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Abstract

We suggest a model in which theories are ranked given various databases. Certain axioms on such rank-
ings imply a numerical representation that is the sum of the log-likelihood of the theory and a fixed number
for each theory, which may be interpreted as a measure of its complexity. This additive combination of
log-likelihood and a measure of complexity generalizes both the Akaike Information Criterion and the
Minimum Description Length criterion, which are well known in statistics and in machine learning, respec-
tively. The axiomatic approach is suggested as a way to analyze such theory-selection criteria and judge
their reasonability based on finite databases.
© 2010 Elsevier Inc. All rights reserved.
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1. Introduction

The selection of a theory based on observations is a fundamental problem that cuts across
several disciplines. Finding the “right” way to select theories given evidence is at the heart of
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philosophy of science, statistics, and machine learning. It is also highly relevant to rational mod-
els of learning, trying to capture the way that rational agents can make sense of the data available
to them.

Two fundamental criteria for the selection of theories are simplicity and goodness of fit. The
preference for simple theories is well known, and is often attributed to William of Occam (see
Russell [11]). While the notion of simplicity is partly subjective and depends on language,! it
is often surprising how much agreement one finds between the simplicity judgment of different
people. For example, most people tend to agree that, other things being equal, a theory with
fewer parameters is simpler than a theory with more parameters, or that a theory with a shorter
description is simpler than a theory with a longer one. Whereas such claims depend on an agree-
ment about a language, or a set of languages within which simplicity is measured, they do not
seem to be vacuous statements. The suggestion that people tend to prefer simple theories to more
complex ones can therefore be a meaningful empirical claim.

However, simplicity can only serve as an a priori argument for or against certain theories.
How well a theory performs in explaining observed data should certainly also factor into our
considerations in selecting theories. Sometimes, one may categorize theories dichotomously into
theories that fit the data as opposed to theories that are refuted by the data, and then choose
the simplest theory among the former. But in most problems in science, as well as in everyday
life, theories are never categorically refuted. There is typically room for a measurement error,
or, more generally, for probabilistic prediction. Therefore, a theory typically cannot be refuted
by observations. Instead, theories can be ranked according to their goodness of fit, namely, the
extent to which they match observations. In particular, the likelihood principle suggests to rank
theories according to their likelihood function, that is, the a priori probability that the theory used
to assign to the observed data before these data were indeed observed.

Viewed from a statistical point of view, the likelihood principle is a fundamental idea that
neatly captures the notion of “goodness of fit” while relying on objective data alone. Choosing
the theory that maximizes the conditional probability of the actually observed sample does not
rely on any subjective a priori preferences, hunches, or intuitions of the reasoner. But for that very
reason, the maximum likelihood principle cannot express preferences for simplicity. Due to this
limitation, the applicability of this criterion is restricted to set-ups in which the set of possible
theories is restricted a priori to a given class, within which complexity considerations might
be ignored. When no such a priori restriction is available, the maximum likelihood principle is
insufficient. More explicitly, if one considers all conceivable theories, one will always be able
to find a theory that matches the observations perfectly. Such a theory will obtain the maximum
conceivable likelihood value of 1, but it is likely to be “overfitting” the data. We tend not to trust
a theory that matches the data perfectly if it appears very complex. Thus, maximum likelihood
does not suffice to describe the totality of considerations that enter the theory selection process.?

We are therefore led to the conclusion that a reasonable criterion for the selection of theories
based on observations has to take into account both the likelihood of a theory, or some other
measure of goodness of fit, and its simplicity, or some other a priori preference for some theories
versus others.> Indeed, combinations of likelihood and some measure of complexity are well

1 See Goodman [4] and Sober [14].

2 See Gilboa and Samuelson [6] who suggest an evolutionary argument for the preference for simplicity.

3 Another relevant criterion is the theory’s generality. In this paper we ignore the more involved three-way trade-
off between goodness of fit, simplicity, and generality. We will only mention in passing that if we “normalize” the
theories under comparison so that they have the same scope of applicability, preference for generality can be derived
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known in the literature on statistics and on machine learning. Specifically, linear combinations
of the logarithm of the likelihood function and a complexity measure appeared in both litera-
tures. Akaike Information Criterion (AIC, Akaike [1]) suggests that, when comparing different
statistical models, one adopts a model a that obtains the highest value for

log(L(a)) — 2k

where L(a) is the likelihood function of a, and k is the number of parameters used in model a.*

The machine learning literature often adopts Kolmogorov’s complexity measure [3,9,10],
which suggests that the complexity of a theory be measured by the minimal length of a program
(say, a description of a Turing machine) that can be used to generate the theory’s predictions.
Solomonoff [15] suggested to use such a complexity measure as a basis for a theory of philosophy
of science. Related concepts are the Minimal Message Length (MML, Wallace and Boulton [17])
and the Minimum Description Length (MDL) of a theory. Recent applications often trade-off a
theory’s likelihood with its simplicity by considering criteria of the form

log(L(a)) — MDL

where MDL is the Minimum Description Length. (See Wallace and Dowe [18], and Wallace [16]
for a more recent survey.)

Clearly, there could be many ways to trade-off a theory’s likelihood with its complexity. In-
deed, Schwartz Information Criterion (SIC, also known as BIC), suggests that the number of
parameters be divided by the logarithm of the number of observations. How should we judge
among such criteria? How should we trade off likelihood and complexity?

The present paper addresses this question in an axiomatic way. Our axiomatic approach does
not presuppose particular measures of goodness of fit or of likelihood, let alone a particular
combination thereof. Rather, we consider an abstract problem in which observations and theories
are formal entities that are a priori unrelated, and are also devoid of any explicit content or
mathematical structure. In particular, no statistical model is a priori assumed, and no likelithood
functions are given. We only assume that a reasoner can rank theories given various databases of
observations. Such rankings are modeled as weak orders (binary relations that are complete and
transitive), and interpreted as “at least as plausible as” relations. We formulate certain conditions,
or “axioms” on these weak orders, which can be viewed as notions of internal consistency: the
axioms relate the rankings of theories given different databases of observations. The axioms
do not restrict the inferences the reasoner may draw from any particular database, but they do
exclude certain patterns of plausibility rankings given different databases. The main result of this
paper is that the axioms imply the existence of a statistical model and a constant for each theory,
such that for every database, theories are ranked according to the sum of the constant and their
log-likelihood function.

