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1 Introduction

In a variety of economic and social contexts, the activities of one group of agents
affect payoffs of other groups. Consider, for instance, the issue of political alliances
between different groups of countries. The benefit to each group will typically depend
on the strength of the alliance between opposing groups of countries. Similarly, the
benefits to one group of agents from activities aimed at controlling pollution depend
upon whether other agents are also engaged in similar pollution abatement exercises.

In a framework where such externalities across coalitions or groups are absent,
Shapley [15] provided what has become the focal method for distributing the surplus
generated by cooperation amongst groups of agents. Shapley obtained a remarkable
uniqueness result by showing that there is only one solution – the Shapley value –
which satisfies some seemingly mild axioms.1 The Shapley value essentially gives
each player the average of his marginal contributions to different coalitions

There have been other axiomatic characterizations of the Shapley value. For
instance, Young [19] uses a monotonicity principle which states that if a game changes
so that some player’s contribution to all coalitions increases or stays the same then
the player’s reward should not decrease. Young shows that the Shapley value is the
only efficient and symmetric solution that is monotonic in this sense.

Hart and Mas-Colell [7] provide two derivations of the Shapley value. First, they
use the analytical tool of a potential function to formalise the notion of rewarding
players according to marginal productivity. The potential function has the property
that the sum of the players’ marginal products (according to the potential) adds up
to the worth of the grand coalition. Moreover, the Shapley value happens to coincide
with the vector of marginal products. Thus, this provides another very interesting
interpretation of the value. Hart and Mas-Colell also define an internal consistency
property of solution concepts and show that the Shapley value is the unique solution
satisfying this consistency property and the so-called standard property on two-person
games.2

Given the widespread presence of externalities, it is important to study the dis-
tributional issue in environments with externalities. A game in partition function
form,3 in which the “worth” of any coalition depends on how players outside the
coalition are organised, provides an appropriate framework within which one can
describe solution concepts for games with externalities. Not surprisingly, this has
received some recent attention. For instance, Macho-Stadler et al. [6] provide char-
acterizations of extensions of the Shapley value to partition function games, using
axioms which are designed to capture the intuitive content of Shapley’s original ax-
ioms.4 In contrast, de Clippel and Serrano [5] follow the approach of Young [19],

1Sergiu Hart provides on his website a large and useful bibliography of value theory in cooperative
games.

2This property states that on two-person games, the gains from cooperation be split equally
between the two players.

3This is due to Thrall and Lucas [18]. See also Ray [14] for a discussion of games in partition
function form.

4Bolger [3] and Myerson [10] are earlier contributions along the same lines.
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and also provide alternative characterizations of value concepts for partition function
games. Other recent contributions include Albizuri et al. [1], Fujinaka [5] and Pham
Do and Norde [13].

In this paper, we follow the methodology of Hart and Mas-Colell [7]. The po-
tential approach requires that “subgames” be well-defined for each player set. This
is a trivial issue for characteristic function games since a subgame is simply the
“projection” of the original game to the appropriate player set. For games in par-
tition function form there is no such unambiguous answer since the worth of each
coalition depends on how the complementary coalition is partitioned. However, it is
natural to require that in a subgame the worth of a coalition for a given partition
is some function of the worths of the coalition and the partitions where the absent
players join the given partition in some way. Such functions could take averages or
incorporate optimistic/pessimistic expectations.

We adopt the following procedure. We define restriction operators, which are
functions that “project” each partition function game on any set of players N to its
subgames with player sets N \ {i}. More precisely, each restriction operator deter-
mines the worth of a coalition for a given partition in the subgame via aggregating the
worths of this coalition and the partitions resulting from i joining one of the existing
coalitions in the original game. Subgames so constructed are “estimates” or “approx-
imations” based on the available data. A basic requirement on restriction operators
is that the order in which players are removed from a game should be irrelevant for
the restricted game. In other words, first removing player 1 and then player 2 or first
removing player 2 and then player 1 should result in the same game restricted to the
player set without 1 and 2. We call this requirement path-independence. Our first
main result shows that any path-independent restriction operator defines uniquely a
potential for games in partition function form. This unique potential coincides with
that of a particular characteristic function game without externalities. A natural
step is to define the value of the partition function game to be the Shapley value
of this game in characteristic function form. For any path-independent restriction
operator r, we call this value the r-Shapley value.

We give examples to illustrate that a rich class of restriction operators satisfies
path independence. Hence, our first result demonstrates that the potential approach
yields a large class of extensions of the Shapley value from games without external-
ities to games with externalities.

Since Path independence by itself does not have much bite in singling out re-
striction operators, we go on to impose additional axioms on these operators which
are parallel to the ones used by Shapley [15] on solutions. However, we emphasize
that our axioms are imposed on the restriction operators and not on the solution
concept. This allows us to characterise a one-parameter class of restriction opera-
tors. Of course, each operator in our class gives rise to a different value through the
potential. We show that all our values satisfy the basic properties of the Shapley
value, suitably extended to the more general framework of games with externalities.

We also follow Hart and Mas-Colell [7] by using their “reduced game” consistency
condition, suitably adapted to games in partition function form, to characterise
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solution concepts. We show that a large number of solutions satisfy this definition
of consistency and the so-called standard property on two-person games.

The plan of this paper is the following. Section 2 describes the general frame-
work and some notation. In Section 3, we introduce restriction operators and the
potential approach. This section also contains our characterisation result using path
independence. In Section 4, we describe the additional axioms as well as the char-
acterisation result on restriction operators. In Section 5, we show that the solution
concepts implied by the class of restriction operators characterised in Section 4 satisfy
the natural extensions of the original Shapley axioms to partition function games.
Section 6 contains a characterisation result based on consistency. In Section 7, we
briefly discuss the existing literature, and also compare the values derived using
the potential approach to those derived through other approaches. The Appendix
contains the proofs of all our results.

2 Framework and Notation

Let N be some finite set of players, containing at least three players. We are interested
in games with externalities where the player set can be any (non-empty) subset of
N. We define such games formally.

Choose any subset N of N. A partition of N is a set π = {T1, . . . , Tk} such that
(i) for all i, j ∈ {1, . . . , k}, Ti ∩ Tj = ∅, and (ii) ∪ki=1Ti = N . Let ΠN denote the set
of all partitions of N .

A coalition S is a non-empty subset of N . Let ΠS denote the set of all partitions
of coalition S. We will use the notation π(S) to denote a partition of S. For any
coalition S and any partition π(N), let S ∩ π(N) = {S ∩ T : T ∈ π(N)}. For any
coalition S, Sc denotes the set N \ S.5 For any S, πt(S) = {{i}|i ∈ S}. That is,
πt(S) is the “trivial” partition of S consisting of the singleton members of S.

Given player set N ⊆ N, let (N, v) denote a game in partition function form.
That is, v specifies a real number for every coalition S and for every partition of Sc.
We represent this as v(S;π(Sc)), and call this the worth of coalition S when Sc is
partitioned according to π(Sc). We will call (S;π(Sc)) an embedded coalition. For
any player set N , we will simply write v(N) instead of v(N ; ∅). Abusing notation,
we sometimes write v(S;T1, . . . , Tk) instead of v(S; {T1, . . . , Tk}) when there is no
ambiguity.

The game (N, v) is with externalities if the worth of at least one coalition depends
on the partition of the other players, i.e. v(S;π(Sc)) 6= v(S;π′(Sc)) for at least one
coalition S and some π(Sc), π′(Sc) ∈ ΠSc .

A game (N, v) is without externalities if the worth of any coalition S is indepen-
dent of how the complementary coalition Sc is partitioned. That is, a game without
externalities is the “traditional” TU game in characteristic form with v : 2N → R

5Since we want to allow for variable player sets, there may be some ambiguity about the no-
tation Sc. This is to be understood as the complement of the coalition S in the player set under
consideration.
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(where 2N denotes the set of all non-empty subsets of N). We will typically use
w,w′ etc., to denote games without externalities and v, v′ to denote games with
externalities.

Let V and W denote respectively the class of all partition function games and
characteristic function games which can be constructed on player sets that are subsets
of N. Of course, W ⊂ V.

A solution (concept) or value is a mapping ϕ which associates with every game
(N, v) in V a vector in R|N | satisfying

∑
i∈N ϕi(N, v) = v(N). A value determines

the payoffs of the individual players in any game.

3 The Potential Approach

The traditional approach in economics of paying individuals according to their
marginal productivity has no straightforward analogue in cooperative game the-
ory because the sum of the players’ marginal contributions to the grand coalition is
typically not a feasible payoff vector. Hart and Mas-Colell [7] develop the potential
function as a new analytical tool which helps in formalising the notion of rewarding
players according to their marginal contributions. In particular, they define the po-
tential as a real-valued function P on the set of all TU games (without externalities)
such that the marginal contributions of all players according to P add up to the
worth of the grand coalition. The resulting payoff vector coincides with the Shapley
value of the TU game.

More formally, they define a function P : W → R which assigns a real number
P (N,w) to every TU game (N,w), and define the marginal contribution of player i
to be

DiP (N,w) = P (N,w)− P (N \ {i}, w)

Note that (N \ {i}, w) is the projection of (N,w) on N\{i}. The function P is a
potential if P (∅, 0) = 0 and ∑

i∈N
DiP (N,w) = w(N)

for every TU game (N,w). Hart and Mas-Colell [7] show that there is a unique
potential function and that for every game (N,w), the payoff vector (DiP (N,w))i∈N
coincides with the Shapley value of the game, i.e.,

DiP (N,w) = Shi(N,w) =
∑

S⊆N.s.t. i∈S

(s− 1)!(n− s)!
n!

[w(S)− w(S \ {i})]

where s and n denote the cardinalities of the sets S and N respectively.
Our principal goal in this paper is to use the potential approach to derive a

value for games in partition function form. Notice that this approach requires us to
specify subgames (N \ {i}, v) for each game (N, v). This is perfectly straightforward
for characteristic function games since (N \{i}, w) is simply the restriction of (N,w)
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to N \ {i}. Unfortunately, there is no unambiguous way of deriving subgames for
games in partition function form.

Consider, for instance, N = {1, 2, 3}, and suppose v(N) = a, v({i, j}; {k}) = b,
v({i}; {j, k}) = c, and v({i};πt({j, k})) = d. Below we specify all the worths in the
game (N, v). We have v(N) = a and

v({1, 2}; {3}) = b, v({1}; {2, 3}) = c, v({1};πt({2, 3})) = d,
v({1, 3}; {2}) = b, v({2}; {1, 3}) = c, v({2};πt({1, 3})) = d,
v({2, 3}; {1}) = b, v({3}; {1, 2}) = c, v({3};πt({1, 2})) = d.

