situations, the principal can directly a¤ect the precision of the expert�s
information. For instance, governments (principals) usually collect reports from oil
companies (experts) to estimate the amount of oil in the oil�elds before a lease sale.
Depending on the company�s report, a government determines the auction rules: its type,
a reserve price, etc. This behavior creates an incentive for companies to misrepresent
information in their favor. For its part, the government can restrict the company�s
information by specifying estimating procedures: oil exploration techniques allowed, the
number and location of test drills permitted, etc.2

In general, loss of information in communication implies that the expert possesses too
much information relative to the amount that she is ready to reveal to the principal. Thus,
some information is not relevant to the principal�s decisions because it is never discovered.
We show that properly restricting the expert�s information fosters her incentives to reveal
it truthfully. As a result, the principal faces another trade-o¤ between the precision of the
expert�s primary information and her incentives to convey it in further communication.
In other words, the principal prefers to restrict the expert�s information to only decision-
relevant information, which can be fully revealed, and to make this information as precise

1According to the Boston Consulting Group, centralization is still the most common type of
organization. Moreover, companies with decentralized decision making and accountability have sometimes
opted to centralize their structure. For example, Nestlé, a Swiss food and drinks group, initially was
decentralized that �was seen as the best way to cater to local taste and to establish emotional links
with clients in far-�ung places�. Nevertheless, it recently centralized control over speci�c businesses
and consolidated the management of its factories in individual countries into regions, even though the
company�s performance strongly depended on local preferences of consumers, which are known better by
local management (from The Economist, Aug. 5th 2004).

2The Mineral Management Service (MMS) of the U.S. Department of the Interior does not perform
any direct data-collection activities. Instead, it issues permits to industry for collecting prelease geological
and geophysical data. In general, companies wishing to collect data on the Outer Continental Shelf prior
to a lease sale must obtain a permit from the MMS. The permits set forth the speci�c details for each
data-gathering activity, including the area where the data are collected, the timing of the data-gathering
activity, approved equipment and methods, and other similar detailed information relevant to each speci�c
permit. After a permit is granted, the MMS monitors all �eld data collection activities to ensure compliance
with the terms of the permit. It is empowered to select and obtain copies of the data that are collected by
private �rms. The MMS uses the obtained data for several purposes, including evaluation of tracts�market
values, determination of bidding procedures, leasing, and post-lease operations.
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as possible.3

We extend Crawford�Sobel�s (1982) model of communication with a perfectly informed
expert, by giving the principal control over the quality of the expert�s information.
The key point of this paper is a race between generalized versions of two instruments:
controlling the expert�s information (Fischer and Stocken�s 2001 approach) and delegation
(Dessein�s 2002 approach). First, we extend the result of Fischer and Stocken (2001),
who �rst recognized that the quality of information of the principal is not monotone
in that of the expert. They, however, characterize the optimal quality of the expert�s
information in a leading uniform-quadratic case of the model only for speci�c values of the
bias in the players� interests. In our extension, we characterize the optimal information
structure for an arbitrary bias, and show that by properly restricting the quality of the
expert�s information, the principal can elicit more information from the expert than
in the standard Crawford�Sobel (hereafter, CS) environment. Based on this result, our
major contribution is that informational control results in a higher principal�s payo¤ than
optimal delegation whenever an equilibrium with the informative communication exists.
This result directly addresses the question examined by Dessein (2002), who compares the
performance of delegation versus CS communication. Dessein (2002) establishes that �the
principal optimally delegates control as long as the divergence in preferences is not too
large relative to the principal�s uncertainty about the environment.�We show that this
result can be reversed as soon as the principal has the power to in�uence the precision
of the expert�s information. For a wider class of players� preferences and distribution
functions, informational control is better than CS communication whenever informative
communication is feasible, and better than delegation whenever the players� interests
are su¢ ciently close relative to the principal�s prior uncertainty about the state. Thus,
controlling the precision of the expert�s information generally is a more powerful tool than
delegation� it allows the principal to gain from the expert�s information without loss of
control over decisions.
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Figure 1: Payo¤ relations between institutions for small con�ict in preferences

Figure 1 compares the performance of three organizational forms for di¤erent qualities
of an expert�s information (arrows represent the payo¤ dominance). The �rst form is pure
communication, when the principal requests an expert�s advice, but can use the obtained

3For example, top managers can restrict access to corporate information for those who are lower in
the company�s hierarchy. According to Charles Knight, the head of the electric and electronics business
Emerson, communication in the company is kept to a minimum: �Our planning and control cycle provides
ample opportunity to communicate the most important business issues... we don�t burden our system with
non-essential communications and information�(from The Economist, Jan. 21st 2006).
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information to make an arbitrary decision. In the second case, the principal completely
delegates authority to the expert or commits to comply with any expert�s recommendation.
Finally, the principal can delegate decision rights only partially by restricting policies that
can be chosen by the expert to prevent her from implementing, for example, extreme
actions. Optimal delegation imposes the policy restrictions that maximize expected payo¤
of the principal.4

As this �gure shows, there is only one situation in which the principal prefers not
to limit the precision of the expert�s information. This is the case, when the principal
cannot a¤ect the expert�s discretion about the set of delegated decisions, that is, the only
possible delegation is complete. However, even in this scenario, the principal can gain from
in�uencing the expert�s information and purely communicating with her afterwards.

The paper proceeds as follows. Section 2 discusses the related literature. Section 3
highlights motivating examples, which illustrate that the optimal information structure
can be coarse as well as that controlling information can perform better than delegation.
Section 4 presents the formal model. The general analysis of the model is provided in
Section 5. Section 6 compares the performance of our model versus delegation, and tests
the robustness of the results to the model speci�cations. Section 7 consider a combination
of controlling information and delegation. Section 8 concludes the paper.

2 Literature Review

Since our work contributes to the literature by comparing bene�ts of di¤erent organiza-
tional forms, it relates to two directions of the existing studies: that which deals with
various aspects of endogenous information in communication, and that which focuses on
delegation, when the principal delegates authority to the expert. With respect to the
former topic, the �rst analysis of strategic communication is attributed to Crawford and
Sobel (1982) in their seminal paper. They introduce a model of the interaction between a
perfectly informed expert and an uninformed principal whose payo¤s depend on a random
state of nature. After a private observation of the state, the expert sends a costless message
to the principal, who implements an action afterward. Crawford and Sobel show that full
information revelation is never possible unless the players�interests are perfectly aligned.
In addition, when a con�ict of interest arises, the quality of the disclosed information falls,
eventually resulting in the babbling equilibrium with no useful information conveyed.

The fact that the imperfect quality of an expert�s information can be bene�cial to
the principal was �rst demonstrated by Fischer and Stocken (2001). They, however,
restrict the set of possible biases in the players�preferences b, introduced by Crawford
and Sobel (1982), to that of the discrete form b = 1=2n, where n is an integer, and analyze
pure-strategy equilibria only. Their main result for the uniform-quadratic setting is that
the optimal structure of the information partition is uniform of size n, that is, equally
spaced. This is not a general feature of the model for other values of b. In this paper, we
characterize the optimal information structure for all values of the bias. In general, non-
uniform partitions can result in a higher expected payo¤ to the principal than delegation
that cannot be achieved with uniform partitions.

4For a detailed discussion of the optimal restrictions on the delegation set, see Alonso and Matouschek
(2005).
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Austen-Smith (1994) consider strategic communication with costly information acqui-
sition. Namely, the expert can observe the state at some privately known cost. In addition,
the expert is able to prove the fact of her information acquisition, but not the fact that
she is uninformed. Intuitively, positive costs of information acquisition decrease expert�s
incentives to acquire it and, as a result, the average quality of her information. However,
introducing partial veri�ability of the quality of the expert�s information extends the range
of biases, for which informative communication is possible.5 In contrast, there are no such
veri�ability issues in our case, since the principal determines the expert�s information
structure directly.

Bester and Strausz (2001) and Krishna and Morgan (2005) analyze a di¤erent
instrument to improve the quality of the conveyed information in communication�
monetary transfers from the principal to the expert as the functions of messages. Bester
and Strausz (2001) extend the revelation principle to the �nite type environment in which
the principal can commit only to some dimensions of the whole set of decisions. They
show that any incentive e¢ cient outcome (i.e., that which provides equilibrium payo¤s
on the Pareto frontier) is payo¤-equivalent to the equilibrium outcome in some direct
mechanism. Krishna and Morgan (2005) extend this result to the in�nite type space and
characterize the optimal contracts under both perfect and imperfect commitment. They
demonstrate that the gains from contracting are the highest for moderate values of the bias
in preferences. Similar to these studies, we establish a model-speci�c revelation principle,
which narrows the set of the optimal information structures to only those structures, in
which the expert reveals all available information.

The issue of the endogenous quality of information for the mechanism design is also
studied by Bergemann and Pesendorfer (2001). They consider an auction in which the
seller determines the precision of the bidders�valuations and to whom to sell at what price.
Similar to our model, the seller speci�es the information structure for each bidder without
learning their private signals. In this case, the information structures in the optimal auction
are coarse and represented by the �nite number of monotone partitions.6

Alternatively, there is an established literature on delegation or communication with
commitment, when the principal commits to rubber-stamp any agent�s recommendations
if they belong to the speci�ed delegation set. Dessein (2002) studies the bene�ts of
the special forms of delegation� complete delegation, communication with a biased
intermediary, and delegation with a veto-power� and compares them with the bene�ts of
pure communication. Holmström (1977), Melumad and Shibano (1991) , and Alonso and
Matouschek (2005) investigate the optimal restrictions on the set of delegated policies,
which maximize the principal�s expected payo¤. Whereas these studies consider the
information structure of the expert as exogenous, this work connects the endogenous
quality of information with delegating control over decisions to the expert.

5For the uniform-quadratic case, to b < 1=2.
6An interesting property of the optimal structure is that the partitions are asymmetric across bidders

even for symmetric distributions of the object�s values.
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3 Examples

We start with the uniform-quadratic variant of the communication model introduced by
Crawford and Sobel (1982). Two players, the uninformed receiver (R) and the better
informed sender (S), communicate on some state of nature, which is represented by a
random variable �, uniformly distributed on the unit interval. We can treat the sender as
an expert (she) and the receiver as a principal (he). The expert sends a costless message
m to the principal, who then implements an action a, which a¤ects the payo¤s of both
players. The players�state-relevant utility functions are quadratic:

UR (a; �) = � (a� �)2 ; and US (a; b; �) = � (a� b� �)2 ; (1)

where a parameter b > 0 re�ects the bias in the players�interests.
Suppose �rst that the expert is perfectly informed about the state. Crawford and

Sobel demonstrate that all the equilibria are characterized by �nite monotone partitions.
That is, for any bias b there are at most NCS (b) intervals on the state space so that the
expert sends one message for each interval Wk = [wk; wk+1], which is associated with a
corresponding action ak = E [�j� 2Wk].7 Also, there are exactly NCS (b) equilibria with
1; 2; :::; NCS (b) intervals, where the equilibrium with NCS (b) intervals is Pareto superior
to all other equilibria.

Example 1. Let the bias b = 1
5 . In the most informative equilibrium, the expert

sends a �low�message if the state less than 1
10 , and a �high�message otherwise. Thus,

if the principal receives a higher message (which occurs with the probability 9
10), his

prior information is updated insigni�cantly. A lower message is more informative, but the
probability of receiving it is just 1

10 . The reason is that the principal knows the expert�s
motives to exaggerate information and tries to correct his actions correspondingly. As a
result, if the principal gets a lower message, he infers that the expert�s type has to be
very low, whereas a higher message is more expected and thus is not very informative.
That is, communication can be e¤ective only for low states that results in the principal�s
expected payo¤ UCSR ' � 1

16 , which only slightly exceeds his payo¤ �
1
12 in the case of no

communication.
However, if the principal controls the expert�s information in a such way that the expert

observes only whether � is higher or lower than 1
2 , then there is an equilibrium, in which the

expert truthfully reveals her information. This increases the principal�s expected utility
to � 1

48 . Moreover, there is an equilibrium with three messages, namely, for � less than
1
5 , between

1
5 and

4
5 , and higher than

4
5 , which provides the expected utility UR ' � 1

52 .
A �ner information structure violates the sender�s incentives to communicate truthfully,
which results in the distortion of information and lower principal�s payo¤s.8

The intuition for this result is that the preferences of a less informed expert become
closer to those of the principal. In the CS case, the partitional structure is determined by

7Formally, Crawford and Sobel (1982) de�ne equilibrium strategies in a slightly di¤erent way to avoid
probability zero events. They require m (�) to be uniformly distributed on [wk; wk+1], if � 2 (wk; wk+1),
and a (m) = E [�j� 2Wk] for all m 2 (wk; wk+1).