Formally, theories are elements of a set A and observations — of a set X. Neither set is endowed
with any mathematical structure, and the two are a priori unrelated. Yet, the intended interpre-
tation of the sets is that elements in A are distributions or densities on X with full support. As

from preference for simplicity. Specifically, if theory a is less general than theory b, one may augment a, for instance
by using b when a was not defined. The resulting theory would be more cumbersome, and may be less preferred than b
based on simplicity considerations.

4 Observe that, as the sample size, n, grows to oo, the expression above would typically tend to —oo for all models.
One often divides this expression by n to obtain limits that can be meaningfully compared. Division by n obviously does
not alter the ordinal ranking of models.
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mentioned above, our formal result may well extend beyond this application. But it is useful to
bear it in mind when judging the axioms.

A database [ is a function [ : X — Z_, (where Z stands for the non-negative integers) with
Y rex I (x) < oo, and I (x) is interpreted as the number of times an observation x has appeared
in the database described by /. We assume that, for each such database I, the reasoner has a
ranking over theories, ~;C A x A, where a ~~; b is interpreted as “given the observations in
database I, theory a is at least as plausible as theory 5”. When applied to the empty database,
I =0, 7Z; would reflect the reasoner’s a priori ranking over the theories, in the absence of any
data.

We impose several axioms on the collection of rankings {~;};, that imply the following rep-
resentation: for every theory a there exists w(a) € R and for every observation x, also a number
v(a, x) € R, such that, for any database I, and any two theories a, b € A, a 7 b iff

w(a)+ Y I@)v(a,x) > wb)+ > Ix)v(b. x). (1)
xeX xeX

In this representation, one may interpret v(a,x) as the log of Pr(x|a), and then
Y rex I (x)v(a, x) is simply the log-likelihood of the theory a given the database I. If the
theories are indeed given as distributions or densities over X, it is natural to assume that the
number v(a, x), derived from the reasoner’s rankings, will indeed coincide with the logarithm of
the probability (or density) of observation x given theory a. However, in a formal model where
theories have this additional structure, one would also need an additional assumption that would
guarantee this equality.

The constant w(a) reflects an a priori bias for the theory a, and it can be interpreted as a
measure of the theory’s simplicity, or some other subjective criterion for theory selection. Specif-
ically, if there are finitely many theories, and the reasoner has an a priori subjective probability
p(a) that theory a actually governs the data generating process, then the a posteriori ranking of
the theories given database I will follow (1) with w(a) = log(p(a)) and v(a, x) = Pr(x|a) as
above. While the Bayesian interpretation is not our preferred one (see the Discussion below), it
is compatible with our axioms in many situations.

The axiomatic treatment may serve as a reason to select additive likelihood-complexity trade-
offs such as AIC and MDL, and perhaps to prefer them over other criteria that do not satisfy
the axioms. It also serves to clarify the commonalities among simplicity-based criteria and the
Bayesian approach to model selection.

This paper may be viewed as a contribution to the axiomatic analysis of statistical techniques.
In Gilboa and Schmeidler [8] we provided an axiomatization of kernel estimation of density func-
tions, kernel classification, as well as of maximum likelihood mnkings.5 Billot, Gilboa, Samet,
and Schmeidler [2] and Gilboa, Lieberman, and Schmeidler [5] axiomatize kernel estimation
of probabilities. One rationale for these papers is the attempt to ground statistical and machine
learning methods in axiomatic derivations. The axiomatic approach offers consistency criteria
that may help one select theories based on their abstract properties. Such criteria might be of
interest especially when finite samples are concerned, and asymptotic behavior may not suffice
as the sole guide for the selection of theories.

The rest of this paper is organized as follows. The next section describes the model and the
result. The following one is devoted to a general discussion. Proofs and related analysis are to be
found in Appendix A.

3 As explained below, the present paper heavily relies on the results in Gilboa and Schmeidler [8].
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2. Model and result

Let X be the set of (types of) observations. The set of databases is defined as

DE{I‘I:X—)Z+, Zl(x)<oo}.

xeX

A database I € D is interpreted as a counter vector, where / (x) counts how many observations
of type x appear in the database represented by /.

Algebraic operations on D are performed pointwise. Thus, for I, J e Dand k>0, 1 + J € D,
and kI € D are well-defined. Similarly, the inequality / > J is read pointwise.

Let A be the set of theories. For I € D, 7Z;C A x A is a binary relation on theories, where
a 71 b is interpreted as “given the database I, theory a is at least as plausible as theory b”. The
asymmetric and symmetric parts of ~~;, >; and ~, respectively, are defined as usual.

We now turn to describe our conditions. The first three, A1-A3, are “axioms” on the plausibil-
ity rankings. They are supposed to suggest appealing properties of the theory-selection criterion.®
The last two are richness conditions. These conditions have no claim to suggest desirable proper-
ties of such criteria. Rather, they are conditions on the set-up of the model needed for our result
to hold. For simplicity of notation, we refer to the richness conditions as “A4” and “A5”, despite
the fact that they are not proposed as “axioms”. Correspondingly, axioms A1-A3 are also neces-
sary for the representation (1), while A4—AS are not. Weakenings or alternatives to A4 and AS
that will give rise to the representation (1) will certainly be of interest. (See the discussion in
Appendix A.)

Formally, the only relation between the sets A and X is provided indirectly by the set of
rankings {~7}7ep. However, to fix ideas we ask the reader to bear in mind the classical statistical
set-up, in which theories are simply distributions (or densities) over observations. We briefly
comment on more general set-ups.

A1l Order. Forevery I € D, 7 is complete and transitive on A.

