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A common assumption in modern microeconomic theory is that choice
should be rationalizable via a binary preference relation, which Sen showed
to be equivalent to two consistency conditions, namely α (contraction) and γ
(expansion). Within the context of social choice, however, rationalizability
and similar notions of consistency have proved to be highly problematic,
as witnessed by a range of impossibility results, among which Arrow’s is the
most prominent. Since choice functions select sets of alternatives rather than
single alternatives, we propose to rationalize choice functions by preference
relations over sets (set-rationalizability). We also introduce two consistency
conditions, α̂ and γ̂, which are defined in analogy to α and γ, and find that
a choice function is set-rationalizable if and only if it satisfies α̂. Moreover, a
choice function satisfies α̂ and γ̂ if and only if it is self-stable, a new concept
based on earlier work by Dutta. The class of self-stable social choice functions
contains a number of appealing Condorcet extensions such as the minimal
covering set and the essential set.

1 Introduction

Arguably the most basic model of individual and collective choice is a choice function,
which associates with each set A of feasible alternatives a non-empty subset S(A) ⊆ A.
Apparently, not every choice function complies with our intuitive understanding of
rationality. Consider, for example, the choice function S with S({a, b}) = {a} and
S({a, b, c}) = {b}. Doubts as to an agent’s rationality could be raised, if, when offered
the choice between apple pie and brownies, he were to choose the former, but the lat-
ter, when told that chocolate mousse is also an option.1 In microeconomic theory, the

1Sen (1993, 1997) gives examples where rational choosers actually make choices as described and gener-
ally argues against imposing internal consistency conditions on rational choice. His examples usually
involve a kind of context-dependence. For instance, a modest person may be unwilling to take the
largest piece of cake and thus his choice depends on the other pieces that are available. Our view is
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existence of a binary relation R on all alternatives such that S returns precisely the
maximal elements according to R from any feasible set is commonly taken as a minimal
rationality condition on choice functions. Choice functions for which this is the case are
called rationalizable (see, e.g., Richter, 1966; Herzberger, 1973; Blair et al., 1976; Moulin,
1985a).2 Rationalizable choice functions have been characterized using two consistency
conditions that relate choices within feasible sets of variable size, namely conditions α
and γ (Sen, 1971). Clearly, acyclicity of the strict part P of R is necessary and sufficient
for S to be rationalizable if every finite set of alternatives is feasible. Stronger ratio-
nality conditions can be obtained by requiring the rationalizing relation R to satisfy
certain structural restrictions, such as completeness, transitivity, or quasi-transitivity
(i.e., transitivity of P ).

The above considerations have had a profound impact on the theory of social choice, in
particular on the interpretation of Arrow’s general impossibility theorem (Arrow, 1951),
which states the impossibility of social choice functions that satisfy four intuitive criteria,
including rationalizability via a transitive preference relation. An obvious way around
Arrow’s disturbing result is to try to relax this condition, e.g., by requiring social choice
functions to be merely rationalizable. Although this approach does allow for some social
choice functions that also meet the remaining three criteria, these functions turned out
to be highly objectionable, usually on grounds of involving a weak kind of dictatorship
or violating other conditions deemed to be indispensable for rational social choice (for an
overview of the extensive literature, see Blair et al., 1976; Kelly, 1978; Schwartz, 1986;
Sen, 1977, 1986; Campbell and Kelly, 2002). Sen (1995, page 5) concludes that

[. . . ] the arbitrariness of power of which Arrow’s case of dictatorship is
an extreme example, lingers in one form or another even when transitivity
is dropped, so long as some regularity is demanded (such as the absence of
cycles).

One possibility to escape the haunting impossibility of rationalizable social choice
is to require only α or γ but not both at the same time. It turns out that α (and
even substantially weakened versions of α) give rise to impossibility results that retain
Arrow’s spirit (Sen, 1977). By contrast, there are a number of social choice functions
that satisfy γ. An attractive one among these based on majority rule is the uncovered
set (Fishburn, 1977; Miller, 1980; Moulin, 1986).

In this paper, we approach the matter from a slightly different angle. Choice functions
are defined so as to select subsets of alternatives from each feasible set, rather than a
single alternative. Still, the consistency and rationality conditions on choice functions

that violation of internal consistency conditions need not necessarily point at irrational behavior as
such but can just as well indicate the presence of situational features that affect choice but are not
(appropriately) represented in the mathematical model. In some cases the set of alternatives can be
redefined so as to capture all aspects that affect their choice. For instance, the choice of the modest
person above is arguably not between mere pieces of cake, but rather between tuples that consist of
a piece of cake and the pieces left for others to choose from.

2Rationalizable choice functions have also been referred to as binary (Schwartz, 1976), normal (Sen,
1977), and reasonable (Allingham, 1999).
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have been defined in terms of alternatives. Taking cue from this observation, we propose
an alternative notion of rationality called set-rationalizability. A choice function S is
set-rationalizable if a binary relation R on all non-empty subsets of alternatives can be
found such that for each feasible subset A, S(A) is maximal with respect to R among
all non-empty subsets of A.

