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Abstract

We develop a new class of utility functions, SAHARA utility, with the distinguishing feature that it
allows absolute risk aversion to be non-monotone and implements the assumption that agents may become
less risk averse for very low values of wealth. The class contains the well-known exponential and power
utility functions as limiting cases. We investigate the optimal investment problem under SAHARA utility
and derive the optimal strategies in an explicit form using dual optimization methods. We also show how
SAHARA utility functions extend the class of contingent claims that can be valued using indifference
pricing in incomplete markets.
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1. Introduction

The solution to optimal investment problems strongly depends on the risk preferences of the
optimizing agent. Realistic but tractable choices for the description of these preferences is there-
fore important. To obtain closed-form solutions for optimal investment problems, the assumption
of Brownian or Geometric Brownian asset dynamics is often coupled to assumptions of constant
absolute risk aversion or constant relative risk aversion for all levels of wealth.> The seminal
work of [19,20] has shown that for these cases the optimal investment strategies may be derived
explicitly.

Sometimes it is useful to work with utility functions defined on the whole real line, but closed-
form solutions for the associated optimal investment problems have only been formulated for
CARA (exponential) utilities. This paper presents a new alternative. Our utility functions are
defined for all wealth levels and allow absolute risk aversion to be non-monotone, but show
the same analytical tractability as their constant absolute or relative risk aversion counterparts.
We call this new class of utility functions the Symmetric Asymptotic Hyperbolic Absolute Risk
Aversion (SAHARA) class. The domain of all functions in this class is the whole real line and for
every SAHARA utility function there exists a level of wealth, which we call threshold wealth,
where the absolute risk aversion reaches a finite maximal value. Hence risk aversion increases
when we approach the threshold wealth from above, but we see decreasing risk aversion for
increasingly lower levels of wealth below the threshold wealth. SAHARA utility being concave
everywhere implies that it still has a higher disutility for the same loss at low wealth than at high
wealth. As a result, SAHARA preferences do not imply the notion of forgiveness in bankruptcy
introduced by [27,28]. That would imply that preferences are concave in one region and convex
in another while in the SAHARA case agents may become less risk averse but they never become
risk-seeking.

An appropriate choice of preferences is particularly important when optimal investment strate-
gies are used to determine the value of contingent claims in incomplete markets. In such markets
one can define indifference prices as the necessary monetary compensation for a loss in the op-
timal expected utility of investments due to the addition of the contingent claim to the agent’s
portfolio. Contingent claims that could lead to a very large loss with a small probability, such as
those based on reinsurance contracts, imply the existence of scenarios where wealth levels are
pushed to such lows that constant absolute or relative risk aversion can no longer be assumed.
Logarithmic and power utility functions do not allow negative values for wealth so possible
losses are automatically assumed to be bounded by the current wealth level. But even exponen-
tial utility functions cannot be used to determine the indifference price of a shorted call when
the underlying asset is assumed to follow Black—Scholes dynamics since lognormal tails for the
possibly unbounded loss are too heavy to give a finite price (cf. e.g. [11]). A natural application
of the indifference pricing with SAHARA utility can be adopted by an insurance company which
writes unit-linked life insurance contracts.

We therefore analyze the optimal investment problem under SAHARA utility in a complete
market setting and apply the results to the indifference pricing problem in incomplete markets.
We are able to derive optimal investment strategies which are explicit functions of the key param-
eters and the level of wealth. In that sense we have the same tractability as in the classical problem

2 Utility functions with constant absolute risk aversion or constant relative risk aversion belong to the class of prefer-
ences with Hyperbolic Absolute Risk Aversion (HARA, also known as Linear Risk Tolerance — LRT). For a discussion,
see the seminal paper by Merton [20] and the references in Table 1 of that paper.
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analyzed in [19,20].3 Such problems have originally been solved by the dynamic programming
approach which requires a Markovian assumption on the state process. In the literature, this
approach is called the primal formulation and it leads to the Hamilton—Jacobi—Bellman (HJB)
equation for the indirect utility function. To solve the optimal investment problem for SAHARA
utility, we rely on the dual approach which converts a dynamic optimization problem to a static
one. In a complete market setting the dual method has been studied in [3,13,26] and in an in-
complete market setting e.g. by [4,9-12,14,29]. Under SAHARA preferences, the dual approach
helps to derive explicit solutions thanks to the role of the marginal utility, since the SAHARA
preferences are additive in the dual but not in the primal formulation.