Al is a standard axiom in decision theory. Transitivity is typically considered to be a basic
axiom of rationality: if theory a is at least as plausible as theory b, and the latter — at least as
plausible as theory ¢, one would find it hard to argue that ¢ is more plausible than a.

Completeness requires that any two theories can be compared for their plausibility, given
any database. Typically, completeness is justified by necessity: once a database is given, the
reasoner is asked to make some choice regarding which theory she will use for prediction. The
completeness axiom requires that this choice be brought forth and explicitly modeled.

When completeness is applied to a database I consisting of one observation only (that is,
I(x) =1 and I(y) =0 for y # x), it requires that the theories be “about” the observations. In
the benchmark case, where theories are distributions over observations, a single observation x
naturally induces a ranking of theories based on an a priori bias and the likelihood function. More
generally, the completeness axiom still requires that, given a single observation, the reasoner
will have a meaningful ranking of the theories. In particular, if the theories are about patterns of
observations, rather than about single ones, completeness may not hold.

6 Thus, our main interpretation is normative. Alternatively, the axioms can also be interpreted descriptively.
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A2 Recombination. Suppose that 7, J, K, L € D are such that / + J = K + L. Then there are
noa,be€ A, forwhicha-ybanda =~ ;b,buthb =g aandb >y a.

The essence of this axiom is that evidence gathered from observations is simply accumulated,
and that there is no additional learning from the co-occurrence of different observations. Con-
sidering a violation of the axiom might serve to explain the type of learning that it rules out.’
Suppose that a is a common disease, and that b is a rather rare disease. Disease a might manifest
itself in symptom x or y, but it is very rare to have both symptoms present. In fact, when both x
and y are observed, it is more likely to be disease b rather than a. Next assume that database /
consists of two consecutive observations (for the same patient) of symptom x, i.e., I (x) = 2,
I (y) =0, and database J — of two observations of symptom y, J(x) =0, J(y) =2.Let K =L
with K(x) = K(y) =1.Then I + J = K + L. Yet, according to our assumptions, each of 1, J
renders a more likely than b, whereas each of K, L suggests the opposite ranking, in violation
of A2.

Thus, the recombination axiom requires that the learning from observations be done case-by-
case, where no general picture is allowed to emerge from the totality of the observations. This
will be satisfied if the observations are statistically independent. Our model does not assume
any probabilistic model, and does not allow us to define independence in the standard statistics
sense. But A2 may be viewed as a type of independence, stated in the language of rankings given
databases.

The recombination axiom is a version of the “combination” axiom in Gilboa and Schmei-
dler [8]. The latter implied that a >~; b and a =Z; b would necessitate a 7774 b. That is,
a conclusion (theory a is at least as plausible as theory b) that is warranted given two disjoint
databases separately should also be warranted given their union (modeled as / + J). This axiom
is satisfied by maximum likelihood rankings. But it may be too restrictive when complexity con-
siderations are introduced. Specifically, a simple theory a may be considered more likely than a
more complex theory b given each of the databases / and J, separately, even if b fits the data
in each database better. But when the two databases are considered in conjunction, the better fit
provided by b may overwhelm the complexity considerations, rendering b more plausible than
a given I 4 J. The recombination axiom we impose here considers a fixed set of observations,
given by I +J = K + L. The axiom states that the same set of observations cannot be partitioned
twice into two disjoint databases, such that in one partition both databases render a at least as
plausible as b, and in the other — one renders b at least as plausible as a, and the other — strictly
more plausible.

A3 Archimedean Axiom. Assume that /,J € D and a,b € A satisfy b > a and a 7 4 b.
Then for every K € D there exists [ € N such thata >g ;7 b.

The antecedent of the Archimedean axiom assumes that, complexity considerations aside,
database I renders a more likely than b: starting from b >; a, the addition of the observations
in [ reverses the plausibility ranking. Since complexity considerations and other a priori biases
for one theory over another do not change when we compare the database J to the database J + 1,
the switch from b to a can only be attributed to the fact that theory a provides a better fit to the
observations in / than does theory b. In this case, the axiom demands that, for every database K,

7 The following example is based on a suggestion of one of the referees.
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the addition of sufficiently many replicas of database I should make a more plausible than b.
That is, if a fits the data I better than does b, and we observe more and more databases identical
to I, eventually we should prefer theory a to theory b, even if initial data (embodied in K) and
complexity considerations originally gave preference to b.

If each theory is a distribution (or a density) over the observations, and the observations are
1.i.d., the Archimedean axiom will be satisfied as long as the distributions have full support, that
is, as long as no observation can completely refute a theory, that is, drive its likelihood function
to zero. More generally, if one already assumes A2, the Archimedean axiom requires that the
evidence gathered from different databases will always be comparable.

The last two axioms, or conditions, are not justified on a priori grounds. As mentioned above,
they are used only because of the mathematical necessity and may well be weakened or replaced
by other axioms. Having said that, we do not find them conceptually objectionable.

The first states that, for every list of four theories and any database, there is a possible contin-
uation of the database that would rank the theories according to the order in the list.

A4 Diversity. For every list (a, b, ¢, d) of distinct elements of A and every J € D, there exists
I €D, I>Jsuchthata =;b>;c>;d.If |A| <4, the same applies to any permutation of the
elements of A.

A4 excludes, for instance, a situation in which one theory is always more plausible than an-
other, regardless of the database. In particular, it excludes from the analysis theories that are
tautologically true or tautologically false. More importantly, it does not allow us to include in A
two theories a, b such that a is a generalization of b. Indeed, if each theory is a distribution (or a
density) over the observations X, one theory cannot be a generalization of another, and it cannot
be always more plausible than another.

The diversity condition also imposes a certain richness condition on the observations. For
instance, assume that the observations are the tosses of a coin, X = {0, 1}. Suppose that the
reasoner believes that the tosses are i.i.d., but does not know the parameter of the coin, so that
the set of theories is A = [0, 1]. In this case A4 will not hold, since the likelihood function
over [0, 1] has to be single-peaked. In this example there is a continuum of theories, but there
aren’t sufficiently many observations to allow us to differentiate among them in the sense of A4.
More generally, this condition requires that the set of observations be sufficiently rich. If the
theories are given by distribution (or density) functions, the diversity condition will be shown to
require that the log-distribution (or log-density) of a theory not be weakly dominated by an affine
combination of (up to) three other log-distributions (or log-density).