We find that set-rationalizable choice functions can be characterized by α̂, a nat-
ural variant of α defined in terms of sets rather than alternatives. Despite its intu-
itive appeal, α̂ has played a remarkably small role in (social) choice theory (Chernoff,
1954; Aizerman and Aleskerov, 1995). Yet, it differentiates quite a number of well-
known choice functions. In particular, we will show that various prominent social choice
functions—such as all scoring rules, all scoring runoff rules, and all weak Condorcet
extensions—do not satisfy α̂, whereas several Condorcet extensions—such as weak clo-
sure maximality, the minimal covering set, and the essential set—do.

For our second result, we introduce a new property γ̂, which varies on γ in an analogous
way as α̂ varies on α. It turns out that α̂ and γ̂ characterize the class of self-stable choice
functions, whose definition is inspired by earlier work of Dutta (1988) and Brandt (2009).
Despite the logical independence of α̂ and γ̂, the class of self-stable social choice functions
also contains the Condorcet extensions mentioned above. These Condorcet extensions
also satisfy all conditions typically appearing in Arrovian impossibility results except
rationalizability, i.e., α and γ. Accordingly, by replacing α and γ with α̂ and γ̂, the
impossibility of rationalizable social choice can be avoided and turned into a possibility
result.

2 Preliminaries

We assume there to be a universe U of at least three alternatives. Any subset of U
from which alternatives are to be chosen is a feasible set (sometimes also called an issue
or agenda). Throughout this paper we assume the set of feasible subsets of U to be
given by F(U), the set of finite and non-empty subsets of U , and generally refer to finite
non-empty subsets of U as feasible sets. Our central object of study are choice functions,
i.e., functions S : F(U) → F(U) such that S(A) ⊆ A for all feasible sets A.

A choice function S is called rationalizable if there exists a binary relation R on U
such that for each feasible set A,

S(A) = {a ∈ A : xP a for no x ∈ A}

where P is the strict part of R. Observe that acyclicity of P is required to guarantee
that S invariably returns a non-empty set.

Two typical candidates for the rationalizing relation are the base relation
RS (Herzberger, 1973) and the revealed preference relation RS (Samuelson, 1938), which,
for all alternatives x and y, are given by

aRS b if and only if a ∈ S({a, b}), and

aRS b if and only if a ∈ S(X) for some X with b ∈ X.
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Thus, the revealed preference relation relates a to b if a is chosen in the presence of b and
possibly other alternatives, whereas the base relation only relates a to b if a is chosen in
the exclusive presence of b.

Rationalizable choice functions are characterized by a consistency axiom, which
Schwartz (1976) defined such that for all feasible sets A and B and all alterna-
tives x ∈ A ∩B,

x ∈ S(A ∪B) if and only if x ∈ S(A) and x ∈ S(B).

The above equivalence can be factorized into two implications, viz. the conditions α and
γ (Sen, 1971) for feasible sets A and B and alternatives x ∈ A ∩B,3

if x ∈ S(A ∪B) then x ∈ S(A) and x ∈ S(B), (α)

if x ∈ S(A) and x ∈ S(B) then x ∈ S(A ∪B). (γ)

Axiom α is a contraction consistency property, which states that alternatives that are
chosen in a feasible set are still chosen in feasible subsets. By contrast, γ is an expansion
consistency property, which states that alternatives chosen in two feasible sets are also
chosen in their union. Sen (1971) proved that a choice function S is rationalizable if and
only if it satisfies both α and γ, with the witnessing relations RS and RS, which are
identical in the presence of α.

Theorem 1 (Sen, 1971). A choice function is rationalizable if and only if it satisfies
both α and γ.

Similar results can also be obtained if stronger requirements are imposed on the ra-
tionalizing relation (see, e.g., Sen, 1977; Moulin, 1985a; Schwartz, 1976). For instance,
Arrow (1959) showed that a choice function can be rationalized by a complete and tran-
sitive relation if and only if it satisfies the weak axiom of revealed preference (WARP)—a
consistency condition, first proposed by Samuelson (1938), which is stronger than the
conjunction of α and γ and central to large parts of microeconomic theory. Formally,
WARP is defined such that for all feasible sets A and B with B ⊆ A,

if S(A) ∩B 6= ∅ then S(A) ∩B = S(B). (WARP)

3 Set-Rationalizable Choice

In analogy to the definitions of Section 2, we now define the concept of set-
rationalizability, the base and revealed preference relations over sets of alternatives,
and properties α̂ and γ̂. The main result of this section is that set-rationalizable choice
is completely characterized by α̂.

We say a choice function is set-rationalizable if it can be rationalized via a preference
relation on sets of alternatives.
3The definitions of α and γ given here are equivalent, but not syntactically identical, to Sen’s original
ones. They are chosen so as they reveal their similarity to α̂ and γ̂ below.
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Definition 1. A choice function S is set-rationalizable if there exists a binary re-
lation R ⊆ F(U) × F(U) such that for each feasible set A there is no X ∈ F(A)
with X P S(A) where P is the strict part of R.

We define the base relation RS and the revealed preference relation R̂S of a choice
function S on sets as follows:4

ARS B if and only if A = S(A ∪B),

AR̂S B if and only if A = S(X) for some X with B ⊆ X.

3.1 Set-contraction consistency

Condition α̂ is defined as a natural variant of α that makes reference to the entire set of
chosen alternatives rather than its individual elements.