8Like Crawford and Sobel (1982), we use the term ��ner�informally, implying a partition with a larger
number of elements.
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marginal types who are indi¤erent between two consequent actions (in the above example,
it is type �1 = 1

10) that is relatively low. Technically, because of the expert�s positive
bias the next higher action has to be far from the marginal type. Given the principal�s
optimal behavior in response to received information (the conditional means of the state
in the intervals), this is possible only if the next interval is su¢ ciently large. However,
if the expert cannot distinguish among di¤erent states in a lower interval, this decreases
her incentives to induce a higher action, since for all states in the interval (except the
indi¤erent type on the upper bound of the interval) the lower action is strictly better.
Thus, this particular form of information imperfection replaces the marginal CS type by
the mean type in the lower interval. As a result, �ner partitions can be supported as
equilibria than in the CS case.

Moreover, the bene�cial e¤ect of controlling the expert�s information is so powerful
that this organizational form can bring higher payo¤s to the principal than delegation, as
demonstrated in the example below.

Example 2. Let the bias b = 1
5 . As shown above, the most informative equilibrium

in the CS communication provides the principal�s ex-ante payo¤ approximately � 1
16 .

However, if the principal delegates authority completely, that is, without restrictions on
the set of sender�s feasible policies, then for any state �, the sender implements her optimal
policy �+b, which has a constant bias b relative to the receiver�s optimal policy �. That is,
both ex-post and ex-ante utilities to the receiver are �b2 = � 1

25 . The optimal delegation
set [0; 45 ] brings the expected payo¤�b

2 + 4
3b
3 ' � 1

34 . Therefore, the principal�s expected
payo¤ in delegation is higher than that in CS communication. However, it is lower than
his payo¤ � 1

52 in the case of communication with an imperfectly informed expert.

In this context it is important to note that full delegation is not necessarily optimal
in the space of all delegation sets, that is, sets of actions that can be delegated to the
sender. Since the expert has a positive bias, for high states she prefers actions that are out
of the range of the principal�s optimal actions. Excluding these extreme actions from the
delegation set implies that the expert would implement the highest possible action for the
high states, which is close to the principal�s optimal policies for these states. Melumad and
Shibano (1991) prove that the optimal delegation set for the uniform-quadratic settings is
the interval [0; y0], where the upper bound y0 =

�
0;max

�
1� b; 12

	�
. However, even optimal

delegation performs worse than communication with the imperfectly informed expert.

4 The Model

Consider a uniform-quadratic setup of the CS model, in which the principal takes control
of the quality of the expert�s information about the state without observing its content.
We call this modi�cation the CI (Controlled Information) model. The key modi�cation of
our model is a preliminary stage in which the receiver speci�es the sender�s information
structure at zero cost.

Information structure. In particular, the receiver partitions the state space � =

[0; 1] into a �nite number n of intervals Wk = (wk; wk+1], k 2 K = f0; 1; :::; n� 1g, where
w0 = 0, wn = 1, and determines a message spaceM . Equivalently, an information partition
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 = fWkgn�1k=0 can be described by a strictly increasing sequence fwkg
n
k=0 of its boundary

points, or a sequence of interval lengths f�wkgn�1k=0 , where �wk = wk+1 � wk. We call
a partition uniform of size n if it consists of n intervals of the same lengths, that is,
�wk =

1
n , 8k. As shown below, such partitions play an important role in our analysis.

Then, the state � is realized, which is drawn from a twice di¤erentiable distribution
F (�) with a density f (�), supported on the unit interval. However, the sender privately
observes only an element of the partition Wk, which contains the state, but not the
state itself. Since the sender cannot distinguish among di¤erent states in Wk, her
information is imperfect and determined by the distribution F (�jWk) of the state over
the observed interval. Thus, a measure of the sender�s imprecision about the state is
P (Wk) = Pr (� 2Wk) = F (wk+1)� F (wk). We denote this sender as Wk�type.

Notice that the described information structure assumes monotonicity of partitions.
That is, � 2 Wk, �0 2 Wj , j > k implies that � < �0. Mainly, this form of information
structure is supported by two arguments. The �rst argument is feasibility: it is di¢ cult for
the principal to implement an information system so that the expert�s information has the
form of �a true state is either high or low, but not intermediate�. Second, all characterized
equilibria in the CS model have the information structure of the monotone partitional form.
Thus, the monotone partitioning is convenient for comparing, for example, the distribution
of informational losses in the CS case and that in our model, through comparing the
number and lengths of the intervals in the information partitions.

Preferences.We consider the class of the players�utility functions similar to that used
by Dessein (2002). Namely, the receiver�s utility function UR (a; �) has a unique maximum
for a = � and can be written as

UR (a; �) = U (ja� �j) ; (2)

where U (:) is twice di¤erentiable, and U 0 (0) � 0, U 00 (x) < 0.9 If U 0 (0) = 0, we
additionally require U 000 (:) to be continuous in the neighborhood of 0.

Similarly, the sender�s utility function US (a; b; �) has a maximum for a = � + b and
can be written as

US (a; b; �) = V (ja� b� �j) ; (3)

where V 0 (x) � 0 and V 00 (x) < 0. For future references we will refer to (2) and (3) as
symmetric preferences.10

The timing of the game. The game is played as follows. First, the receiver speci�es
an information structure. Second, a realization of the state occurs, and the sender privately
observes an element of the partition, which contains the state. Then, the sender transmits
a costless message to the receiver. In general, the sender may mix over messages. After
receiving the message, the receiver updates his beliefs about the state and implements an
action that determines the players�payo¤s.

9Formally, Dessein (2002) also speci�es normalization components in the players�utility functions, which
do not a¤ect the results, however.
10Also, Krishna and Morgan (2004) consider a special case of such preferences, namely, UR (a; �) =

� ja� �j� and US (a; b; �) = � ja� b� �j�, where � � 1.
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4.1 Equilibrium

Given information structure 
, a perfect Bayesian equilibrium (hereafter, equilibrium)
(� (mjWk) ; a (m) ;
) consists of a signaling strategy � : 
 ! �M , which speci�es
a probability distribution � (mjWk) over the space of messages for each type Wk, the
principal�s action�s rule a :M ! R, and a belief function G :M ! ��, which speci�es a
probability distribution over � for each message m, including messages that are not sent
in equilibrium.

The action�s rule a (m) maximizes the receiver�s utility UR (ajm) = E [UR (a; �) jm]
given his belief function G (�jm).11 The belief function is constructed on the basis of Bayes�
rule where applicable.12 Given the action�s rule a (m), the signaling strategy maximizes
the sender�s type-relevant utility function

US (a; bjWk) = E� [US (a; b; �) j� 2Wk] =
1

P (Wk)

wk+1Z
wk

US (a; b; �) dF (�) .

That is, the signaling strategy � (mjWk) must satisfy

if �m 2 supp � (:jWk) , then �m 2 argmax
m2M

US (a (m) ; bjWk) , and (4)Z
M

� (mjWk) dm = 1, for all k 2 K.

Let �M (�a) = fm : a (m) = �ag. We say that an action �a is induced by a Wk�type, ifR
�M(�a)

� (mjWk) dm > 0, and is purely induced if
R
�M(�a)

� (mjWk) dm = 1.

The action�s rule a (m)maximizes the principal�s utility UR (ajm) =
1R
0

UR (a; �) dG (�jm),

where the density of the belief function g (�jm) is constructed on the basis of Bayes�rule

g (�jm) =
n�1X
k=0

� (mjWk)

g (m)
f (�) 1Wk

(�) ,

where 1Wk
(�) is the indicator function and g (m) =

n�1P
k=0

P (Wk)� (mjWk).

Then, we can represent UR (ajm) as

UR (ajm) =
n�1X
k=0

gk (m)UR (ajWk) , (5)

where gk (m) = P (Wk)�(mjWk)
g(m) , and UR (ajWk) = 1

P (Wk)

wk+1R
wk

UR (a; �) dF (�) is the

principal�s type-relevant utility function.

11Due to the strict concavity of the principal�s utility function over actions, he never mixes between
actions.
12For all messages m =2M , we de�ne the receiver�s beliefs in a such way that he interprets them as some

m0 2M .
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The receiver�s expected utility is

UR =

Z
M

UR (a (m) jm) g (m) dm =
n�1X
k=0

Z
M

wk+1Z
wk

� (mjWk)UR (a (m) ; �) dF (�) dm

=
n�1X
k=0

Z
M

P (Wk)� (mjWk)UR (a (m) jWk) dm.

The following section provides the general analysis of the model.

5 Optimal Information Structure

This section focuses on characterizing the optimal information structure and its compara-
tive statics. First, we are interested in the cardinality of the optimal partition and how it is
a¤ected by divergence in the players�interests. Second, we want to compare structures of
the optimal information partitions in our model with information partitions endogenously
determined in the case of the perfectly informed expert. We demonstrate below that the
cardinality of the optimal partition and the distribution of the informational losses in
it are both crucial factors that determine a payo¤ dominance of informational control
over delegation. For the purpose of comparison of the endogenous CS and the optimal
CI partitions, we use the characterization of Crawford and Sobel (1982) for the leading
uniform-quadratic setup of the model. Thus, for this part, the analysis will be predicated
upon the assumption of uniform-quadratic settings of the model. Then, to compare the
performances of di¤erent organizational forms, we consider more general model settings.

Uniform-quadratic case. In this case, we completely characterize the optimal
information partition and show that it is always bounded away from the full information
as long as the player�s interests are imperfectly matched. Further, we demonstrate that
the structure of the optimal partition substantially di¤ers from the CS partitions in a few
aspects. First, the cardinality of the optimal partition grows much faster as the bias in
preferences tends to zero. Second, the optimal information partition allocates informational
losses more e¢ ciently across the state space.

5.1 Equilibrium characterization

In this subsection, we outline the basic characteristics of equilibrium strategies. First, the
sender�s type-relevant utility function US (a; bjWk) can be written as

US (a; bjWk) = US (a; b; �wk)�D (Wk) , (6)

where �wk =
wk+wk+1

2 is a conditional mean of the state, and D (Wk) =
1
12�w

2
k is

a conditional residual variance. Since US (a; bjWk) � US ( �wk + b; b; �wk) � D (Wk) =

�D (Wk), the residual variance represents informational losses of the sender, which always
exist whenever the sender does not know the state precisely.

Similarly, the receiver�s type-relevant function UR (ajWk) can be written as

UR (ajWk) = UR (a; �wk)�D (Wk) . (7)
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From (6) and (7), it follows that given any sender�s information, the players�preferences
over actions are purely determined by the means �wk. That is, US (a; bjWk) � US (a0; bjWk)

if and only if US (a; b; �wk) � US (a
0; b; �wk), and UR (ajWk) � UR (a

0jWk) if and only if
UR (a; �wk) � UR (a0; �wk). Thus, type-relevant utility functions US (a; bjWk) and UR (ajWk)

inherit all important properties of state-relevant functions: strict concavity over actions,
single-crossing, and symmetry with respect to optimal actions aS ( �wk) = �wk + b and
aR ( �wk) = �wk. This gives the no-crossing property: aS ( �wk) > aR ( �wk), k 2 K. Thus, using
the same technique as that developed in Lemma 1 in Crawford and Sobel (1982), it follows
that the number of induced actions in equilibrium is �nite. All proofs can be found in the
Appendix.

Lemma 1 In any equilibrium, the number of induced actions is �nite. Further, the
distance between any two actions is not less than 2b.

Formally, the number of actions is �nite, since the strict concavity of US (a; bjWk)

guarantees that the sender of each type induces at most two actions. However, this
lemma demonstrates that �niteness of the number of actions comes from the bias in the
players�interests rather than from the cardinality of the type space. Thus, an increase in
the �neness of the information structure does not eventually bring further informational
bene�ts, since the sender chooses among a �nite set of actions. Instead, this introduces
additional incentive-compatibility constraints for each type. As a result, for a substantially
�ne partition, the sender�s signaling strategy is no longer invertible, which leads to losses
in conveyed information.

Thus, we may restrict the message space to a �nite set M 0 = fmigI�1i=0 , where mi 2
�M (ai), i 2 I = 0; 1; :::; I�1. Then, conditional distributions � (mjWk) can be replaced by
conditional probabilities f�i;kg, where �i;k =

R
�M(ai)

� (mjWk) dm is the probability to send

the message mi, i 2 I, by the sender of the type Wk, k 2 K.
The following lemma characterizes the sender�s equilibrium strategies.

Lemma 2 Any equilibrium signaling strategy f�i;kg satis�es the following conditions:
(A) �i;k > 0 implies �j;k = 0 for all j < i� 1 and j > i+ 1;
(B) �I�1;n�1 = 1, and �i;n�1 = 0 for all i < I � 1;
(C) �i;k > 0 implies �j;s = 0 for all s < k, j > i, and s > k, j < i,
(D) �i;k > 0 and �i+1;k > 0 imply �i+1;k+1 > 0 for all k < n� 1, and
(E) �i;k > 0 and �i;k0 > 0 imply �i;s = 1 for all s such that k < s < k0.

The �rst condition states that mixing is possible only between messages that induce
two adjacent actions. The second requires the highest-type sender to purely induce the
highest action. The third condition is the monotonicity condition, which implies that if
a sender of some type induces an action, then no sender of a higher type can induce a
lower action, and vice versa. Condition (D) argues that if the Wk�type sender induces
two actions, then the Wk+1�type must also induce the higher action. Finally, condition
(E) states that if some action is induced by types Wk and Wk0 , then this action is purely
induced by all types between these two.