To be able to compare the optimal strategies for SAHARA and other utility functions, spe-
cific choices for the SAHARA parameters need to be made. In our numerical example, we
choose these parameters to specify values for quantities with a clear economic meaning, using a
probability of falling below the threshold wealth and a desired asymptotic relative risk aversion
coefficient.

The remainder of the paper is structured as follows. Section 2 introduces the SAHARA class
of utility functions. Optimal investment problem under SAHARA preferences is discussed in
Section 3. Section 4 is dedicated to illustrating some of the results obtained in Section 3 and
makes a comparison between the optimal strategies for SAHARA, exponential and power util-
ity functions. Section 5 applies the results to an indifference pricing problem in an incomplete
market and Section 6 provides some concluding remarks.

2. SAHARA utility

In this section, we introduce the SAHARA class of utility functions and derive some useful
properties that we will use in the remainder of the paper. We also show that the popular classes
of power and exponential utility functions are limiting cases of SAHARA utility functions.

Definition 2.1. A utility function U with domain R is of the SAHARA class if its absolute risk
aversion function A(x) = —U"(x)/U’(x) is well defined on its entire domain and satisfies

(07
Ax) = >0 (1)

VB*+ (x —d)?

for a given B > 0 (the scale parameter), a > 0 (the risk aversion parameter) and d € R (the
threshold wealth).

Note that « is a dimensionless quantity and that the dimension of 8 and d are the same as x,
i.e. they are monetary. If we move to different scales of wealth then the scale parameter 8 and
the offset d need to be adjusted (for a constant o). Without loss of generality, we will assume
that d =0, 1.e. the threshold will always be at zero wealth.

Like HARA utility functions, SAHARA utility shows increasing absolute risk aversion when
the threshold wealth x = 0 is approached from above, which implies that an economic agent tries
to avoid falling below this level. However, under SAHARA utility the agent will not try to avoid
the threshold wealth at all costs so the level of risk aversion is still finite at the threshold wealth
x = 0. Below the threshold wealth the agent becomes less risk averse since he is relatively indif-
ferent between being slightly or severely below the threshold. In this sense, SAHARA captures

3 Merton’s optimal consumption and investment problem has been further investigated in for example [1,7,21,30].
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the phenomenon that an agent may be more inclined to risk more than usual once he has fallen
below his threshold wealth level. But the agent with the SAHARA utility remains risk averse
beyond this point, unlike the notion of forgiveness in bankruptcy introduced by [27,28] in which
the preferences are concave in one region and convex in another.

The reason why we have chosen such a functional form for the absolute risk aversion is the
convenient structure of the convex dual and the inverse marginal utility of SAHARA utility. Our
choice leads to preferences that are additive in the dual, not additive in the primal, thanks to the
role of the inverse marginal utility. This allows the derivation of explicit solutions in the dual
optimal investment problem since we can express the optimal terminal wealth as a weighted
difference of two optimal wealths obtained under power utilities.

We now list some properties for our class of utility functions.

Proposition 2.2. Let U be a SAHARA utility function with scale parameter B > 0 and risk
aversion parameter o > 0. Then

1. There exists constants ¢ and c such that U (x) =c1 + 0217 (x) with

—A G VB D)t ay/BrHa?) a#l

Ux)={ ! )

%1n(x+\/m)—|—%,3_2x(\/m—x) a=1

where the domain is R in both cases. We take ¢y =0 and ¢, = 1 from now on.
2. The SAHARA utility function has Reasonable Asymptotic Elasticity (RAE), which is a suf-
ficient condition for the validity of the dual approach (cf. [16]):

U/ U/
lim a (x)=1+oz>1 and lim)C (x)zl—oz<l.
x——o0 U(x) x—=o0 U(x)

3. The convex dual U(y) = sup,r(U(x) — xy) and inverse marginal utility function I =
WU are

1Byl 1-1/a

U(y): 2( 1+1/a _)1}—1/0() a7l
1% -1 -1y a=1

and
1(y) = %(y—”“ - B*y'%) =ﬁsinh<—$lny - lnﬂ) 3)

with domain y € R™.