Definition 2. A choice function S satisfies α̂, if for all feasible sets A, B, and X with
X ⊆ A ∩B,

if X = S(A ∪B) then X = S(A) and X = S(B). (α̂)

α̂ is not implied by the standard contraction consistency condition α (see Example 2).
Moreover, α̂ is a not a contraction consistency property according to Sen’s original ter-
minology (see, e.g., Sen, 1977). It does not only require that chosen alternatives remain
in the choice set when the feasible set is reduced, but also that unchosen alternatives
remain outside the choice set. Thus, it has the flavor of both contraction and expansion
consistency. α̂ can be split into two conditions that fall in Sen’s categories: an expansion
condition known as ǫ+ (Bordes, 1983) and Aizerman (Moulin, 1986), which requires that
S(B) ⊆ S(A) for all S(A) ⊆ B ⊆ A, and a corresponding expansion condition. Similarly,
γ̂ can be factorized into two conditions.

In this paper, however, we are concerned with the choice set as a whole and α̂ merely
says that the set S(A) chosen from a feasible set A is also chosen from any subset B
of A, provided the former contains S(A). This reading is reflected by the useful char-
acterization of α̂ given in the following lemma, which reveals that α̂ is equivalent to
such established notions as Chernoff’s postulate 5∗ (Chernoff, 1954), the strong superset
property (Bordes, 1979), and outcast (Aizerman and Aleskerov, 1995).

Lemma 1. A choice function S satisfies α̂ if and only if for all feasible sets A and B,

if S(A) ⊆ B ⊆ A then S(A) = S(B).

Proof. For the direction from left to right, let S(A) ⊆ B ⊆ A. Then, both A∪B = A and
B = A ∩B. Hence, S(A ∪B) = S(A) ⊆ B = A ∩B. Since S satisfies α̂, S(A) = S(B).

For the opposite direction, assume for an arbitrary non-empty set X, both X ⊆ A∩B
and X = S(A∪B). Then, obviously, both S(A∪B) ⊆ A ⊆ A∪B and S(A∪B) ⊆ B ⊆
A ∪B. It follows that S(A ∪B) = S(A) and S(A ∪B) = S(B).

4Given a choice function S, the base relation on sets is a natural extension of the base relation on
alternatives and, hence, both are denoted by RS .
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As a corollary of Lemma 1, we have that choice functions S satisfying α̂, like those
satisfying α, are idempotent, i.e., S(S(A)) = S(A) for all feasible sets A.

An influential and natural consistency condition that also has the flavor of both con-
traction and expansion is path independence (Plott, 1973). Choice function S satis-
fies path independence if S(A ∪ B) = S(S(A) ∪ S(B)) for all feasible sets A and B.
Aizerman and Malishevski (1981) have shown that path independence is equivalent to
the conjunction of α and ǫ+. Since α is the strongest contraction consistency property
and implies the contraction part of α̂, we obtain the following alternative characterization
of path independence.

Proposition 1. A choice function satisfies path independence if and only if it satisfies
α and α̂.

It can easily be verified that the revealed preference relation on sets R̂S of any choice
function S that satisfies α̂ is closed under intersection, i.e., for all feasible sets X, Y ,
and Z such that Y ∩ Z 6= ∅,

X R̂S Y and X R̂S Z imply X R̂S Y ∩ Z.

3.2 Set-expansion Consistency

We define γ̂ in analogy to γ as follows.

Definition 3. A choice function S satisfies γ̂ if for all feasible sets A, B, and X,

if X = S(A) and X = S(B) then X = S(A ∪B). (γ̂)

Thus, a choice function satisfies γ̂, if whenever it chooses X from two different sets,
it also chooses X from their union.

Example 2 shows that α̂ is not a weakening of α (and not even of the conjunction of
α and γ). To see that γ̂ is not implied by γ, consider the following choice function over
the universe {a, b, c}, which satisfies γ but not γ̂:

X S(X)

{a, b} {a}
{a, c} {a}
{b, c} {b}
{a, b, c} {a, b, c}

However, γ̂ is implied by the conjunction of α and γ.

Proposition 2. Every rationalizable choice function satisfies γ̂.

Proof. Assume both α and γ to hold for an arbitrary choice function S and consider
an arbitrary feasible sets X, A, and B with X = S(A) and X = S(B). The inclusion
of X in S(A ∪ B) follows immediately from γ. To appreciate that also S(A ∪ B) ⊆ X,
consider an arbitrary x /∈X and assume for contradiction that x ∈ S(A ∪ B). Then,
either x ∈ A or x ∈ B. Without loss of generality we may assume the former. Clearly,
x ∈ (A ∪B) ∩A and α now implies that x ∈ S(A), a contradiction.
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Schwartz (1976) has shown that quasi-transitive rationalizability is equivalent to the
conjunction of α, γ, and ǫ+. Since α implies the contraction part of α̂ and α and γ imply
γ̂, we obtain the following alternative characterization of quasi-transitive rationalizabil-
ity. As a consequence, WARP implies both α̂ and γ̂.

Proposition 3. A choice function is quasi-transitively rationalizable if and only if it
satisfies α, α̂, and γ̂.

γ̂ is reminiscent of the generalized Condorcet condition (see, e.g., Blair et al., 1976),
which requires that for all feasible sets A and all a ∈ A,

if S({a, b}) = {a} for all b ∈ A then S(A) = {a}.