Although Lemma 2 characterizes equilibrium strategies, it still leaves much freedom in
terms of the players�expected payo¤s. To narrow the set of optimal payo¤s, we need to
formulate a model-speci�c revelation principle, which is described in the next section.
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5.2 Equilibrium selection: revelation principle

The lack of the principal�s ability to commit to actions results in the failure of the standard
revelation principle, which restricts the set of all equilibria outcomes to that of truth-
telling direct equilibria. Two examples of contracting with imperfect commitment are due
to Bester and Strausz (2001) and Krishna and Morgan (2005). In both cases, the sender
of a binary type transmits three messages in equilibria. No direct mechanism can replicate
these equilibria in terms of induced actions and outcomes.13

Nevertheless, the following lemma states that we can restrict attention to direct
equilibria only; that is, the cardinality of the message space can be chosen to be equal
to that of the type space, or I = n.

Lemma 3 Any equilibrium is payo¤ equivalent to some direct equilibrium.

To show this result, we prove that the number of types in any equilibria is not less
than that of induced actions. Technically, in any indirect equilibrium there must be a type
who induces two actions so that the higher action is induced by this type only. However,
this contradicts properties (B) and (D) of Lemma 2.14

Further, consider direct truth-telling, or incentive-compatible equilibria, in which
each type Wk discloses all available information by sending a type-speci�c message mk.
Given this signaling strategy, the receiver�s best-response is ak = E [�j� 2Wk] = �wk.
Also, a partition 
 is called incentive-compatible if it sustains an incentive-compatible
equilibrium.

Using the concavity and symmetry of the sender�s type-relevant function US (a; bjWk),
she prefers to induce an action ak instead of ak+1 (and all a > ak+1), if it is closer to his
optimal policy �wk + b:

jak+1 � �wk � bj � jak � �wk � bj . (8)

Given the receiver�s best-response, (8) can be simpli�ed to wk+2�wk � 4b. Similarly, the
condition to induce ak instead of ak�1 requires wk+1 � wk�1 � 4b. Therefore, a partition
is incentive-compatible if and only if

wk+2 � wk = �wk+1 +�wk � 4b; k = 0; 1; :::; n� 2. (9)

The family of inequalities (9) determines the incentive-compatibility (IC) constraints.
These conditions are an analogue of the CS no-arbitrage conditions wk+1 = 2wk�wk�1+4b,
which can be rewritten as �wk+1 = �wk + 4b. Comparing these expressions, one can see
that constraints (9) are less restrictive,15 which implies that the principal can specify a
�ner information structure in the CI model than in the CS case.

13The positive result of Bester and Strausz (2001) is that for a �nite set of states any incentive-e¢ cient
mechanism (i.e., that which provides equilibrium payo¤s on the Pareto frontier) is payo¤-equivalent to some
direct mechanism. Similarly, Krishna and Morgan (2005) demonstrate that in the case of a continuum of
types, any equilibrium outcome of an indirect mechanism can be replicated in a direct mechanism.
14 In Krishna and Morgan�s (2005) example of an indirect equilibrium, the main incentive for a sender of

the higher type to induce a lower action is a higher transfer for sending lower messages, which is su¢ cient
compensation for a less desirable policy implemented afterwards. The lack of such transfers in our setup
narrows the set of equilibria.
15Actually, any CS partition satis�es (9).
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Using the following two lemmas, we can constitute a model-speci�c revelation principle,
which states that any optimal equilibrium payo¤ can be replicated in an incentive-
compatible equilibrium. To prove the �rst result, we show that the payo¤-equivalent
partition can be obtained from the initial one by the collapsing the partition�s elements
that induce identical actions. For the second lemma, the superior equilibrium is constructed
in two steps. First, we derive all types that play mixed strategies and assign probability
one to the lower actions. Second, given the modi�ed signaling strategy, we collapse the
partition elements that induce identical actions and adjust the receiver�s beliefs and the
best-response.

Lemma 4 For any pure-strategy equilibrium, there exists an incentive-compatible equilib-
rium, which is payo¤ equivalent.

Lemma 5 For any mixed-strategy equilibrium, there exists an incentive-compatible equi-
librium, which is payo¤ superior.

Thus, the principal never wants to provide the expert with information that would
still be her private knowledge after she sends a report to the principal. However, the cost
of this is the expert�s informational losses, which the principal needs to minimize without
breaking her incentive-compatibility constraints. The next subsection addresses this issue.

5.3 Optimal information structure

To �nd the optimal incentive-compatible partition, we �rst determine the maximal size of
the incentive-compatible partition n (b). It can be shown that

n (b) =

(
2b 14bc+ 1; if b 6=

1
2m for some even integer m

m, otherwise
(10)

where bxc is the largest integer smaller than or equal to x. Notice that for b > 1
4 informative

communication is not feasible. However, for b = 1
4 , the �nest partition has two elements, so

communication is informative, in contrast to the CS model. The next proposition describes
the structure of the optimal partition.

Proposition 1 For any b, there exists b� (c) 2 ( 12c ;
1

2(c�1)), where c = n (b), such that if
b > b� (c), then the optimal partition is uniform of size c � 1. For b � b� (c), the optimal
partition is one of size c such that: 1) if 1

2c < b � b
� (c), then the IC constraints (9) are

binding for all fwkgn(b)k=0, and 2) if
1

2(c+1) < b �
1
2c , then the optimal partition is uniform.

Corollary 1 If the sender�bias is b � 1
4 , then there exists an equilibrium in the CI model,

which is Pareto superior to all equilibria in the CS model.

The �rst di¤erence of the optimal information partition as compared to endogenous
CS partitions is that the principal does not always prefer the partition with the highest
number of elements. Basically, the optimal partition highlights a trade-o¤ between two
di¤erent structures. One of them is uniform, so it more e¢ ciently shares informational
losses of the risk-averse principal, whereas the other bene�ts him because of the possibility
of better responding to messages through a higher number of actions. Notice that the latter
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structure is never optimal in the model of Fischer and Stocken (2001) due to a special
choice of the bias in their model. The cut-o¤ levels b� (c) are exactly the biases, at which
these information structures are payo¤ equivalent.16

The second feature is the �neness of the information structure. The cardinality of the
�nest partition grows as 1=b in the CI model relative to 1=

p
b in the CS case. As a result,

the principal is able to respond to changes in the state more sensitively.
The last feature is the variance in the lengths of the partition elements. From the

CS arbitrage condition, the length of any interval in a CS partition must exceed that of
the previous interval by 4b. Thus, informational losses grow monotonically with the state
of nature. In contrast, the IC constraints (9) impose fewer restrictions on the functional
relationship between lengths of di¤erent intervals. As a result, informational losses can be
shared more e¤ectively across the state space.

6 Informational Control versus Delegation

Delegation is broadly considered an alternative to communication. Instead of relying on the
expert�s non-veri�able information, the principal can delegate his power to the expert and
gain from her superior information.17 However, the informational bene�ts are mitigated by
losses because the expert�s decisions are biased. Nevertheless, in a variety of situations, the
aggregate e¤ect leads to an ex-ante Pareto-improvement compared to communication (with
a fully informed expert). Another useful feature of delegation is its ease of implementation:
generally, there are no costs to empower the expert with a right to carry out policies. Due
to these and other factors, many �rms have pushed decision rights down in the hierarchy
in recent years.18

Despite the seemingly obvious bene�ts of delegation, however, a surprising number
of companies today still have the centralized structure. Actually, it remains the most
popular organizational form. Moreover, companies that do decentralize decision making
and accountability often centralize it again when they run into trouble.19 In addition, the
example of Emerson, mentioned above, illustrates that keeping control over decisions is
generally not independent from keeping control over information. Thus, when comparing
the performance of di¤erent organizational forms, we have to consider the possibility that
the principal may restrict the expert�s information.

Technically, delegation and informational control utilize di¤erent factors for payo¤
improvement. Delegation allows for the receiver to acquire bene�ts from the expert�s in-
formational advantage, whereas controlling the sender�s information smooths misalignment

16For instance, for the bias b = 1
5
, we have n( 1

5
) = 3 and the cuto¤ level b� (3) ' 0:202. The principal�s

expected payo¤s under the three-element partition with the binding IC constraints f0; 0:2; 0:8; 1g and
the two-element uniform partition

�
0; 1

2
; 1
	
are � 1

52
and � 1

48
, respectively. However, as the bias grows

to 0:22, the IC constraints make the �nest incentive-compatible partition less uniform, so it becomes
f0; 0:12; 0:88; 1g, which decreases the payo¤ to approximately � 1

27
. In contrast, this change in the bias has

no e¤ect on the uniform partition of a smaller size, which is still incentive-compatible.
17See, for example, Alonso and Matouschek (2005), Dessein (2002), Holmström (1997), and Melumad

and Shibano (1991).
18See Dessein (2002).
19For example, Motorola had a decentralized structure by the mid-1990s. However, then the company�s

mobile-phone business was growing so fast that decentralization made it impossible to control. In 1998,
the company repatriated control to the headquarters.
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between the players�preferences due to marginal types. Thus, at �rst glance, there seems
to be no clear intuition about which e¤ect is generally stronger.

6.1 Uniform-quadratic case

We now show that if informative communication is feasible (b � 1
4), then controlling

the expert�s information strictly dominates delegation in terms of the receiver�s expected
payo¤s. This result is formalized by the following theorem.

Theorem 1 If informative communication is feasible, then there exists an equilibrium
in the CI model which provides a higher expected payo¤ to the principal than optimal
delegation.

The intuition behind this result requires some background. First, consider the case
of small divergence in players� interests. Second, notice from Proposition 1 that the
informational losses in the optimal information partition in the CI model are distributed
more or less uniformly across the state space. Given these preliminaries, it is su¢ cient to
compare the principal�s expected losses D (Wk) for an average partition element versus his
expected losses b2 in the case of complete delegation. (The e¤ect of restricted delegation
due to the upper bound 1 � b on the delegation set disappears as b falls.) Then, the IC
constraints (9) imply that the length of the average element in the optimal CI partition

is of order 2b. As a result, the principal�s expected losses are of the order (2b)2

12 , or
b2

3 ,
which is three times lower than his losses in delegation.20 On the other hand, if the bias is
close to 1

4 , there is some improvement in the performance of delegation due to the e¤ect of
the restricted delegation set. Moreover, controlled communication performs worse for large
biases because the relative di¤erence in the lengths of elements of the optimal non-uniform
partition is increasing in the value of b. That is, the informational losses are shared less
e¤ectively. However, the in�uence of these factors is of second order and cannot reverse
the main result.

This result is in contrast to the CS case. In the case of the perfectly informed expert,
even though the lengths of all partition elements fall as the bias tends to zero, the size of
the second smallest element in the CS partition is no less than 4b, which results in a lower
principal�s payo¤ than in delegation.21

Thus, as soon as there is a scope for informative communication, the principal is better
o¤ from controlling the expert�s information than delegating authority to the expert. Fig. 2
demonstrates the principal�s expected payo¤ under the optimal partition in the CI model,
optimal delegation, and the most informative equilibrium in the CS model.22

20Moreover, �k w 2b implies that the ex-post losses of the principal � ( �wk � �)2 are comparable to those
in delegation �b2, only if � is very close to the boundaries of the partition element Wk, and are strictly
lower for all other states.
21Because of the no-arbitrage condition �wk+1 = �wk + 4b;8k.
22A feature of our model is that the principal�s expected payo¤ is discontinuous in the bias due to the

�regime switching�e¤ect. When the bias falls, this e¤ect takes place at points b = 1
2n
, where n is an even

integer. At these points, the maximal size of the incentive-compatible partitions changes from n � 1 to
n and the uniform partition of this size becomes incentive-compatible. As a result, the optimal partition
switches from the uniform of size n� 1 to the uniform partition of size n, and the expected payo¤ jumps
from � 1

12(n�1)2 to �
1

12n2
. In contrast, the incentive-compatibility of a partition of an odd size does not

guarantees that the uniform partition of the same size is incentive-compatible. Thus, the optimal partition
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Figure 2: Payo¤s in the CI model, optimal delegation, and the CS model

The above discussion raises a natural question� whether the result is driven by
the speci�c uniform-quadratic setup of the model or it can be replicated in broader
environments. The next subsection illustrates that extending the model�s settings generally
does not change the result.

6.2 General distributions and preferences

This section examines the robustness of the previous results to changes in the speci�cations
of the model, namely the players�utility functions and distributions of the state. These
results generally hold whenever the di¤erence in players�interests is not too large relative
to the principal�s uncertainty about the environment. That is, as the bias in preferences
falls, controlling the expert�s information becomes more attractive than delegation. This
result is in stark contrast to that of Dessein (2002), who demonstrates that delegation is
more likely than CS communication when the players�preferences are close.