Then, what is ({2, 3}, v−1) where v−1 denotes the corresponding partition function
for the player set {2, 3}. Since there is only one possible partition of {1, 2, 3} in
which {2, 3} is a member, it is natural to define v−1({2, 3}) ≡ v({2, 3}; {1}).6 The
problem appears when one tries to specify v−1({2}; {3}) from knowledge of v on the
player set {1, 2, 3}. Should we take a simple or weighted average of v({2}; {1, 3})
and v({2};πt({1, 3}))? Or take the maximum (or minimum) worth amongst these?

3.1 Restriction Operators

We adopt the following procedure. Define a restriction operator to be a map-
ping r from V to V which specifies for each game (N, v) ∈ V a “subgame” game
(N\{i}, v−i,r) for each i ∈ N . Notice that once a particular restriction operator r
has been specified, then it is straightforward to define an r-potential function. We
will subsequently use r-potential functions to derive corresponding values following
the Hart and Mas-Colell procedure.

In order to define a restriction operator, we need some notation.
Let π(S) = {S1, S2 . . . , SK} be a partition of some set S. Then, for any i /∈ S,

π+i(S) is the set of partitions of S ∪ {i} where i either joins one of the coali-
tions Sk of π(S), the other coalitions remaining unchanged, or it is the partition
{S1, . . . , SK , {i}}. For instance, if S = {1, 2, 3} and π(S) = {{1, 2}, {3}}, then
π+4(S) = {{{1, 2, 4}, {3}}; {{1, 2}, {3, 4}}; {{1, 2}, {3}, {4}}}.

Given any (N, v) in V, the general form of a restriction operator is specified
below:

v−i,r(S;π((S ∪ {i})c)) = rNi,S,π((S∪{i})c)
(
(v(S;π))π∈π+i((S∪{i})c)

)
For instance, if π((S ∪ {i})c)) = {S1, . . . , SK}, then

v−i,r(S;π((S ∪ {i})c)) =

rNi,S,π((S∪{i})c) (v(S;S1 ∪ {i}, S2, . . . , SK), . . . , v(S;S1, . . . , SK ∪ {i}), v(S;S1, S2, . . . , SK , {i})) .

So, the worth of any coalition S corresponding to (S;π((S ∪ {i})c)) in the sub-
game when player i is absent is some function of the worths (S;π) where π is some
element of π+i((S∪{i})c). For instance, if N = {1, 2, 3, 4}, then v−4,r({1}; {2, 3}}) =

6In general, one can specify v−i(N \ {i}) = v(N \ {i}; {i}).
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rN4,{1},{2,3}(v({1}; {2, 3, 4}), v({1}; {2, 3}, {4})). In the subgame the worth of any
coalition S for a specific partition of the other players depends only on the worths of
S where player i joins one of the existing members of the given partition or remains
alone. Note that the order in which the variables appear in the restriction operator
is fixed.

Of course, this specification hardly imposes any restriction on the rNi,S,π((S∪{i})c)
functions, and hence on the restriction operators. For instance, the specification
allows rNi,S,π((S∪{i})c) to depend on i, the coalition S, the partition of its complement
in the subgame, and the original player set. In order to make notation simpler,
we will typically drop the superscript N and the subscripts i, S and π((S ∪ {i})c)
whenever no confusion can result from this and write r instead of rNi,S,π((S∪{i})c).
Similarly, we will drop the superscript r and write v−i instead of v−i,r.

We use an axiomatic approach to restriction operators. Each axiom is meant to
be a “reasonable” property of a restriction operator. As we proceed, we will impose
more and more axioms on restriction operators and finally single out a one-parameter
class of restriction operators via axioms which are parallel to two axioms used by
Shapley in his characterization of the Shapley value.

The most basic axiom is that of Path Independence. For any i, j ∈ N , let v−ij =
(v−i)−j .

Definition 1 A restriction operator r satisfies Path Independence (PI) if for all
(N, v) ∈ V, for all i, j ∈ N , v−ij = v−ji.

If Path Independence is not satisfied, then the subgame on the player set N \{i, j}
is not well-defined. So, Path Independence is almost a necessary condition to use
the potential approach since the latter requires well-defined subgames. In particular,
then the subgame v−S , where some coalition S ⊂ N leaves the game v, is well-defined:
under Path Independence the players belonging to S are sequentially removed from
v in any arbitrary order. Note that Path Independence implies that the subgame
v−S derived by removing individual players in S one a time would coincide with the
subgame on Sc obtained by removing disjoint subsets of S – say S1 and S2 in some
order.

Given any well-defined restriction operator r, it is now easy to define the r-
potential function of any game (N, v) in V. More formally, we define a function
P r : V → R which assigns a real number P r(N, v) to every game (N, v). The
marginal contribution of player i is

DiP r(N, v) = P r(N, v)− P r(N \ {i}, v−i)

The function P r is an r-potential if P r(∅, 0) = 0 and∑
i∈N

DiP r(N, v) = v(N)

for all games (N, v) in V. Of course, once a restriction operator is fixed, the potential
function is uniquely defined.
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Path independence by itself has an important implication for the subsequent
analysis. In particular, it allows us to relate the r-potential of any game with ex-
ternalities to the potential of a game without externalities. Put differently, we can
derive a characteristic function game from any game in partition function form, and
then define the value of the partition function form game to be the Shapley value
of the associated characteristic function game. Of course, this has also been the ap-
proach followed by other recent contributions.7 The novelty of our approach is that
we use the potential function to derive the associated characteristic function game,
and so the latter will depend on the specific restriction operator r used to define the
r-potential.

Given any restriction operator r, and game (N, v), define the characteristic func-
tion wrv : 2N → R as follows:

wrv(N) = v(N), and for all S ⊂ N,wrv(S) = v−S
c,r(S)

Theorem 1 Let r be a restriction operator satisfying Path Independence. Then for
all (N, v) ∈ V, we have

(i) P r(N, v) = P (N,wrv).

(ii) DiP
r(N, v) = DiP (N,wrv) = Shi(N,wrv).

The proof of this and subsequent theorems is in the Appendix.

3.2 The r-Shapley Value

Let r be any restriction operator satisfying Path Independence. Following Hart and
Mas-Colell [7], Theorem 1 allows us to use the r-potential to define a value as Shr,
where

Shri (N, v) ≡ DiP
r(N, v) = P r(N, v)− P r(N\{i}, v−i,r) for all i ∈ N

Alternatively,
Shr(N, v) = Sh(N,wrv).

We will call Shr the r-Shapley value.

3.3 Examples

The class of restriction operators satisfying Path Independence is very large. We
give a few examples to illustrate the richness of this class.

• P-coordinate operator:

Here an a priori partition of the set N is given and any game is restricted by
taking the worth of a coalition when the other players are organized according to

7See, for instance [4] and [6].
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the fixed partition. In other words, any game is restricted by “projecting it onto the
coordinate” of this partition. More formally, let P be a partition of N. Given any
(N, v) in V, let for all i ∈ N ,

v−i,rP(S;π((S ∪ {i})c)) = v(S;Sc ∩ P)

if (S ∪ {i})c ∩ P = π((S ∪ {i})c); and v−i,rP(S;π((S ∪ {i})c)) = 0 otherwise. We will
call rP the P-coordinate (restriction) operator. It is easy to check that this restriction
operator satisfies Path Independence and that for all (N, v) and all S ⊂ N we have

wrP
v (S) = v(S;Sc ∩ P).

The next restriction operator assumes implicitly that a coalition has optimistic ex-
pectations about the restricted game.

• Max operator:

It supposes that the worth of the embedded coalition (S;π(S ∪ {i})c)) in the
game v−i equals the maximum worth over all embedded coalitions (S;π) where
π ∈ π+i((S ∪ {i})c).

The max (restriction) operator is specified below. For all (N, v) ∈ V and all
i ∈ N , let

v−i,max(S;π((S ∪ {i})c)) = max
π∈π+i((S∪{i})c)

v(S;π).

It is easy to check that the max operator satisfies Path Independence and that for
all (N, v) and all S ⊂ N we have

wmaxv (S) = max
π∈ΠSc

v(S;π).

The “dual” of the max operator is the min operator and is obtained by replacing
max by min in the above equalities.

• Weighted average operator:

The weighted average operator rα defines the worth of an embedded coalition
(S;π((S ∪ {i})c)) to be a weighted average of the worths of embedded coalitions
(S;π′) where π′ ∈ π+i((S∪{i})c). However, the weights have to be carefully specified
in order to satisfy path independence. One possible set of weights is the symmetric
weight system, which for every T ⊂ N is a vector of weights α = (α(S;π))S⊂N\T,π∈ΠT

such that each weight α(S;π(T )) depends only on the distribution of the cardinalities
of the elements of π(T ). For instance, if T = {1, 2, 3}, and S = {4, 5} say, then
α(S; {{1, 2}, {3}}) = α(S; {{2, 3}, {1}}) = α(S; {{1, 3}, {2}}) since in each of these
three partitions of T , T is partitioned into subsets containing two and one individuals.
Then, the operator rα is

v−i,rα(S;π((S ∪ {i})c)) =
∑

π′∈π+i((S∪{i})c)

α(S;π′)v(S;π′)
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The simplest symmetric weight vector is the one where for each S ⊆ N and each
π(N \ S) ∈ ΠN\S we set8 α(S;π(N \ S)) = 1

|ΠN\S |
and for any S ⊂ N ⊆ N and

π(N \ S) ∈ ΠN\S we set

α(S;π(N \ S)) =
∑

π(N\S)∈ΠN\S :[(N\S)∩π(N\S)]=π(N\S)

α(S;π(N \ S)).

For this simplest symmetric weight vector it is easy to verify that for all (N, v) and
all S ⊂ N we have

wrαv (S) =
∑

π(N\S)∈ΠN\S

α(S;π(N\S))v(S;π(N\S)) =
1

|ΠN\S |
∑

π(N\S)∈ΠN\S

v(S;π(N\S))

• Another operator rM is the following.

v−i,r
M

(S;π((S ∪ {i})c)) = v(S;πM (Sc))

where πM (Sc) is the partitition in π+i(Sc) where i joins the coalition containing
max{k|k ∈ (S ∪{i})c}, while the rest of the coalitions in π((S ∪{i})c) and π(Sc) are
the same.

• sing operator:

It simply restricts any game (N, v) to (N \ {i}, v−i) by assigning to any coalition
and any partition the worth of the embedded coalition which results when player i
forms a singleton coalition. The sing operator is specified below. For all (N, v) ∈ V
and all i ∈ N , let

v−i,sing(S;π((S ∪ {i})c)) = v(S;π((S ∪ {i})c) ∪ {{i}}).

