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Abstract

For an incomplete-information model of public-good provision with interim

participation constraints, we show that e¢ cient outcomes can be approx-

imated, with approximately full surplus extraction, when there are many

agents and each agent is informationally small. The result holds even if

agents� payo¤s cannot be unambiguously inferred from their beliefs, i.e.,

even if the so-called BDP property (�Beliefs Determine Preferences�) of

Neeman (2004) does not hold. The contrary result of Neeman (2004) rests

on an implicit uniformity requirement that is incompatible with the notion

that agents are informationally small because there are many other agents

who have information about them.

JEL Classi�cation: D40, D44, D80, D82

Keywords: surplus extraction, mechanism design, BDP, informational

smallness, correlated information.



1 Introduction

A central theme of the economics of information concerns the ability of

agents to earn rents because they have private information that cannot be

exploited unless they are given an information rent. Thus, a seller can-

not appropriate the entire surplus from a sale if the potential buyers have

independent private values.

However, Crémer and McLean (1988) have shown that, in models with

correlated private values, information rents can be made to disappear so

that, if there are two or more potential buyers, the seller can extract all

surplus. Crémer and McLean (1988) assumed �nite type sets, but McAfee

and Reny (1992) have extended their result to models with a continuum of

types.

The analysis of Crémer and McLean (1988) has been challenged by Nee-

man (2004) and Heifetz and Neeman (2006). They show that the conclusions

of Crémer and McLean (1988) depend on a peculiar property of their spec-

i�cation of information. Under this property, which they summarize by the

phrase "beliefs determine preferences" (BDP), any agent�s payo¤ can be

precisely inferred from his beliefs about the rest of the world. Thus, if there

are two states of the world in which an agent has di¤erent payo¤s, then, in

these two states, he must also have di¤erent beliefs about the rest of the

world. Heifetz and Neeman (2006) show that, without this property, full

surplus extraction is impossible. They also suggest that failures of BDP are

generic.

Neeman (2004) goes one step further and argues that, with certain fail-

ures of BDP, it may not even be possible to extract any signi�cant surplus

at all. Thus, for a model of voluntary public-good provision with interim

participation constraints, he shows that, for certain failures of BDP, feasible

and incentive-compatible public-good provision levels are close to zero when

there are many agents. His version of public-good provision with corre-

lated private values thus behaves like the independent-private-values model

of Mailath and Postlewaite (1990).

We want to take issue with this claim. In a world with correlated types,

some information about a given agent�s payo¤ can be obtained from the
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messages that are sent by other agents. This information may be used

to discipline the agent and to limit his information rent. In particular,

therefore, an agent�s ability to extract information rents is small if the agent

is informationally small, i.e. if the agent�s information does not add much

to the information that can be obtained from other agents. This is likely to

be the case when there are many agents and the aggregate information of

all agents but one provides a fairly precise estimate of the remaining agent�s

information. Neeman (2004) neglects the possibility that such additional

information may reduce the individual agents�ability to extract information

rents.

To substantiate our criticism, we study a version of the public-good pro-

vision problem in which all agents have information about all other agents,

and we show that the information e¤ects of having more participants out-

weigh the free-rider e¤ects that drive the results of Mailath and Postlewaite

(1990) or Neeman (2004). If the number of participants is su¢ ciently large,

it is possible to implement an approximately e¢ cient, individually rational

allocation with a positive level of public-good provision.

Our criticism should not be read as saying that Neeman�s theorem is

invalid. His theorem is valid, but his speci�cation of failures of BDP involves

an implicit additional assumption that we �nd problematic. In Neeman�s

analysis, BDP fails in such a way that, for each agent and each state of the

world in which the agent gets a positive payo¤ from the public good, there

is another state of the world in which the agent has the same beliefs, but

the payo¤ he draws from the public good is zero. Indeed, he assumes that

the conditional probability of the zero-payo¤ state given the agent�s beliefs

is bounded away from zero, regardless of what the agent�s beliefs might be

and regardless of how many other agents there are in the economy.

The assumption that failures of BDP are independent of the number

of participants is problematic. This requirement excludes models in which

each agent has a vector of noisy signals about the other agents so that,

if the number of agents is large, the aggregate of all agents�noisy signals

provides very precise information about any one agent�s payo¤ parameters.

In such models, the agent�s beliefs about the average of the other agents�

noisy signals about his own payo¤ parameter re�ect the value of the payo¤
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parameter itself. If the agent also has information about the noise in the

other agents�signals, BDP may still fail because a given set of beliefs may be

compatible with multiple combinations of payo¤s parameters and additional

information. However, the extent of the failure depends on how many other

agents there are: If there are many of them and the noise in their signals is

independent, the association of the agent�s beliefs about the average of the

other agents�noisy signals about his own payo¤ parameter with the value

of the payo¤ parameter itself will be very close, and the conditional proba-

bilities of his payo¤ parameter given his beliefs will be close to degenerate.

Failures of BDP are less and less important when the number of participants

becomes large.

Our analysis is inspired by the literature on informational smallness.1

Heuristically, an agent is informationally small if, even without the agent�s

private information, it is possible to implement at least approximately e¢ -

cient outcomes. In the literature, this concept of informational smallness is

related to the role played by the individual agent�s private information in

determining aggregate outcomes. Thus, in a model of public-good provision,

an agent is informationally small in this sense if his in�uence on the decision

to provide the public good or not is small, e.g., because his information has

not much of an e¤ect on the aggregate valuation for the public good. In our

analysis, by contrast, informational smallness also concerns the role played

by the individual agent�s private information in determining the amount that

he can be made to contribute to the public good. Without informational

smallness, information rents might be such that, under the given partici-

pation constraints, it would be impossible to raise any signi�cant funds for

public-good provision at all.

The mechanisms that we use to implement approximately e¢ cient, in-

dividually rational allocations are di¤erent from the mechanisms used by

Crémer and McLean (1988) or, for that matter, McLean and Postlewaite

(2002). In Crémer and McLean (1988), di¤erences in beliefs induce di¤er-

ences in attitudes towards bets or, more generally, state-contingent payment

schemes. These di¤erences in attitudes towards state-contingent payment

1Palfrey and Srivastava (1986), Gul and Postlewaite (1992), McLean and Postlewaite
(2002).
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schemes are used to alleviate incentive constraints. If di¤erences in payo¤pa-

rameters are aligned with di¤erences in beliefs, it is possible to extract rents,

at least in expected-value terms, by providing agents with type-dependent

state-contingent payment schemes that are designed in such a way that any

one type�s expected payment re�ects this type�s willingness to pay and incen-

tive compatibility is ensured by tailoring the state-contingencies of payments

to the di¤erent beliefs of the di¤erent types.2

By contrast, we rely on scoring rules that directly penalize agents if their

reports about their own payo¤s di¤er too widely from the average reports of

other agents about their payo¤s. As discussed by Miller, Pratt, Zeckhauser,

and Johnson (2007) such scoring rules induce agents to be approximately

honest in reporting their payo¤s if the weights given to the scoring com-

ponents in payment rules are large. In principle, such large weights given

to scoring components in payment rules are ine¢ cient because they induce

agents to su¤er penalties if the other agents� information about them is

noisy. However, when there are many other agents and the noise terms in

their signals are conditionally independent, the law of large numbers im-

plies that an average of these signals involves little noise. In this case, the

e¢ ciency loss from having a large weight given to scoring components in

payment rules will be negligible.