General preferences: the role of risk-aversion. First, we consider the symmetric
form (2) and (3) of the players�preferences. In this case, the players�type-relevant utility
functions US (a; bjWk) and UR (ajWk) are concave in a and symmetric with respect to the
optimal policies �wk+ b and �wk, respectively. This implies that the receiver�s best-response
to the truth-telling signaling strategy is a (mk) = �wk. Therefore, the IC constraints (9) also
hold, and the optimal information structure is the same as that determined by Proposition
1 up to the values of the switching points b� (c) between uniform partitions of size c � 1
to non-uniform partitions of size c. This implies that communication is informative only if
b � 1

4 . Similarly, the arbitrage condition in the CS model is not a¤ected, which implies that
CS equilibria are invariant to this modi�cation in preferences. Based on these observations,
the Corollary 1 can be proved straightforwardly.

of an odd size can be non-uniform and provide an expected payo¤, which is continuous in b. Hence, the
switch between a uniform partition of an even size n � 1 to a non-uniform partition of an odd size n at
points b� (n) is not accompanied by a discontinuous change in payo¤s.
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Theorem 2 If the state is uniformly distributed and preferences are symmetric, then for
b � 1

4 , there exists an equilibrium in the CI model which is Pareto superior to all equilibria
in the CS model.

Since IC constraints are not a¤ected by a change in preferences, the optimal information
partition preserves all positive properties of that in the uniform-quadratic case, such as
a �ner structure and e¢ cient sharing of informational losses. In particular, given any CS
partition, the uniform partition of the same size is incentive-compatible in the CI model
and provides higher expected utility.

Before we compare the principal�s payo¤ in the CI model with that in delegation,
notice that for the class of interval delegation sets (i.e., an expert�s policy must belong to
a single interval) and b � 1

2 , the optimal delegation set is still of a form [0; 1� b]. Then, we
can generalize the result of Theorem 1� informational control performs better than the
optimal delegation, when the bias in the players�interests is not too large.

Theorem 3 If the state is uniformly distributed and the preferences are symmetric, then
there is b� � 1

4 such that for all b < b
�, there exists an equilibrium in the CI model, which

provides a superior payo¤ to the receiver compared to that in optimal delegation.

This result is weaker than Theorem 1 for the case of the quadratic preferences since
it does not guarantee that the controlling information performs better than delegation
whenever informative communication is feasible. Basically, this result cannot be strength-
ened because of the risk-aversion of the principal.23 In communication, an induced action
is unbiased on average, but there is a high chance of making a mistaken action (if a state is
close to a boundary of a partition element). This increases informational losses for highly
concave utility functions. Delegation, however, provides a permanent bias in the expert�s
decision, which can be more preferable by the very risk-averse principal. Nevertheless, when
the bias decreases, the optimal information structure becomes su¢ ciently �ne to reduce
the variance between optimal and induced actions, which results in better performance of
the CI model over delegation.

Thus, if the bias is moderate, then the relationship between the principal�s payo¤s
in di¤erent organizational forms strongly depends on the structure of the information
partition. For instance, for b = 3

17 and U (ja� �j) = � ja� �j4, the optimal information
structure is the three-element partition

�
0; 517 ;

12
17 ; 1

	
. It provides the expected payo¤

�2:03�10�4, which exceeds that in optimal delegation �6:96�10�4. However, restricting
information structures to only uniform partitions gives a lower payo¤ �7:81 � 10�4,
because the three-element uniform partition is not incentive-compatible, whereas two-
element partitions are too coarse.

General distributions. Another way to generalizing the model�s settings is to
consider general distributions of the state. In particular, we restrict attention to the
class of distributions with a positive and di¤erentiable density and supported on a unit

23Consider the principal�s utility function U2 (ja� �j) = � ja� �j7, and the bias b = 0:126. Then the
optimal partition in the CI model is the uniform three-element one. It is informative and provides expected
utility UR ' �4:5 � 10�7. However, optimal delegation gives UDR ' �3:9 � 10�7, which is superior to that in
the CI model.
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interval. In this case, restricting the expert�s information is always bene�cial whenever CS
communication is informative.

Theorem 4 If the preferences are quadratic, then there exists an equilibrium in the CI
model which is superior to all informative equilibria in the CS model.

In general, any informative CS partition is characterized by larger informational losses
for the high values of the state. Thus, they can be reduced if the principal locally modi�es
this partition without violating IC constraints in such a way that the variance in the
intervals�lengths becomes smaller.

Similarly, the theorem below compares the principal�s payo¤s in the CI model with
that in the complete delegation. It demonstrates that the result of Theorem 1 for general
distributions holds, if the sender�s bias is small.24

Theorem 5 If the preferences are quadratic, then there is ~b such that for all b < ~b, there
exists an equilibrium in the CI model, which provides a superior payo¤ to the receiver
compared to that in the complete delegation.

When the sender�s bias tends to zero, the size of the intervals in the �nest incentive-
compatible partition converges to 2b regardless of the distribution F (�). Equivalently, the
number of elements n (b) in the �nest incentive-compatible partition grows as 1

2b , exactly
as in the case of the uniform distribution. This implies that the principal�s expected losses
in the most informative equilibrium fall as � 1

12�n(b)2 or �
b2

3 , which is less than that �b
2

in delegation.

7 Delegation to the Imperfectly Informed Expert

In a variety of situations, the principal can use both of the analyzed instruments�
delegating control over decisions and restricting the quality of the expert�s information� if
a combined e¤ect from utilizing them is positive. For example, a top manager can restrict
the employee�s access to information and delegate a task afterwards. Moreover, he can
determine the set of policies the employee is allowed to choose from.

The analysis above shows that delegation can outperform informational control, if the
players�interests signi�cantly diverge or the principal is highly risk-averse. However, even
in this case, the principal can have incentives to deteriorate the expert�s information. Our
main �nding is that the total e¤ect from using both instruments purely depends on the
principal�s ability to restrict the set of delegated policies. To demonstrate this argument,
consider an example.

Example 3. Consider the uniform-quadratic setup with the bias b = 1
5 . If the sender is

perfectly informed, then his payo¤s in the full and optimal delegations are �b2 = � 1
25 and

24The problem of optimal delegation for general distributions and quadratic preferences is solved by
Alonso and Matouschek (2005). They provide necessary and su¢ cient conditions for delegation sets to be
optimal for cases of complete delegation, centralization (the delegation set that contains only the principal�s
preferred actions given prior information), and interval delegation. However, when the players�preferences
are su¢ ciently close, one can expect that the principal�s incentives to restrict the sender�s actions are small,
and the optimal delegation set and the players�payo¤s converge to that of a case of complete delegation.
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�b2 + 4
3b
3 = � 1

34 , respectively. Thus, the principal�s losses from choosing the delegation
set optimally decrease by 36%. On the other hand, if the sender�s information structure
is a three-element partition

�
0; 310 ;

7
10 ; 1

	
, then complete delegation brings him a payo¤

approximately � 1
20 , whereas the three-action delegation set f0:17; 0:53; 0:87g results in a

payo¤ � 1
96 . That is, the principal�s losses fall by almost four times.

Full delegation. The example above illustrates that in the case of full delegation, the
perfectly informed expert performs better than the imperfectly informed one. If there
are no restrictions on the delegation set, then controlling the expert�s information is
detrimental. Intuitively, given any information, the bias between an expert�s decision and
the principal�s optimal policy will be, on average, the same as in the case of the perfectly
informed expert. Then, decreasing the quality of expert�s information only introduces
additional informational losses. For the quadratic preferences, this logic is shaped formally
into the following lemma.

Theorem 6 Under complete delegation, the optimal information structure is complete
information.

Thus, if the principal has power to limit the expert�s information, but not her discretion,
he should never decrease the precision of the expert�s information before delegating
authority to her.

Restricted delegation. Therefore, controlling the expert�s information before del-
egating policies can be bene�cial only if the principal is able to a¤ect the set of the
expert�s feasible decisions. Note that restricting both the information and the delegation
set cannot perform worse than pure communication with the imperfectly informed expert,
since the principal can always specify an information structure and a set of actions as in
a communication equilibrium. As shown above, for small biases, communication with the
imperfectly informed expert dominates optimal delegation with the fully informed expert.
Thus, the imperfect expert�s information is always bene�cial for the principal in the case
of restricted delegation, if the divergence in players� interests is small. In the uniform-
quadratic case the cut-o¤ bias is b = 1

4 . The following result for the uniform-quadratic
case shows that an imprecise expert�s information is bene�cial even if the bias is large.

Theorem 7 For b < 1
2 , there exists an information structure and a delegation set, which

provide a superior payo¤ to the principal than that in the optimal delegation with the
perfectly informed expert.

Basically, the lack of the principal�s commitment in communication requires him to
react optimally to the expert�s messages. This means that the set of induced actions is
bounded from above by the highest sender�s type. Given these restrictions, for a large bias
in preferences and just two types, the sender of the lower type always bene�ts from a higher
action. The �ner information structure only decreases sender�s incentives to communicate
truthfully.25 As a result, the principal will ignore any messages from the expert, because
she transmits the same message unconditionally on her information. In contrast, if the

25Since it imposes a higher number of incentive-compatibility constraints.
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principal restricts the information structure by the same two intervals (types) and commits
to implementing two essentially di¤erent actions, then the expert of a lower type would
prefer a lower action, if a higher action is far enough from her optimal policy. For a smaller
bias, the principal can specify a �ner information structure and delegation set, but the
major argument is the same as in the above example. Namely, the principal faces a trade-
o¤ between providing the expert with more information to reduce informational losses,
and creating incentives for the sender of each type to make an action su¢ ciently close to
the principal�s optimal policy.

The following lemma characterizes the properties of the optimal information structure
and the delegation set.

Theorem 8 The optimal information structure and delegation set satisfy the following
properties:

1) the information structure and delegation set are �nite, and
2) given the sender�s information that � 2 [wk; wk+1], the induced action ak 2

[wk; wk+1].

Corollary 2 For b < 1
2 , delegation to the imperfectly informed expert is payo¤ superior

to pure communication with the imperfectly informed expert.

In general, the optimal information structure inherits the major features of that in
the communication game. First, it is �nite. A very �ne information structure requires a
larger number of actions in the delegation set,26 which creates di¢ culties with locating
actions quite far from each other to satisfy the sender�s incentive-compatibility constraints.
Second, the informational losses of the sender are distributed more or less uniformly across
the state space. Finally, if the sender knows that the state is in some interval, then an
induced action belongs to this interval (the optimal delegation set for the fully informed
expert does not have such property). In addition to these properties, an appropriate choice
of the delegation set allows for determining a �ner information structure than that in
communication and/or allocating the sender�s informational losses more e¢ ciently.

8 Concluding Comments

The main contribution of this paper is as follows: if the principal is able to control the
extent of the expert�s informativeness (without knowing its content), he can do better than
by optimally delegating decisions to the expert. This �nding reverses the result about the
payo¤ dominance of delegation over pure communication. This might be one of the factors
that explains the fact that, despite seemingly clear bene�ts of delegation, many companies
do not decentralize decision-making, and even often recentralise their structures again.

We deliberately did not address the case when the person who determines the quality
of the expert�s information is the expert herself, because the answer is straightforward. As
demonstrated by Crawford and Sobel (1982) for the leading uniform-quadratic example,
the principal�s expected utility is equal to the residual variance of the state in any
communication equilibrium, since the principal�s decisions are on average unbiased. As

26Otherwise, if several types induce the same action, the principal can collapse them into one type.
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a result, the expert�s expected utility di¤ers from that of the principal by a constant
term b2. This argument holds for any communication equilibrium unconditionally on the
quality of the expert�s information. Thus, if there is a credible mechanism of the expert�s
commitment to the precision of information, in which the expert commits �not to know
too much�or her competence of the subject is veri�able, then the expert�s choice of the
optimal information partition will be the same.

Another issue, which we left behind is comparison of controlling information to
other organizational forms such as delegating authority to a biased intermediary and
delegation with a veto power, when the principal has a choice between only two decisions:
recommended by the expert and some default option. These institutions are special cases of
restricted delegation, which implies that they cannot perform more e¤ectively than optimal
delegation. Therefore, as soon as controlling information is preferred by the principal to
optimal delegation, it is strictly preferred to all discussed institutions.

An important aspect of the considered model is the number of equilibria, signi�cantly
exceeding the number of equilibria in Crawford and Sobel. In addition to pure-strategy
equilibria, there exist multiple mixed-strategy equilibria even with the same partition.
Thus, we need to care about ranking equilibria in terms of the principal�s expected payo¤.
However, despite the fact that all mixed-strategy equilibria are payo¤ inferior to pure-
strategy ones, they can still be superior to equilibria in the CS model and delegation.

9 Appendix

In this section, we provide proofs of the lemmas and theorems.
For the uniform-quadratic case, the solution to the problem of a Wk�type sender is

mi 2 argmax
m2M 0

US (a (m) ; bjWk) , if

US (ai; b; �wk) � US (aj ; b; �wk) for all j 2 I.

The family of inequalities US (ai; b; �wk) � US (aj ; b; �wk), i; j 2 I, k 2 K, can be written as

(ai � �wk � b)2 � (aj � �wk � b)2

or

1) ai + aj � wk + wk+1 + 2b for all aj > ai, and (11)

2) ai + aj � wk + wk+1 + 2b for all aj < ai.