Clearly, the sing operator satisfies Path Independence. Furthermore, it is easy to
verify that for all (N, v) and all S ⊂ N we have

wsingv (S) = v(S;πt(Sc)).

The sing-Shapley value has played an important role in de Clippel and Serrano [4].
Henceforth we will sometimes follow their terminology and also call it the ‘externality
free’ value.

We will have occasion to use an operator which is related to the sing operator.
The sing2 operator is given by

v−i,sing
2
(S;π((S ∪ {i})c)) = (v(S;π((S ∪ {i})c) ∪ {{i}}))2 .

8Note that N is finite.
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4 A Characterisation Theorem

The examples in the last section illustrate the range of restriction operators which
satisfy Path Independence. We now define some other axioms on restriction opera-
tors. We then go on to show that these axioms single out a one-parameter class of
restriction operators.

First, we define a dummy player. In games without externalities, a dummy player
is one whose marginal contribution is zero to all coalitions. By analogy, a dummy
player must be one whose marginal contribution is zero to all embedded coalitions.
However, this does not uniquely define the concept of a dummy player. One can still
define two notions of a dummy player.

Definition 2 Let (N, v) be a game in V.

(i) Player i ∈ N is a dummy player of type 1, if for all S ⊆ N containing i, and
for all partitions π(Sc), v(S;π(Sc))− v(S \ {i};π) = 0 for all π ∈ π+i(Sc).

(ii) Player i ∈ N is a dummy player of type 2, if for all S ⊆ N containing i, and
for all partitions π(Sc), v(S;π(Sc))− v(S \ {i};π(Sc) ∪ {{i}}) = 0.

The difference between the two definitions hinges on what player i is supposed
to do after she leaves coalition S. Player i is said to be a dummy player of type 1 if
no assumption is made about what coalition she joins after leaving S – her marginal
contribution to S is zero irrespective of which coalition she joins. A player is a type
2 dummy player if her marginal contribution to any embedded coalition is zero when
she remains alone after leaving S. Clearly, a type 1 dummy player is a type 2 dummy
player, though the converse is not true.

Definition 3 A restriction operator r satisfies the Weak Dummy Axiom if for all
(N, v) ∈ V, if player p is a dummy player of type 1 in (N, v), then player p is a
dummy player of type 1 in (N \ {i}, v−i) for all i 6= p.

Definition 4 A restriction operator r satisfies the Strong Dummy Axiom when the
following are true for all (N, v) ∈ V:

(i) If player p is a dummy player of type 1 in (N, v), then player p is a dummy
player of type 1 in (N \ {i}, v−i) for all i 6= p.

(ii) If player p is a dummy player of type 2 then player p is a dummy player of
type 2 in (N \ {i}, v−i) for all i 6= p.

Both Dummy axioms are designed to capture the idea that a player who is
“useless” in the original game should also be useless in all subgames.

The Weak Dummy Axiom does not impose any condition on type 2 dummy
players. Hence, the Strong Dummy Axiom implies the Weak Dummy Axiom. We also
remind the reader that these are axioms on the restriction operator and not on the
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value. So, the dummy axioms defined above are related but distinct from the dummy
axioms on solution concepts which are, for instance, used in the characterization of
the Shapley value.

Definition 5 A restriction operator r satisfies Scale Invariance if for all (N, v), (N, v′) ∈
V such that v = a+bv′ for some a and some b > 0,9 then for all i ∈ N , v−i = a+bv′−i.

This axiom requires that if two games on the player set are affine transforms
of one another – for instance because individual utility functions undergo affine
transformations – then the subgames should also be similarly related.

Definition 6 A restriction operator r satisfies Non-negativity if for all (N, v) ∈ V,
if v ≥ 010, then for all i ∈ N , v−i ≥ 0.

Another weak axiom is the following.

Definition 7 A restriction operator r satisfies Sign Independence if for all (N, v), (N, v̄) ∈
V, with v ≥ 0 and v̄ ≤ 0 such that v = −v̄, then for all i ∈ N , v−i = −v̄−i.

Essentially, this axiom says that the process by which subgames are derived in situ-
ations where individuals are sharing benefits should be the same as when they are
sharing costs.

We first illustrate through examples why some of the possible restriction opera-
tors do not satisfy one or more of the axioms defined above.

Properties of simple average (restriction) operator (r̄a):
For all (N, v) ∈ V, for all i ∈ N ,

v−i,r̄a(S;π((S ∪ {i})c)) =
1
K

∑
π∈π+i((S∪{i})c)

v(S;π)

where K = |π+i((S∪{i})c)|. This operator does not satisfy either Path Independence
or the Weak Dummy Axiom. To see why it does not satisfy the Weak Dummy axiom,
let N = {1, 2, 3, 4} and 4 be a dummy player of type 1 in (N, v). Now,

v−3,r̄a({1}; {2}, {4}) = 1/3 [v({1}; {2, 3}, {4}) + v({1}; {2}, {3, 4}) + v({1}; {2}, {4}, {3})]

and
v−3,r̄a({1, 4}; {2}) = 1/2 [v({1, 4}; {2, 3}) + v({1, 4}; {2}, {3})]

If 4 is a dummy player of type 1 in v−3,r̄a , then we must have

v−3,r̄a({1}; {2}, {4}) = v−3,r̄a({1, 4}; {2})
9Abusing notation, v = a+ bv′ means v(S;π(Sc)) = a+ bv′(S;π(Sc)) for all ∅ 6= S ⊆ N and all

π(Sc) ∈ ΠSc .
10We use the convention that x ≥ 0 means xi ≥ 0 for all i with strict inequality for some coordinate

i.
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Because 4 is a dummy of type 1 in v, v({1, 4}; {2, 3}) = v({1}; {2, 3}, {4}) and
v({1, 4}; {2}, {3}) = v({1}; {2}, {3, 4}) = v({1}; {2}, {4}, {3}). But, then the last
equality will hold only if v({1, 4}; {2}, {3}) = v({1, 4}; {2, 3}). The fact that 4 is a
dummy player in v does not imply the last equality. However, the simple average
operator satisfies Scale Invariance and Sign Independence.

Properties of max operator:
For all (N, v) ∈ V and all i ∈ N ,

v−i,max(S;π((S ∪ {i})c)) = max
π∈π+i((S∪{i})c)

v(S;π)

Clearly the max operator fails to satisfy Sign Independence. On the other hand,
the max operator satisfies Path Independence, the Weak Dummy Axiom and Scale
Invariance.

These examples show that the axioms on restriction operators defined earlier
have some “bite”. Indeed, the next two theorems provide characterizations of the
class of restriction operators which satisfy the two versions of the dummy axiom
along with the other axioms.

Theorem 2 Let r be a restriction operator satisfying Path Independence, the Weak
Dummy Axiom, Scale Invariance and Sign Independence. Then, there exists θ, such
that for all (N, v) ∈ V and all i ∈ N ,

v−i,r(S;π((S∪{i})c)) = v(S;π((S∪{i})c)∪{{i}})+θ
∑

π∈π+i((S∪{i})c)

(v(S;π)−v(S;π((S∪{i})c)∪{{i}})).

(1)
Moreover, if the restriction operator satisfies Non-negativity, then 1

|N|−2 ≥ θ ≥ 0.

In words, the class of operators in Theorem 2 does the following: it takes
v(S;π((S ∪ {i})c) ∪ {{i}}) as a focal point and then adds to it the differences (or
“marginals”) of v(S;π)− v(S;π((S ∪{i})c)∪{{i}}) (with π ∈ π+i((S ∪{i})c)). The
parameter θ measures the importance of these “marginals” on the restriction oper-
ator. It is easy to see that these restriction operators satisfy all axioms of Theorem
2.

We may rewrite (1) and obtain

v−i,r(S;π((S ∪ {i})c)) = θ
∑

π∈π+i((S∪{i})c)

v(S;π) + (1− tθ)v(S;π((S ∪ {i})c)∪ {{i}})

where t = |π+i((S ∪ {i})c)|.11 This means that rNi,S,π(Sc) is a linear combination of
the simple average operator and the sing operator.

However, if the Weak Dummy Axiom is replaced by its stronger counterpart,
then we are left only with the sing operator. This is the content of the next theorem.

11Note that π((S∪{i})c)∪{i}) is an element of π+i((S∪{i})c). So, the total weight on v(S;π(S∪
{i})c)) ∪ {i}) is (1− (t− 1)θ).
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Theorem 3 Let r be a restriction operator satisfying Path Independence, the Strong
Dummy Axiom, Scale Invariance and Sign Independence. Then r = sing.

We can obtain a slightly different version of Theorem 2 by replacing Sign Inde-
pendence and Non-negativity with Monotonicity, a condition which is defined below.

Definition 8 Let (N, v), (N, v′) ∈ V be such that for some S ⊂ N , π(Sc) ∈ ΠSc,
v(S;π(Sc)) > v′(S;π(Sc)) while v(T ;π(T c)) = v′(T ;π(T c)) for all other embedded
coalitions (T ;π(T c)). A restriction operator r satisfies Monotonicity if for all i ∈ Sc
and for all π((S ∪ {i})c) ∈ Π(S∪{i})c, v−i(S;π((S ∪ {i})c)) ≥ v′−i(S;π((S ∪ {i})c)).

This axiom implies that rNi,S,π((S∪{i})c) is monotonic for all i, S and π((S ∪{i})c).

Theorem 4 Let r be a restriction operator satisfying Path Independence, the Weak
Dummy Axiom, Scale Invariance, and Monotonicity. Then, r must be one of the
following. For all (N, v) ∈ V and all i ∈ N ,

• There exists θ, such that

v−i,r(S;π((S∪{i})c)) = θ
∑

π∈π+i((S∪{i})c)

v(S;π)+(1−tθ)v(S;π((S∪{i})c)∪{{i}})

where t = |π+i((S ∪ {i})c)| and 1
|N|−2 ≥ θ ≥ 0.

• v−i,r(S;π((S ∪ {i})c)) = maxπ∈π+i((S∪{i})c) v(S;π)

• v−i,r(S;π((S ∪ {i})c)) = minπ∈π+i((S∪{i})c) v(S;π)

We have mentioned earlier that the max and min operators do not satisfy Sign
Independence. Essentially, this theorem shows that if Sign Independence is not
imposed on the restriction operator, then the only additional rules allowed are these
two operators.12

In order to prove the independence of the axioms in Theorems 2, 3 and 4, we
need to introduce a few additional operators.

First, we give an example of an operator which violates Path Independence, but
satisfies the other axioms in Theorem 3.