Choice functions that satisfy this condition we will refer to as generalized Condorcet
extensions. It is easily appreciated that γ̂ implies the generalized Condorcet condition.
In the setting of social choice, Condorcet extensions are commonly understood to be
social choice functions for which additionally choice over pairs is determined by majority
rule (see Section 5.3.1).

In analogy to the relationship between closure under intersection of R̂S and α̂, R̂S of
a choice function S that satisfies γ̂ is closed under union,5 i.e., for all feasible sets X, Y ,
and Z,

X R̂S Y and X R̂S Z imply X R̂S Y ∪ Z.

3.3 Set-Rationalizability

As in the case of α and γ, a single intuitive consistency condition summarizes the con-
junction of α̂ and γ̂: for all feasible sets A, B, and X with X ⊆ A ∩B,

X = S(A) and X = S(B) if and only if X = S(A ∪B).

For illustrative purposes consider the following examples.

Example 1. Let the choice function S over the universe {a, b, c} be given by the table
in Figure 1. For S the revealed preference relation on sets R̂S and the base relation on
sets RS coincide and are depicted in the graph on the right. A routine check reveals that
this choice function satisfies both α̂ and γ̂ (while it fails to satisfy α). Also observe that
each feasible set X contains a subset that is maximal (with respect to R̂S) among the
non-empty subsets of X, e.g., {a, b, c} in {a, b, c} and {a} in {a, b}. Theorem 2, below,
shows that this is no coincidence.

Example 1 also shows that the revealed preference relation over sets need not be
complete. Some reflection reveals that the relation is always incomplete.

Example 2. The table in Figure 2 summarizes a choice function that is rationalizable
by any acyclic relation P with aP cP b. Nevertheless, the revealed preference relation

5This condition is also known as robustness (Arlegi, 2003, see also Barberà et al. (2004)).
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X S(X)

{a, b} {a}
{a, c} {c}
{b, c} {b}
{a, b, c} {a, b, c}

{a} {b} {c}

{a,b} {a,c}{b,c}

{a,b,c}

Figure 1: The revealed preference relation R̂S of the choice function S as in Example 1.

X S(X)

{a, b} {a, b}
{a, c} {a}
{b, c} {c}
{a, b, c} {a}

{a} {b} {c}

{a,b} {a,c}{b,c}

{a,b,c}

Figure 2: The revealed preference relation R̂S of the choice function S as in Example 2.
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over sets does not set-rationalize this choice function. Observe that both {a} and {a, b}
are maximal in {a, b} with respect to the strict part of R̂S . As S({a, b, c}) = {a} and
S({a, b}) = {a, b}, S clearly does not satisfy α̂. Again Theorem 2, below, shows that
this is no coincidence.

By definition, the base relation RS of any choice function S is anti-symmetric, i.e.,
X RS Y and Y RS X imply X = Y . In the presence of α̂, R̂S and RS coincide and are
thus both anti-symmetric.

Set-rationalizable choice functions are characterized by α̂.6

Theorem 2. A choice function is set-rationalizable if and only if it satisfies α̂.

Proof. For the direction from left to right, assume S is set-rationalizable and let R be
the witnessing binary relation on sets. Now consider arbitrary feasible sets A, B and X
with X ⊆ A ∩ B and assume that X = S(A ∪ B). Then, S(A ∪ B) ⊆ A ∩ B. Hence,
Y P S(A∪B), for no non-empty subset Y ⊆ A∪B. It follows that there is no non-empty
subset Y of A such that Y P S(A∪B) either. Hence, S(A∪B) is maximal with respect
to R within A. As S is set-rationalizable, S(A ∪ B) has also to be the unique such
subset in A. The argument that S(A∪B) is also the unique maximal element of R in B
runs along analogous lines. It follows that both S(A) = S(A∪B) and S(B) = S(A∪B).

For the opposite direction assume S to satisfy α̂ and consider arbitrary feasible sets A
and B such that B ⊆ A and S(A) 6= B. Then,

S(A) ⊆ B ∪ S(A) ⊆ A.

Hence, by virtue of Lemma 1,

S(A) = S(B ∪ S(A)),

which implies that S(A)RS B. Since RS is anti-symmetric, it is thus impossible that
BRS S(A). A similar argument holds for R̂S , which coincides with RS in the presence
of α̂.

In the proof of Theorem 2, it is precisely the revealed preference relation on sets that
is witness to the fact that choice functions satisfying α̂ are set-rationalizable. In contrast
to Sen’s Theorem 1, however, the revealed preference relation on sets is not the unique
relation that can achieve this. It is also worth observing that the proof shows that for
each feasible set X and choice function S satisfying α̂, the selected set S(X) is not merely
a maximal set but also the unique maximum set within X given R̂S , i.e., S(X) R̂S Y for
all non-empty subsets Y of X.

4 Self-Stability

It turns out that the notions of set consistency introduced in the previous section bear
a strong relationship to the stability of choice sets as introduced by Dutta (1988) and

6Moulin shows a similar statement for single-valued choice functions (Moulin, 1985a).
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generalized by Brandt (2009). Stability of choice sets is based on the notions of internal
and external stability by von Neumann and Morgenstern (1944), which can be merged
in the following fixed-point characterization.

Definition 4. Let A,X be feasible sets and S a choice function. X is S-stable in A if

X = {a ∈ A : a ∈ S(X ∪ {a})}.