4. The risk aversion function A(x) is maximal at the threshold wealth x = 0 and decreasing
for increasing positive wealth and increasingly more negative wealth. The prudence function
p(x)=-U"(x)/U"(x) equals

ay/ B2 +x%4+x o X
px) = 2. 2 = o3
p-+x VB +x2 potx
It is positive on the whole domain if o > 1 but for a € (0, 1) prudence is negative for x <

—aB~/1 — a2. Prudence is maximal when x | B = z where z solves a = (1 —z%)/(zv/1 + z2)
and is larger than /1/3.
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Proof. 1. The first statement follows by integrating A(x) = —% InU’(x) twice. The first inte-
gration gives

U/(x) = (x + /,32 +x2)—06 _ ﬁ—ae—aarcsinh(x/ﬂ) @)

apart from a constant, and a second integration then gives the result.
2. For the second statement we calculate for o #£ 1

xU’(x)_ i x(1 = a?) |14+« forx — —oo
l—a forx— +o0

lim = lim =
x—to00 U(x) x—i:l:oox_i_a /:32 +x2

which proves the Reasonable Asymptotic Elasticity property. It is easy to check that this state-
ment holds for « =1 too.

3. For the third part we see from (4) that the domain of / and U is Rt. We see that [ B~ =0
so U(B~%) =U(0) and

1
I(y)=psinh(=(Iny)/e —Inf) = (y~1/* = 2y'/7).

Since U'(y) = —1I(y) we have for « # 1

B 1 IBZyl—H/Ol yl—l/oz
U(y) =~ -
) 2(1—|—1/a —1ja) O

for some constant c¢3 and since U(,B_"‘) =U(0) = B'~%/(1 — «?) we must have that ¢3 = 0.
For o = 1 we find

- 1/1
Uy)=-(=8*—Iny ) +c4
2\ 2

since U(B~1) = U(B~*) = U(0) = 4 In B we see that c4 = —%.

4. For the last statement one can use the fact that p(x) = A(x) — % In A(x) to find the ex-

plicit expression for p given here. Putting the derivative of p equal to zero gives 2 — x? =

ax+/x2 + B2 and scaling by x = z8 gives the equation for z which equals a number smaller than
1 only when z is larger than \/1/3. O

Note that the convex dual U (y) possesses an additive separable structure. The additivity of
the dual can be interpreted as the sum of demands of two goods sold at fixed relative prices with
additive separable utility.

To derive the results above we have assumed that 8 > 0 and 8 < oo in our definition of the
SAHARA utilities. Clearly, the case 8 | 0 corresponds to the risk aversion function of the HARA
utilities A(x) = «/x for « € (0, 1) and x > 0, while the choice « = ¥ and 8 1 oo leads to an
exponential utility function with constant absolute risk aversion parameter y .

2.1. Negative prudence

The influence of the risk aversion parameter « and scaling parameter § are illustrated in Fig. 1
which show the utility function U, the absolute risk aversion and the prudence as a function of
wealth. Note that there is a wealth level at which prudence is maximal just above the threshold
wealth while below the threshold wealth we become less prudent. If our risk aversion parameter
a is less than one, we may even have negative prudence (cf. the top graph in Fig. 1).
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SAHARA Utility
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Fig. 1. SAHARA utility, absolute risk aversion and prudence for 8 =1 and « =0.5, 1, 2.
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We see that for o < 1 and wealth levels below —aB+/1 — a? the SAHARA utility exhibits
negative prudence, i.e. SAHARA utility may be said to exhibit precautionary spending. This
is because positive prudence can be interpreted in terms of incentives for precautionary saving,
according to [15]. A negative prudence would imply that the agent invests more and more in
risky assets and less in the bank account when wealth decreases. How prudence relates to the
investment behavior of the agent is discussed more extensively in the next section.

Note that the prudence of a power utility U (x) = ’ilT_;, n>0is

1+n
px)=——.
X

An agent with such a power utility is always more prudent than the SAHARA-agent if

1+n> o L - O{<(77—|—1)\/,32—|—x2_ x
X = /,82+X2 ,82—|—x2 = X /,82+)C2’

Since (n+ 1)/B2 + x2/x —x/+/ B? + x2 is a decreasing function in x, it reaches its minimum as
x — oo. In other words, a sufficient condition for the prudence of the power utility being greater

than or equal to that of the SAHARA utility is

a < lim (n+1) 52+x2_ a =7
h x VB2

X—> 00
For o > n, we still obtain a greater prudence for the power utility if and only if

x> ,3/\/77 —(@/2)(ye?+4n+4—a).

Unfortunately no clear conclusions can be drawn when we compare the prudence of the SA-
HARA with that of an exponential utility because the latter is a constant.

In the subsequent section, we look at the optimal investment problem under SAHARA utility,
where the optimal terminal wealth, the optimal investment policy and the indirect utility function
are derived.