The principal�s best response ai = a (mi), i 2 I, is

ai = E [�jmi] = E [ �wkjmi] =
n�1X
k=0

P (Wkjmi) �wk =
1

2

n�1P
k=0

�i;k
�
w2k+1 � w2k

�
n�1P
k=0

�i;k (wk+1 � wk)
, (12)

Proof of Lemma 1. Let a and a0 be two induced actions, where a0 > a. Consider typesWk and

Wk0 , which induce corresponding actions, that is, US (a; bjWk) � US (a0; bjWk) and US (a0; bjWk0) �
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US (a; bjWk). Then, it follows from (6) that US (a; b; �wk) � US (a
0; b; �wk) and US (a0; b; �wk0) �

US (a; b; �wk0).

The single-crossing property of the sender�s state-relevant utility function d2

dad�US (a; b; �) > 0

implies that there exists a state � 2 ( �wk; �wk0) such that US (a0; b; �) = US (a; b; �). Also, this

property leads to (i) a < aS (�) < a0, where aS (�) = � + b, (ii) a is not induced by any type

Wi such that �wi > �, and (iii) a0 is not induced by any type Wj such that �wj < �. The last two

properties along with the single-crossing property of UR (a; �) imply a � aR (�) = � � a0.
In addition, the symmetry of US (a; b; �) with respect to aS (�) implies that a0���b = �+b�a,

or aS (�) = � + b = a+a0

2 . This means that both aS (�) and aR (�) belong to the interval [a; a+a
0

2 ].

Since aS (�)�aR (�) = b, it follows that a+a02 �a � b, or a0�a � 2b. To complete the proof, notice
that the set of induced actions is bounded by aR (0) and aR (1).

Proof of Lemma 2. (A) This property follows from the strict concavity of US (a; bjWk) in

a: By contradiction, let �i;k > 0 and �j;k > 0; where j > i + 1, for some k. This implies that

US (ai; bjWk) = US (aj ; bjWk) � US(al; bjWk) for all l 2 I. Since ai+1 can be represented as a
convex combination of ai and aj , ai+1 = �ai + (1� �) aj for some � 2 (0; 1), this results in a
contradiction: US (ai+1; bjWk) > �US (ai; bjWk) + (1� �)US (aj ; bjWk) = US (ai; bjWk).

(B) From (12), the maximal induced action is aI�1 � �wn�1 < �wn�1 + b. Since US (a; bjWk) is

strictly increasing in a, for all a < �wk + b, the result follows immediately.

(C) Let �i;k > 0 and �j;s > 0 for some s > k and j < i. �i;k > 0 implies US (ai; bjWk) �
US (aj ; bjWk) ; and �j;s > 0 implies US (aj ; bjWs) � US (ai; bjWs). Combining these inequalities

results in US (ai; bjWs)� US (aj ; bjWs) � 0 � US (ai; bjWk)� US (aj ; bjWk), which contradicts the

single-crossing property US (ai; bjWs)� US (aj ; bjWs) > US (ai; bjWk)� US (aj ; bjWk).

(D) By contradiction, let �i;k > 0, �i+1;k > 0, and �i+1;k+1 = 0 for some k < n�1. Condition
(C) for �i;k > 0 implies �i+1;s = 0 for all s < k. Condition (C) for �i+1;k implies �j;k+1 = 0 for

all j < i+ 1. Since �i+1;k+1 = 0, then �j0;k+1 > 0 for some j0 > i+ 1. Again, using condition (C)

for �j0;k+1, we have �i+1;s = 0 for all s > k + 1: Hence, �i+1;s = 0 for all s 6= k: It follows from

(12) that ai+1 = �wk. Then, �i;k > 0 and �i+1;k > 0 imply US (ai; bjWk) = US (ai+1; bjWk), which

results in a contradiction: ai < �wk + b < ai+1 = �wk.

(E) This is a corollary of property (C). If �i;k > 0, then �j;s = 0 for all j < i and s > k.

Similarly, �i;k0 > 0 implies �j;s = 0, j > i , s < k0. Thus, for all s such that k < s < k0, we have

�j;s = 0; j 6= i, that gives the desired result.

Proof of Lemma 3. By contradiction, suppose that there exists an indirect equilibrium, in
which the number of induced actions exceeds the number of types, that is, I > n. This implies

that there exists a type Wk such that �i;k > 0, �i+1;k > 0, and �i+1;k+1 = 0. Since the highest

type Wn�1 never mixes (by property (B) of Lemma 2), it follows that k < n� 1. Then, property
(D) of Lemma 2 is violated, which completes the proof.

Given an equilibrium signaling strategy f�i;kg, de�ne a correspondence p : I =) K

such that p (i) = fk 2 K : �i;k > 0g. Thus, p (i) determines the subset of types, which induce
action ai. Similarly, de�ne a function j : K ! I such that j (k) = min fi 2 I : �i;k > 0g, and
a correspondence � : I =) K such that � (i) = j�1 (i) = fk 2 K : j (k) = ig. Function j (k)
determines the minimal action induced by the sender of Wk�type. Conversely, given an action ai,
� (i) determines the set of types, for which this action is minimal. That is, if k 2 � (i), then �l;k = 0
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for all l < i. The next lemma describes properties of p (i), j (k), and � (i).

Lemma 6 p (i), j (k), and � (i) satisfy the following properties.

a) j (k) is (weakly) increasing,

b) � (i) is non-empty, strictly increasing, and convex-valued,

c) p (i) is non-empty, (weakly) increasing, and convex-valued. In a pure-strategy equilibrium,

p (i) is strictly increasing, and

d) � (i) � p (i) and max� (i) = max p (i).

Proof a) j (k) = i implies �i;k > 0. Property (C) of Lemma 2 results in �i0;k0 = 0 for all

i0 < i and k0 > k, which leads to j (k0) � j (k).
b) For a given i, if �i;k = 1 for some k, then j (k) = i. Hence, k 2 � (i). If �i;k > 0 and

�i+1;k > 0, then property (A) implies �i0;k = 0 for all i0 < i, thus, j (k) = i and k 2 � (i). If
�i�1;k > 0 and �i;k > 0, then property (D) implies �i;k+1 > 0, and property (C) gives �i0;k+1 = 0

for all i0 < i: Hence, j (k + 1) = i and k + 1 2 � (i). Thus, � (i) is non-empty. To prove that � (i)
is strictly increasing, by contradiction, let i0 > i and k0 � k, for some k0 2 � (i0), k 2 � (i). Then,
k0 2 � (i0) implies j (k0) = i0 and �i0;k0 > 0. Similarly, we have j (k) = i and �i;k > 0. If k0 = k,

then i0 = j (k0) = j (k) = i and we have a contradiction. If k0 < k, then �i0;k0 > 0 and �i;k > 0

contradict condition (C). To show that � (i) is convex-valued, let k0 2 � (i) and k00 2 � (i). Thus,
�i;k0 > 0, �i;k00 > 0. Then, property (E) implies �i;k = 1 for all k such that k0 < k < k00.

c) The �rst part of the statement can be easily proved using the same techniques as those

developed in the � (i) context. The second part follows from the fact that p (i) = � (i) in a pure-

strategy equilibrium, hence, p (i) is strictly increasing.

d) For any k 2 � (i), we have j (k) = i. This results in �i;k > 0, hence, k 2 p (i) and � (i) � p (i).
Now, for a given i0 consider k00 = max� (i0) = max fk 2 K : j (k) = i0g. Then, �i0;k00 > 0 and

�i0;k = 0 for all k > k00. If not, that is, if �i0;k > 0 for some k > k00, then condition (C) implies

�i;k = 0 for all i < i0. This means i0 = min (i : �i;k > 0) = j (k), which contradicts k00 = max� (i0).

Thus, �i0;k = 0 for all k > k00, which results in k � k00 for all k 2 p (i0). That is, we obtain

max p (i) � max� (i).
From the above lemma, there exist k0 (i) = min� (i), k00 (i) = max� (i), k0p (i) = min p (i),

and k00p (i) = max p (i), i 2 I. That is, k0p (i) and k00p (i) are the smallest and the largest types,
respectively, which induce action ai. Similarly, k0 (i) and k00 (i) are the smallest and the largest

types for which ai is the minimal action. Property (d) of Lemma 6 implies k00 (i) = k00p (i) and

k0p (i) � k0 (i).
Because p (i) is convex-valued, the receiver�s best-response is

ai =
1

2

P
k2p(i)

�i;k
�
w2k+1 � w2k

�
P

k2p(i)
�i;k (wk+1 � wk)

=
1

2

k00p (i)P
k=k0p(i)

�i;k(w
2
k+1 � w2k)

k00p (i)P
k=k0p(i)

�i;k (wk+1 � wk)
, i 2 I. (13)

Proof of Lemma 4. In a pure-strategy equilibrium, the receiver�s best-response is

ai =
wk0p(i) + wk00p (i)+1

2
=
wk0p(i) + wk0p(i+1)

2
, i 2 I,

23



and the expected payo¤ is

UR = �
I�1X
i=0

wk0p(i+1)Z
wk0p(i)

(ai � �)2 d� = �
1

12

I�1X
i=0

�
wk0p(i+1) � wk0p(i)

�3
.

Consider the partition fW 0
igi2I such that W 0

i =
S

k2p(i)
Wk = (wk0p(i); wk0p(i+1)], i2 I. Given

the signaling strategy m (i) = mi, i2 I, the receiver�s best-response is not a¤ected by these
transformations.

Since f�i;kg is an equilibrium strategy, then for any i 2 I, we have

ai + al � wk00p (i) + wk0p(i+1) + 2b � wk0p(i) + wk0p(i+1) + 2b for all al > ai.

By (11), this implies that US (ai; bjW 0
i ) � US (al; bjW 0

i ) for all al > ai. Similarly,

ai + al � wk0p(i) + wk0p(i)+1 + 2b � wk0p(i) + wk0p(i+1) + 2b for all al < ai

implies US (ai; bjW 0
i ) � US (al; bjW 0

i ) for all al < ai. Hence, the partition fW 0
igi2I is incentive-

compatible. The payo¤ equivalence between the initial and the constructed equilibria follows

straightforwardly.
Consider the sequence f�aigi2I , such that �ai= 1

2

P
k2�(i)

�
w2k+1 � w2k

�
=
P

k2�(i)
(wk+1 � wk). Since

� (i) is convex-valued, it follows that

�ai =
1

2

k00(i)P
k=k0(i)

(w2k+1 � w2k)=
k00(i)P
k=k0(i)

(wk+1 � wk) =
wk0(i) + wk00(i)+1

2
=
wk0(i) + wk0(i+1)

2
: (14)

Lemma 7 In any equilibrium (f�i;kg ; faig ;
), we have �ai � ai, i2 I.

Proof For any i2 I, if �i;k0p(i) = �i;k00p (i) = 1, then � (i) = p (i) and

ai =
1

2

P
k2p(i)

�i;k
�
w2k+1 � w2k

�
P

k2p(i)
�i;k (wk+1 � wk)

=
1

2

P
k2p(i)

�
w2k+1 � w2k

�
P

k2p(i)
(wk+1 � wk)

=
1

2

P
k2�(i)

�
w2k+1 � w2k

�
P

k2�(i)
(wk+1 � wk)

= �ai:

If �i;k00p (i) < 1, then property (d) of Lemma 6 implies k00 (i) = k00p (i). If �i;k0p(i) < 1, then by
property (A) of Lemma 2, either �i+1;k0p(i) > 0 or �i�1;k0p(i) > 0. In the former case, condition (C)
of the Lemma 2 implies �i;k = 0 for all k > k0p (i). Thus, k

00
p (i) = k0p (i), and p (i) is a singleton.

Since � (i) is non-empty and a subset of p (i), we have � (i) = p (i) and ai =�ai. If �i�1;k0p(i) > 0, then
condition (D) of Lemma 2 requires �i;k0p(i)+1 > 0. By condition (C) of Lemma 2, �l;k0p(i)+1 = 0 for
all l < i. Thus, j

�
k0p (i) + 1

�
= i and k0p (i)+1 2 � (i). Since j (k) is increasing and j

�
k0p (i)

�
= i�1,

there is no k < k0p (i) + 1 such that j (k) = i. Therefore, k
0 (i) = k0p (i) + 1. From (13), we obtain

ai =
1

2

�i;k0p(i)(w
2
k0p(i)+1

� w2k0p(i)) +
k00p (i)�1P
k=k0p(i)+1

(w2k+1 � w2k) + �i;k00p (i)(w
2
k00p (i)+1

� w2k00p (i))

�i;k0p(i)(wk0p(i)+1 � wk0p(i)) +
k00p (i)P

k=k0p(i)+1

(wk+1 � wk) + �i;k00(i)(wk00(i)+1 � wk00(i))
:
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The comparison of the last expression with (14) gives

�ai =
1

2

k00p (i)P
k=k0p(i)+1

(w2k+1 � w2k)=
k00p (i)P

k=k0p(i)+1

(wk+1 � wk) = ai(�i;k0p(i) = 0; �i;k00p (i) = 1).