Alternatively, X is S-stable in A if it satisfies both internal and external S-stability
in A:

S(X) = X, (internal S-stability)

a 6∈ S(X ∪ {a}) for all a ∈ A \X. (external S-stability)

The intuition underlying stable sets is that there should be no reason to restrict the se-
lection by excluding some alternative from it and, secondly, there should be an argument
against each proposal to include an outside alternative into the selection.

For some choice functions S, a unique inclusion-minimal S-stable set generally exists.
If that is the case, we use Ŝ to denote the choice function that returns the unique minimal
S-stable set in each feasible set and say that Ŝ is well-defined. Within the setting of
social choice, a prominent example is Dutta’s minimal covering set MC (Dutta, 1988;
Dutta and Laslier, 1999), which is defined as the unique minimal stable set with respect

to the uncovered set UC , i.e., MC = ÛC . Proving that a choice function Ŝ is well-defined
frequently turns out to be highly non-trivial (Brandt, 2009).

We find that there is a close connection between γ̂ and minimal S-stable sets.

Lemma 2. Let S be a choice function such that Ŝ is well-defined. Then Ŝ satisfies γ̂.

Proof. Consider arbitrary feasible sets A,B,X and assume that Ŝ(A) = Ŝ(B) = X.
Trivially, as X is internally S-stable in A, so is X in A∪B. To appreciate that X is also
externally S-stable in A ∪ B, consider an arbitrary x ∈ (A ∪ B) \X. Then, x ∈ A \X
or x ∈ B \ X. In either case, S(X ∪ {x}) = X, by external S-stability of X in A if
the former, and by external S-stability of X in b if the latter. Also observe that any
subset of X that is S-stable in A ∪B, would also have been S-stable in both A and B.
Hence, X is minimal S-stable in A∪B. Having assumed that Ŝ is well-defined, we may
conclude that Ŝ(A ∪B) = X.

We now introduce the notion of self-stability. A choice function S is said to be self-
stable if for each feasible set A, S(A) is the unique (minimal) S-stable set in A.

Definition 5. A choice function S is self-stable if Ŝ is well-defined and S = Ŝ.

In the next section we argue that self-stability defines an interesting class of choice
functions, containing a number of well-known and important social choice functions.
First, and on a more abstract level, however, we establish that the class of self-stable
choice functions is characterized by the conjunction of α̂ and γ̂.

10



Theorem 3. A choice function is self-stable if and only if it satisfies both α̂ and γ̂.

Proof. For the direction from left to right, assume S to be self-stable. Lemma 2 implies
that S satisfies γ̂. For α̂, consider arbitrary feasible sets A,B such that S(A) ⊆ B ⊆ A.
By virtue of Lemma 1, it suffices to show that S(B) = S(A). As, moreover, Ŝ(B) = S(B)
and Ŝ is well-defined, S(B) is the unique S-stable set in B. Hence, it suffices to show
that S(A) is both internally and externally S-stable in B. Internal S-stability of S(A)
in B is trivial since S(S(A)) = S(A) by S(A)’s being internally S-stable in A. To
appreciate that S(A) is also externally S-stable in B, consider an arbitrary x ∈ B\S(A).
Then also x ∈ A \S(A) and by S(A)’s being externally S-stable in A, we obtain S(A) =
S(S(A) ∪ {x}). It follows that S(A) is also externally S-stable in B.

For the other direction, assume S satisfies both α̂ and γ̂ and consider an arbitrary
feasible set A. To show that S satisfies internal S-stability, observe that trivially S(A) ⊆
S(A) ⊆ A. Hence, by Lemma 1, S(A) = S(S(A)). To appreciate that S also satisfies
external S-stability, let x ∈ A \ S(A). Then, S(A) ⊆ S(A) ∪ {x} ⊆ A and, again by
Lemma 1, S(A) = S(S(A) ∪ {x}). To see that Ŝ is well-defined, consider an arbitrary
S-stable set Y in A and let A\Y = {x1, . . . , xk}, i.e., A = Y ∪{x1, . . . , xk}. By external
S-stability of Y , then S(Y ∪ {xi}) = S(Y ) for each i with 1 ≤ i ≤ k. Thus by k − 1
applications of γ̂, we obtain S(Y ) = S(Y ∪ {x1, . . . , xk}) = S(A).

As an immediate consequence of Theorem 3 and the observation that γ̂ implies the
generalized Condorcet condition, we have the following corollary.

Corollary 1. Every self-stable choice function is a generalized Condorcet extension.

Examples of self-stable Condorcet extensions will be given in Section 5.3.1.

5 Social Choice

In this section, we assess the consequences of the reflections in the previous two sections
on the theory of social choice. Before we do so, however, we introduce some additional
terminology and notation.

5.1 Social Choice Functions

We consider a finite set N = {1, . . . , n} of at least two agents. Each agent i entertains
preferences over the alternatives in U , which are represented by a transitive and complete
preference relation Ri. In some cases, we will assume preferences to be linear, i.e., also
satisfying anti-symmetry, but otherwise we impose no further restrictions on preference
relations. We have aRi b denote that agent i values alternative a at least as much as
alternative b. We write Pi for the strict part of Ri, i.e., aPi b if aRi b but not bRi a.
Similarly, Ii denotes i’s indifference relation, i.e., a Ii b if both aRi b and bRi a. The
set of all preference relations over the universal set of alternatives U will be denoted
by R(U). The set of preference profiles, with typical element R = (R1, . . . , Rn), is then
given by R(U)N .
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The central object of study in this section are social choice functions, i.e., functions
that map the individual preferences of the agents and a feasible set to a set of socially
preferred alternatives.