Vx > 0.

3. The optimal investment problem

We now formulate the optimal investment problem which dates back to [19,20]. Assume that
we are in a market with a traded asset S satisfying

dSt :/LStdt+O'Stth

where W denotes a standard Brownian motion under a probability measure P, i.e. this asset
follows Black—Scholes dynamics with constant instantaneous rate of return x> 0 and volatility
o > 0. Also assume the existence of a riskfree asset B which satisfies

dBt :I”Btdt

for a deterministic riskfree rate r. The agent with SAHARA utility can only trade in these two
assets in a self-financing way starting with initial wealth xo. The agent will choose a process 6,
adapted to the filtration generated by the Brownian motion, which denotes the amount of wealth
invested in the risky asset S.
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The agent tries to maximize the expected utility of his wealth at a time 7 > 0 so the problem
can be stated as

max E[U(X7)] (&)
XeX (xo)
where X (xo) denotes the class of all possible wealth processes that can be generated by self-
financing strategies 6; in this market when starting from an initial capital x.
As shown by [3,13], the dynamic stochastic optimal control problem (5) can be formulated as
a static optimization problem

rgl(axE[U(XT)] s.t. E[Yr/Yo- X7]=x0, (6)

where the process Y; denotes the pricing kernel of the economy. Since we have a complete
economy, our pricing kernel is uniquely defined and satisfies dY; = —rY; dt — AY; dW;, where
A = (u — r)/o denotes the market price of risk. Furthermore, the initial value Y serves as a
Lagrange multiplier that ensures that the budget equation E[Y7 /Yy - X7] = x¢ is satisfied. In our
economy, the pricing kernel Y7 can be alternatively characterized as

Yr = e_rT(S—T>_
C 9

where the constant C now acts as the Lagrange multiplier. This alternative formulation reveals
explicitly the connection between the pricing kernel Y7 and the so-called growth-optimal port-
folio Zy = ' (S7)5 .

Before we proceed to the solution of (6) it is worthwhile to reflect upon the class of wealth
processes X (xp). As pointed out by [3], the class of self-financing trading strategies in continuous
time is so rich that it includes the possibility of so-called doubling strategies (see e.g. [8]). We
therefore need to impose additional constraints on X (x() to rule out these unwanted doubling
strategies. The standard approach in the literature is to rule out doubling strategies by imposing
a non-negative wealth constraint (see e.g. [6,18]). This result can be extended by imposing a
(negative) lower bound on the wealth processes in X (x() (see e.g. [5]). Imposing lower bounds
is appealing since they allow a clear economic interpretation.

In the case of SAHARA utility imposing a lower bound on wealth is much harder since
we explicitly allow for negative wealth positions. To make matters worse, due to the declining
absolute risk aversion for more negative wealth positions, the agent will follow a strategy that
takes on unbounded short positions in the stock whenever S; approaches zero. And since we may
keep a positive position in stock when we have zero wealth, the percentage of our wealth that we
invest in stock, 6;/ X;, cannot be assumed to be finite either. We therefore require throughout the
rest of the paper that

Q>

0r <K (1+ X?)

for a parameter K > 0 which we will allow to depend on the strategy. This allows a position in
stock when wealth is zero, but restricts our “leverage” when wealth becomes very large in abso-
lute value (i.e. very positive or very negative). This condition allows us to distinguish between
“well-behaved” investment strategies with large short positions and “pathological” strategies
such as doubling or suicide strategies, as the following lemma shows.

Lemma 3.1. Under the condition mentioned above, there are no arbitrage possibilities.
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Proof. It is enough to show that under the new measure Q defined by ?1(]% = TYr /Y, the
discounted gain process X; = e~"' X; — xq is a Q-martingale. It is certainly a local Q-martingale

since d X = oe "9, d Wt@ with W@ a Brownian motion under Q so we are done if we prove that
EQ[(X, X),] < oo for all t € [0, T]. Define H (t) = EQ[X?], then

t 2 t

H(t) =E@[</ae—meudw;@> } =/E@[aze—2r“93]du

0 0
t

1
< KazE@/e—2’“(1 +X5) du < K02(2/ H () du +1(2x5 + 1))
0 0

which implies by the Gronwall inequality that H (1) < Ko2(2x3 + 1)(t + [, ue?® o?(1=1) 7). But
then EQ[(X, X),] = [y E®[o2e~2"“02]du = H(t) which is indeed finite for all r € [0, T]. O

We will now characterize the optimal wealth strategy and the indirect utility function in the
following two theorems.