Finally, we complete the proof by showing that ai is decreasing in �i;k0p(i) and increasing in
�i;k00p (i). A derivative of ai with respect to x =�i;k0p(i) is

dai
dx

=
k00p (i)P

k=k0p(i)+1

�i;k (wk+1 � wk) ( �wk0p(i) � �wk)=

 
k00p (i)P
k=k0p(i)

�i;k (wk+1 � wk)
!2
.

Since �wk0p(i) � �wk < 0 for all k > k0p (i), then
dai
dx < 0. Similarly, for dai

dy , where y = �i;k00p (i), we

obtain dai
dy > 0, which implies �ai � ai.

Proof of Lemma 5. Using property (A) of Lemma (2), we may represent the receiver�s
expected utility in an equilibrium (faig ; f�i;kg ;
) as

UR (faig ; f�i;kg ;
) =
n�1X
k=0

P (Wk)
�
�j(k);kUR

�
aj(k)jWk

�
+ �j(k)+1;kUR

�
aj(k)+1jWk

��
:

Modify the signaling strategy f�i;kg as follows: derive all types �K that induce two actions, and

put �0j(k);k = 1 for all k 2 �K. That is, if the sender of some type induced two actions in the initial

equilibrium, now she purely induces a lower action.
Notice that US

�
aj(k); bjWk

�
= US

�
aj(k)+1; bjWk

�
for all k 2 �K. The single-crossing property

d2

dadbUS (a; bjWk) > 0 implies

US
�
aj(k)+1; bjWk

�
� US

�
aj(k); bjWk

�
> US

�
aj(k)+1; 0jWk

�
� US

�
aj(k); 0jWk

�
.

Since US
�
aj(k)+1; bjWk

�
= US

�
aj(k); bjWk

�
and UR (ajWk) = US (a; 0jWk), then UR

�
aj(k)jWk

�
>

UR
�
aj(k)+1jWk

�
. Multiplying each term by P (Wk) and summing across all k 2 K result in

UR

�
faig ;

n
�0i;k

o
;

�
> UR (faig ; f�i;kg ;
). Notice that faig is not the best-response to the

signaling strategy
n
�0i;k

o
.

By construction, �0i;k = 1 if and only if k 2 � (i). Given the strategy
n
�0i;k

o
, the

receiver�s best response is f�aig, hence, UR (�aijmi) � UR (aijmi), i 2 I . Multiplying each

term by P (mi) =
n�1P
k=0

P (Wk)�
0
i;k = wk0(i+1) � wk0(i) and summing across all i 2 I result in

UR

�
f�aig ;

n
�0i;k

o
;

�
� UR

�
faig ;

n
�0i;k

o
;

�
.

Consider the partition �
 =
�
�Wi

	
i2I such that

�Wi =
S

k2�(i)
Wk = (wk0(i); wk0(i+1)], i 2 I,

and the signaling strategy f��i;sg, such that m (i) = mi, i 2 I. A collapse of partition�s elements
does not a¤ect the receiver�s best-response, hence, it is f�aig. This implies UR

�
f�aig ; f��i;sg ; �


�
=

UR

�
f�aig ;

n
�0i;k

o
;

�
, and

UR
�
f�aig ; f��i;sg ; �


�
� UR

�
faig ;

�
�0i;k
	
;

�
> UR (faig ; f�i;kg ;
) .

We complete the proof by showing that f��i;sg is incentive-compatible. That is, wk0(i+2)�wk0(i) � 4b
for all i = 0; :::; I � 2.

Since �i;k00(i) belongs to the initial equilibrium pro�le for each i 2 I, we have US
�
ai; bjWk00(i)

�
�
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US
�
ai+1; bjWk00(i)

�
. This implies

ai + ai+1 � wk00(i) + wk00(i)+1 + 2b = wk00(i) + wk0(i+1) + 2b.

It follows from Lemma 7 that ai � �ai and ai+1 � �ai+1. Combining these inequalities results in

wk0(i) + wk0(i+1) + 2b � wk00(i) + wk0(i+1) + 2b � ai + ai+1 � �ai + �ai+1

=
wk0(i) + wk0(i+1)

2
+
wk0(i+1) + wk0(i+2)

2
=
wk0(i)

2
+ wk0(i+1) +

wk0(i+2)

2
,

which gives wk0(i+2) � wk0(i) � 4b.

Lemma 8 If the uniform partition of size n is incentive-compatible, then the incentive-compatible

equilibrium under this partition is payo¤ superior to any incentive-compatible equilibrium under a

partition of the same size.

Proof The expected utility of the receiver in an incentive-compatible equilibrium is

UR = �
n�1P
k=0

wk+1R
wk

(ak � �)2d� =
n�1P
k=0

P (Wk) (UR ( �wk; �wk)�D (Wk)) =

= �
n�1P
k=0

P (Wk)D (Wk) = �
n�1P
k=0

�w3k
12

=
n�1P
k=0

f (�wk) , (15)

where �wk = wk+1 � wk > 0 and f (x) = � 1
12x

3.

Clearly, f (x) is strictly concave for x > 0 and
n�1P
k=0

�wk = 1. For the uniform partition of size

n, we have �w0k =
1
n for all k. For any other partition of the same size, the Jensen�s inequality

results in

UR =
n�1P
k=0

f (�wk) < nf

�
1

n

n�1P
k=0

�wk

�
= nf

�
1

n

�
=

n�1P
k=0

f (�w0k) = U
0
R.

Lemma 9 If a partition of size n is incentive-compatible, then the uniform partition of size n�1
is incentive-compatible as well.

Proof Since a partition fwkgn0 is incentive-compatible, we have wn = 1 � wn�2 + 4b � ::: �
w1 +

n�1
2 4b � n�1

2 4b for odd n, and wn = 1 � wn�2 + 4b � ::: � w0 +
n�1
2 4b = n�1

2 4b for

even n. In both cases, we obtain 2
n�1 � 4b. Then, for the uniform partition fw0kg

n�1
0 , we have

w0j+2 � w0j =
j+2
n�1 �

j
n�1 =

2
n�1 � 4b.

Lemma 10 Among all partitions of an odd size n such that 1
2n < b �

1
2(n�1) , the highest expected

payo¤ in the incentive-compatible equilibrium is reached under the partition with all IC constraints

(9) binding.

Proof We prove the lemma using the Karamata�s inequality.27 Let sequences fxkgn1 and fykg
n
1

be non-increasing, that is, x1 � x2 � ::: � xn and y1 � y2 � ::: � yn. If all the following conditions

27See, for example, Hardy, Littlewood and Polya (1988).
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satis�ed: x1 � y1; x1 + x2 � y1 + y2; x1 + x2 + x3 � y1 + y2 + y3; :::; x1 + x2 + ::: + xn�1 �
y1 + y2 + :::+ yn�1, and x1 + x2 + :::+ xn = y1 + y2 + :::+ yn, then we say that fxkgn1 majorizes
fykgn1 . The Karamata�s inequality states that if fxkg

n
1 majorizes fykg

n
1 , and a function f(x) is

continuous and concave, then
nP
k=1

f (xk) �
nP
k=1

f (yk).

From (15), the receiver�s expected payo¤in the incentive-compatible equilibrium is UR (fwkgn0 ) =
n�1P
k=0

f (�wk), where �wk = wk+1 � wk > 0, and f (x) = � 1
12x

3, which is continuous and strictly

concave for x > 0.

Consider the partition fykgn0 , for which the IC constraints are binding, hence, yk = 2kb for

even k, and yk = 1 � 2b (n� k) for odd k. We need to show that if 1
2n < b � 1

2(n�1) , then

UR (fykgn0 ) � UR (fwkg
n
0 ) for any partition fwkg

n
0 , which satis�es (9).

For the sequence fykgn0 , we have �yk = yk+1 � yk = 1� 2b (n� k � 1)� 2bk = 1� 2b (n� 1)
for even k. The condition b < 1

2(n�1) implies �yk > 0. Similarly, we have �yk = 4b � �yk�1 =
2b (n+ 1) � 1 for odd k, and b > 1

2n > 1
2(n+1) implies �yk > 0. In addition, for odd

k, we obtain �yk � �yk�1 = 2 (2bn� 1) > 0. Thus, by permuting f�ykgn�10 , we obtain a

non-increasing sequence fYkgn1 = fY1; Y2; :::; Yn�1
2
; Yn+1

2
; :::; Yng, where Yk = 2b (n+ 1) � 1 for

k 2 S1 = 1; 2; :::; n�12 , and Yk = 1 � 2b (n� 1) for k 2 S2 = n+1
2 ; :::; n. Note that S1 has one

element less than S2, since n is odd. Also, (9) implies Yk + Yj = 4b, k 2 S1, j 2 S2.
Now, consider a sequence fwkgn0 , which satis�es (9). We need to show that a non-increasing

permutation fXkgn1 of f�wkg
n�1
0 majorizes fYkgn1 .

First, for even k, we have wk � wk�2 + 4b � ::: � w0 +
k
24b = 2kb = yk. Similarly, for

odd k, we have wk � yk. Therefore, �wk = wk+1 � wk � yk+1 � yk = �yk for odd k and

�wk � �yk for even k. Thus, a non-increasing permutation fXkgn1 of f�wkg
n�1
0 can be represented

as fXkgn1 = fX1; X2; :::; Xn�1
2
; Xn+1

2
; :::; Xng, where Xj � Yk for all j; k 2 S1, and Xj � Yk for all

j; k 2 S2. This means
P
k2S01

Xk �
P
k2S01

Yk for any S01 � S1 and
P
k2S02

Xk �
P
k2S02

Yk for any S02 � S2.

Also, the IC constraints require that for any k 2 ~S2 = S2 � fng = n+1
2 ; :::; n � 1, there must

exist q (k) 2 S1 such that Xq(k) +Xk � 4b, which we de�ne as follows. Let in to be the index of
the smallest element �win of the sequence f�wkg

n�1
0 , which implies �win = Xn. Then, for all

Xk, k 2 ~S2, if Xk = �wi, then Xq(k) = �wi+1 for i < in and Xq(k) = �wi�1 for i > in. Note that
k 6= k0 for k; k0 2 S2 implies q (k) 6= q (k0).

Clearly, X1 � Y1; X1 +X2 � Y1+Y2; :::; X1+:::+Xn�1
2
� Y1 + :::+ Yn�1

2
. Also, we obtain

X1 + :::+Xn�1
2
+Xn+1

2
=

P
k2S1�q(n+12 )

Xk +Xq(n+12 )
+Xn+1

2
�

P
k2S1�q(n+12 )

Xk + 4b

�
P

k2S1�k(n+12 )
Yk + 4b =

P
k2S1�q(n+12 )

Yk + Yq(n+12 )
+ Yn+1

2
= Y1 + :::+ Yn�1

2
+ Yn+1

2
:

This argument can be reapplied iteratively for all k 2 ~S2. Since
nP
k=1

Xk =
nP
k=1

Yk = 1, this

completes the proof.

Proof of Theorem 1. We can rewrite n (b) as follows: if 1
2(c+1) < b <

1
2(c�1) for some odd c,

then n (b) = c, otherwise, for b = 1
2(c�1) , n (b) = c� 1. Then, by Lemma (9), the uniform partition

of size c� 1 is incentive-compatible, and provides the expected payo¤ (in the incentive-compatible
equilibrium)

U c�1R = �
c�2P
k=0

(wk+1 � wk)3

12
= �

c�2P
k=0

1

12 (c� 1)3
= � 1

12 (c� 1)2
.
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From Lemma 8, this partition is payo¤ superior to all partitions of the same size. In addition, it is

superior to partitions of a smaller size.
Now, consider two cases: 1

2(c+1) < b �
1
2c and

1
2c < b �

1
2(c�1) . In the �rst case, the uniform

partition of size c is incentive-compatible, thus, it is optimal and brings the expected payo¤ UR =
� 1
12c2 . In the second case, Lemma (10) implies that among all partitions of size c = n (b), the

superior partition is that with the binding IC constraints (9). It provides the expected payo¤

U cR = �
1

12

�
4b2
�
c2 � 1

�
(4bc� 3) + 1

�
. (16)

For b = 1
2c , we obtain U

c
R =

1
12c2 , which is equal to the expected payo¤ under the uniform partition

of size c. For b = 1
2(c�1) , we obtain U

c
R =

1
3(c�1)2 =

1

12( c�12 )
2 , which is equal to the expected payo¤

under the uniform partition of size c�1
2 .

Notice that n (b) = c for all b2
�
1
2c ;

1
2(c�1)

�
. Then, the derivative of (16) with respect to b is

d
dbU

c
R (b) = �2b

�
c2 � 1

�
(2bc� 1), which is negative for b > 1

2c . Finally, U
c
R

�
1
2c

�
= 1

12c2 > U
c�1
R =

1
12(c�1)2 >

1
3(c�1)2 = U cR

�
1

2(c�1)

�
implies that there exists a unique b� 2 ( 12c ;

1
2(c�1) ), such that

U cR (b
�) = U c�1R .