For each i ∈ N , let σi denote individual i’s strict preference ordering over N\{i},
and σ = (σi)i∈N. Then,

v−i,r
σ
(S;π((S ∪ {i})c)) = v(S;π(Sc))

where i joins the coalition which contains the σi-maximal individual element in the
set of individuals who are not dummies of type 1 and who are in (S ∪ {i})c). If all
the players in (S ∪ {i})c) are dummy players of type 1, then i remains alone.

12The proof of this theorem is quite long and involved. We have not reported it in the Appendix,
but it is contained in the Supplement of this paper.
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Finally, the following operator violates Monotonicity, but satisfies the other ax-
ioms in Theorem 4. Choose θ < 0 and define

v−i,r
θ∗

(S;π((S∪{i})c)) = θ
∑

π∈π+i((S∪{i})c)

v(S;π)+(1− tθ)v(S;π((S∪{i})c)∪{{i}})

where t = |π+i((S ∪ {i})c)|.13

Table 1 illustrates the independence of the axioms in Theorem 2, Theorem 3
and Theorem 4. The max operator satisfies all axioms except Sign Independence.
The operator rM satisfies all axioms except the Weak Dummy axiom, while rσ

violates Path Independence, but satisfies the other axioms. The operator sing2 does
not satisfy Scale Invariance, but satisfies the other axioms, while rθ

∗
completes the

demonstration that the axioms in Theorem 4 are independent.

13A comparison with the class of operators characterized in Theorem 2 shows that rθ∗ satisfies all
the axioms in that theorem except Sign Independence. Also, it does not satisfy Non-negativeness.
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Table 1: Properties of Various Operators
Operators Path Ind Strong Dummy Weak Dummy Scale Inv Sign Ind Mon

r̄a N N N Y Y Y
rα Y N N Y Y Y

Max Y Y Y Y N Y
Min Y N Y Y N Y
rP Y N N N Y Y

sing Y Y Y Y Y Y
rM Y N N Y Y Y
rσi N Y Y Y Y Y

sing2 Y Y Y N Y Y
rθ
∗

Y N Y Y Y N

Note: “Y” denotes that the property is satisfied, while “N” denotes that the
property is not satisfied by the property in question.

5 The Shapley Axioms

We now show that the class of values resulting from the restriction operators char-
acterised in Theorem 2 satisfy all the natural extensions of Shapley’s classic axioms
to games in partition function form.

We start by defining these axioms.

Definition 9 Let ϕ be a solution on V. Then, ϕ satisfies

(i) Linearity: if

(a) For all (N, v), (N, v′) ∈ V, ϕ(N, v + v′) = ϕ(N, v) + ϕ(N, v′); and

(b) For any scalar λ ∈ R and any game (N, v) ∈ V, ϕ(N,λv) = λϕ(N, v).

(ii) Symmetry: if for any permutation σ of N , ϕ(N, σv) = σϕ(N, v).

(iii) Efficiency: if for all (N, v) ∈ V,
∑

i∈N ϕi(N, v) = v(N).

(iv) Weak Dummy Property: if for all (N, v) ∈ V, ϕi(N, v) = 0 if i is a type 1
dummy player.

(v) Strong Dummy Property: if for all (N, v) ∈ V, ϕi(N, v) = 0 if i is a type 2
dummy player.14

14Notice that these Dummy properties are restrictions on the solution concept and are distinct
from the Dummy axioms which were imposed on the restriction operators.
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Suppose now that the restriction operator r satisfies Path Independence, the
Weak Dummy Axiom, Scale Invariance, Sign Independence, and Non-negativity.
Then, r satisfies (1) in Theorem 2. In addition to the fact that r is described by (1),
we use from Theorem 1 the fact that Shr(N, v) = Sh(N,wrv).

Consider first the property of Linearity. Take any two games (N, v) and (N, v′).
Then, it is easy to check from (1), that

wrv+v′ = wrv + wrv′

and for any scalar λ,
wrλv = λwrv.

Moreover, since the Shapley value on W satisfies Linearity, it follows that

Shr(N, v + v′) = Sh(N,wrv) + Sh(N,wrv′) = Shr(N, v) + Shr(N, v′)

and

Shr(N,λv) = Sh(N,wrλv) = Sh(N,λwrv) = λSh(N,wrv) = λShr(N, v).

These are sufficient to show that Shr satisfies Linearity on V.
Now, consider any permutation σ of N . Then,

wrσv = σwrv

Since the Shapley value satisfies Symmetry on W, this last equality shows that the
property of Symmetry can be extended to V. It is also obvious that Shr satisfies
Efficiency.

For the Weak Dummy Property, choose any (N, v) ∈ V and suppose i ∈ N is
a dummy player of type 1 in v. Choose any S containing i. Now, from repeated
application of the Weak Dummy Axiom on r, i is a type 1 dummy player in v−S

c,r.
Hence,

v−S
c,r(S) = v−S

c,r(S \ {i}; {i})

Also,

wrv(S) = v−S
c,r(S) = v−S

c,r(S \ {i}; {i}) = v−(S∪{i})c,r(S \ {i}) = wrv(S \ {i})

This shows that i is a dummy player of type 1 in wrv and by the Weak Dummy
Property of the Shapley value on TU games, Shri (N, v) = 0.

A similar analysis applies to the Strong Dummy Property and the Strong Dummy
Axiom.

Of course, there are other solution concepts outside the class {Shr} where r
satisfies the axioms specified in Theorem 2 which also satisfy the Shapley axioms for
partition function games.15

15See for instance [1], [3], [5], [6], [8], [10] and [13].
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6 Consistency

In the last section we have compared our results with the classical axiomatization
of the Shapley value. Hart and Mas-Colell [7] provided an alternative axiomatic
derivation of the Shapley value in characteristic function games through the use of
an internal consistency condition which has come to be called a “reduced game”
consistency property.16 The intuitive content of this concept of consistency is the
following. Suppose ϕ is a solution concept, and that a group of players can be
“bought off” by paying them according to ϕ. These players do not actually leave
the game, but can be persuaded to cooperate with any coalition provided they are
paid according to ϕ. This then precipitates a reduced game on the complementary
player set Sc, and ϕ is said to satisfy (reduced game) consistency if it prescribes the
same payoffs to players in Sc in both the reduced game as well as the original game
for the grand coalition.

There are different definitions of reduced games, each corresponding to a different
interpretation of what it means for the coalition S to be paid according to the solution
concept ϕ. Below we define the natural extension of the reduced game formulated
by Hart and Mas-Colell to partition function form games. As one might imagine,
each restriction operator gives rise to one such reduced game and to a corresponding
notion of consistency.

It is worth pointing out here that a “reduced” game is different from a subgame.
This difference is more transparent when the original game is without externalities.
As we have pointed out earlier, the subgame on player set S is simply the projection
of the original game to S and subsets of S. That is, there is no ambiguity about the
subgame. However, there are different versions of a reduced game even in this case.

Definition 10 Fix a restriction operator r satisfying Path Independence. Let ϕ be
a value and (N, v) ∈ V. For any S ⊂ N , the reduced game (S, vϕ,rS ) is defined as
follows. For all R ⊆ S and all π(S \R) ∈ ΠS\R,

vϕ,rS (R;π(S \R)) = v(R ∪ Sc;π(S \R))−
∑
k∈Sc

ϕk(R ∪ Sc, v−(S\R),r)

So, the Hart and Mas-Colell reduced game on the player set S specifies that if
players in Sc join forces with some R ⊆ S, then they are paid what they would obtain
(according to ϕ) in the subgame restricted to the player set Sc ∪R. Of course, this
subgame depends on the specific restriction operator.17

This reduced game leads to the following definition of consistency.

Definition 11 A value ϕ is r-consistent iff for all (N, v) ∈ V, all S ⊂ N and all
i ∈ S, we have

ϕi(N, v) = ϕi(S, v
ϕ,r
S )

16Different versions of the reduced game property have proved very useful in the characterization
of a variety of cooperative solution concepts. See for instance [1], [3], [7], [9], [10], and [14].

17Notice that the Hart and Mas-Colell reduced game for TU games is obtained from Definition
10 by dropping π(S\R) from it.
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Hart and Mas-Colell [7] showed that on the class of games W, the Shapley value is
the only solution satisfying consistency and the “standard property” which requires
that on two-person games, the solution splits the gains from cooperation equally
between the two players.

Definition 12 A value ϕ satisfies the standard property on two-person games if for
all ({i, j}, v) ∈ V, ϕi({i, j}, v) = v({i}) + 1

2 [v({i, j})− v({i})− v({j})].18

In this section, we prove an analogous result for partition function games. For this
uniqueness result we need two very mild additional axioms on restriction operators.

Definition 13 A restriction operator r satisfies Translation Invariance if for all
player sets N , all i ∈ N , all S ⊆ N\{i}, and all π((S ∪{i})c), and any real numbers
x1, . . . , xk and c,

rNi,S,π((S∪{i})c)(x1 − c, . . . , xk − c) = rNi,S,π((S∪{i})c)(x1, . . . , xk)− c.

Translation Invariance simply says that if the original worths are translated by
some constant, then in the restricted game the worth should also be translated by
the same constant. Note that Scale Invariance implies Translation Invariance.

Definition 14 A restriction operator satisfies Limited Independence if for all N1 ⊆
N2 ⊆ N and i ∈ N1,

rN1

i,S,π(T ) = rN2

i,S∪(N2−N1),π(T )

when S ⊆ (N1 − {i}) and any T = N1 − (S ∪ {i}).19

Limited independence identifies a situation where the restriction operator does
not vary with the original player set. To some extent, this is a technical condition
and has no obvious intuitive appeal. However, we will show in Lemma 5 in the
Appendix that that this condition is actually an implication of Path Independence,
Scale Invariance, Sign Independence and the Weak Dummy Axiom.

We are now ready for the main theorem of this section.

Theorem 5 Let r be a restriction operator satisfying Path Independence, Limited
Independence and Translation Invariance. Then, a value ϕ satisfies r-consistency
and the standard property on two-person games if and only if ϕ ≡ Shr.

The following corollaries follow from Theorem 5 because the classes of operators
described in the corollaries either satisfy the three conditions imposed in the theorem
or the proof of the theorem can be easily adapted to the specific case.

Corollary 1 A value ϕ satisfies max-consistency and the standard property on two-
person games if and only if ϕ ≡ Shmax.

18Abusing notation, for two player games we write v({i}) instead of v({i}; {j}).
19This means that for any real numbers x1, . . . , xk (where k = |π(T )| + 1) we have

rN1
i,S,π(T )(x1, . . . , xk) = rN2

i,S∪(N2−N1),π(T )(x1, . . . , xk).
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Corollary 2 A value ϕ satisfies sing-consistency and the standard property on two-
person games if and only if ϕ ≡ Shsing.