Theorem 3.2. In case of SAHARA utility, the optimal terminal wealth is given by

532 ()

where p = % and C > 0 is a constant given by

1

C = Soe(r_%az)T(lBearcsinh %) P
The optimal investment strategy in terms of wealth that should be invested in the risky asset at
time t € [0, T] is given by
% 2 2 —(r=122/a?)(T 1)
6 =py (X)) +b@)?  bt)=Be "2 :

Proof. For our proof, we will closely follow the martingale methodology of [3]. From [3, Theo-
rem 2.1] it follows that the terminal wealth under SAHARA utility is given by

S 1/SP\? 1 ,(Sr\ 7"
X;=1(YT):ﬁsinh(p1nFT—1nﬁ):§<%) —5ﬂ2<%) .

Note that for every d > 0 we have E@[S%l}",] = Sd (r+30 Z(d_l))d(T_t), where Q denotes

the unique equivalent martingale measure defined by ‘é% =¢"TYr /Yy and we thus have that

E[(YT/Y)X7|F:] = EQ[erT-D X, |F¢]. The optimal wealth process can then be calculated as
1/S7\’ 1 ST\ P
X* = e T-DRQ| 2 (2T ) _ 2g2(°T ‘]__
1= 2\ P\ ¢ ’
1.2 1.2 —
_ e(_r"‘%i_i)(T_’) l S,er=20 )T =)\ P ~ Igz S,er=20 )T =0\ ~P
2 C C

= b(t) sinh(pIn(S,e" 27T =D /C) —In ). %)

Imposing the condition X = xo we can solve for C.
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The trading strategy 6," that replicates the optimal wealth X can be found by calculating the
“delta-hedge” for the wealth (34X /9S;)S;. This leads to

6; = pb(r) cosh(p ln(Ste(r_%"z)(T_t)/C) —Inp)

= py (X7)* +b(1)2, )

and since this strategy is admissible, we are done. O

Theorem 3.3. In case of SAHARA utility, the indirect utility function associated with the optimal
strategy, u(t, x) = E[U(X7}) | X; = x], is given by the following expression

~(r+ 402 fy @—1)(T—1)
e x4+ V2 +B20)) " (x + a2+ B2(0)), a1,

u(t,x) = 102

3In0x +v/x2 +62(0) + 3(0(1) " x(v/x2 +b2(1) — x), a=1

Proof. In principle, we can determine the indirect utility function u(z, x) by a direct evaluation
of E[U(X7) | X; = x]. However, this is a very tedious calculation.

Alternatively, we can exploit the fact that the marginal utility u, (¢, x) is equal to the pricing
kernel Y; for all 0 <t < T (see for example, [3], Eq. (2.53)). First, we express X} in terms of ¥;
as follows:

Y
X/ = [—TX?U:;]

1
= [— (5 (e - ﬁZ(YT)”"‘))\E]

_ 1 1,
= b(t)smh(—aln Y+ (r/o — EA Ja)(T —1) — 1n,3).

By inverting this equation, we express Y; as a function of X/ and find u, (t, x) = ¥;:
Uy (t, x) — e(r—%)Lz)(T—t)IB—ae—warcsinh %
142 1,2,.2 _
= o= ENT=0 mar= 302 /ad)T=0) (4 4 /32 £ (1)2) 7.

By integrating in the x-direction we obtain

—+132 /@) @-1)(T—1
Cy+ T ok VAT R B 0) (koA 1), a#
C(t) + 3 In(x +Vx2 +b2(1)) + $(b(1) 2x (V/x2 + b2(t) — x), a=1.

If we therl impose the boundary condition u (7', x) = U (x) we can conclude that the integration
constant C(¢) =0 in both cases. 0O

u(t,x) =

Our result for the optimal investment policy 6* shows that the economic agent always holds
a long position in the risky asset for & > r. When g = 0 we find the familiar formula for power
utility functions for positive wealth values. Appropriate scaling of wealth by B gives

A
0718 =\ (X3 /B)” + (=0 ¥/eT )2
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and we then see that for 8 — oo the scaled amount put in the risky asset becomes independent
of wealth, as in the exponential case. The change in the amount of money invested in the risky
asset due to a change in total wealth is controlled by the prudence function and the Sharpe ratio:

0™ (X)

X A
oX =0"(X)p(X) — o

For exponential utilities both sides equal zero, for power utilities both are positive constants but
for SAHARA utility we may have a negative prudence and both sides are then negative. In that
case we put more money in risky assets and less in the bank account when wealth decreases,
which shows the “precautionary spending” behavior associated with negative prudence.