The reason that this condition is required to hold for every four theories but not for more is
technical and will be clear in the course of the proof. It will also be clear, as explained in Gilboa
and Schmeidler [8], that this condition can be somewhat weakened at the expense of simplicity.
In that paper we also show why this axiom is needed: without it, one can construct counter-
examples to the representation we seek. The same counter-examples can be used in the present
context.

The second richness condition, which is our last condition, requires that for every database
and every three theories there is a continuation of the database that renders the three theories
equally plausible.

AS Solvability. For every {a, b, c} C A, and every J € D, there exists I € D, I > J such that
a~y b ~JC.
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The basic import of AS5 is that for any three theories there are observations relative to which
the “plausibility rankings” are in rational proportions. A counter-example in Appendix A shows
why this axiom is necessary, using two observations and log-likelihood functions whose ratios
are irrational. We view AS as a richness condition because, like A4, it takes a given a subset of
theories, and requires that there be at least one database that induces a particular ranking over
these theories.

We can finally state our main result.

Theorem 1. Let there be given X, A, and {7-1}1ep as above. Assume that {7~} jcp satisfy A1-AS.
Then there is a matrix v : A x X — R and a vector w : A — R such that:

forevery I € D and every a,b € A,
) Yaxzib iff w@+) @ x)=wb)+ Y Ix)vb,x).

xeX xeX

Furthermore, in this case the matrix v and the vector w are unique in the following sense: (v, w)
and (u, y) both satisfy (%) iff there are a scalar ). > 0, a matrix B : A x X — R with identical
rows (i.e., with constant columns) and a number & such that u = v + f and y = Aw + 6.

Observe that, in the tradition of axiomatizations in decision theory, the representation theorem
above only suggests a possible representation. A reasoner whose rankings {777 };ep satisfy our
axioms can be thought of as if she had a likelihood function (whose logarithm is given by v)
and a simplicity measure (given by w) such that she prefers theories with higher values of the
sum of the log-likelihood and the simplicity measure. If it so happens that the theories involved
are a priori given by a statistical model, so that a likelihood function /(a|x) exists for a € A and
x € X, it does not follow that v(a, x) =log(/(a|x)). Indeed, since the axioms make no reference
to the likelihood function /(a|x), such a conclusion would be impossible. To derive it, one has to
impose additional axioms, relating the relations {~;};<p to the supposedly given {/(a|x)}y.

The situation is akin to Savage’s derivation of a Bayesian prior: Savage’s [12] axioms imply
that there exists a probability measure such that the decision maker behaves in accordance with
it (via the expected utility formula). If we observe a decision maker who faces a roulette wheel
with given, objective probabilities, it stands to reason that her subjective prior would coincide
with the measure governing the wheel’s behavior. Yet such a conclusion requires an additional
assumption and does not follow from the representation theorem itself.

Much of the appeal of Savage’s theorem is in that it does not assume an objectively given
probability measure, but derives one from preferences. Thus he defines subjective probabilities
where no objective probabilities are given. By the same token, our theorem can be said to derive
a statistical model (or a likelihood function) even when such a model is not a priori given.

3. Discussion
3.1. The recombination axiom

The statement of the recombination axiom (A2) might bring to mind Simpson’s paradox [13],
which appears to constitute a violation of the axiom. Consider, for example, the famous Berke-
ley Sex Bias Case, in which the percentage of men admitted to graduate school is higher than
the percentage of women admitted, while the converse is true for each department separately.
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(Historically, the converse was true in almost all departments.®) For simplicity, assume that there
are only two departments. In this case, splitting the database by departments would yield two
databases (say, I and J) in each of which women appear to be favored to men. By contrast,
splitting the same database randomly would yield two other databases (say, K and L), each
supporting the opposite conclusion.

However, this application of our model is inappropriate, because the single observations are
not directly related to the theories discussed. In fact, in this example even the completeness
axiom is problematic: given a single case, be it of a man or a woman, admitted or not, it is not
at all obvious how one should rank two theories such as “women are favored at admission” vs.
“men are favored at admission”. These theories are about comparisons of sets of observations (to
be precise, comparisons of percentages of admitted applicants within two sub-populations), and
they do not directly say anything about a particular observation.

To deal with the Berkeley Sex Bias Case, one would have to consider “observations” that
are directly relevant to the theories. For example, an observation might be a pair of candidates
that are similar in all respects apart from their gender, one of whom was admitted by a certain
department and the other — denied admission by the same department. Such an observation would
indeed constitute a direct evidence of unequal treatment of the genders. But it is easy to see that
Simpson’s paradox cannot be replicated using such observations of disjoint pairs, as the paradox
relies on unequal proportions of women and men applying to different departments.

Similar difficulties with the recombination axiom might arise when one considers various
theories that are not about specific observations, but rather about patterns of observations. For in-
stance, if one is to judge whether a sequence of observations is random, one may easily construct
counter-examples to the recombination axiom. Again, in such examples the theories discussed
do not say anything about specific observations, only about patterns thereof. This is highlighted
by similar difficulties with the completeness axiom applied to databases of single observations.
Having but a single observation, one cannot rationally judge whether it comes from a random
sequence or not.

To conclude, our model should only be applied to theories and observations that are directly
related, in the sense that every theory is relevant to every observation. Differently put, every
single observation should have meaningful implications about the plausibility of the theories.
When attention is restricted to such applications, the completeness axiom is not too demanding,
and the recombination axiom appears reasonable.