Definition 6. A social choice function (SCF) is a function f : R(U)N × F(U) → F(U)
such that f(R,A) ⊆ A for all preference profiles R and feasible sets A.

Clearly, every SCF f together with a preference profile R in R(U) defines a choice
function Sf,R on U in a natural way by letting for each feasible set A, Sf,R(A) = f(R,A).
We say that f satisfies WARP, rationalizability, or any other condition defined for choice
functions, if Sf,R does for every preference profile R. Pareto-optimality, independence
of irrelevant alternatives, and non-dictatorship are conditions that are more specifically
defined for SCFs.

Pareto-optimality requires that an alternative should not be chosen if there exists
another alternative that all agents unanimously prefer to the former.

Definition 7. An SCF f satisfies (pairwise) Pareto-optimality if for all preference pro-
files R and all alternatives a, b, if b Pi a for all i ∈ N then a 6∈ f(R, {a, b}).

Independence of irrelevant alternatives reflects the idea that choices from a set of
feasible alternatives should not depend on preferences over alternatives that are not
contained in this set.

Definition 8. An SCF f satisfies independence of irrelevant alternatives (IIA) if
f(R,A) = f(R′, A) for all feasible sets A and preference profiles R,R′ such that
R|A = R′|A.

In the context of SCFs, IIA constitutes no more than a framework requirement for
social choice.

Another minimal requirement for any SCF is that it should be sensitive to the pref-
erences of more than one agent. In particular, there should not be a single agent who
can enforce the inclusion of alternatives in the choice set no matter which preferences
the other agents have. Such an agent is usually called a (weak) dictator.7

Definition 9. An SCF f is (pairwise) non-dictatorial if there is no agent i such that
for all preference profiles R and alternatives a, b, if aPi b then a ∈ f(R, {a, b}).

Definition 7 through Definition 9 are also referred to as the Arrovian conditions.
Other useful and frequently imposed requirements on SCFs are neutrality, anonymity,
and positive responsiveness.

Neutrality can be seen as a strengthening of IIA and requires SCFs to be invariant
under renaming alternatives, i.e., all alternatives are to be treated equally.

Definition 10. An SCF f is neutral if π(f(R,A)) = f(R′, A) for all feasible sets A,
preference profiles R, R′, and permutations π : A → A such that aR′

i b if and only if
π(a)Ri π(b) for all alternatives a, b and agents i.

7For presentational purposes we employ the notion of a weak dictator or vetoer in all impossibility
theorems, although Theorem 4 holds for an even weaker notion of non-dictatorship.
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By contrast, anonymity says that SCFs be invariant under renaming agents and as
such is a strong variant of non-dictatorship.

Definition 11. An SCF f is anonymous if f(R,A) = f(R′, A) for all feasible sets A,
preference profiles R and R′, and permutations π : N → N such that R′

i = Rπ(i) for all
agents i.

It also appears reasonable to demand that SCFs are monotonic in the sense that
increased support may not hurt an alternative.

Definition 12. An SCF f is (pairwise) positive responsive if for all alternatives a, b and
all preference profiles R, R′, there is some agent i such that Rj = R′

j for all agents j 6= i
and either both a Ii b and aP ′

i b or both b Pi a and aR′

i b,

if a ∈ f(R, {a, b}) then f(R′, {a, b}) = {a}.

5.2 Impossibility Results

Famously, Arrow’s general impossibility theorem, as formulated for SCFs, states that no
SCF that satisfies all of the Arrovian conditions exists.

Theorem 4 (Arrow, 1951; 1959). No SCF satisfies Pareto-optimality, IIA, WARP, and
non-dictatorship.

As the Arrovian conditions cannot be satisfied by any SCF, at least one of them needs
to be excluded or relaxed to obtain positive results. Clearly, dropping non-dictatorship is
unacceptable and, as already mentioned, IIA merely states that the SCF represents a rea-
sonable model of preference aggregation (see, e.g., Schwartz, 1986; Bordes and Tideman,
1991). Wilson (1972) has shown that without Pareto-optimality only SCFs that are con-
stant (i.e., completely unresponsive) or fully determined by the preferences of a single
agent are possible. Moreover, it could be argued that not requiring Pareto-optimality
runs counter to the very idea of social choice. Accordingly, the only remaining possibility
is to exclude WARP.

Imposing weaker rationality conditions than WARP, however, offers little relief as it
turns out that the vicious essence of Arrow’s impossibility remains. There is a range of
results stating the impossibility of SCFs satisfying weaker versions of WARP in a satisfac-
tory way (see, e.g., Kelly, 1978; Schwartz, 1986; Campbell and Kelly, 2002; Banks, 1995).
Among these, the results by Mas-Colell and Sonnenschein (1972) and Blau and Deb
(1977) deserve special mention as they concern rationalizability instead of WARP. We
will employ a variant of Blau and Deb’s theorem due to Austen-Smith and Banks (2000).