Our analysis should not be interpreted as saying that informational

smallness is of practical importance in dealing with problems of private in-

formation. Our sole objective is to clarify the relation between the di¤erent

concepts, informational smallness and failures of BDP, and their implica-

tions for the ability of agents to obtain information rents.

In the following, Section 2 lays out the basic framework of our analysis,

the underlying economic model, as well as the speci�cation of information

and beliefs. Section 3 provides our main result, showing that �rst-best

implementation can be approximated if the economy is large and each agent

is informationally small. In the concluding remarks in Section 4, we consider

2The BDP property is needed for such a scheme to eliminate all information rents: If
there are two states of the world in an agent has di¤erent payo¤s and the same beliefs about
the rest of the world, there is no way to prevent the agent from earning an information
rent corresponding to the di¤erence between his payo¤s in these two states of the world.
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the relation between our result and the literature on informational smallness.

In this section, we also return to the question of what precisely is the relation

between informational smallness and BDP.

2 The Basic Framework

2.1 The Underlying Economic Model

We consider a model with one private good and one public good: The public

good comes as a single indivisible unit. Installing it involves a per capita

cost equal to K > 0 units of the private good. There are n agents i = 1; ::; n:

Agent i has a quasi-linear utility function

Ui(Q; �i;mi) = �i Q+mi; (1)

where Q 2 f0; 1g is the level of public-good provision, mi is the amount of

private-good consumption, and �i is a payo¤ parameter. Feasibility consid-

erations impose the constraint

nK Q+

nX
i=1

mi � nY; (2)

where nY is an exogenously given measure of aggregate resource availability.

If the allocation (Q;m1; :::mI) is to be ex post Pareto e¢ cient, one must

therefore have

Q = 1 if
nX
i=1

�i > nK; (3)

and

Q = 0 if
nX
i=1

�i < nK; (4)

To implement an allocation that is ex post e¢ cient, one needs to knowPn
i=1 �i: However, for each i, the preference parameter �i is private infor-

mation of agent i: The question is to what extent this information can be

extracted and used to determine public-good provision.
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2.2 Information and Beliefs

To model information, we assume that there is some underlying space 
 of

possible states of the world, and that all beliefs are derived from a common

prior F on this space. The payo¤ parameter �i of agent i is the realization

of a random variable ~�i on 
: The agent also observes two sets of signals,

�rst-order signals sij ; j 6= i; and second-order signals �ij ; j 6= i; with the in-
terpretation that the �rst-order signals contain information about the other

agents�payo¤ parameters, and the second-order signals contain information

about the other agents��rst-order signals about his own payo¤ parameter.

The sij , �
i
j are the realizations of random variables ~sij , ~�

i
j such that, for

j 6= i;
~sij =

~�j + ~"
i
j (5)

and

~�ij = ~s
j
i + ~�

i
j : (6)

We assume that the random variables ~�1; :::; ~�n take values in a compact

subset � � R: They are independent and identically distributed, and the
mean E~�i exceeds the per-capita public-good provision cost K. We also

assume that the random variables ~sij ; i = 1; :::; n; j 6= i; take values in a

compact set S � R: Conditional on ~�1; :::; ~�n; the random variables ~"ij and

~�ij ; i = 1; :::; n; j 6= i; are independent, with means E
h
~"ij j~�1; :::; ~�n

i
= 0 and

E
h
~�ij j~�1; :::; ~�n

i
= 0: Thus, E

h
~sij j~�i

i
= ~�i and E

h
~�ij j~s

j
i

i
= ~sji for all i and

all j 6= i:3

In this setting, one can think of the type of agent i as a vector

ti = (�i; s
i
1; :::s

i
n; �

i
1; :::; �

i
n); (7)

of payo¤parameters and signal observations. Given the information that the

random variables ~�i, ~si1; :::; ~s
i
n, ~�

i
1; :::; ~�

i
n take the values �i; s

i
1; :::s

i
n; �

i
1; :::; �

i
n;

the agent updates his expectations, replacing the prior F by a regular con-

ditional distribution on 
 given this information. Denote this conditional

3We might actually replace (5) and (6) by the assumption that E
h
~sij j~�i

i
= ~�i and

E
�
~�ij j~sji

�
= ~sji for all i and all j 6= i and that the disturbance terms ~sij �E

h
~sij j~�i

i
; j 6= i,

are independent.
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distribution as Bi(ti): The agent�s conditional beliefs about the other agents

are then given by the joint distribution of the random variables ~tj ; j 6= i;

that is induced by the distribution Bi(ti): We denote this conditional joint

distribution of the random variables ~tj ; j 6= i; as bi(ti):

2.3 The BDP Property

As mentioned in the introduction, the analysis of Crémer and McLean (1988)

rests on the observation that people�s willingness to accept bets depends on

their beliefs. Such bets can be used to extract the belief bi(ti) of agent i:

If this information can be used to infer the agent�s payo¤ type �i; there is

no need to provide agent i with a rent for divulging �i: Neeman (2004) has

referred to this feature of the Crémer and McLean (1988) model as the BDP

property ("beliefs determine preferences"). In our setting, with a common

prior on the underlying probability space, the BDP property is a property

of the prior F and the random variables ~t1; :::~tn: We say that F and ~t1; :::~tn
exhibit the BDP property if, for i = 1; :::; n; one has

E[~�i(�)jbi(~ti)] = ~�i; (8)

and

V ar[~�i(�)jbi(~ti)] = E
h
(~�i � E[~�i(�)jbi(~ti)])2jbi(~ti)

i
= 0: (9)

F -almost surely, so that, the distribution of ~�i(�) conditional on the event
b(~ti) = bi is degenerate and assigns all mass to a single value �i; thus,
~�i(!) = �i for any ! such that b(~ti(!)) = bi:

In our model, BDP does not generally hold. Speci�cally, under our

independence assumptions, we �nd that for each ~tj = (~�j ; ~s
j
1; :::; ~s

j
n):

� Agent i�s conditional beliefs about ~�j are determined by ~sij ; they have
nothing to do with ~�i:

� Agent i�s conditional beliefs about ~sji are determined by ~�i and ~�ij ; it
is not generally possible to disentangle the in�uence of ~�i and ~�ij and

to infer ~�i from the agent�s beliefs about ~sji :

� Agent i�s conditional beliefs about ~sjk, for k 6= i; are equal to his prior
beliefs; they have nothing to do with ~�i:
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� Agent i�s conditional beliefs about ~�jk, for any k, are equal to his prior
beliefs; in particular, they have nothing to do with ~�i:

3 An Implementation Theorem

Because ~�1; :::; ~�n are independent and identically distributed, with E~�i > K;

we know that, if n is large, then, with a probability close to one, it is e¢ cient

for the public to be provided. In the following, we show that this e¢ cient

outcome can be approximately achieved if n is large. Moreover, under the

mechanism we consider, each agent�s interim expectation of the bene�ts

from participating is strictly positive. These �ndings will stand in contrast

to the result in Neeman (2004), where, in the absence of BDP, participation

constraints preclude a positive level of public-good provision.

We consider direct mechanisms that do not induce truthtelling but only

"-truthtelling. We consider a class of such mechanisms parametrized by two

parameters � > 0 and w > 0; as well as the number of participants n: Each

participant i is asked to submit a report

t̂i = (�̂i; ŝ
i
1; :::ŝ

i
n; �̂

i
1; :::; �̂

i
n)

about his type. Given the reports t̂1; :::; t̂n; the probability of public-good

provision is �xed at

q(t̂1; :::; t̂nj�; w; n) = g
 
1

�

 
1

n

X
k

�̂k �K
!!