3.2. Methods of classical statistics

It appears that maximum likelihood is a reasonable criterion only when the set of theories is
a priori restricted in one way or another. For instance, one may face a regression problem and
consider only linear or quadratic theories. But in this case the set of theories under discussion
is subjectively chosen. That is, the model does not purport to explain why the particular set
of theories — say, linear — was chosen to begin with. Assuming the model as given, likelihood
maximization offers an objective ranking of theories. But the choice of the model itself remains
subjective, and sometimes arbitrary.

Statistical theory offers a variety of tools to cope with the problem of overfitting data as a
result of likelihood maximization. The trade-off between a good fit and the theory’s complexity is

8 See http://en.wikipedia.org/wiki/Simpson’s_paradox#_note-3.
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familiar from model selection criteria in parametric set-ups (such as adjusted R?, LASSO, Ridge
Regression, and others) as well as in non-parametric set-ups (Akaike Information Criterion, BIC,
etc.). The present paper addresses this question axiomatically, describing an inductive learning
process that does not impose arbitrary restrictions on the set of theories.

3.3. Bayesian analysis

As mentioned in the Introduction, the ranking by (1) can be interpreted as a Bayesian rank-
ing where w(a) is taken to be the logarithm of theory a’s prior probability. However, several
distinctions should be borne in mind. First, the numbers w(a) in our set-up are not unique. It is
readily seen that they can all be multiplied by a positive constant (alongside the numbers v(a, x))
without changing the rankings in (1). Hence, a reasoner who satisfies our axioms can be viewed
as Bayesian, but her Bayesian beliefs are not uniquely determined by her rankings {*~;}7¢cD.

Among the pieces of information that are missing in {77;};<p in order to determine the rea-
soner’s prior probability are the rankings of subsets of theories. A Bayesian reasoner, who has a
prior over the space of theories, has a prior probability for every measurable subset of theories.
By contrast, our reasoner is only assumed to rank specific theories.

3.4. The measurement of complexity

The measurement of complexity is not a trivial issue. It is very appealing to use some notion
of Kolmogorov’s complexity, namely the length of the minimal program that implements a the-
ory. But the minimal description length of a theory gives equal weight to bits that describe the
algorithm of the program and to bits that describe arbitrary parameters. For instance, the MDL
of the theory y = 1.30972x is much higher than the MDL of the theory y = 2x. For applications
to everyday human reasoning, as well as to scientific reasoning in the social sciences, a “simple”
parameter such as 2 need not have any privileged status as compared to a “complicated” param-
eter such as 1.30972. Differently put, if the bits needed to describe 1.30972 were used to encode
logical computation steps, one may have a theory that is much more complicated than the linear
relationship y = 1.30972x. This suggests that the length of the description of a program in bits,
including all numerical parameters, isn’t an intuitive measure of the theory’s complexity. The
appropriate choice of a measure of complexity is beyond the scope of the axiomatic investigation
taken in this paper.

Appendix A. Proofs and related analysis
A.l. A basic result

We will rely on the following result, which appears in Gilboa and Schmeidler [7,8]. To state it,
we first define a matrix v : A x X — R to be diversified if there are no elements a, b, ¢, d € A with
b,c,d#aand A, u,0 € Rwith A+ u+6 =1 suchthat v(a, -) < Av(b, )+ nv(c, ) +0v(d,-).
That is, v is diversified if no row in v is dominated by an affine combination of three (or fewer)
other rows. The axioms used for the theorem are:

A1* Order. Forevery I €D, 7, is complete and transitive on A.

A2* Combination. Forevery I, J € D and every a,b € A, ifa ;b (a >; b) and a 7~ b, then
azZirgb(a>riyb).
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A3* Archimedean Axiom. For every I, J € D and every a,b € A, if a > b, then there exists
[ € N such thata >;;47 b.

A4* Diversity. For every list (a, b, ¢, d) of distinct elements of A there exists / € D such that
a>;b>yc>yd. If |A| <4, then for any strict ordering of the elements of A there exists / € D
such that >; is that ordering.

Theorem 2. Let there be given X, A, and {7 1};ep as above. Then the following two statements
are equivalent:

(i) {Z1}rep satisfy Al*-A4*;
(ii) There is a diversified matrix v : A x X — R such that:

for every I € D and every a, b € A,
G6) Yaxzib iff Y I@v@.x) =Y I(x)vb,x).

xeX xeX

Furthermore, in this case the matrix v is unique in the following sense: v and u both satisfy
(xx) iff there are a scalar . > 0, a matrix B : A x X — R with identical rows (i.e., with constant
columns) such that u = Av + f.

A.2. Proof of Theorem 1

The strategy of the proof is as follows. We define a set of auxiliary relations, {ZZ}}; on A,
interpreted as follows: a /7, b suggests that the observations contained in I are at least as proba-
bly under a than under b. Thus, if we were to ignore complexity considerations or other a priori
biases for one theory over the other, we would expect a to be more plausible than b given [.
The relation 7/, will correspond to the summation of the v entries in our representation. That is,

a 51 b will turn out to be equivalent to

Z I (xX)v(a,x) > Z I(x)v(b, x)

xeX xeX

which is the numerical representation we seek if the w’s are all set to zero.

The first step in the proof consists of showing that the relations {27} satisfy the conditions of
Theorem 2. This identifies the matrix v up to the transformations allowed by Theorem 2, namely,
up to addition of constants to columns and multiplication of the entire matrix by a positive num-
ber. We fix one such representing matrix v. This step does not make use of axiom AS.

The next step in the proof is to show that for every two theories a, b there exists a number a?,
with «?® = —a?? such that, for every I, a 7 b iff

a4 Z I(x)v(a,x) > Z I (x)v(b, x),
xeX xeX

which is the desired representation for the case of two theories. Finally, the we wish to prove that
for each theory a there exists a number w(a) such that, for every a, b, a® = w(a) — w(b).
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A.2.1. Step 1: The matrix v
Fora,b € A and I € D, define a >/I b if there exists J € D such that b ;@ and a > ;41 b.

That is, a >, b if the evidence contained in /I is sufficient to reverse the ordering between a
and b.

Lemma 1. For a,b € A and I €D, it is impossible that both a >, b and b >, a.