Corollary 3 Let α be a symmetric weight system. A value ϕ satisfies rα-consistency
and the standard property on two-person games if and only if ϕ ≡ Shrα.

Although the P-coordinate operator does not satisfy Translation Invariance, we
obtain from Theorem 5 and its proof a similar corollary for it.

Corollary 4 Let P be a partition of the set N. A value ϕ satisfies rP-consistency
and the standard property on two-person games if and only if ϕ ≡ ShrP.

Since Scale Invariance implies Translation Invariance, the corollary below follows
from Theorem 5 and Lemma 5.

Corollary 5 Let r be a restriction operator satisfying Path Independence, the Weak
Dummy Axiom, Scale Invariance and Non-negativity. Then, a value ϕ satisfies r-
consistency and the standard property on two-person games if and only if ϕ ≡ Shr.

7 Concluding Remarks

In this paper, we have used the tool of restriction operators to define subgames of
partition function games. Once subgames are well defined, it is possible to use the
potential approach à la Hart and Mas-Colell to construct values for partition func-
tion games. We show that if the restriction operator satisfies the basic assumption
of Path Independence, then it is possible to relate the potential of any partition
function game to that of a specific characteristic game. One can then define the
value of the partition function game to coincide with the Shapley value of the de-
rived characteristic function game. We also show that a large class of such values
are characterised by a natural extension of the reduced game consistency property of
Hart and Mas-Colell and standardness. Finally, we adopt an axiomatic approach to
narrow down the class of permissible restriction operators. In this characterisation
we use Path Independence, Scale Invariance and the Weak Dummy Axiom. The last
two properties are parallel to the corresponding properties used by Shapley’s [15]
classic characterisation.

We show that only a strong version of the Dummy player axiom yields a unique
value. This is in common with several recent contributions which possess the same
characteristic. That is, these papers also show that a large class of values satisfies a
set of basic axioms, and that a unique value is generated only if an additional axiom
is added to the basic set.

Myerson [10] was the first to derive a value concept for games in partition form.
He imposed a strong “carrier” axiom to derive a unique value. De Clippel and
Serrano [5] point out that Myerson’s value sometimes yields unintuitive predictions.

Macho-Stadler et al. [8] follow a two-stage procedure which they call the “aver-
age approach”. The average approach too generates a characteristic function game
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from the partition function game by specifying that the worth of each coalition S is
the weighted average of the worths of embedded coalitions (S;π) where π is some
partition of the complementary coalition. The Symmetry and Dummy axioms of
Shapley impose some restrictions on the permissible sets of weights. However, these
permissible weights yield a large class of weighting schemes and hence result in a
large class of Shapley values. An additional axiom is then used to single out a spe-
cific set of weights – this obviously yields a unique characteristic function game for
each partition function game. Furthermore, the value characterized by Albizuri et
al. [1] belongs to the values proposed by Macho-Stadler et al. [8] – it is identical
with the Shapley value associated with the simple average operator.

Bolger [3] uses the additivity axiom, which is weaker than Linearity. But, he
derives a unique value by imposing an additional axiom of expected marginality on
the class of simple games. It turns out that Bolger’s value cannot be derived from
the “average” approach.

De Clippel and Serrano [5] follow Young’s [19] approach for characteristic function
games. In particular, their basic axiom requires that if between two partition function
games v and v′, player i’s marginal contributions vector to every embedded coalition
is higher in v than in v′, then player i’s value in v should also be at least as high
as in v′. However, this marginality principle too does not have enough bite to single
out a unique value. De Clippel and Serrano then define player i’s intrinsic marginal
contribution to an embedded coalition (S;π) to be the difference to S created if i
leaves S and remains alone instead of joining any element of the partition π. They
then show that only Shsing satisfies the stronger marginality principle.2021

Our approach includes all these extensions of the Shapley value from charac-
teristic function games to games in partition functions form. As our examples in
Section 3.3 show, the r-Shapley values allow for taking simple or weighted averages,
capturing pessimistic or optimistic expectations and the externality free value. The
restriction operators characterised in Theorem 2 are for each N , i, S, and π(Sc) a
linear combination of the simple average approach and the externality free value.
This captures simultaneously the two ideas of the simple average approach and of
any agent remaining alone once he leaves a coalition.

We conclude with some examples to illustrate the difference between our values
and those of de Clippel and Serrano [5] and Macho-Stadler et al [8].

Example 1 Let N = {1, 2, 3}, v(N) = v({1, j}; {k}) = v({1}; {2}, {3}}) = 1,
v(S;π) = 0 otherwise.

Players 2 and 3 are Type 2-dummy players, and so Shsing(v) = (1, 0, 0).
But, notice that players 2 and 3 are not powerless because they can drive 1’s

worth down to 0 by joining forces. This power should be reflected in “some” positive
payoff.

20Fujinaki [6] is a variant of this marginality approach in that he uses different exogenous weighting
schemes to aggregate the different possibilities when a player i leaves a coalition.

21Pham Do and Norde [13] also characterize the externality free value using the Strong Dummy
Property for values.

21



In Theorem 2 for θ = 1/2 we have Shr(v) = (5/6, 1/12, 1/12). This is also
the unique value selected by Macho-Stadler et al. [8] for this game. In fact, when
|N | = 3, the unique value selected in [8] coincides always with Shr for θ = 1/2 in
Theorem 2.

We now introduce a mild axiom on a solution concept in order to illustrate a
crucial difference between the values of Shr corresponding to restriction operators
derived from equation(1) for θ > 0 and Shsing which corresponds to θ = 0.

Definition 15 A solution ϕ on V satisfies Strict Ranking if for all i, j ∈ N , ϕi(v) >
ϕj(v) whenever the following is true.

∀S ⊂ N\{i, j}, v(S∪{i};π) ≥ v(S∪{j};π′)∀π ∈ Π(S∪{i})c , π
′ ∈ Π(S∪{j})c , with strict inequality for some π, π′

This condition simply states that if i is in an obvious sense more desirable than j,
then i should be allocated more than j by the solution concept.

Now, consider the following example.

Example 2 Let N = {1, 2, 3}; v(N) = 1 = v({1}; {2, 3}), for i, j ∈ {2, 3}, v({j}; {1, i}) =
−K where K is a very large number, and v(S;π) = 0 otherwise.

Each player’s intrinsic marginal contribution vector is identical, and so Shsing(v) =
(1/3, 1/3, 1/3). But, clearly the game is not symmetric, and player 1 should get more
than players 2 and 3. Since this is also required by Strict Ranking, the example shows
that Shsing violates this condition. However, Strict ranking is satisfied by all Shr if
r corresponds to θ > 0 in equation (1). For θ = 1/2, Shr and the unique value in [8]
specify the payoff vector (1/2 +K/6, 1/4−K/12, 1/4−K/12).

Example 3 This example is due to de Clippel and Serrano [5]: Let |N | = 101,
v(N) = v({1};πt(N\{1})) = 1, and v(S;π) = 0 otherwise.

In this example, 1 should clearly get more than the other players. But, how much
more? Macho-Stadler et al.’s value is very close to equal split, with 1 getting slightly
more. On the other hand, Shsing1 = 2/101, and Shsingj = (99/10100) for other j.
So, 1 gets just over double what the other players get. In Theorem 2, Shr will vary
between these two extremes as θ changes from 0 to 1/2.

The three examples above illustrate the flexibility of Shr – while θ = 0 sometimes
leads to unintuitive predictions, higher values of θ result in values which could be
more appealing.
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APPENDIX

In the Appendix we often use the following (simplified) notation. Whenever there
is no scope for confusion, we will write a set S = {i, j, k} as ijk, etc. For any set
S and i ∈ Sc, we write S + i to denote the set S ∪ {i}, and S − i to denote the set
S − {i}. Similarly, S + ij denotes the set S ∪ {i, j}. We will also write a partition
{{ij}, {kl}} as {ij, kl}, etc. That is elements in a partition will be separated by a
“comma”.

Proof of Theorem 1:
We only need to prove (i) since (ii) is an immediate consequence of (i) and

Theorem 1 of Hart and Mas-Colell [7]. We prove (i) by induction on |N |.
If |N | = 1, say N = {i}, then by definition of wrv, w

r
v(i) = v(i). Hence, (i) is

true for one-person games since by definition of wrv, P (i, wrv) = wrv(i) = v(i). Also,
P r(i, v) = v(i) from the definition of a potential.

Let N be a player set and suppose by induction that (i) is true for all player sets
containing fewer than |N | players. Let i ∈ N . We first show that for all S ⊆ N − i

wrv(S) = wrv−i,r(S). (2)

where of course v−i,r is the partition function induced by r on player set N − i. Note
that from Path Independence,

v−S
c

= (v−i)−(Sc−i) (3)

where we have dropped reference to the restriction operator for notational simplicity.
Hence, for all S ⊆ N − i, we have

wrv(S) = v−S
c
(S) = (v−i)−(Sc−i)(S) = wrv−i,r(S)

where the first and the third equality follow from the definition of w, and the second
equality follows from (3). Hence, (2) is true.

Let wrv|N−i denote the subgame of wrv on the player set N − i. Now we obtain

P r(N, v) =
1
|N |

(
v(N) +

∑
i∈N

P r(N − i, v−i,r)

)

=
1
|N |

(
wrv(N) +

∑
i∈N

P (N − i, wrv−i,r)

)

=
1
|N |

(
wrv(N) +

∑
i∈N

P (N − i, wrv|N−i))

)
= P (N,wrv)

where the first equality follows from the definition of an r-potential, the second from
our induction hypothesis that (i) is true for all player sets containing fewer than |N |
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players, the third from (2), and the fourth from the definition of the characteristic
function potential. �

The following lemmata are important for the proof of Theorem 2. Lemma 1
simply connects restriction operator of an arbitrary partition to that of a trivial
partition. Suppose that we are interested in the subgame v−i. Consider any S, and
any partition of the complementary coalition, π((S + i)c) = {S1, . . . , SK}. Consider
another configuration where one agent from each of S1, . . . , SK stays back, while the
rest join S. Lemma 1 shows that the restriction operator rNi,S,π((S+i)c) is identical to
rNi,S∪N ′,πt(({j1,...,jK})), where jk ∈ Sk for all k and N ′ = ∪Kk=1(Sk− jk). This will allow
us to prove the main theorem only for trivial partitions, which can then be extended
(for an arbitrary partition) through Lemma 1.