; (10)

where g(�) is a twice continuously di¤erentiable nondecreasing function sat-
isfying

g(x) = 0 if x � 0 and g(x) = 1 if x � 1: (11)

Payments are conditioned on whether the public good is provided or not. If

the public good is not provided, agent i pays

p0i (t̂1; :::; t̂nj�; w; n) =
w

2

0@�̂i � 1

n� 2
X

j 6=i;i+1
ŝji

1A2�w
2

0@�̂i�1 � 1

n� 2
X

j 6=i�1;i
ŝji�1

1A2 ;
(12)
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where, as usual, the indices i� 1 and i+ 1 are to be understood modulo n;
with n + 1 := 1; and 1 � 1 := n: If the public good is provided, the agent

pays

p1i (t̂1; :::; t̂nj�; w; n) = p0i (t̂1; :::; t̂nj�; w; n) + �̂i �

0@ 1
n

nX
j=1

�̂j �K

1A : (13)

Before we proceed with the analysis, we make a few comments to explain

the mechanism.

� The mechanism makes public-good provision depend only on the re-

ports �̂i that agents send about their own payo¤ parameters. From

(10) and (11), one infers that

q(t̂1; :::; t̂nj�; w; n) = 0 if
1

n

X
k

�̂k � K (14)

and

q(t̂1; :::; t̂nj�; w; n) = 1 if
1

n

X
k

�̂k � K + �: (15)

The public good is provided for sure if the average of the reports

�̂1; :::; �̂n exceeds K + �; it is for sure not provided if the average of

these reports is less than K: Upon comparing (14) and (15) with (3)

and (4), one sees that the provision rule (10) comes close to imple-

menting �rst-best if � is close to zero and if the participants�reports

about their payo¤s are close to their actual payo¤s. The function g(�)
is introduced to ensure that the public-good provision rule and the

payment functions are twice continuously di¤erentiable.

� Each payment function has a public-good component and a scoring
component. The parameter w indicates the weight of the scoring com-

ponent. Each of the two components of the payment function has a

targeted part and a budget-balancing part.

� The targeted part of the public-good component requires agent i to
pay �̂i; his reported bene�t from the public good, if the public good is

provided. The budget-balancing part provides the agent with a share

9



1
n of the surplus

Pn
j=1 �̂j � nK of the sum of targeted payments over

provision costs if the public good is provided. If the public good is not

provided, the public-good component of the payment function is zero.

� The targeted part of the scoring component of the payment function
requires agent i to pay w

2 times
�
�̂i � 1

n�2
P
j 6=i;i+1 ŝ

j
i

�2
; the squared

deviation of his report �̂i about his payo¤ parameter from the cross-

section average of the reports of agents other than i and i+1 about the

signals they have received about his payo¤ parameter. The budget-

balancing part makes agent i the recipient of the targeted part of the

scoring component of agent i� 1�s payment.

� The mechanism makes no use of the messages �̂ij that agents send

about the signals they have received about the signals that other agents

have about them. E¢ ciency could presumably be improved if this

information was also used.

Turning to the actual analysis, we �rst note that, for any �; w; and

n; regardless of what the reports t̂1; :::; t̂n may be, the mechanism that is

determined by �; w; and n has a balanced budget.

Lemma 3.1 For any �; w; and n; the payment functions p0i (�j�; w; n); p1i (�j�; w; n);
i = 1; :::; n; satisfy X

i

p0i (t̂1; :::; t̂nj�; w; n) = 0 (16)

and X
i

p1i (t̂1; :::; t̂nj�; w; n) = nK (17)

for all t̂1; :::; t̂n:

Proof. (16) follows immediately from (12). From (13) and (16), we also

have X
i

p1i (t̂1; :::; t̂nj�; w; n) =
X
i

�̂i �
X
j

�̂j + nK = nK:

10



Turning to agents� payo¤s, we assume that each agent has an initial

endowment Y: If a mechanism for public-good provision requires the agent

to pay the amount pi, his private-good consumption is reduced from Y to

mi = Y � pi: His utility is then �iQ+ Y � pi, his net payo¤ relative to the
situation without a mechanism for public-good provision is �iQ� pi: Thus,
under the mechanisms that we are considering, agent i�s net payo¤ function

is given by the equation

ui(t̂1; :::; t̂njti; �; w; n) = q(t̂1; :::; t̂nj�; w; n)�i � pi(t̂1; :::; t̂nj�; w; n); (18)

where

pi(t̂1; :::; t̂nj�; w; n) = (1� q(t̂1; :::; t̂nj�; w; n))p0i (t̂1; :::; t̂nj�; w; n) (19)
+q(t̂1; :::; t̂nj�; w; n)p1i (t̂1; :::; t̂nj�; w; n)

is the agent�s expected payment. Using (10) and (19), we compute

ui(t̂1; :::; t̂njti; �; w; n)

= g

0@1
�

0@ 1
n

X
j

�̂j �K

1A1A0@�i � �̂i + 1

n

X
j

�̂j �K

1A
�w
2

0@�̂i � 1

n� 2
X

j 6=i;i+1
ŝji

1A2 + w
2

0@�̂i�1 � 1

n� 2
X

j 6=i�1;i
ŝji�1

1A2(20)
We can think of ui(� jti; �; w; n) as agent i�s payo¤ function in a game

of imperfect information in which nature chooses the realizations t1; :::; tn
of the random variables ~t1; :::; ~tn; each agent i observes his own type ti; and

then the di¤erent agents simultaneously and independently choose their re-

ports t̂1(ti); :::; t̂n(tn): A constellation (t̂1(�); :::; t̂n(�)) of reporting strategies
corresponds to a Bayes-Nash equilibrium of this game with parameters �; w;

and n if and only if, for each i; the strategy t̂i(�) is a best response to the
strategies t̂j(�) of agents other than i; this requires that

E
�
ui(t̂1(~t1); :::; :t̂i�1(~t�1); t̂i(ti); t̂i+1(~ti+1); :::; t̂n(~tn)jti; �; w; n)j~ti = ti

�
� E

h
ui(t̂1(~t1); :::t̂i�1(~t�1); t̂

0
i; t̂i+1(~ti+1); :::; t̂n(~tn)jti; �; w; n)j~ti = ti

i
(21)
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for (almost) all ti and all reports t̂
0
i:

Proposition 3.2 below shows that, for any � and n; a Bayes-Nash equilib-

rium of the game with parameters �; w; and n exists if w is su¢ ciently large.