Proof. Assume, to the contrary, that there are J, K € D such that b >~y a, a =;+; b, a 7k b,
and b >giya.Since J + (K +1)=(J + )+ K, this contradicts A2. O

Lemma 2. For a,b € A and I €D, if there exists J € D such that b >y a and a 7~ 4+ b, then
a>j421 b.

Proof. If not, b 7 j47; a, and then by defining K =L =J + [ and I’ = J + 21, we obtain
aZgb,azyb,bzpa,b>yawhile K+ L=1+J=2J+2I, acontradiction to A2. O

Lemma 3. Fora,becAand I €D, a >’I b iff there exists J € D such thatb >=j a and a 7 j11 b.

Proof. Assume first that there exists J € D such that b >; a and a 77 j4; b. If a > ;4 b, then
a >/I b follows from the definition of >/I. Otherwise, a ~ . b. Define J' = J + I, and note that
bz a. But Lemma 2 implies that a > j/,; b, which yields a >, b.

Conversely, assume that a >, b. By A4 there exists L such that b > a. By A3, there exists k
such that a >z b. Let k¥’ be the minimal £ > 1 such that a =7 147 b and define J = L +
(k—DI. O

Define, for a,b € A and I € D, a ~/ b if neither a >, b nor b >, a. Clearly, ~/ is reflexive
and symmetric. We observe the following.

Lemma 4. Fora,b € A and I € D, the following are equivalent:
(i) a~ b,
(1) forevery J € D
a E_J‘] b = a i.]—‘,—l b’
(iii) for every J €D
azsb & azZj+b
and

bzra << bZyyra.

Proof. We prove that (i) = (iii) = (ii) = (i). Since (iii) = (ii) is obvious, only two steps are
needed.

To prove that (i) = (iii), assume that a ~, b. Consider J e D. If a 277 b but a 2y b fails to
hold, then b > ;1 a and b >, a by definition of >, contradictinga ~, b.Ifa ZZj1; bbuta ;b
doesn’t hold, we have b >; a and then Lemma 3 implies that a >, b, again a contradiction.
Similarly, b ~;a < b Zj41 a.
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To prove that (ii) = (i), assume that for every J e D we havea ;b < a Zy1 1 b. If a~ b
does not hold, then either a >, b or b >, a. If b >/, a, by definition of >/, there exists J with
a Zybbuth > a,contradicting a Z; b = a 27741 b. If, however, a >/, b, by Lemma 3 there
exists J such that b >; a and a 7~ b, a contradictionto b >~y ;a=b >~ ;a. O

Lemma S. For a,b € A and I € D, the following are equivalent:

(i) a > b,

(ii) there exist J € D and k > 1 such that b 7"y a and a > j+x1 b,
(iii) there exist J € D and k > 1 such that b >y a and a 7 j+x1 b,
(iv) for every J € D there exists k > 0 such that for every | >0

a>=jrb & 1>k

Proof. We show that (i) is equivalent to each of (ii), (iii), and (iv).

We begin with (i) < (ii). If (i) holds, then (ii) holds for £ = 1. Conversely, if (i1) holds, let
I =min{l | a > j4;; b}, where [ > 0 because b 7 ; a. Denoting J' = J 4+ ({ —1)I wehaveb =, a
buta >4 b, thatis, a > b.

The proof that (i) < (iii) is almost identical, defining [ = min{/ | a 7~ ;4,7 b} and invoking
Lemma 3.

We now show (i) < (iv). Assume (i) holds. Given J, consider N ={l > 0| a >4 b}.
By A3, N # (. Let k be the minimal element in N. If, for [ > k, b 77 j4;; a, then, by the im-
plication (iii) = (i), we obtain b >, a, a contradiction to Lemma 1. Hence a > ;i b iff I > k.

Conversely, assume that (iv) holds. By A4 there exists J such that b >; a. Let k be defined
by (iv), and use the implication (i) = (1). O

Define a 72, bif a >, b ora ~/ b.
Lemma 6. Fora,be Aand 1, J €D

() a>ybanda 7}, bimplya>;ik1 b forallk >1,
(i) azmybanda >’1bimplya >j4k1 bforallk > 1,
(1i1) aNJbandaN’Ibimplya~1+k1 b forallk > 1,
(iv) azZybanda )} bimply a Z k1 b forallk > 1,
(v) a~jbanda~jyx b for some k > 1 implyaw/l b.

Proof. (i) Assume a >; b and a 7 b. If for some k > 1, b 27 j 41 a, then Lemma 5 ((iii) = (i))
implies that b >, a, a contradiction.

(i1) If a > b, the conclusion follows from (i). Assume, then, that a ~; b and a >’I b. By
Lemma 5 ((ii) = (i)) we know that a 7~ b for all k > 1. Also, Lemma 5 ((i) = (iv)) implies
that there exists k > 1 such that for every [ > 0, a > j4;7 b < [ > k and therefore a ~j1;1 b &
|l <k.If k>1,consider J, I'=J + kI, K=J +1,and L =J + (k — 1)I. Observe that
J+1'=K+L=2J+kI.Moreover,a ~; b, a~gb,a~y b,buta>p b, in contradiction
to A2.

(ii1) follows from Lemma 4.

(iv) follows from (i)—(iii).

(v) follows from (i1). O
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We now show that {7} }; satisfy axioms A1*—A4* of Theorem 2.
Lemma 7. For every I € D, z’] is a weak order.

Proof. Completeness of 2, follows from its definition. We need to prove transitivity. Assume
that a, b, ¢ € A satisfy a 22, b and b 2, ¢, and show a 7/, c. We distinguish between four cases:

Case 1:a > band b >/ c.

By A4, there exists J such that ¢ >; b > a. Since a >/, b, by Lemma 5 there exists k1 such
that a > j4;7 b for [ > ky. Similarity, b >/I ¢ implies that there exists kp such that b > ;;; ¢ for
[ > k>. Hence, there exists [ (for instance, [ = max(ky, k7)) such that a >;.4;;7 b > j1;7 ¢, hence
a>jc.ByLemmas5, a > c.