Proof of Corollary 1. Formally, it is straightforward to prove that for any equilibrium
partition in the CS model, the uniform partition of the same size is incentive-compatible in the

CI model and provides a superior expected payo¤. However, Theorem 1 below proves that for

b � 1
4 , there exists an equilibrium in the CI model, which provides a higher expected payo¤ to

the principal than optimal delegation. Due to Dessein (2002), delegation performs better than CS

communication for b � 1
4 , which completes the proof.

Proof of Theorem 1. Informative communication is feasible, if b � 1
4 . Melumad and Shibano

(1991) prove that for b � 1
2 , the optimal delegation set is the interval [0; 1� b]. In this case, the

expert�s actions are

aS (�) =

�
� + b if � � 1� 2b
1� b if � > 1� 2b ; (17)

which results in

UDR (b) =
1R
0

UR
�
aS (�) ; �

�
d� = �

1�2bR
0

(� + b� �)2d� �
1R

1�2b
(1� b� �)2d� = �b2 + 4

3
b3. (18)

By Lemma (9), a uniform partition of size n (b)� 1 = 2b 14bc is incentive-compatible and leads
to UR (b) = � 1

12�(2b 1
4b c)

2 = � 1
48�b 1

4b c2
. Since b 14bc �

1
4b � 1, we have UR (b) � � 1

48( 1
4b�1)

2 =

� b2

3(1�4b)2 , and

UR (b)� UDR (b) � �
b2

3 (1� 4b)2
+ b2 � 4

3
b3 =

2

3
b2
1� 14b+ 40b2 � 32b3

(1� 4b)2
.

The function A (b) = 1 � 14b + 40b2 � 32b3 has three roots. Only one of them, namely, b0 =
1
8

�
3�

p
5
�
' 1

11 is in the interval
�
0; 14
�
. Since A (0) = 1, it follows that UR � UDR > 0 for all

b < b0. For b 2 [b0; 14 ], consider three cases. If b 2 [
1
6 ;

1
4 ], then the uniform partition of size 2 is

incentive-compatible, and provides the expected payo¤UR = � 1
48 . Then,D (b) = UR (b)�U

D
R (b) =

� 1
48 + b

2 � 4
3b
3. Since D0(b) > 0 for b < 1

2 , and D
�
1
6

�
= 1

1296 , this implies UR (b) � U
D
R (b) > 0

for all b 2 [b0; 14 ]. For b 2 [
1
8 ;

1
6 ), the uniform three-element partition is incentive-compatible, and
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brings the expected payo¤ � 1
108 . Then, D (b) = UR (b) � UDR (b) = � 1

108 + b
2 � 4

3b
3 > 0 for all

b 2 [ 18 ;
1
6 ), since D

�
1
8

�
= 13

3456 . Finally, for b 2 [b0;
1
8 ), the uniform 4-element partition is incentive-

compatible, which results in payo¤ UR = � 1
192 . Using the same technique as for b �

1
6 , it gives

D (b) > D
�
1
12

�
= 5

5184 , which completes the proof.

Proof of Theorem 2. For symmetric preferences, the CS arbitrage condition and the IC
constraints (9) in the CI model are the same as in the case of the quadratic preferences. Hence,
for any b � 1

4 , the most informative equilibrium in the CS-model has a partition of size NCS (b) =

d� 1
2 +

1
2 (1 +

2
b )
1=2e, where dxe is the smaller integer greater than or equal to x. Notice that

NCS (b) = d�1
2
+
1

2
(1 +

2

b
)1=2e � b1

2
+
1

2
(1 +

2

b
)1=2c � 1

2
+
1

2
(1 +

2

b
)1=2;

where bxc is the largest integer smaller than or equal to x. Then, 2NCS (b) b � 2b( 12+
1
2 (1+

2
b )
1=2) =

b(1 + (1 + 2
b )
1=2) = v (b). Since v( 14 ) = 1, and v

0 (b) = 1 + 1+bp
b(2+b)

> 0, then 2NCS (b) b < 1 and

the uniform partition of size n = NCS (b) is incentive-compatible.
The receiver�s expected utility in the most informative CS equilibrium is

UCSR =
n�1X
k=0

wk+1Z
wk

U

�����wk + wk+12
� �
����� d� = 2 n�1X

k=0

wk+1�wk
2Z
0

U (t) dt =
n�1X
k=0

f (�wk) ;

where �wk = wk+1 � wk, and f (�wk) = 2

�wk
2R
0

U (t) dt. Then, for x > 0, we have f 0 (x) =

d
dx

x
2R
0

2U (t) dt = U
�
x
2

�
, and f 00 (x) = 1

2U
0 �x

2

�
< 0. The receiver�s ex-ante utility in the CI model

under the uniform partition of size n is

UR =
n�1X
k=0

wk+1Z
wk

U

�����wk + wk+12
� �
����� d� = 2 n�1X

k=0

wk+1�wk
2Z
0

U (t) dt (19)

= 2n

1
2nZ
0

U (t) dt = nf

�
1

n

�
= nf

 
1

n

n�1X
k=0

�wk

!
:

Since f (x) is strictly concave and �wk+1 = �wk+4b 6= �wk from the CS arbitrage condition,

then the Jensen�s inequality implies f
�
1
n

n�1P
k=0

�wk

�
> 1

n

n�1P
k=0

f (�wk) or UR > UCSR .

Proof of Theorem 3. If preferences are symmetric, we use Proposition 4 from Alonso and
Matouschek (2005), which states that the optimal delegation set is the same as for quadratic
preferences, hence, it is the interval [0; 1� b]. Similarly, the sender�s policy is determined by (17).
This results in the receiver�s ex-ante utility

UDR =

1Z
0

U
���aS (�)� ���� d� = 1�2bZ

0

U (b) d� +

1Z
1�2b

U (j1� b� �j) d�

= U (b) (1� 2b) + 2
bZ
0

U (�) d�.
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Now, consider the CI model. If b 6= 1
2n for any integer n, then the partition of size n (b) =

2b 14bc + 1 is incentive-compatible. From Lemma 9, the uniform partition of size c = n (b) � 1 =
2b 14bc �

1
2b � 1 is incentive-compatible as well. If b =

1
2n for some integer n, then the uniform

partition of size n = 1
2b is incentive-compatible, and so is the uniform partition of size

1
2b �1. From

(19), the receiver�s ex-ante utility under the uniform partition of size c is

UR (c) = 2c

1
2cZ
0

U (�) d� = E

�
U (�) j� < 1

2c

�
:

Since U (:) is decreasing, it follows that UR is increasing in c. Then,

UR (c) � UR
�
1

2b
� 1
�
= 2

�
1

2b
� 1
� 1

2( 1
2b

�1)Z
0

U (�) d� = +
1� 2b
b

b
1�2bZ
0

U (�) d�:

Thus,
�
UR � UDR

�
b

1�2b �
b

1�2bR
0

U (�) d��U (b) b� 2b
1�2b

bR
0

U (�) d� = � (b). Clearly, � (0) = 0. Taking

a derivative of � (b) with respect to b gives

�0 (b) = U

�
b

1� 2b

�
1

(1� 2b)2
� U 0 (b) b� U (b)� 2

(1� 2b)2

bZ
0

U (�) d� � 2b

1� 2bU (b) :

From the last expression, �0 (0) = 0. Taking the second derivative results in �00 (0) = �U 0 (0) � 0.
If U 0 (0) < 0, then by Taylor�s formula � (b) = � (0) + �0 (0) b + 1

2�
00
�
~b
�
b2 = 1

2�
00
�
~b
�
b2, where

~b 2 [0; b]. Since �00 (0) > 0 and �00 (b) is continuous, then there exists b� such that �00 (b) > 0, and
hence, � (b) > 0 for all b 2 (0; b�). If U 0 (0) = 0, then �00 (0) = 0. Taking the third derivative gives
�000 (0) = �2U 00 (0) > 0. By Taylor�s formula, � (b) = � (0) + �0 (0) b + 1

2�
00 (0) b2 + 1

6�
000 (b�) b3 =

1
6�

000 (b�) b3, where b� 2 [0; b]. Since �000 (0) > 0 and �000 (b) is continuous, then � (b) > 0 for all b in
the neighborhood of 0.

Proof of Theorem 4. The arbitrage condition in the CS model is

wk+1 + b� ak = ak+1 � wk+1 � b, (20)

where

ak = E [�j� 2 (wk; wk+1]] =
1

F (wk+1)� F (wk)

wk+1Z
wk

�dF (�) . (21)

In the CI model, the sender�s type-relevant utility function is

US (a; bjWk) = �
1

F (�k+1)� F (�k)

wk+1Z
wk

(a� b� �)2 dF (�) .

This function is concave and symmetric with respect to aSk = ak + b. Thus, the IC constraints
aSk � ak � ak+1 � aSk can be written as

ak+1 � ak � 2b, k = 0; :::; n� 2. (22)

The condition (20) can be expressed as ak+1 � ak = 2 (wk+1 � ak) + 2b > 2b, since wk+1 > ak =
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E [�j� 2 (wk; wk+1]] for f (�) > 0. Thus, any CS partition fwkgnk=0 is incentive-compatible in the
CI model. Moreover, the IC constraints (22) are satis�ed for all w0k in some neighborhood of wk,

k = 1; :::; n� 1, since ak, k = 0; :::; n� 1, are continuous in all wk.
The receiver�s ex-ante utility in the incentive-compatible equilibrium is

UR = �
n�1X
k=0

wk+1Z
wk

(ak � �)2 dF (�) : (23)

Then,

dUR
dw1

= � (a0 � w1)2 f (w1)�
da0
dw1

w1Z
0

(a0 � �) dF (�) + (a1 � w1)2 f (w1)�
da1
dw1

w2Z
w1

(a1 � �) dF (�) .

From (21), the second and the last terms in the expression above are equal to 0, which implies

dUR
dw1

= f (w1) (a1 � a0) (a0 + a1 � 2w1) = f (w1) (a1 � a0) 2b > 0.

Thus, the partition (0; w01; w2; :::; 1), where w
0
1#w1, is incentive-compatible and provides a higher

expected payo¤.28

Proof of Theorem 5. If �k = wk+1�wk is the length of a partition�s element Wk, then the
receiver�s optimal action (21) can be represented by Taylor�s formula around wk as

ak = wk +
1

2
�k +

1

12

f 0 ( ~wk)

f ( ~wk)
�2k; (24)

where ~wk 2 [wk; wk+1]. Similarly, ak�1 = wk� 1
2�k�1+

1
12
f 0( ~wk�1)
f( ~wk�1)

�2k�1, where ~wk�1 2 [wk�1; wk].
Then, the IC constraints (22) become

�k�1 +�k +
1

6

f 0 ( ~wk)

f ( ~wk)
�2k �

1

6

f 0 ( ~wk�1)

f ( ~wk�1)
�2k�1 � 4b. (25)

Similarly, expanding the density f (�) by Taylor�s formula around wk results in

f (�) = f (wk) + f
0 (ŵk) (� � wk) , (26)

where ŵk 2 [0; �]. Using (24) and (26), the sum�s element UkR = �
wk+1R
wk

(ak � �)2 f (�) d� in the

principal�s ex-ante utility (23) can be estimated as

UkR = �
1

12
f (wk)�

3
k +O

�
�4k
�
, (27)

where O
�
�4k
�
has an order �4k. Then, taking the length of the uniform partition�s element �k = cb,

where c 2
�
2; 2
p
3
�
is chosen to satisfy cbN = 1 for some integer N , transforms (25) into

(2c� 4) b+ b2
�
1

6

f 0 ( ~wk)

f ( ~wk)
c2 � 1

6

f 0 ( ~wk�1)

f ( ~wk�1)
c2
�
� 0,

28This argument can be reapplied to all boundary points wk; 0 < k < n� 1:
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which is satis�ed for a su¢ ciently small b. Also, (27) can be written as

UkR = �
1

12
f (wk) c

3b3 +O
�
b4
�
.

The principal�s ex-ante utility in the case of complete delegation is

UDR = �b2 =
N�1X
k=0

Uk,

where

Uk = �b2 (F (wk+1)� F (wk)) = �b2
�
f (wk)�k +O

�
�2k
��
= �f (wk) cb3 +O

�
b4
�
.

This implies that for su¢ ciently small b,

UkR � Uk = f (wk)
�
c� c3

12

�
b3 +O

�
b4
�
= f (wk)

�
1� c2

12

�
cb3 +O

�
b4
�
> 0;

and summing across all k = 0; :::; N � 1 results in UR > UDR .

Proof of Theorem 6. If the sender knows that � 2 W , where P (W ) =
R
W

dF (�) > 0, then

she implements an action

a0 = argmax
a

�
Z
W

(a� b� �)2 dF (�) = E [�jW ] + b.

The expected utility of the principal, given that � 2W , is

UR (W ) = �
1

P (W )

Z
W

(a0 � �)2 dF (�) :

By Jensen�s inequality,

UR (W ) = E�

h
(a0 � �)2 jW

i
< (a0 � E [�jW ])2 = (� + b� �)2 = b2,

where the right part is the expected utility of the principal in the case of the perfectly informed

expert. To complete the proof, it is su¢ cient to take an average payo¤ across all sets W .