Moreover, this equilibrium involves truthtelling in the reports ŝij(ti); �̂
i
j(ti); j 6=

i; that agent i sends about the signals sij ; �
i
j ; j 6= i; that he has received about

other agents. If w and n are large, the equilibrium also involves approximate

truthtelling in the report �̂i(ti) that the agent sends about his own payo¤

parameter �i:

Truthtelling in ŝij(ti); �̂
i
j(ti); j 6= i; is trivially obtained from the observa-

tion that the payo¤ ui(t̂1; :::; t̂njti; �; w) of agent i does not, in fact, depend
on the messages ŝij ; �̂

i
j ; j 6= i: Approximate truthtelling in �̂i(ti) is obtained

from the consideration that, if w is su¢ ciently large, the report �̂i(ti) is

largely determined by the desire to keep the scoring component of the pay-

ment pi(t̂1; :::; t̂nj�; w; n) as low as possible. For this purpose, �̂i(ti) is chosen
to be close to the agent�s expectation of the average 1

n�2
P
j 6=i;i+1 s

j
i of other

agents�reports about the signals they have received about �i: If n is large,

then, by the law of large numbers, this expectation is close to �i: Whereas

the information that the agent has from observing the additional signals �ij
j 6= i; is important when he forms his expectations about any one of the other
agents�signals sji ; this additional information is unimportant, and only �i
matters when he is forming expectations about the average 1

n�2
P
j 6=i;i+1 s

j
i ,

when n is large.

To make these ideas precise, we need some additional notation. Recalling

that the range � of the random variables ~�i; i = 1; :::; n; is compact, let �� > 0

be such that j�j � �� for all � 2 �: Similarly, let �s > 0 be such that jsj � �s for
all s belonging to the range S of the random variables ~sij ; i = 1; :::; n; j 6= i:
Further, we specify G1 and G2 so that the derivatives of the function g(�)
satisfy

0 � g0(x) � G1 and
��g00(x)�� � G2 (22)

for all x 2 R: By (11),
G1 > 1: (23)

12



Proposition 3.2 Suppose that

w�2 > G2(�� + �s+ 2� +
G1

w
) + 2G1�: (24)

Then the game with parameters �; w; and n has a Bayes-Nash equilibrium

(t̂1(�j�; w; n); :::; t̂n(�j�; w; n)) with the following properties:
(a) For all agents i and all types ti = (�i; si1; :::s

i
n; �

i
1; :::; �

i
n) of agent i;

ŝij(tij�; w; n) = sij and �̂ij(tij�; w; n) = �ij for all j 6= i:
(b) For all agents i and all types ti = (�i; si1; :::s

i
n; �

i
1; :::; �

i
n) of agent i;

the report �̂i(ti) satis�es the equation

E

240@�i � n� 1
n

�̂i(ti) +
1

n

X
k 6=i

�̂k(~tk)�K

1A g0

n�
j~ti = ti

35
�n� 1

n
E
�
gj~ti = ti

�
� w

0@�̂i(ti)� 1

n� 2
X

j 6=i;i+1
E
h
~sji j~ti = ti

i1A = 0; (25)

where both g0 and g are evaluated at 1�

�
1
n(�̂i(ti) +

P
k 6=i �̂k(~tk))�K

�
:

The proof of this proposition is somewhat involved and is given in the

appendix. Because each agent�s strategy is a function indicating how his

report depends on his type, we need a �xed-point argument in a suitable

function space. In a similar analysis, Miller, Pratt, Zeckhauser, and Johnson

(2007) give such an argument. However, in their setting, strategies can be

presumed to be continuous, and they can use Schauder�s �xed-point theorem

on a space of continuous functions. In the absence of any assumptions about

conditional expectations, we cannot presume that strategies are continuous.

Therefore, we work with bounded measurable functions and use Banach�s

�xed-point theorem for contraction mappings. The argument exploits the

special structure resulting from our distinction between the payo¤ parame-

ters and the di¤erent kinds of signals. As indicated by the characterization

of equilibrium strategies in (25), if the weight w of the scoring component is

large, the major determinant of the report �̂i(ti) is the conditional expecta-

tion 1
n�2

P
j 6=i;i+1E

h
~sji j~ti = ti

i
that agent i has concerning the cross-section

mean of the reports ~sji which is independent of the strategies �̂j(�) of the

13



other agents. Thus, if w is large, strategic interdependence plays only a

minor role in determining reports about payo¤ parameters.

The following theorem exploits this structure in order to give a char-

acterization of equilibrium strategies and equilibrium outcomes when the

number of participants is large.

Theorem 3.3 Let � > 0 be such that

E~�i �K > �: (26)

Also, for any n, let

wn := lnn: (27)

Then, for any su¢ ciently large n; the game with parameters �; wn; and n has

a Bayes-Nash equilibrium (t̂1(�j�; wn; n); :::; t̂n(�j�; wn; n)) with the properties
speci�ed in Proposition 3.2. As n goes out of bounds,

�̂i(~tij�; wn; n)� ~�i ! 0; almost surely, for all i; (28)

q(t̂1(~t1); :::; t̂n(~tn)j�; wn; n)! 1; almost surely, (29)

and

E
�
ui(t̂1(~t1j�; wn; n); :::; t̂n(~tnj�; wn; n)jti; �; wn; n)j~ti

�
! E~�i �K,

almost surely, for all i: (30)

Before we give the proof of this theorem, we brie�y discuss the intuition.

If the weight w of the scoring components of payment rules is large, then, as

discussed before, agents attune their reports about their payo¤ parameters

above all to their expectations 1
n�2

P
j 6=i;i+1E

h
~sji j~ti = ti

i
about the cross-

section means of the reports ~sji : By the law of large numbers, for the given

speci�cation of signals ~sji ; the cross-section means
1
n�2

P
j 6=i;i+1E

h
~sji j~ti = ti

i
must converge to the true ~�i when n becomes large regardless of the infor-

mation contained in the signals �ij ; j 6= i. The speci�cation (27) is chosen
so that the weights of the scoring components of payment rules are going

out of bounds and all other terms in (25) are becoming unimportant as n

becomes large. However, the weights of the scoring components go out of

14



bounds slowly enough so that expected payments due to errors in the other

agents� signals go to zero. This argument explains the convergence claim

in (28). Given this convergence to truthtelling, the rest of the theorem is

straightforward.

Proof. Because limn!1wn =1; we have

wn�
2 > G2(�� + �s+ 2� +

G1

wn
) + 2G1�

for any su¢ ciently large n: The �rst statement of the theorem then follows

from Proposition 3.2.

From (25) and (5), we further obtain

�̂i(~tij�; wn; n)� ~�i =
1

n� 2E
X

j 6=i;i+1

h
~"ji j~ti

i

+
1

wn
E

" 
~�i � �̂i(~ti) +

1

n

X
k

�̂k(~tkj�; wn; n)�K
!
g0

n�
j~ti

#

� 1

wn

n� 1
n

E
�
gj~ti
�
;

hence ����̂i(~tij�; wn; n)� ~�i��� �

������ 1

n� 2E
X

j 6=i;i+1

h
~"ji j~ti

i������
+
1

wn

����̂i(~tij�; wn; n)� ~�i��� G1
n�

(31)

+
1

wn
�
G1

n�
+
1

wn
: (32)

By the strong law of large numbers for strictly stationary stochastic processes

(Doob (1953), p. 464 ¤.), we have

1

n� 2
X

j 6=i;i+1
~"ji ! 0;

almost surely, as n becomes large. Therefore, also������ 1

n� 2E
X

j 6=i;i+1

h
~"ji j~ti

i������! 0;

15



almost surely, as n becomes large: Trivially, we also have

1

wn
�
G1

n�
+
1

wn
! 0

as n becomes large: (28) follows immediately.