Theorem 5 (Mas-Colell and Sonnenschein, 1972). No SCF satisfies Pareto-optimality,
positive responsiveness, IIA, rationalizability, and non-dictatorship, provided that n > 3.

By strengthening IIA to neutrality and assuming that the number of alternatives
exceeds the number of agents, positive responsiveness is no longer required.
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1 1 1

a c b
b a c
c b a

{x, y} f(R, {x, y})

{a, b} {a}
{b, c} {b}
{a, c} {c}

Table 1: On the left a preference profile (figures indicate numbers of agents) leading to
the Condorcet paradox. On the right the corresponding choice function on pairs
if determined by majority rule.

Theorem 6 (Austen-Smith and Banks, 2000). No SCF satisfies Pareto-optimality, neu-
trality, rationalizability, and non-dictatorship, provided that |U | > n.

For further characterizations of rationalizable social choice the reader be referred to
Moulin (1985b), Banks (1995), and Austen-Smith and Banks (2000).

5.3 Condorcet Extensions and Scoring Rules

In light of the severe problems that α and γ entail in social choice, we now investigate
which of the well-known SCFs satisfy α̂ and γ̂. We focus on two types of SCFs, namely
Condorcet extensions and scoring rules.

5.3.1 Condorcet Extensions

Despite the Arrovian impossibility results, social choice over two alternatives is unprob-
lematic. May (1952) has shown that the simple majority rule—choosing the alternative
that a majority prefers to the other alternative, and in case of a tie, choose both—can
be characterized by neutrality, anonymity, and positive responsiveness. Thus, it seems
reasonable to require of SCFs f that they reflect majority rule on pairs. Extending any
such SCF f to feasible sets with more than two alternatives, one immediately runs into
arguably one of the earliest Arrovian impossibility results, viz. the Condorcet paradox
(de Condorcet, 1785). Consider the preference profile depicted in Table 1. Then, if f
on pairs is determined by majority rule, the base relation RSf,R

fails to be acyclic, and
therefore Sf,R does not satisfy α. Observe, moreover, that f(R, {a, b, c}) = {a, b, c},
if f satisfies α̂. For suppose otherwise, then, without loss of generality, we may assume
that either f(R, {a, b, c}) = {a} or f(R, {a, b, c}) = {a, b}. Assuming that f satis-
fies α̂, however, the former is at variance with f(R, {a, c}) = {c}, and the latter with
f(R, {a, b}) = {a}. Thus, Sf,R coincides with the choice function S of Example 1 and

Figure 1 depicts its weak revealed preference relation R̂Sf,R
.

By Theorem 3, the class of SCFs that satisfy both α̂ and γ̂ consists precisely of all
self-stable SCFs. By virtue of Theorem 2 and Corollary 1 the SCFs in this class are all
set-rationalizable generalized Condorcet extensions. May’s characterization furthermore
implies that all self-stable SCFs that satisfy anonymity, neutrality, and positive respon-
siveness are Condorcet extensions. Among them are well-known rules like weak closure
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3 2 1

a b c
c a b
b c a

Table 2: A preference profile (figures indicate numbers of agents) showing that no weak
Condorcet extension and scoring rule satisfies α̂. For every weak Condorcet
extension and every scoring rule the choice function for this profile is as in
Example 2 (also compare Figure 2).

maximality (also known as the top cycle, GETCHA, or the Smith set), the minimal cov-
ering set, the essential set, and their generalizations (Bordes, 1976; Dutta and Laslier,
1999; Laslier, 2000).8

Interestingly, well-known Condorcet extensions that satisfy only one of α̂ and γ̂ appear
to be less common. Still, Schwartz’s strong closure maximality (Schwartz, 1972), which
he refers to as GOCHA, is an example of an SCF that satisfies γ̂ but not α̂. By contrast,
the iterated uncovered set (e.g., Dutta, 1988) satisfies α̂ but not γ̂.

When pairwise choice is determined via majority rule, the set of weak Condorcet
winners for a given preference profile R and feasible set A is defined as {a ∈ A : a ∈
f(R, {a, b}) for all b ∈ A}. An SCF is called a weak Condorcet extension if it returns
the set of weak Condorcet winners whenever this set is non-empty. Clearly, every weak
Condorcet extension is a Condorcet extension. The converse is not generally the case,
but many Condorcet extensions (such as Kemeny’s rule, Dodgson’s rule, Nanson’s rule,
and the minimax rule) are also weak Condorcet extensions (see Fishburn, 1977). It turns
out that no weak Condorcet extension is set-rationalizable.

Theorem 7. No weak Condorcet extension satisfies α̂.

Proof. Let f be a weak Condorcet extension and consider the linear preference profile R
with preferences over A = {a, b, c} as given in Table 2. Since alternative a is the unique
weak Condorcet winner—three out of six agents prefer it to b and all agents but one
prefer it over c—f(R, {a, b, c}) = {a}. Now observe that the preferences of the same
agents over the subset {a, b} are such that three agents prefer a to b and three b to a.
Accordingly, f(R, {a, b}) = {a, b}. As c /∈ f(R, {a, b, c}) but f(R, {a, b, c}) 6= f(R, {a, b}),
we may conclude that f does not satisfy α̂.