For the information structure 
 = fWkgn�1k=0 and the delegation set A, the incentive-compatible
choice of a sender of the type Wk to make an action ai 2 A is determined by (11).

Note �rst that for a �nite set of types, the set of actions is also �nite, since the expert of
any type makes no more than two actions because of the concave preferences. Second, to �nd the
optimal delegation set, we can restrict the expert�s action rule � : 
 ! �A to pure strategies
only, since for any mixed-strategy action rule there exists the pure-strategy rule, which provides
the higher payo¤ to the principal. Namely, if Wk�type is indi¤erent between actions a0 and a00,
that is, US (a00; bjWk) = US (a

0; bjWk), her new action rule is to induce a lower action. Then, the
single-crossing property d2

dadbUS (a; bjWk) > 0 implies

US (a
00; bjWk)� US (a0; bjWk) > US (a

00; 0jWk)� US (a0; 0jWk) = UR (a
00jWk)� UR (a0jWk) ,

which results in UR (a0jWk) > UR (a
00jWk). Reapplying this argument to all mixing types, we obtain
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the pure-strategy rule, which is payo¤ superior to the initial one.

Thus, the cardinality of the delegation set in optimal delegation does not exceed that of the

type set. In addition, if the number of types strictly exceeds that of actions, then Lemma 4 implies

that the principal can collapse all types that induce identical actions, without a¤ecting the sender�s

choice for the modi�ed types. Hence, in the optimal delegation, the number of types coincides with

that of actions.
Then, property (C) of Lemma 2 guarantees that induced actions are monotone in types, that

is, the delegation set fakgn�1k=0 = fa (Wk)gn�1k=0 is a strictly increasing sequence. Thus, the incentive-
compatibility constraints (11) can be written as

ak + ak+1 � wk + wk+1 + 2b and ak + ak�1 � wk + wk+1 + 2b; 8k. (28)

Now, consider two sequences, f�kgn�1k=0 = fak � wkg
n�1
k=0 and f�kg

n�1
k=0 = fwk+1 � akg

n�1
k=0 . Note

that wk+1 � wk > 0 results in
�k + �k > 0, (29)

and ak+1 � ak > 0 results in
�k+1 + �k > 0. (30)

In addition, the condition
n�1P
k=0

(wk+1 � wk) = 1 implies

n�1P
k=0

�k +
n�1P
k=0

�k = 1. (31)

Conversely, any sequences, that satisfy the properties above, determine the information structure

fwkgn�1k=0 and the delegation set fakg
n�1
k=0 as wk+1 = wk+�k+�k and ak = wk+�k, where w0 = 0.

Then, we can represent (28) as

�k +�k+1 � 2b, and (32)

�k�1 + �k + 2b � 0. (33)

Similarly, the expected utility of the principal can be expressed as

UR = �
n�1P
k=0

wk+1R
wk

(ak � �)2d� = �
1

3

n�1P
k=0

h
(ak � wk)3 + (wk+1 � ak)3

i
= �1

3

n�1P
k=0

�
�3k + �

3
k

�
.

Proof of Theorem 7. By Theorem 1, it is su¢ cient to show that there exists the information
structure and the delegation set, which provide the superior payo¤ for b 2

�
1
4 ;

1
2

�
.

In the case of the perfectly informed expert, the optimal delegation set [0; 1� b] provides the
payo¤ UPIR = �b3 + 4

3b
3.

Consider the two-element information structure and the delegation set, such that �0 = �1 = b
and �0 = �1 = 1

2�b. The sequences f�0;�1g and f�0; �0g satisfy (29)-(33) and provide the expected
payo¤

UR = �
1

3

"
2b3 + 2

�
1� 2b
2

�3#
= �b2 + 1

2
b� 1

12
.

Then, UR�UPIR = 1
2b�

4
3b
3� 1

12 =
1
12 (1� 2b)

�
8b2 + 4b� 1

�
. The last term is increasing in b and

is equal to 1
2 for b =

1
4 . Thus, UR � U

PI
R > 0 for b 2

�
1
4 ;

1
2

�
.
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The optimal communication structure and the delegation set are the solution to the problem:

max
f�kgn�1k=0 ;f�kg

n�1
k=0

UR

�
f�kgn�1k=0 ; f�kg

n�1
k=0

�
= max

f�kgn�1k=0 ;f�kg
n�1
k=0

� 1
3

n�1P
k=0

�
�3k + �

3
k

�
, (34)

given constraints (29)-(33).

Proof of Theorem 8. First, we prove the following results about the optimal information
structure and the delegation set.

a) Constraints (33) are never binding. By contradiction, let �k + �k+1 + 2b = 0 for some k.

First, �k+1+ �k > 0, �k+1+ �k+1 > 0 and �k+ �k+1 = �2b < 0 imply that at least one of �k, �k+1
is negative and �k+1 > j�kj, �k+1 > j�k+1j.

If �k+1 < 0, put ~�k+1 = �k+1 � �, ~�k+1 = �k+1 + �, where � # 0. This results in the higher
expected payo¤ of the principal, since

3�U = 3UR

�n
~�k

on�1
k=0

;
n
~�k

on�1
k=0

�
� 3UR

�
f�kgn�1k=0 ; f�kg

n�1
k=0

�
= � ~�3k+1 � ~�3k+1 +�3k+1 + �3k+1 = � (�k+1 � �)

3 � (�k+1 + �)3 +�3k+1 + �3k+1
= 3�

�
�2k+1 � �2k+1 � ��k+1 � ��k+1

�
> 0.

Since ~�k+1 > �k+1 and ~�k+1 + ~�k+1 =�k+1 +�k+1, the constraints (31) and (33) hold.
If �k < 0, then put ~�k+1 = �k+1 � �, ~�k = �k + �, where � # 0. This results in

3�U = � ~�3k+1 � ~�3k +�3k+1 + �3k = 3�
�
�2k+1 � �2k � ��k+1 � ��k

�
> 0.

Then, ~�k > �k and ~�k + ~�k+1 =�k +�k+1 mean that (31) and (33) hold.

Also, �k + �k+1 > 2b. If �k + �k+1 = 2b, then �k + �k+1 + �k + �k+1 = (�k +�k) +

(�k+1 +�k+1) = 0, which contradicts (29). In addition, �k+2 + �k+1 > 0, �k+1 + �k > 0, and

�k + �k+1 + 2b = 0 lead to �k+2 +�k+1 + �k + �k+1 + 2b > 2b or �k+2 +�k+1 > 2b. Thus, (29),

(32), and (30) are not a¤ected by small perturbations in �k+1, �k, and �k+1.
b) �k � 0, 8k. By contradiction, let �k < 0 for some k. Then, �k + �k > 0 implies �k > j�kj.

Put ~�k = �k + �, ~�k = �k � �, where � # 0. Then,

3�U = � ~�3k � ~�3k +�3k + �3k = �
�
�2k ��2k � ��k � ��k

�
> 0.

c) �k = � � 0, 8k. First, if there is �j such that j�j j6=j�kj, put ~�k = �k + � and ~�j = �j � �,
where � # 0 if j�j j>j�kj, and � " 0 if j�j j<j�kj. Then,

3�U = �~�3k � ~�3j + �3k + �3j = �
�
�2j � �2k � ��j � ��k

�
> 0,

Thus, we must have j�kj= �, 8k.
If �k= �� < 0 for all k, then consider the sequences

n
~�k

on�2
k=0

;
n
~�k

on�2
k=0

, which are constructed

from the initial ones by eliminating the elements �s and �s, where �s = min
k
f�kg, and putting

~�j = �j+�s + �s = �2�+�s for some j 6= s. Since �s + �s > 0, it follows that ~�j > �j . This
implies that (29) and (33) hold. Also, �s+1 � �s results in �s+1 + ~�s�1 > �s + �s�1 > 0 and
�s�1 + �s+1 � �s�1 + �s � 2b. Thus, (30) and (32) hold. Finally, (31) holds by construction.
Then,

3�U = �~�3j +�3s + �3s + �3j = � (�2� +�s)
3
+�3s � 2�3 = 6� (�s + �)

2
> 0.
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Thus, there must exist �j =� > 0. Moreover, if �j > 0 and �k < 0, there must be the type i between

j and k, such that either �i = � = ��i+1 or �i = �� = ��i+1.
If �i+1 > �i, consider the sequences

n
~�k

on�2
k=0

;
n
~�k

on�2
k=0

, constructed from the initial ones by

eliminating the elements �i and �i, and putting ~�i+1 = �i+1+�i + �i = �i. Since �i + �i > 0, it
follows that ~�i+1 > �i+1. This implies that (29) holds. Also, �i�1+~�i+1+2b = �i�1+�i+2b � 2b > 0,
which means that (33) holds. In addition, we have �i+2 + ~�i+1 = �i+2 +�i > 0, �i+1 + �i�1 >
�i + �i�1 > 0, and �i�1 +�i+1 > �i�1 +�i � 2b. Thus, (30) and (32) hold. Finally, (31) holds
by construction. Thus, we obtain

3�U = �~�3i�1 +�3i + �3i + �3i�1 = ��3i +�3i � �3 + �3 = 0.

If �i+1 = �, then �i + �i > 0 implies ~�i+1 > �, which contradicts the condition j�kj= �, 8k. If
�i+1 = ��, �i = �, and �i > �, we again obtain ~�i+1 > �. If �i = �, then �i+2 + �i+1 > 0 requires
�i+2 > �, or �i+2 > �i. Then, the conditions �i+1+�i � 2b, �i+1+�i+2 � 2b, and �i+2 > �i
imply that �i+1 + �i+2 > 2b. Finally, modifying the sequences

n
~�k

on�2
k=0

;
n
~�k

on�2
k=0

by putting

�0i+1 = �i+1 � �, �0i+1 = ~�i+1 + � = �i + �, where � # 0, and using the fact that �i+1 > �i,

we obtain the sequences f�0kg
n�2
k=0 ; f�0kg

n�2
k=0 that satisfy all the above constraints and provide the

higher payo¤ to the principal.

Similarly, if �i+1 � �i, consider the sequences
n
~�k

on�2
k=0

;
n
~�k

on�2
k=0

, constructed from the

initial ones by eliminating the elements �i+1 and �i+1, and putting ~�i = �i+�i+1 + �i+1 = �i+1,

which results in �U = 0. Since �i + �i > 0, it follows that ~�i+1 > �i+1. This implies that

(29) holds. Also, ~�i + �i+2 + 2b =�i+1 + �i+2 + 2b. If �i+2 > 0, then �i+1 + �i+2 + 2b > 0. If

�i+2 = �� < 0 and �i+1 = ��, it follows from �i+1 + �i+2 + 2b > 0 that �2� + 2b > 0, or � < b.
Hence, �i+1+�i+2+2b = �i+1��+2b > �i+1+b > 0. Finally, if �i+2 = �� < 0 and �i+1 = � > 0,
it follows that �i = ��i+1 = �� and �i+1 + �i+2 + 2b = �i+1 + �i + 2b > 2b. Thus, (33) holds. In
addition, we have �i+2 + ~�i = �i+2 +�i+1 > 0 and �i+2 +�i � �i+2 +�i+1 � 2b. Thus, (30)
and (32) holds. Finally, (31) holds by construction. However,

���~�i��� 6=�, since �i+1 + �i+1 > 0 and
�i+1 + �i > 0 implies �i+1 >�. This, however, contradicts the condition j�kj= �, 8k.

Given these results, the proof of statements is straightforward. First, ak 2 [wk; wk+1] because
of b) and c). Second, the �niteness of the information structure and the delegation set follows from

(31), (32), b), and c).

Proof of Corollary 2. Notice that in any communication equilibrium under the optimal

partition, we have �k= �k, 8k from the receiver�s best-response condition. Then, any non-uniform

partition is not optimal, since f�kgdi¤er for odd and even k. Thus, to prove the statement, it is
su¢ cient to show that any uniform partition in the communication game is not optimal.

Note that (9) along with �wk = 1
n , 8k implies that 2bn � 1. Among all uniform partitions

that satisfy these conditions, the highest payo¤ UR = � 1
12n2 is provided by the partition with

the largest number of elements n = b 12bc. Then, 2b (n+ 1) > 1, and n is the same for all b 2
( 1
2(n+1) ;

1
2n ]. Consider the information structure and the delegation set of size n + 1, such that

�k = b, �k =
1�b(n+1)
n+1 , 8k, which satis�es (29)-(33), and provides the payo¤

3UDR = � (n+ 1) b3 � (n+ 1)
�
1� b (n+ 1)

n+ 1

�3
=

1

(n+ 1)
2 (1� 3b (n+ 1) (1� b (n+ 1))) .
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The di¤erence in payo¤s is

�U = 3
�
UDR � UR

�
=

1

4n2
� 1

(n+ 1)
2 (1� 3b (n+ 1) (1� b (n+ 1))) .

For b = 1
2n , �U =

1
2

n�1
n2(n+1)2

> 0. Since d
db�U = �

3
n+1 (2b (n+ 1)� 1) < 0, we have �U > 0 for

all b 2 ( 1
2(n+1) ;

1
2n ], which completes the proof.
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