To prove (29), we observe that

q(t̂1(~t1); :::; t̂n(~tn)j�; wn; n)

= g

0@1
�

24 1
n

nX
j=1

�̂j(~tj j�; wn; n)�K

351A
= g

0@1
�

24 1
n

nX
j=1

�
�̂j(~tj j�; wn; n)� ~�j

�
+
1

n

nX
j=1

~�j �K

351A : (33)

By (28), the �rst term inside the square brackets on the right-hand side of

(33) goes to zero, almost surely, as n becomes large. By the strong law of

large numbers, the second term inside the square brackets on the right-hand

side of (33) converges to E~�i �K; almost surely, as n becomes large. Since
E~�i �K > � and, by (11), g(1�y) = 1 if y � �; it follows that the right-hand
side of (33) converges to one, almost surely, as n becomes large.

To prove (30), we note that, with truthtelling about the signals ~sjk; the

interim payo¤ expectation of agent i can be written as

E
�
ui(t̂1(~t1j�; wn; n); :::; t̂n(~tnj�; wn; n)jti; �; wn; n)j~ti = ti

�
(34)

= E
h
vi(�̂1(~t1j�; wn; n); :::; �̂n(~tnj�; wn; n)j~ti = ti

i
+
wn
2
E

240@�̂i�1(~ti�1)� 1

n� 2
X

j 6=i�1;i
~sji�1

1A2 j~ti = ti
35 ;

where, for any �̂1; :::; �̂n and t1; :::; tn;

vi(�̂1; :::; �̂njt1; :::; tn; �; wn; n)

: = g

0@1
�

0@ 1
n

X
j

�̂j �K

1A1A�
0@�i � n� 1

n
�̂i +

1

n

X
j 6=i

�̂j �K

1A
�w
2

0@�̂i � 1

n� 2
X

j 6=i;i+1
sji

1A2 : (35)
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From (35), we obtain

E
h
vi(�̂1(~t1j�; wn; n); :::; �̂n(~tnj�; wn; n)j~t1; :::; ~tn; �; wn; n)j~ti

i
= E

24g �
0@�i � �̂i(tij�; wn; n) + 1

n

X
j

�̂j(~tj j�; wn; n)�K

1A j~ti
35

�wn
2
E

240@�̂i(~ti)� 1

n� 2
X

j 6=i;i+1
~sji

1A2 j~ti = ti
35 ; (36)

where g is evaluated at 1�

�
1
n

P
j �̂j(~tj j�; wn; n)�K

�
:

By (28), (29), and the strong law of large numbers, we have

lim
n!1

E

24g �
0@�i � �̂i(tij�; wn; n) + 1

n

X
j

�̂j(~tj j�; wn; n)�K

1A j~ti
35 = E~�i�K;

(37)

almost surely: The �rst term on the right-hand side of (36) thus converges

to E~�i �K: Because the second term is nonpositive, it follows that

lim
N!1

sup
n�N

E
h
vi(�̂1(~t1j�; wn; n); :::; �̂n(~tnj�; wn; n)j~t1; :::; ~tn; �; wn; n)j~ti

i
� E~�i�K;

(38)

almost surely.

Because the strategy �̂i(�j�; wn; n) is a best response to the other agents�
strategies, it must also be the case that, for any ti; agent i�s expected payo¤

from the report �̂i(tij�; wn; n) is at least as large as his expected payo¤ from
the alternative report �̂

0
i = �i: His expected payo¤ from the latter report

would be

E

24�g �
0@ 1
n
�i +

1

n

X
j 6=i

�̂j(~tj j�; wn; n)�K

1A j~ti = ti
35

�wn
2
E

240@ 1

n� 2
X

j 6=i;i+1
~"ji

1A2 j~ti = ti
35

+
wn
2
E

240@ 1

n� 2
X

j 6=i�1;i
~"ji�1

1A2 j~ti = ti
35 ;
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where �g refers to the value of g at the point 1�

�
1
n�i +

1
n

P
j 6=i �̂j(~tj j�; wn; n)�K

�
:

By the same argument as before, the �rst term on the right-hand side con-

verges to E~�i�K; almost surely, as n becomes large. As for the second term,
the conditional-independence and symmetry assumptions that we have im-

posed on ~"ji ; j 6= i; implies that this term is given as

wn
2
E

240@ 1

n� 2
X

j 6=i;i+1
~"ji

1A2 j~ti = ti
35 = lnn

2(n� 2)V ar(~"
j
i j~ti = ti);

which goes to zero as n becomes large. We may therefore conclude that

lim
N!1

inf
n�N

E
h
vi(�̂1(~t1j�; wn; n); :::; �̂n(~tnj�; wn; n)j~t1; :::; ~tn; �; wn; n)j~ti

i
� E~�i�K;
(39)

almost surely. Upon combining (38) and (39), we obtain

lim
n!1

E
h
vi(�̂1(~t1j�; wn; n); :::; �̂n(~tnj�; wn; n)j~t1; :::; ~tn; �; wn; n)j~ti

i
= E~�i�K:

(40)

From (40), in combination with (36) and (37), we further conclude that

lim
n!1

wn
2
E

240@�̂i(~ti)� 1

n� 2
X

j 6=i;i+1
~sji

1A2 j~ti
35 = 0;

almost surely, and hence, that

lim
n!1

wn
2
E

240@�̂i(~ti)� 1

n� 2
X

j 6=i;i+1
~sji

1A235 = 0: (41)

Because we may replace i by i� 1 in (41), we also have

lim
n!1

wn
2
E

240@�̂i�1(~ti�1)� 1

n� 2
X

j 6=i�1;i
~sji�1

1A235 = 0: (42)

Because the term under the expectations operator is everywhere nonnega-

tive, we can also infer that

lim
n!1

wn
2
E

240@�̂i�1(~ti�1)� 1

n� 2
X

j 6=i�1;i
~sji�1

1A2 j~ti
35 = 0; (43)
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almost surely. Now (30) follows from (40) and (43).

Theorem 3.3 is the main result of our paper. It shows that, if n is large,

the public good is provided with a probability close to one, as required for

e¢ ciency. Interim expected payo¤s are approximately equal to the expected

per capita surplus. Information rents of individuals are approximately equal

to zero. Given that expected per capita surplus is strictly positive, interim

individual rationality is not an issue.

These �ndings run counter to the main result in Neeman (2004). The

di¤erence is due to the fact that he imposes a uniformity condition on the

failure of BDP that is problematic when there are many agents. His unifor-

mity condition leaves no room for the possibility that, in a large economy,

with many other agents providing information about agent i; agent i may

be informationally small.

4 Discussion: Informational Smallness and BDP

To conclude the paper, we return to a general discussion of informational

smallness and the BDP property. In contrast to McLean and Postlewaite

(2002), we have not actually given a formal de�nition of informational small-

ness. We have simply worked with a speci�cation in which agents 2; :::; n

have noisy signals ~s21; :::; ~s
n
1 about the payo¤parameter ~�1 of agent 1, so that,

if n is large, the cross-section average 1
n�2

Pn
j=3 ~s

j
1 provides a fairly precise

estimate of ~�1; so that a scoring rule can provide agent 1 with an incentive

to be close to honest in what he reports about ~�1 without his being exposed

to too much of a risk from the noise in the other agents�signals.

In contrast to our approach, which focusses on the extent to which the

information available to any one agent can be recovered from the informa-

tion available to the other agents, the de�nition of informational smallness

in McLean and Postlewaite (2002) is concerned with the conditional proba-

bility distribution of the overall state of the economy given the information

available to the di¤erent participants: An agent is informationally small, if,

with a probability close to one, the information available to him has only a

small e¤ect on the conditional distribution of the overall state of the econ-
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omy. In their model of a pure-exchange economy with common values, the

overall state of the economy corresponds to the vector of the common-value

parameters for the di¤erent goods.