Lemma 1 Let r be a restriction operator satisfying Path Independence and the Weak
Dummy Axiom. Let N ⊆ N and i ∈ N . Choose any S ⊆ (N − i) and any partition
π((S + i)c) = {S1, . . . , SK}. For any choice of jk ∈ Sk, k = 1, . . .K, define N ′ =
∪Kk=1(Sk − jk). Then rNi,S,π((S+i)c) = rNi,S∪N ′,πt({j1,...,jK}).

Proof. Consider a game (N, v). For this proof, we introduce the following notations,

v−i(S;π((S + i)c)) = rNi,S,π((S+i)c)({xik}
K
k=1, x0)

v−i(S ∪N ′;πt({j1, j2, . . . , jK})) = rNi,S∪N ′,πt({j1,...,jK})({zik}
K
k=1, z0)

where for each k = 1, . . .K.

(i) xik = v(S; {S1, . . . , Sk−1, Sk + i, Sk+1, . . . , SK})

(ii) zik = v(S ∪N ′; {{j1}, . . . , {jk−1}, {jk, i}, {jk+1}, . . . , {jK}})

(iii) x0 = v(S; {S1, S2 . . . , SK , {i}})

(iv) z0 = v(S ∪N ′;πt({j1, . . . , jK , i}))

In this lemma, we want to show that two functions rNi,S,π((S+i)c) and rNi,S∪N ′,πt(({j1,...,jK}))
are identical. Take any vector of arguments ({zik}Kk=1, z0) of rNi,S∪N ′,πt(({j1,...,jK})). We
need to show that rNi,S∪N ′,πt(({j1,...,jK}))({zik}

K
k=1, z0) = rNi,S,π((S+i)c)({zik}

K
k=1, z0).

Let N ′ be dummy players of type 1 in (N, v). First, note that the choice of N ′

to be dummy players of type 1 in (N, v) does not impose any restrictions on the
vector ({zik}Kk=1, z0) and these numbers can be chosen arbitrarily. Hence, without
loss of generality, we are allowed to set all members of N ′ as type 1 dummy players in
(N, v). However, we show that this choice induces the following equalities, xik = zik
for each k = 1, . . . ,K and x0 = z0.

For all k = 1, . . .K,

zik = v(S ∪N ′; {{j1}, . . . , {jk−1}, {jk, i}, {jk+1}, . . . , {jK}}).
= v(S; {S1, . . . , Sk−1, Sk + i, Sk+1, . . . , SK})
= xik
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and z0 = v(S ∪N ′;πt({j1, . . . , jK , i})) = v(S; {S1, S2 . . . , SK , {i}}) = x0.
Moreover, by the Weak Dummy Axiom, the members of N ′ remain dummy

players of type 1 in v−i. Hence, v−i(S;π((S + i)c)) = v−i(S ∪N ′;πt({j1, . . . , jK})).
Therefore for any ({zik}Kk=1, z0),

rNi,S∪N ′,πt({j1,...,jK})({zik}
K
k=1, z0) = rNi,S∪N ′,πt({j1,...,jK})({xik}

K
k=1, x0) = rNi,S,π((S+i)c)({xik}

K
k=1, x0),

Hence, rNi,S,π((S+i)c) = rNi,S∪N ′,πt({j1,...,jK}).

We now show that Scale Invariance and Sign Independence imply a stronger form
of Scale Invariance.

Definition 16 A restriction operator satisfies Scale Invariance* if if for all (N, v), (N, v′) ∈
V, if v = a+ bv′ for some a, b then for all i ∈ N , v−i = a+ bv′−i.

That is, unlike Scale Invariance, the antecedent of Scale Invariance* does not impose
the requirement that b > 0.

Lemma 2 Let r be a restriction operator satisfying Scale Invariance and Sign In-
dependence. Then r satisfies Scale Invariance*.

Proof. Consider games (N, v), (N, v̄), where v, v̄ are such that v = −bv̄, where
b > 0. Because r satisfies Scale Invariance, it suffices to show v−i = −bv̄−i. For any
S ⊆ N , let

aS = min
π(Sc)∈ΠSc

v(S;π(Sc))

and
a = min

S⊆N
aS

Then, −a+ v ≥ 0. By Scale Invariance, for all i ∈ N , (−a+ v)−i = −a+ v−i.
Now from Sign Independence, a− v ≤ 0, and Scale Invariance,

(a− v)−i = −(−a+ v)−i = −(−a+ v−i) = a− v−i.

Also a− v = a+ bv̄ and by Scale Invariance, (a+ bv̄)−i = a+ bv̄−i.
Now we must have −v−i = bv̄−i. So, Scale Invariance* is satisfied.

The next lemma shows that the removal of a type 1 dummy player from a game
does not affect the other players.

Lemma 3 Let r be a restriction operator satisfying Scale Invariance*. Let (N, v)
be a game where i is a type 1 dummy player. Choose any S ⊆ N − i and a partition
π(N − (S + i)). Then v−i(S;π(N − (S + i))) = v(S + i;π(N − (S + i))).
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Proof. Since i is a type 1 dummy player, we have v(S;π) = v(S+ i;π(N − (S+ i)))
for all π ∈ π+i(N − (S + i)). Thus

v−i(S;π(N − (S + i))) = rNi,S,π(N−(S+i))

(
(v(S;π))π∈π+i(N−(S+i))

)
= rNi,S,π(N−(S+i))

(
(v(S + i;π(N − (S + i)))π∈π+i(N−(S+i))

)
= v(S + i;π(N − (S + i)))

where the last equality is a consequence of Scale Invariance*: note that for the null
game (v̂, N) (where v̂(S;π(Sc)) = 0 for all embedded coalitions (S;π(Sc)) we have
v̂ = −v̂ and from Scale Invariance* we obtain v̂−i = −v̂−i and v̂−i must be the null
game onN\{i}; hence, by Scale Invariance*, rNi,S,π(N−(S+i))

(
(v(S + i;π(N − (S + i)))π∈π+i(N−(S+i))

)
=

v(S+ i;π(N − (S+ i)) + rNi,S,π(N−(S+i))

(
(0)π∈π+i(N−(S+i))

)
= v(S+ i;π(N − (S+ i)),

the desired conclusion.

We use Lemma 3 to prove that Limited Independence is implied by Path In-
dependence, Scale Invariance* and the Weak Dummy Axiom. We will use limited
Independence in the proof of Theorem 2.

Lemma 4 Let r be a restriction operator satisfying Path Independence, the Weak
Dummy Axiom and Scale Invariance*. Then r satisfies Limited Independence.

Proof. Let R = N2−N1. Let us choose a game (N2, v) in which R is the set of type
1 dummy players. Note that v−R is a game on N1. Take any S ⊆ (N1 − i) and any
partition π(T ), where T = N1− (S+ i). Now consider the subgame of v on (N2− i),
generated by r. By repeated use of Lemma 3 and the Weak Dummy Axiom, we get

v−i(S+R;π(T )) = rN2

i,S+R,π(T )

(
(v(S +R;π))π∈π+i(T )

)
= rN2

i,S+R,π(T )

(
(v−R(S;π))π∈π+i(T )

)
(4)

Moreover, the Weak Dummy Axiom ensures that R is still the set of type 1 dummy
player in v−i. Once again by repeated use of Lemma 3 and the Weak Dummy
Axiom, we get, v−i(S + R;π(T )) = v−(i+R)(S;π(T )). Since r is Path Indepen-
dent, v−(i+R) is also the subgame of v−R on (N1 − i). That is, v−(i+R)(S;π(T )) =
rN1

i,S,π(T )

(
(v−R(S;π))π∈π+i(T )

)
. Hence, from (4),

rN2

i,S+R,π(T )

(
(v−R(S;π))π∈π+i(T )

)
= rN1

i,S,π(T )

(
(v−R(S;π))π∈π+i(T )

)
Note that our choice of dummy players does not impose any restriction on

the vector {v(S + R;π)}π∈π+i(T ) or equivalently on {v−R(S;π)}π∈π+i(T ). Therefore
rN1

i,S,π(T ) = rN2

i,S+R,π(T ).

Below we will use sometimes ri instead of rNi,S,π(Sc).

Proof of Theorem 2:
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Let r be a restriction operator satisfying Path Independence, the Weak Dummy
Axiom, Scale Invariance and Sign Independence. By Lemma 2 and Lemma 4, r
satisfies Scale Invariance* and Limited Independence.

Choose any i ∈ N and S ⊆ N − i. We prove the theorem by induction on the
number of elements in π+i(Sc).

Suppose |π+i(Sc)| = 1. Then v−i(S) = ri(v(S; {i})). By Scale Invariance*,
ri(v(S; i)) = v(S; i).22 Hence the induction hypothesis is satisfied.

Now, suppose |π+i(Sc)| = 2. Let us first show that the induction hypothesis
holds for embedded coalitions of the type (S; j). From our specification,

v−i(N − ij; j) = ri(v(N − ij; ji), v(N − ij; j, i))

Let ri(1, 0) = θNi . By Scale Invariance*,

ri(v(N − ij; ji), v(N − ij; j, i)) = v(N − ij; j, i) + (v(N − ij; ji)− v(N − ij; j, i))ri(1, 0)
= θNi v(N − ij; ji) + (1− θNi )v(N − ij; j, i)

We have already proved that v−ij(S) = v−i(S; j). Hence,

v−ij(N − ij) = θNi v(N − ij; ji) + (1− θNi )v(N − ij; j, i)

By similar arguments,

v−ji(N − ij) = θNj v(N − ij; ji) + (1− θNj )v(N − ij; j, i)

However, Path Independence implies v−ij(N − ij) = v−ji(N − ij). Therefore θNi =
θNj = θN (say). Using the same argument on N, we get,

rN
i (v(N− ij; ji), v(N− ij; j, i)) = θNv(N− ij; ji) + (1− θN)v(N− ij; j, i)

By Lemma 4, rN
i,N−ij,πt({j}) = rNi,N−ij,πt({j}), hence θN = θN. Therefore the coef-

ficient does not depend upon N and we will simply represent it by θ.
We can use Lemma 1 to extend our analysis for all partitions with |π+i(Sc)| = 2.
So, the theorem is true when π+i(Sc) has no more than two elements. Suppose

the theorem is true for all partitions when π+i(Sc) has K or less elements for some K.
We want to show that the theorem remains true when π+i(Sc) has K + 1 elements.

Choose N such that |N | ≥ K + 2. Choose i ∈ N and S ⊂ N − i such that
π((S + i)c) = πt((S + i)c) has exactly K elements. Hence, π+i((S + i)c) has K + 1
elements.

Our first aim is to calculate v−i(S;πt((S + i)c)), with the help of the induction
hypothesis.