Case2:a >y band b~/ c.

By A4, there exists J such that b >; ¢ >; a. Let k be such that a > ;47 b. By Lemma 4,
b N/I c and b > c imply that b > ;4 c. By transitivity, a > j4+x; ¢, and a >/1 ¢ follows from
Lemma 5.

Case 3:a~" band b > c.

By A4, there exists J such that ¢ >; a >; b. Let k be such that b > ;;; c. By Lemma 4,
a N/I b and a >; b imply that a > ;7 b. Hence a > j ¢ ¢, and a >/I ¢ follows as above.

Case 4:a~ band b~/ c.

If a >, c, then applying Case 2 (with the roles of b and ¢ reversed) implies a >, b, a contra-
diction. Similarly, ¢ >, @ would imply ¢ > b. O

Lemma 8. {7/ }; satisfy the Combination Axiom A2*.

Proof. We need to show that, for every I/, J € D and every a,b € A, if a 7}, b (a >, b) and
aZ b, thenaZ), ,b(a>} ;b).

Assume first that a ~} b and a ~; b. In this case, Lemma 4 implies that, for every K,
a” xkb<sarzkgyrband a “g b < a Zgy; b. We wish to show that, for every K € D,
aZk b4 aZgyi+y b, thus establishing (by Lemma 4 again) that a ~7 ; b.

Let there be given such K. If a g b, we have a k1 b, and, by considering K' = K + I,
also a g +7+7 b. Conversely, if a Z— g+ 747 b but a 7_g b fails to hold, we have b >k a. In this
case b >y a (orelse a >’I b) and then also b >k 747 a (otherwise a >/J b), a contradiction.
It follows that the combination axiom holds in this case.

We now turn to the case in which one of the relations a 7} b and a 7/, b is strict. Without
loss of generality, assume that a >/I b. Hence there exists K € D such that b 7Zg a buta >k b.
If b Zkx+1+7 a, then b >’ a by Lemma 3. Hence, a >g 7+ b. Combined with b ZZx a, this
impliesa >}, ; b. O

Lemma 9. (7} }; satisfy the Archimedean Axiom A3*.

Proof. We need to show that, for every I, J € D and every a,b € A, if a >’I b, then there exists
[ € N such that a >;I+J b. Consider K with b =g a. If a 7k b, then by Lemma 6(ii) (for
k =1) we have a >k 41 b, and it follows that a >’I+J b, 1.e., the conclusion is obtained for
[ = 1. Otherwise, we have b > g1 a. In this case, apply Lemma 5 ((i) = (iv) and J' = K + J) to
conclude that there exists / > 1 such that a > ;47 b, which, combined with b >k a, implies
thata >, , b. O
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Lemma 10. {Z}; satisfy the Diversity Axiom A4*.

Proof. Assume first that |[A| > 4. (The proof for the case |A| < 4 is identical.) We need to show
that, for every list (a, b, ¢, d) of distinct elements of A there exists / € D such that a >/1 b >/1
c >’ d. By A4 there exists J such that d >; ¢ >; b > a. Using A4 again, this time for J, we
conclude that there exists K €D, K > J suchthata =g b =g ¢ =g d. Since K > J, we can
define ] = K — J € D. Observe thata >, b >, ¢ > d. O

We therefore conclude that {7}}; satisfy axioms A1*—A4*. By Theorem 2, there exists a
diversified matrix v : A x X — R such that:

forevery I ¢ D and every a, b € A,
Gk) Yaxpb iff ) I@)va,x) =) I(x)vb,x).
xeX xeX

Furthermore, the matrix v is unique in the following sense: v and u both satisfy (x) iff there are
a scalar A > 0, a matrix 8 : A x X — R with identical rows (i.e., with constant columns) such
that u = Av 4 B. We fix a particular matrix v for the rest of the existence proof.

A.2.2. Step 2: Representation for pairs of theories
In order to uniquely identify the constants «®” such that, for every I,

axzrb iff o+ T@wa.x) =) @b, x), 2)
xeX xeX

and to further find a vector w such that «®® = w(a) — w(b), we need to use A5. (See the following
subsection for examples illustrating the difficulties one encounters in the absence of AS.)
Fix a, b € A. Given matrix v, define

vap(1) =) I (x)v(a,x) = ) 1(x)v(b,x) €R. 3)
xeX xeX
Evidently, v,y (1) = —vp,(1). Observe that, by (sx), v,p (1) = (>)0if and only if a i’l (>’1) b.
Using this notation, the representation we seek is
arib iff a® +vu(I) =0, (4)
Choose I € D with a ~; b. Define

a® = —vp(I).

Define also ¢®? = —a??. We wish to show that this «? satisfies (4).
Lemma 11. For every J € D,
(1) vap(J) + a®? > 0 implies that a > ; b,
(i) vap(J) + a® =0 implies that a ~ b,

(iii) vap(J) +a?® <0 implies that b > a.

Proof. Let there be given J € D. Consider K = I + J. By A5, there exists L € D> g such that
a~rb.SinceK>I1,JandL>K,I'=L—-1,J/=L—J eD.
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Since a ~; b and a ~ b, Lemma 6(v) implies that a N/I, b. Hence v, (I') = 0. Also,
Vapb (L) = vap (1) 4+ vap(I") = vy (I). We now separate the three cases.

(i) The assumption on J is that ve,(J) > vep (). Since vap (1) = vap (L) = vap(J) + vap(J),
we obtain v, (J') < 0, that is, b >/J/ a.If b -y a, Lemma 6(ii) would imply a > b, a contra-
diction. Hence a > b is established.

(ii) In this case, vap(J) = vap(I) and it follows that ve(J') =0 and b~/ a. If a >; b
(b>ya),a>r b (b>r a)would follow by Lemma 6(i). Hence a ~; b.