In our analysis of public-good provision under participation constraints,

the overall state of the economy would correspond to the vector (~�1; :::; ~�n)

of the di¤erent agents�payo¤ parameters.4 Given that agent i knows ~�i;

the i-th element of this vector, and the other agents have only noisy signals

about ~�i; it is not clear what the precise analogue of the McLean-Postlewaite

de�nition of informational smallness in our setting would be. The issue is

compounded by the fact that their de�nition makes essential use of their

assumption that the set of overall states of the economy is �nite; in our

analysis, the set of possible realizations of the vector (~�1; :::; ~�n) is only re-

quired to be compact. Development of a formal de�nition of informational

smallness that is quite generally applicable in a wide variety of models re-

mains a task of its own. The task is particularly challenging if one wants

to go beyond the common-prior abstract type space formulation considered

here and to think about the matter in a setting involving a universal type

space without a common-prior assumption.

McLean and Postlewaite (2002) actually assume that, within their �nite-

state model, the BDP property holds,5 and they use Crémer-McLean-type

bets to ensure incentive compatibility. As they present their results, infor-

mational smallness ensures that these bets can be small and, therefore, that

they do not cause problems with risk aversion and/or wealth constraints.

Given their reliance on the BDP property though, their analysis, like that

of Crémer and McLean (1988) is subject to the criticism of Neeman (2004)

or Heifetz and Neeman (2006).

By contrast, we do not assume the BDP property. Indeed, we have

introduced the signals ~�ij that agent i receives about the signals ~s
j
i ; j 6= i;

for the sole purpose of ensuring that the value of the payo¤ parameters ~�i
4 If we were only concerned with the question of whether the public good is to be

provided or not, we might restrict our attention to the cross-section average 1
n

P ~�j :

However, because of participation constraints, we must consider information about each
individual�s ~�i: Otherwise, it would not be possible to obtain the resources needed for
public-good provision.

5This is implicit in their treatment of what they call "distributional variability".
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cannot be inferred from the agent�s beliefs about ~sji ; j 6= i: Our analysis

thus shows that informational smallness limits information rents even in

the absence of BDP. If the number of agents who have information about

each other is large, this e¤ect of informational smallness neutralizes the free-

rider problem of public-good provision even though the free-rider problem

is particularly severe when there are many agents.

There is a sense in which informational smallness implies an approximate

BDP property. In our model, the beliefs of agent i about the cross-section

mean 1
n�1

P
j 6=i ~s

j
i are given by a weighted average of his payo¤ parameter

~�i and the noisy signals ~�ij ; j 6= i; that he has received about the signals

~sji ; j 6= i: The weights depend on the noise terms in ~s
j
i and ~�

i
j ; but, if n is

large, the weight given to ~�i will be close to one, and the sum of the weights

that are given to ~�ij ; j 6= i; will be close to zero. In other words, we may

think of the agent�s beliefs about the cross-section mean 1
n�1

P
j 6=i ~s

j
i as a

noisy signal about his payo¤ parameter ~�i, where the noise is small if n is

large. In this sense, our model exhibits an approximate BDP property when

n is large.6

Our implementation result suggests that information rents are small if

an approximate BDP property holds. We conjecture that this conclusion

holds far beyond the simple example that we have studied, i.e., that, quite

generally, the amount of surplus that can be extracted from agents with

private information varies continuously with the speci�cation of information

even as we move from non-BDP to BDP models. If this conjecture turns

out to be correct, it will somewhat defuse the question, treated by Heifetz

and Neeman (2006), whether the BDP property and full surplus extraction

are "generic" or not.7

6The argument is closely related to the observation of Neeman (2004) that the BDP
property encompasses what may be called a collective BDP property, i.e., a situation
where the vector of beliefs of all agents "determines" the agent�s payo¤ parameters. This
would be the case, e.g., if the information available to agent i is "non-exclusive" in the
sense of Postlewaite and Schmeidler (1986), i.e., if this information can be inferred from
the information available to all other agents. In such a situation, agent i�s beliefs about
the best estimate of ~�i that can be obtained by pooling the other agents�information must
be equal to ~�i itself. Thus, BDP must hold.

7Heifetz and Neeman (2006) suggest that failures of BDP and therefore also failures of
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A Appendix: Proof of Proposition 3.2

The proof of Proposition 3.2 proceeds in several steps. To simplify the no-

tation, we drop the reference to �; w; n as parameters of the payo¤ functions

and strategies whenever this can be done without loss of clarity.

Lemma A.1 A strategy constellation (t̂1(�); :::; t̂n(�)) with ŝij(ti) = sij and

�̂ij(ti) = �
i
j for all i and all j 6= i is a Bayes-Nash equilibrium if and only if,

for all i and all types ti of agent i; the report �̂i(ti) satis�es the best-response

condition

E
h
vi(�i; �̂1(~t1); :::; :�̂i�1(~t�1); �̂i(ti); �̂i+1(~ti+1); :::; �̂n(~tn))j~ti = ti

i
� E

h
vi(�i; �̂1(~t1); :::�̂i�1(~ti�1); �̂

0

i; �̂i+1(~ti+1); :::; �̂n(~tn))j~ti = ti
i

(44)

for all �̂
0

i; where, as in (35) vi is given by the equation

vi(�̂1; :::; �̂njt1; :::; tn)

= g

0@1
�

0@ 1
n

X
j

�̂j �K

1A1A�
0@�i � n� 1

n
�̂i +

1

n

X
j 6=i

�̂j �K

1A
�w
2

0@�̂i � 1

n� 2
X

j 6=i;i+1
sji

1A2 : (45)

Proof. The lemma follows directly from the fact that ui(t̂1; :::; t̂n) is inde-

pendent of ŝij and �̂
i
j ; j 6= i; and that the term w

2

�
�̂i�1 � 1

n�2
P
j 6=i�1;i s

j
i�1

�2
in ui(t̂1; :::; t̂n) is also independent of �̂i:

full surplus extraction are generic, where genericity is interpreted in a measure-theoretic
sense. Gizatulina and Hellwig (2009) argue that their analysis neglects the fact that,
if beliefs are interpreted as conditional expectations, given the available information, an
agent�s payo¤parameter, as one piece of information that is available to him, should be one
of the conditioning variables. Relying on a topological concept of genericity, Gizatulina
and Hellwig (2009) show that the BDP property is generic if the set of variables about
which the agent forms expectations is su¢ ciently rich.
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Lemma A.2 For any i; any type ti of agent i; and any reporting strategies

�̂j(�) of agents j 6= i; the best-response condition (44) has a solution �̂i(tt):
Moreover, this solution satis�es.