From our specification,

v−i(S;πt((S + i)c)) = ri
(
{v(S; ik, πt((S + ik)c))}k/∈(S+i), v(S;πt(Sc))

)
22The same argument as at the end of the proof of Lemma 3 establishes this.
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Denoting v(S; ik, πt((S + ik)c)) = xik and v(S;πt(Sc)) = x0, we can rewrite the
previous equation as

v−i(S;πt((S + i)c)) = ri({xik}k/∈S+i, x0)

Similarly, for any m 6= i, we can write v−m(S;πt((S +m)c)) as

v−m(S;πt((S +m)c)) = rm({xmk}k/∈S+m, x0)

where xmk = v(S;mk, πt((S +mk)c)), and xim = xmi.
We can use the induction hypothesis to calculate v−im(S;πt((S+ im)c)). Indeed,

v−im(S;πt((S + im)c))

= θ
∑

k/∈(S+im)

v−i(S;mk, πt((S + imk)c)) + (1−Kθ)v−i(S;πt((S + i)c))

= θ
∑

k/∈(S+im)

[θ
∑

`/∈(S+imk)

v(S;mk, i`, πt((S + imk`)c)) + θv(S;mki, πt((S + imk)c))

+(1−Kθ)v(S;mk, πt((S +mk)c))] + (1−Kθ)v−i(S;πt((S + i)c)) (5)

Similarly,

v−mi(S;πt((S + im)c))

= θ
∑

k/∈(S+im)

[θ
∑

`/∈(S+imk)

v(S; ik,m`, πt((S + imk`)c) + θv(S;mki, πt((S + imk)c))

+(1−Kθ)v(S; ik, πt((S + ik)c))]
+(1−Kθ)v−m(S;πt((S +m)c)) (6)

From Path Independence,

v−im(S;πt((S + im)c)) = v−mi(S;πt((S + i,m)c)) (7)

Also, ∑
k/∈(S+im)

∑
`/∈(S+imk)

v(S;mk, i`, πt((S + imk`)c))

=
∑

`/∈(S+im)

∑
k/∈(S+im`)

v(S;mk, i`, πt((S + imk`)c))

=
∑

k/∈(S+im)

∑
`/∈(S+imk)

v(S; ik,m`, πt((S + imk`)c))

Thus, [
v−i(S;πt((S + i)c))− v−m(S;πt((S +m)c))

]
= θ

∑
k/∈(S+im)

[
v(S; ik, πt((S + ik)c))− v(S;mk, πt((S +mk)c))

]
= θ

∑
k/∈(S+im)

(xik − xmk) (8)
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By choosing xik = xmk ≡ xk for all k /∈ (S + im), we obtain

ri({xik}k/∈(S+i), x0) = rm({xmk}k/∈(S+m), x0) ≡ r({xk}k/∈(S+i), x0) (9)

So, from (8),

r({xik}k/∈(S+i), x0) = θ
∑

k/∈(S+im)

(xik − xmk) + r({xmk}k/∈(S+m), x0) (10)

Let p /∈ (S + im) be a dummy player of type 1 in v. Then, p is also a dummy
player in v−i, and so

v−i(S;πt((S + i)c)) = v−i(S + p;πt((S + ip)c))

From the induction hypothesis,

v−i(S+p;πt((S+ip)c)) = θ
∑

k/∈(S+ip)

v(S+p; ki, πt((S+ipk)c))+(1−Kθ)v(S+p;πt((S+p)c))

Since p is a dummy player, v(S + p; ki, πt((S + ikp)c)) = v(S; ki, πt((S + ik)c))
and v(S+ p;πt((S+ p)c)) = v(S;πt(Sc)). Also, v(S; pi, πt((S+ p)c)) = v(S;πt(Sc)).
So,

v−i(S;πt((S + i)c)) = v−i(S + p;πt((S + i, p)c))

= θ
∑

k/∈(S+ip)

v(S; ki, πt((S + ik)c)) + (1−Kθ)v(S;πt(Sc))

= θ
∑

k/∈(S+i)

v(S; ki, πt((S + ik)c)) + (1− (K + 1)θ)v(S;πt(S))

That is,
r({xik}k/∈(S+i), x0) = θ

∑
k/∈(S+i)

xik + (1− (K + 1)θ)x0 (11)

Notice that this equality is proved under the assumption that xip = x0, and so we
do not as yet have a general expression for r.

Finally, from (10),

r({xmk}k/∈(S+m), x0) = θ
∑

k/∈(S+i)

xik + (1− (K + 1)θ)x0 − θ
∑

k/∈(S+im)

(xik − xmk)

= xmi + θ
∑

k/∈(S+im)

xmk + (1− (K + 1)θ)x0

= θ
∑

k/∈(S+m)

xmk + (1− (K + 1)θ)x0

Hence,

v−i(S;πt((S + i)c)) = θ
∑

k/∈(S+i)

v(S; ik, πt((S + i, k)c)) + (1− (K + 1)θ)v(S;πt(S))
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We can use Lemma 1 to extend our analysis for all partitions with |π+i(S)| =
K + 1. This completes the induction step.

In order to complete the proof of the theorem, we have to demonstrate the
implication of Non-negativity. Consider a game (N, v) ∈ V such that for all S ⊆ N ,

(i) v(S;π) = 0 if there is some i ∈ Sc such that {i} ∈ π.

(ii) v(S;π) > 0 otherwise.

Now, suppose θ < 0. Choose any S ⊂ N and any i /∈ S. Then,

v−i(S;π((S ∪ {i})c)) = θ
∑

π∈π+i((S∪{i})c)

v(S;π) < 0

where the inequality follows from the fact that v(S;π) = 0 if {i} ∈ π. But, this
violates Non-negativity, and so θ ≥ 0.

Now, consider a (N, v) ∈ V such that v(i;πt(N \ {i})) > 0 and v(S;π(N \S)) = 0
otherwise. Then v−j(i;πt(N \ {ij})) = (1− (|N|− 2)θ)v(i;πt(N \ {i})) and the upper
bound follows from Non-negativity. This concludes the proof of Theorem 2. �

Proof of Theorem 3:
Suppose the restriction operator satisfies Path Independence, the Strong Dummy

Axiom, Scale Invariance and Monotonicity. We show that for all games (N, v) and
all i ∈ N ,

v−i(S;πt((S + i)c)) = v(S;πt((S + i)c) ∪ {{i}})

That is, the Strong Dummy Axiom implies that θ = 0. This can be checked as
follows. Let N = {1, 2, 3, 4}. By Theorem 2,

v−4({1, 2}; {3}) = θv({1, 2}; {3, 4}) + (1− θ)v({1, 2}; {3}, {4})
v−4({1}; {2}, {3}) = θv({1}; {2}, {3, 4}) + θv({1}; {2, 4}, {3}) + (1− 2θ)v({1}; {2}, {3}, {4})

Suppose 2 is a dummy player of type 2 in v. By the Strong Dummy Axiom, player
2 must be a type 2 dummy player in v−4. Thus, v−4({1, 2}; {3}) = v−4({1}; {2}, {3}).
This is only possible if θ = 0, because the assumption of type 2 dummy player does
not impose any restriction on v({1}; {2, 4}, {3}). Hence the result. It is easy to check
that the sing operator will satisfy all the axioms. �

Before proving Theorem 5, we introduce a property which is of instrumental
importance for this proof. As we show, this property is satisfied by all of the examples
given in the main text.

Definition 17 A restriction operator r is Regular if for all solutions ϕ, for all
(N, v) ∈ V, and S ⊂ N , the reduced game vϕ,rS satisfies the following for all R ⊆ S

(vϕ,rS )−S\R,r(R) = v−S\R,r(R ∪ Sc)−
∑
k∈Sc

ϕk(R ∪ Sc, v−S\R,r)
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Lemma 5 Let r be a restriction operator satisfying Path Independence, Limited
Independence and Translation Invariance. Then r satisfies Regularity.

Proof. Let ϕ be a solution, (N, v) ∈ V, and S ⊂ N . Then the reduced game
(S, vϕ,rS ) ∈ V. Choose any R ⊆ S. We will prove the result by induction on |S \R|.
In fact, to use induction, we will prove a slightly general result than required for
Regularity. This is as follows. Choose any R1 ⊆ R and π(R \ R1). We will show
that

(vϕ,rS )−S\R,r(R1;π(R\R1)) = v−S\R,r(R1∪Sc;π(R\R1))−
∑
k∈Sc

ϕk(R1∪Sc, v−(S\R1),r)

where Sc = N \ S. Note that Regularity is a special case of the above statement,
where R = R1.

First, let us prove our claim when |S \R| = 1. Suppose S \R = {i}. Then,

(vϕ,rS )−i,r(R1;π(R \R1))

= rSi,R1,π(R\R1)

((
vϕ,rS (R1;π)

)
π∈π+i(R\R1)

)
= rSi,R1,π(R\R1)

(v(R1 ∪ Sc;π)−
∑
k∈Sc

ϕk(R1 ∪ Sc, v−(S\R1),r)

)
π∈π+i(R\R1)


= rSi,R1,π(R\R1)

(
(v(R1 ∪ Sc;π))π∈π+i(R\R1)

)
−
∑
k∈Sc

ϕk(R1 ∪ Sc, v−(S\R1),r)

= rNi,R1∪Sc,π(R\R1)

(
(v(R1 ∪ Sc;π))π∈π+i(R\R1)

)
−
∑
k∈Sc

ϕk(R1 ∪ Sc, v−(S\R1),r)

= v−i,r(R1 ∪ Sc;π(R \R1))−
∑
k∈Sc

ϕk(R1 ∪ Sc, v−(S\R1),r)

where the first and the fifth equality use the definition of the restriction operator,
the second uses the definition of the reduced game vϕ,rS , the third and the fourth
follow from Translation Invariance and Limited Independence of r, respectively.