5.3.2 Scoring Rules

Scoring rules are based on the idea that the voters each rank the alternatives in a feasible
set according to their preferences, which, for technical convenience we will here assume

8Brandt (2009) defines an infinite hierarchy of self-stable SCFs. If we assume an odd number of agents
with linear preferences, the class of self-stable SCFs is also conjectured to contain the tournament

equilibrium set (Schwartz, 1990) and the minimal extending set. Whether this is indeed the case
depends on a certain graph-theoretic conjecture (Laffond et al., 1993; Brandt, 2009).
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to be linear. Each time an alternative is ranked mth by some voter it gets a particular
score sm. The scores of each alternative are then added and the alternatives with the
highest cumulative score are selected. The class of scoring rules includes several well-
known SCFs, like the Borda rule—alternative a gets k points from agent i if i prefers a
to k other alternatives—and the plurality rule—the cumulative score of an alternative
equals the number of agents by which it is ranked first.

Formally, we define a score vector of length k as a vector s = (s1, . . . , sk) in R
k such

that s1 ≥ · · · ≥ sk and s1 > sk. For example, (1, 0, 0), (2, 1, 0), and (1, 1, 0) are the
score vectors of length 3 for the plurality rule, the Borda rule, and the anti-plurality
rule, respectively. Given a feasible set X of k alternatives, an x ∈ X, and a linear
preference profile R, we have s(x, i) denote the score alternative x obtains from voter i,
i.e., s(x, i) = sm if and only if x is ranked mth by i within X. Then, the (cumulative)
score s(x) of an alternative x within X given R is then defined such that

s(x) =
∑

i∈N

s(x, i).

A scoring rule is an SCF that selects from each feasible set X for each preferences
profile the set of alternatives x in X with the highest score s(x) according to some score
vector s of length |X|. Observe that no restrictions are imposed on how the score vectors
for different lengths are to be related.

As every scoring rule fails to select the Condorcet winner for some preference profile
(Fishburn, 1973) and coincides with majority rule on two alternatives, they generally do
not satisfy γ̂. We find that no scoring rule can satisfy α̂ either. It follows that no scoring
rule is set-rationalizable.

Theorem 8. No scoring rule satisfies α̂.

Proof. Let f be a scoring rule. Let further s = (s1, s2, s3) and s′ = (s′1, s
′

2) be its
associated score vectors of lengths 3 and 2, respectively. Without loss of generality we
may assume that s1 = 1 and s3 = 0. Consider the preference profile R with preferences
over A = {a, b, c} as depicted in Table 2. Then, s(a) = 3 + 2s2, s(b) = 2 + s2 and
s(c) = 1 + 3s2. Since 1 ≤ s2 ≤ 0, it can easily be appreciated that s(a) > s(b)
as well as s(a) > s(c). Hence, f(R, {a, b, c}) = {a}. As in the proof of Theorem 7,
f(R, {a, b}) = {a, b} and we may conclude that f does not satisfy α̂.

Using the same example as in the proof of Theorem 8, the reader can easily verify that
all scoring run-off rules—such as single transferable vote (STV)—also fail to satisfy α̂
and as such are not set-rationalizable.

An interesting question in this context is whether the impossibility shown in Theorem 8
can be generalized to rank-based SCFs, i.e., SCFs that merely take into account the
positions of alternatives in the individual rankings (Laslier, 1996). It turns out this
is not the case because, for instance, the (rather unattractive) SCF that chooses all
alternatives that are ranked first by at least one voter is rank-based and satisfies α̂.9 It

9This SCF has also been mentioned by Gärdenfors (1976) and Kelly (1977). Taylor (2005) calls it the
omninomination rule.
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might also be worth observing that this SCF happens to satisfy γ̂ and Pareto-optimality
as well.

6 Summary and Conclusion

Problems relating to the possibility of reasonable social choice functions have proved to
be rather tenacious. In particular, attempts to circumvent Arrow’s impossibility result
by replacing the weak axiom of revealed preference (WARP), which requires a transitive
and complete preference relation on alternatives underlying choice, by weaker conditions
on the underlying preference relation have generally failed to deliver.

By weakening WARP to set-rationalizability, we have shown that social choice func-
tions that also satisfy the other Arrovian postulates do exist. These social choice func-
tions are generally characterized by their satisfying α̂. This condition, which also goes
by the names of strong superset property, 5∗, and outcast, is no stranger in choice
theory, but nevertheless has played a surprisingly small role therein. In an early pub-
lication, Chernoff writes that “postulate 5 ∗ is not imposed in our definition of a ra-
tional solution” (Chernoff, 1954, page 430) and Aizerman and Aleskerov chime in by
stating that “this property [α̂] did not find wide use in the choice theory literature”
(Aizerman and Aleskerov, 1995, page 21). The characterization of set-rationalizable
choice functions via α̂ can be interpreted as a strong argument for this postulate.

By also imposing γ̂, the set-expansion property that forms the counterpart of α̂, we
obtain the class of self-stable generalized Condorcet extensions. In the context of social
choice, this class comprises appealing social choice functions like the minimal covering
set and the essential set, yet excludes other well-known rules like all scoring rules, all
scoring runoff rules, and all weak Condorcet extensions. As such, self-stability defines
a fascinating class of social choice functions, which offers an interesting way around the
impossibility results that have haunted social choice theory for such a long time.
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