�̂i(ti) 2 [y(ti); z(ti)];

where

y(ti) := min

0@�i; 1

n� 2E

24 X
j 6=i;i+1

sji j~ti = ti

35� G1
w

1A (46)

and

z(ti) := max

0@�i; 1

n� 2E

24 X
j 6=i;i+1

sji j~ti = ti

35+ G1
w

1A : (47)

Proof. To prove this lemma, we compute the slope of the function

�̂i ! E
h
vi(�̂1(~t1); :::; �̂i�1(~ti�1); �̂i; �̂i+1(~ti+1); :::; �̂n(~tn)j~t1; :::; ~tn)j ~ti = ti

i
:

(48)

From (45), we obtain

@E
h
vi(�̂1(~t1); :::; �̂n(~tn)j~t1; :::; ~tn)j ~ti = ti

i
@�̂i

= E

24 g0
�n
�

0@�i � n� 1
n

�̂i +
1

n

X
j 6=i

�̂j(~tj)�K

1A j ~ti = ti
35

�n� 1
n

E
�
gj ~ti = ti

�
� w

0@�̂i � 1

n� 2E

24 X
j 6=i;i+1

sji j ~ti = ti

351A ;(49)
where both g0 and g are evaluated at 1�

�
1
n(�̂i(ti) +

P
k 6=i �̂k(~tk))�K

�
:

23



By (11), g0(1�

�
1
n(�̂i(ti) +

P
k 6=i �̂k(~tk))�K

�
= 0 if 1n(�̂i(ti)+

P
k 6=i �̂k(~tk))�

K > �: From (49) and (22), one therefore obtains

@E
h
vi(�̂1(~t1); :::; �̂n(~tn)j~t1; :::; ~tn)j ~ti = ti

i
@�̂i

(�̂i)

� E
g0

�n
�
�
�i � �̂i

�
+
G1

n

�w

0@�̂i � 1

n� 2E

24 X
j 6=i;i+1

sji j ~ti = ti

351A :
Thus,

@E
h
vi(�̂1(~t1); :::; �̂n(~tn)j~t1; :::; ~tn)j ~ti = ti

i
@�̂i

(�̂i) < 0

if

�̂i > �i and �̂i >
1

n� 2E

24 X
j 6=i;i+1

sji j ~ti = ti

35+ G1

wn
:

In particular, E
h
vi(�̂1(~t1); :::; �̂n(~tn)j~t1; :::; ~tn)j ~ti = ti

i
is decreasing in �̂i if

�̂i > z(ti) where z(ti) is given by (47).

By (11), one also has g0(1�

�
1
n(�̂i(ti) +

P
k 6=i �̂k(~tk))�K

�
= 0 if 1n(�̂i(ti)+P

k 6=i �̂k(~tk))�K < 0: From (49) and (22) and the fact that g takes values

between zero and one, one therefore obtains

@E
h
vi(�̂1(~t1); :::; �̂n(~tn)j~t1; :::; ~tn)j ~ti = ti

i
@�̂i

(�̂i)

� E
g0

�n
�
�
�i � �̂i

�
� 1

�w

0@�̂i � 1

n� 1E

24X
j 6=i

sji j ~ti = ti

351A :
It follows that

@E
h
vi(�̂1(~t1); :::; �̂n(~tn)j~t1; :::; ~tn)j ~ti = ti

i
@�̂i

(�̂i) > 0
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if

�̂i < �i and �̂i <
1

n� 2E

24 X
j 6=i;i+1

sji j ~ti = ti

35� 1

w
:

SinceG1 > 1; by (23), it follows, in particular, that E
h
vi(�̂1(~t1); :::; �̂n(~tn)j~t1; :::; ~tn)j ~ti = ti

i
is increasing in �̂i if �̂i < y(ti); where y(ti) is given by (46).

Because the function

�̂i ! E
h
vi(�̂1(~t1); :::; �̂i�1(~t�1); �̂i; �̂i+1(~ti+1); :::; �̂n(~tn)j ~t1; :::; ~tn)j~ti = ti

i
is continuous, it has a maximum on the compact interval [y(ti); z(ti)]: Be-

cause this function is increasing below y(ti) and decreasing above z(ti); this

maximum is actually a global maximum of the function (48). The proof of

Lemma A.2 is thereby complete.

Remark A.3 For �̂i belonging to the interval [y(ti); z(ti)] given by (46),

(47), ����i � �̂i��� � �� + �s+ G1
w
; (50)

where, again, �� and �s are such that j�j � �� for all � 2 � and jsj � �s for all
s 2 S:

Proof. If �i > �̂i and �̂i belongs to [y(ti); z(ti)], one has �i > �̂i >
1
n�2E

hP
j 6=i;i+1 s

j
i j ~ti = ti

i
� G1

w � ��s� G1

w ; hence
����i � �̂i��� � ��+ �s+ G1

w : If

�i < �̂i and �̂i belongs to (50), a similar computation yields
����i � �̂i��� � ��+�s+

G1

w :

Lemma A.4 If condition (24) holds, then, for any i; any type ti of agent i;

and any reporting strategies �̂j(�) of agents j 6= i; the best response �̂i(tt) of
agent i to the strategies �̂j(�); j 6= i; is unique.
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Proof. To prove this assertion, we compute the second derivative

@2E
h
vi(�̂1(~t1); :::; �̂n(~tn)j~t1; :::; ~tn)j ~ti = ti

i
@�̂
2

i

= E

24 g00

�2n2
�

0@�i � n� 1
n

�̂i +
1

n

X
j 6=i

�̂j(~tj)�K

1A j ~ti = ti
35

�2n� 1
�n2

E
�
g0j ~ti = ti

�
� w; (51)

where g00 and g0 are evaluated at 1�

�
1
n(�̂i(ti) +

P
k 6=i �̂k(~tk))�K

�
: By (11),

g00(1�

�
1
n(�̂i(ti) +

P
k 6=i �̂k(~tk))�K

�
= 0 if 1n(�̂i(ti) +

P
k 6=i �̂k(~tk))�K > �:

From (51) and (22), one therefore obtains

@2E
h
vi(�̂1(~t1); :::; �̂n(~tn)j~t1; :::; ~tn)j ~ti = ti

i
@�̂
2

i

� G2

�2n2
(
����i � �̂i���+ �)�w: (52)

By Remark A.3, it follows that

@2E
h
vi(�̂1(~t1); :::; �̂n(~tn)j~t1; :::; ~tn)j ~ti = ti

i
@�̂
2

i

� G2

�2
(��+�s+

G1

w
+�)�w: (53)

If condition (24) holds, the right-hand side of (53) is negative. In this case,

the function E
h
vi(�̂1(~t1); :::; :�̂i�1(~t�1); �; �̂i+1(~ti+1); :::; �̂n(~tn)j~t1; :::; ~tn)j~ti = ti

i
is strictly concave and has a unique maximum on the interval (50). By the

argument given in the proof of Lemma A.2 this is also the unique global

maximum.

Lemma A.5 If condition (24) holds, then, for any i; any type ti of agent i;

and any reporting strategies �̂j(�) of agents j 6= i; �̂i(ti) is a best response of
agent i to the strategies �̂j(�); j 6= i; if and only if condition (25) is satis�ed.