Now, suppose that our claim is true for |S \R| < m. We will show that the
same is true when |S \R| = m. Suppose i ∈ S \ R. By Path independence,
(vϕ,rS )−S\R,r can be obtained by removing players of S \ R in any sequence. Thus
without loss of generality we can remove i after everyone else. Hence, (vϕ,rS )−S\R,r =(
(vϕ,rS )−(S\(R∪{i})),r)−i,r. For notational convenience, we will denote (vϕ,rS )−(S\(R∪{i})),r

as v̄. Note that v̄ is a game on R∪{i} and S\(R∪{i}) < m. Therefore the induction
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hypothesis is applicable on v̄. Then

(vϕ,rS )−S\R,r(R1;π(R \R1))

= (v̄)−i,r (R1;π(R \R1))

= r
R∪{i}
i,R1,π(R\R1)

(
(v̄(R1;π))π∈π+i(R\R1)

)
= r

R∪{i}
i,R1,π(R\R1)

(v−(S\(R∪{i})),r(R1 ∪ Sc;π)−
∑
k∈Sc

ϕk(R1 ∪ Sc, v−(S\R1),r)

)
π∈π+i(R\R1)


= r

R∪{i}
i,R1,π(R\R1)

((
v−(S\(R∪{i})),r(R1 ∪ Sc;π)

)
π∈π+i(R\R1)

)
−
∑
k∈Sc

ϕk(R1 ∪ Sc, v−(S\R1),r)

= r
R∪{i}∪Sc
i,R1∪Sc,π(R\R1)

((
v−(S\(R∪{i})),r(R1 ∪ Sc;π)

)
π∈π+i(R\R1)

)
−
∑
k∈Sc

ϕk(R1 ∪ Sc, v−(S\R1),r)

=
(
v−(S\(R∪{i})),r

)−i,r
(R1 ∪ Sc;π(R \R1))−

∑
k∈Sc

ϕk(R1 ∪ Sc, v−(S\R1),r)

= v−S\R,r(R1 ∪ Sc;π(R \R1))−
∑
k∈Sc

ϕk(R1 ∪ Sc, v−(S\R1),r)

where the third equality follows from the induction hypothesis. The rest is exactly
the same steps as those in |S \R| = 1. Hence, r satisfies Regularity.

Proof of Theorem 5:
Throughout the proof, fix some restriction operator r satisfying Path Indepen-

dence, Limited Independence and Translation Invariance. By Lemma 5, r satisfies
Regularity. Since r is fixed, we omit all reference to r in the rest of the proof.

We first show that Sh satisfies consistency. Choose any (N, v) ∈ V, and S ⊂ N .
We need to show that for all i ∈ S,

Shi(N, v) = Shi(S, vShS ) where vShS is the reduced game on S.

For all R ⊆ S, and π ∈ ΠS\R,

vShS (R;π) = v(R ∪ Sc;π)−
∑
k∈Sc

Shk(R ∪ Sc, v−S\R) (12)

where v−S\R is the subgame (of v) on the player set Sc ∪R.
Let w,wS and w−S\R be the characteristic function games associated with v, vShS

and v−S\R respectively. Let
(
vShS
)−(S\R) denote the subgame of vShS on the player

set R. Since the restriction operator satisfies Regularity,(
vShS

)−(S\R)
(R) = v−(S\R)(R ∪ Sc)−

∑
k∈Sc

Shk

(
R ∪ Sc, v−(S\R)

)
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Hence,

wS(R) =
(
vShS

)−(S\R)
(R)

= v−(S\R)(R ∪ Sc)−
∑
k∈Sc

Shk

(
R ∪ Sc, v−(S\R)

)
= w(R ∪ Sc)−

∑
k∈Sc

Shk

(
R ∪ Sc, w−(S\R)

)
= w(R ∪ Sc)−

∑
k∈Sc

Shk (R ∪ Sc, w|R∪Sc)

= wShS (R).

Therefore for all i ∈ S,

Shi

(
S, vShS

)
= Shi (S,wS) = Shi

(
S,wShS

)
= Shi (N,w) = Shi (N, v) ,

where the third equality follows from consistency of the Shapley value on TU games.
That is, Sh satisfies consistency.

It is obvious that Sh satisfies the standard game property. We now prove the
converse by showing that there can be only one solution satisfying the standard
property on two-person games and r-consistency for any given r.

First, if ϕ is a solution satisfying these two properties, then ϕ must be efficient.
The proof of this is very similar to that in Hart and Mas-Colell [5].

So, if n = 1, then ϕi(i, v) = v(i) and so there must be a unique solution. Similarly,
the standard property on two-person games ensures that there is a unique solution
on all two-person games. Suppose now that there is a unique solution satisfying
consistency and the standard property on two-person games on all games (N, v) ∈ V
when |N | < m.

Suppose now that |N | = m and both ϕ and ψ are two different solutions satisfying
these two properties. Since ϕ and ψ are different solutions, and both are efficient,
there must exist (N, v) ∈ V and i, j ∈ N such that ϕi(N, v) > ψi(N, v), while
ϕj(N, v) < ψj(N, v). Define S = {i, j}. Now,

vϕS(i) = v(N − j; j)−
∑
k 6=i,j

ϕk(N − j, v−j)

vψS (i) = v(N − j; j)−
∑
k 6=i,j

ψk(N − j, v−j)

From the induction hypothesis, ϕ and ψ coincide on (N − j, v−j). Hence,∑
k 6=i,j

ψk(N − j, v−j) =
∑
k 6=i,j

ϕk(N − j, v−j)

This implies that
vϕS(i) = vψS (i)
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Similarly,
vϕS(j) = vψS (j)

Then, from consistency,

ϕi(S, v
ϕ
S) = ϕi(N, v) > ψi(N, v) = ψi(S, v

ψ
S )

So, by the standard property on two-person games, ϕj(S, v
ϕ
S) ≥ ψj(S, v

ψ
S ). This

contradicts the assumption that ϕj(N, v) < ψj(N, v). �

Proof of Corollary 1:
We show that the max operator satisfies Path Independence and Translation

Invariance. Again, we omit any explicit reference to the operator in order to simplify
the notation.

Fix any game (N, v).
To check that the max operator satisfies Path Independence, choose any i, j ∈ N ,

and S ⊂ N − ij. Let π ≡ {T1, . . . , TK} be any partition of (S + ij)c. Let Π′ denote
the set of partitions of Sc satisfying

Π′ = {π′ ∈ ΠSc |T ′ ∈ π′ → Tk ⊂ T ′ ∪ {i, j} for some k = 1, . . .K}

That is, Π′ is the set of partitions of Sc where each of i and j can join any of the
elements of π, or remain single or form the set {i, j}. Then,

v−ij(S;π) = max
π′∈Π′

[
v(S;π′)

]
= v−ji(S;π)

This shows that the max operator satisfies Path Independence.
To check that max satisfies Translation Invariance, let x1, . . . , xk and c be any

real numbers. Then,
max
l=1,...,k

[xl − c] = max
l=1,...,k

[xl]− c.

This shows that max satisfies Translation Invariance.
It is easy to see that the max operator satisfies Limited Independence. �

Proof of Corollary 2:
We show that the sing operator satisfies Path Independence. It is straightforward

to verify that it satisfies Limited Independence and Translation Invariance. Again,
we omit any explicit reference to the operator in order to simplify the notation.

Fix any game (N, v). Choose any i, j ∈ N , and S ⊂ N − ij. Let π be any
partition of (S + ij)c. Then,

v−ij(S;π) = v(S;π ∪ {{i}, {j}}) = v−ji(S;π)

This completes the proof of the corollary. �

Proof of Corollary 3:
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We first show that rα satisfies Path Independence. Pick any game (N, v) ∈ V.
Choose any i, j ∈ N , S ⊂ N − ij, and T = N − (S + ij). Let π ∈ ΠT be such that
π ≡ {T1, . . . , TK}. We want to show that

v−ij(S;π) = v−ji(S;π)

Indeed,

v−ij(S;π) =
∑

π′∈π+j(π)

α(S;π′)v−i(S;π′)

=
∑

π′∈π+j(π)

α(S;π′)

 ∑
π′′∈π+i(π′)

α(S;π′′)v(S;π′′)


for some symmetric weight vector α. Similarly,

v−ji(S;π) =
∑

π′∈π+i(π)

α(S;π′)

 ∑
π′′∈π+j(π′)

α(S;π′′)v(S;π′′)


Since α is symmetric, for each Tk ∈ π, α(S; (π\{Tk}) ∪ {Tk + i}) = α(S; (π\{Tk}) ∪
{Tk + j}). Also, letting π1 ≡ (π\{Tk, Tl}) ∪ {Tk + i, Tl + j}), and π2 ≡ (π −
{Tk, Tl}) ∪ {Tk + j, Tl + i}), we have α(S;π1) = α(S;π2). This is sufficient to show
that rα satisfies Path Independence.

Since the weight α(S;π) depends only on the distribution of the cardinalities of
the elements of π, it is straightforward to check that rα satisfies Limited Indepen-
dence. Translation Invariance follows similarly. �

Proof of Corollary 4:
Let P be a partition of the universal set N. By Theorem 5 and its proof it suffices

to show that rP satisfies both Path Independence and Regularity. Again, we omit
any explicit reference to the operator in order to simplify the notation.

Fix any game (N, v). To check that the P-coordinate operator satisfies Path
Independence, choose any i, j ∈ N , and S ⊂ N − ij. Let π be any partition of
(S + ij)c. Now if (S + ij)c ∩ P 6= π, then v−ij(S;π) = 0 = v−ji(S;π); and if
(S + ij)c ∩ P = π, then v−ij(S;π) = v(S;Sc ∩ P) = v−ji(S;π). This shows that the
P-coordinate operator satisfies Path Independence.

In order to check Regularity, let ϕ be a value, (N, v) ∈ V and S ⊂ N . For all
R ⊆ S, we have by definition of rP

(vϕS)−S\R(R) = vϕS(R; (S\R) ∩ P)

= v(R ∪ Sc; (S\R) ∩ P)−
∑
k∈Sc

ϕk(R ∪ Sc, v−S\R)

= v−S\R(R ∪ Sc)−
∑
k∈Sc

ϕk(R ∪ Sc, v−S\R),

which is the desired conclusion. �
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Proof of Corollary 5:
Suppose r satisfies Path Independence, the Weak Dummy Axiom, Scale Invari-

ance and Non-negativity. In view of Theorem 5 and its proof, it is sufficient to show
that r satisfies Regularity.

Let wS be the TU game associated with vSh
r

S . Thus, wS(R) =
(
vSh

r

S

)−(S\R) (R).
By repeated use of Theorem 2,(
vSh

r

S

)−(S\R)
(R) =

∑
π∈ΠS\R

απv
Shr

S (R;π)

=
∑

π∈ΠS\R

απ

[
v(R ∪ Sc;π)−

∑
k∈Sc

Shrk

(
v−(S\R)

)]

=
∑

π∈ΠS\R

απv(R ∪ Sc;π)−

[∑
k∈Sc

Shrk

(
v−(S\R)

)] ∑
π∈ΠS\R

απ


= v−(S\R)(R ∪ Sc)−

∑
k∈Sc

Shrk

(
v−(S\R)

)
One can check that απ = θ(|S\R|−|π|)Π|P |−1

k=0 (1 − kθ) and
∑

π∈ΠS\R
απ = 1. of

course, the actual form of απ is not important. What is important is that the
restriction operator is linear, and that απ does not depend upon T in v−(S\R)(T ). �
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