(iii) If vap(J) < —a®? = v (1), vap(J') > 0 and a >", b. If a 7y b, Lemma 6(ii) would
imply a >1 b,hence b >;a. O

Observe that we also have b ~; a iff ab? + vy, (1) >=0.
Finally, we note that, given the matrix v, «“® and «?® are unique. Moreover, if u = Av + f8

also satisfies (+*), the constants «%” corresponding to u is a%? = Aa®’.

A.2.3. Step 3: Representation for all theories
Given v satisfying (), (b )a.bes are defined as above. Consider a triple a, b, c € A. Let |
satisfy a ~7 b ~ c. Then, by Lemma 11,

a® 4+ v, (1) =0,
@b + vp (1) =0,
a4+ v.,(1)=0.

Summing up, and noticing that, for every a, b, ¢ and every I,
Vab (1) + vpe(I) + vea(I) =0
we obtain that
a® b 4o =0.
Fix a € A and set w(a) = 0. For b # a define w(b) = w(a) — «®. Thus,
a? = w(a) — w(b).

For b, ¢ # a, observe that

Otbc — _aab —
= (w(b) —w(@) + (w(a) — w(c))
=w(b) —w(c).

Hence, for all a, b € A,
azib iff w@+ Y Ixvax)>wb)+ Y Ixvb,x).
xeX xeX

Clearly, the vector w is unique up to a shift by an additive constant, leaving the differences
w(a) — wb) = o unchanged. This completes the proof of the theorem.
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A.3. Necessity and counter-examples

The theorem does not provide an exact characterization of the collections of relations {*~;};ep
that satisfy A1-AS. While axioms A1-A3 are clearly necessary for the representation (x),
A4 and AS are not.

As shown in Theorem 2, A4 holds only if the matrix v is diversified. Correspondingly, if
{7 1}1ep satisfy A1-AS, the resulting matrix v will also be diversified.

However, not every diversified v will guarantee that the relations {>~;};<p defined by v and a
vector w via (x) will also satisfy AS. In fact, the matrix-vector pairs (v, w) that guarantee A5 as
well are precisely those that satisfy the following condition:

(v, w)-solvability. For every a, b, c € A there exists / € D such that

w(a) + Z 1 (xX)v(a,x) = wb) + Z 1(x)v(b, x)

xeX xeX

=w(c) + Z I(x)v(c, x).

xeX

Adding diversity of v and (v, w)-solvability, one may obtain a version of Theorem 1 which
is a precise characterization. Since the main point of the theorem from a conceptual viewpoint is
the sufficiency result, and since it is also the less trivial direction, we chose to omit this condition
from the statement of the theorem, leaving it with only one implication.

To see that (v, w)-solvability is not too restrictive, consider the following condition: for every
ay,az, as € A there are x1, x2, x3 € X such that all the numbers {w(a;), v(a;, x;)};, j<3 are ratio-
nal (or, to be precise, generate only rational ratios).

However, dropping AS, our result may not hold. In the following, we retain the following
notation from the proof: given {>~;};, the relations { ,>;/I }1 derived from them as above. For given
A and X, v denotes a real-valued matrix, v : A x X — R. In the following examples, v will
represent the relations {EJ’I }1 by (xx). We also retain the notation

vap (1) = Z I(x)v(a,x)— Z I(x)v(b,x) eR

xeX xeX

for/ €D, a,beA.
We first show that in the absence of A5 uniqueness may fail.

Example 1. Let A = {a, b}, X = {x, y} and

(%)

For every I, define a >; b if v, (1) > 0 (i.e., I(x) > I(y)) and b > a otherwise. In this case,
{>1}1eD can be represented by (v, w) via (x) for v above and for every w with

w(a) —w(b) €(0,1).
That is, the representation is not unique. Using the representation, we know that {~~;};<p satisfy

A1-A3, and A4 can readily be verified. Clearly, AS is violated in this example.

Second, the following example shows that without A5 representation as in (1) may not be
possible:
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Example 2. Let A = {a, b}, X = {x, y} and

=0 v2)

For every I, define a >; b if v, (1) > 0 and b > a otherwise.

Observe that, for all I # 0, vy, (1) # 0. Hence one may use the matrix v and the constants
w(a) = w(b) =0 to represent {<5;};0 via (x). However, (v, w) cannot represent all of {ZZ7}/ep
because v,,(0) =0, hence a >q b, but v,;,(0) = w((b) — w(a).

We claim that no other pair, (v', w’), may represent {7~ };ep via (x). To see this, assume that
such a pair (v, w’) is given. Normalize v’ such that the minimal value in each column is 0 and
the maximal value in column x is 1. Hence, v/ = v. Observe that

range(vyp) = {vab(l) | I e ]D)}
={k—IN2 |kl €Zy)

is dense in R. If w’(b) — w’(a) > 0, there exists I # 0 such that v, (1) € (0, w'(b) — w'(a)) and
then (v, w’) cannot represent 2~; (because (v, w) does). Similarly, w’(b) — w’(a) < 0 implies the
existence of I # 0 with vy, (1) € (w'(b) — w'(a), 0) and the same conclusion follows.

To conclude the proof we need to verify that {>~;};cp satisfy A1-A4. In the presence of only
two alternatives, Al only means completeness, which is directly verified from the definition.
To see that A2 holds, assume that I, J, K, L are given, with I 4+ J = K + L. Assume further
thata -y b and a -y b, but b 7k a and b > a. Observe that a 2~; b, which is only possible if
a > b, implies that v, (1) > 0, with a strict equality unless / = 0. Hence a 7~y b and a 7~ ; b im-
ply vap (1), vap(J) = 0,and b g a, b > a imply v, (K), vap(L) < 0. Since vap (1) 4+ vap(J) =
Vab (K ) 4+ v4p (L), this s possible only if v,y (1) = vap(J) = vap(K) = v4p (L) = 0, and therefore
I=J=K=L=0.Butthen b g a and b > a can’t hold. To see that A3 holds, assume that
I,J €D satisfty b >; a and a 77 j41 b. In this case, I # 0 and v, (1) > 0 follows. Hence, for
every K € D there exists / € N such that a >g_;; b. Finally, A4 clearly holds because no row
in v dominates another.
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