Proof. By (49), (25) is just the �rst-order condition for �̂i(ti): Lemma A.4
implies that, if condition (24) holds, the �rst-order condition is su¢ cient as

well as necessary for �̂i(ti) to be a best response of agent i to the strategies

�̂j(�); j 6= i:
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Lemma A.6 If condition (24) holds, there exists a unique vector of functions

�̂k(�); k = 1; :::; n such that condition (25) holds for all i and all types ti of
agent i:

Proof. To prove this assertion, we use a contraction mapping argument.
Rewrite (25) in the equivalent form

�̂i(ti) =
1

n� 2
X

j 6=i;i+1
E
h
sji j~ti = ti

i
(54)

+
1

w
E

24 g0
n�
�

0@�i � n� 1
n

�̂i(~ti) +
1

n

X
k 6=i

�̂k(~tk)�K

1A j~ti = ti
35

� 1
w

n� 1
n

E
�
gj~ti = ti

�
:

Equations (54) for i = 1; ::; n can be treated as a system of functional equa-

tions for �̂i(�); i = 1; :::; n: A solution �̂i(�); i = 1; :::; n to this system of func-
tional equations must be a �xed point of the mapping T that maps any vector

�̂ = (�̂1(�); :::; �̂n(�)) of real-valued measurable functions on ��Sn�1�Rn�1

into a vector T �̂ = (T1�̂; :::; Tn�̂) of real-valued measurable functions on

�� Sn�1 � Rn�1 such that, for any i and any ti 2 �� Sn�1 � Rn�1;

(Ti�̂)(ti) =
1

n� 2
X

j 6=i;i+1
E
h
sji j~ti = ti

i
(55)

+
1

w
E

"
g0

n�
�
 
�i � �̂i(~ti) +

1

n

X
k

�̂k(~tk)�K
!
j~ti = ti

#

� 1
w

n� 1
n

E
�
gj~ti = ti

�
;

where, as before, g0 and g are evaluated at 1�

�
1
n(�̂i(ti) +

P
k 6=i �̂k(~tk))�K

�
:

By Lemma A.2, for any vector �̂ = (�̂1(�); :::; �̂n(�)) of real-valued mea-
surable functions on � � Sn�1 � Rn�1 the functions (Ti�̂)(�) take values
in the interval (50). We can therefore think of T as mapping vectors of

bounded real-valued measurable functions on �� Sn�1�Rn�1 into vectors
of bounded real-valued measurable functions on � � Sn�1 � Rn�1: When
endowed with the metric

�(�̂; ��) = max
i

sup
ti2��Sn�1�Rn�1

����̂i(ti)� ��i(ti)��� ; (56)

27



the space of bounded real-valued measurable functions on ��Sn�1�Rn�1

is a complete metric space (Dunford and Schwartz (1988), p.258).

We want to show that, for some � < 1;

�(T �̂; T��) � ��(�̂; ��)

if w satis�es condition (24). For this purpose, we use (55) to compute

(Ti�̂)(ti)� (Ti��)(ti) =
1

w
E

"
g0

n�
�
 
�i � �̂i(~ti) +

1

n

X
k

�̂k(~tk)�K
!
j~ti = ti

#

� 1
w
E

"
�g0

n�
�
 
�i � ��i(~ti) +

1

n

X
k

��k(~tk)�K
!
j~ti = ti

#

+
1

w

n� 1
n

�
E
�
gj~ti = ti

�
� E

�
�gj~ti = ti

��
; (57)

where, in the �rst and third terms, g0 and g are evaluated at 1�

�
1
n(
P
k �̂k(~tk))�K

�
;

as before, and the symbols �g0 and �g in the second and third terms refer to

g0 and g evaluated at 1�
�
1
n(
P
k
��k(~tk))�K

�
. For the third term in (57), the

mean-value theorem yields���� 1w n� 1n �
E
�
gj~ti = ti

�
� E

�
�gj~ti = ti

������
=

1

w

n� 1
n

E

"
g00
1

�n

"X
k

�̂k(~tk)�
X
k

��k(~tk)

#
j~ti = ti

#
;

where g00 is evaluated at some point between 1
�

�
1
n(
P
k �̂k(~tk))�K

�
and

1
�

�
1
n(
P
k
��k(~tk))�K

�
: Therefore,���� 1w n� 1n �

E
�
gj~ti = ti

�
� E

�
�gj~ti = ti

������ � 1

w

n� 1
n

G2

�n

"X
k

����̂k(~tk)� ��k(~tk)���
#

� 1

w

G2

�
�(�̂; ��): (58)

As for the �rst and second terms in (57), it is convenient to write them as

1

w
E

�
g0

n�
�
�
�i � �̂i(~ti)

�
j~ti = ti

�
� 1

w
E

�
�g0

n�
�
�
�i � ��i(~ti)

�
j~ti = ti

�
+
1

w
E

"
g0

n�
�
 
1

n

X
k

�̂k(~tk)�K
!
j~ti = ti

#
� 1

w
E

"
�g0

n�
�
 
1

n

X
k

��k(~tk)�K
!
j~ti = ti

#
:

(59)
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For the �rst of these di¤erences, we compute���� 1wE
�
g0

n�
�
�
�i � �̂i(~ti)

�
j~ti = ti

�
� 1

w
E

�
�g0

n�
�
�
�i � ��i(~ti)

�
j~ti = ti

�����
� 1

w
E

�
g0 � �g0
n�

�
�
�i � �̂i(~ti)

�
j~ti = ti

�
+
1

w

G1

n�
�
�����i(~ti)� �̂i(~ti)��� :

By Lemma A.2 and Remark A.3, we may suppose that
����i � �̂i(ti)��� � ��+�s+

G1

w . By the mean-value theorem and (22), we also have g
0��g0 � G2

n� n�(�̂;
��):

Therefore we can write���� 1wE
�
g0

n�
�
�
�i � �̂i(~ti)

�
j~ti = ti

�
� 1

w
E

�
�g0

n�
�
�
�i � ��i(~ti)

�
j~ti = ti

�����
� 1

w

�
(�� + �s+

G1

w
)
G2

n�2
+
G1

n�

�
�(�̂; ��): (60)

Turning to the second of the di¤erences in (59), we note that, if neither
1
n

P
k �̂k(~tk)�K nor 1n

P
k
��k(~tk)�K lies in the interval (0; �); then, by (11),

this di¤erence is just zero. Suppose, therefore, that 1n
P
k �̂k(~tk)�K 2 (0; �)

and write

1

w
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"
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1
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!
j~ti = ti
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"
�g0

n�
�
�����X
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�̂k(~tk)� ��k(~tk)
����� j~ti = ti

#
(61)

� 1

w
�
G2

n2�2
n�(�̂; ��) +

1

w

1

n

G1

n�
n�(�̂; ��) =

1

w

�
G2

n�
+
G1

n�

�
�(�̂; ��) (62)

From (57) - (62), we now �nd that, for any �̂ and �� and any i and ti;���(Ti�̂)(ti)� (Ti��)(ti)��� � 1

w

�
(�� + �s+

G1

w
)
G2

n�2
+
G1

n�
+
G2

n�
+
G1

n�
+
G2

�

�
�(�̂; ��)

� 1

w

�
(�� + �s+

G1

w
+ 2�)

G2

�2
+ 2

G1

�

�
�(�̂; ��);

hence

�(T �̂; T��) � 1

w

�
(�� + �s+

G1

w
+ 2�)

G2

�2
+ 2

G1

�

�
�(�̂; ��) (63)
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If (24) holds, the factor 1
w

h
(�� + �s+ G1

w + 2�)G
2

�2
+ 2G

1

�

i
in (63) is strictly

less than one, which proves that, in this case, T is indeed a contraction

mapping.

By Banach�s �xed-point theorem (see, e.g., Kolmogorov and Fomin (1970),

p.67), it follows that T has a unique �xed point �̂ = (�̂1(�); :::; �̂n(�)): This
�xed point provides the unique solution to the system of functional equa-

tions (54) or, equivalently, (25). By Lemma A.5, for each i; the function

�̂i(�) gives the best-response strategy of agent i to the strategies �̂j(�); j 6= i;
of agents other than i: This completes the proof of the proposition.
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