The agent behaves as if he has a power utility for high values of wealth but also when
he is far below the threshold wealth since he becomes more and more indifferent between
falling below a little or a lot. The minimal amount invested in stock is reached at the
threshold wealth. The amount of money invested in stocks at the threshold wealth equals
AB/(ao)expl—(r — %kz/az)(T — t)] which is increasing with the time horizon if A/« (the
Sharpe ratio divided by the risk aversion parameter) is large enough and decreasing otherwise.

4. An example

In this section we show how the SAHARA parameters « and 8 can be related to the probability
of falling below the threshold wealth. This probability can be calculated as follows:

P(X} <0) :]P(,B sinh(plni—T —ln,B) < 0) :]P(plnSFT < ln,B)

= N(—M/— — —%_ arcsinh (xge "2 /0)T /,3)) 9)
MWT
with N the cumulative standard normal distribution function. From the first to the second step,
we have used the one-to-one correspondence between X ’; (or S7) and Wr.
Furthermore, we want the SAHARA parameters o and g to give the desired relative risk
aversion. Since this coefficient is a function of wealth, we require the asymptotical relative risk
aversion

lim RRA(X) = — ' — ¢ (10)

X—>00 \/m

to be within a desired range. This shows how « can already be determined by the desired relative
risk aversion, without referring to the value of the scaling parameter .

Table 1 illustrates several combinations of («, 8). The table shows how to select a value for
B given a value for o and a given level ¢ of falling below the threshold wealth. Note that g is
expressed as a multiple of xj.

Using the chosen parameters, we can plot the optimal wealth and optimal investment strategy
under SAHARA utility. Unless stated otherwise, the following parameters are used:

Xo=1, So=01, r=003  ©=008,  o=0.15,
t=1/2, T=1I,
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Table 1
Combinations of « and 8.
o B

& =0.0005 £ =0.001 & =0.005 £ =0.05
0.5 0.23x¢ 0.27xq 0.39x( 0.83x¢
1 0.85x¢ 0.92x( 1.19x¢ 2.16x¢
2 1.98x¢ 2.14xg 2.66x( 4.61xq
3 3.06xq 3.29x¢ 4.07xq 7.00x0
4 4.12x¢ 4.43x( 5.36x( 9.38x¢g
5 5.18x¢ 5.56x 6.85x¢ 11.74x¢

Parameters used are: r = 0.03; © = 0.08; 0 = 0.15; T = 1. The parameter ¢ denotes the
probability of the optimal terminal wealth falling below the threshold wealth 0.

a=0.95

4L Exp J
= = = Power
=
<
] 2t il
= ==== SAHARA
=
.5
E
8 0
F
=
£
5 2 |
(4
/
/
'I
4L ]
0.05 0.10 0.15 0.20
St

Fig. 2. Optimal terminal wealth for three utility functions as a function of S7 with « = 0.95 and ¢ = 0.01.

where ¢ is the time point when we examine the optimal strategy. In some cases, we add the opti-
mal wealth and optimal strategy for exponential and power utility for comparison.* In particular
we set the risk aversion coefficients y and n

o

VB + X5

to match the risk aversion of the two agents at the initial time.

In Fig. 2 optimal wealth is plotted as a function of the terminal realization of the risky asset
St for the three utilities. Naturally, a positive relation between the optimal wealth level X7
and S7 is observed for all the cases. As already pointed out, for extreme good or bad market

y=n/Xo= (11)

4 With an exponential utility U (x) = — %e—yx’ the optimal Y(’)‘< =exp{rT —yXgexp{rT} — %AZT} and the optimal
1- —
terminal wealth is X7 = —% InY7. With a power utility U(x) = H the optimal ¥ = X, Texp{—rnT +rT +

%)\ZT + %AZT} and the optimal terminal wealth is X% = (Y7"i)_1/'7.
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Fig. 3. Optimal investment amount in risky asset under SAHARA utility for « = 2 (left) and o = 0.95 (right) with
parameter ¢ = 0.005.

scenarios, the SAHARA agent is less risk averse than the exponential agent. This leads to a
larger positive final wealth in a flourishing market, but more investment in the risky asset would
also cause a larger negative wealth for the SAHARA agent in an unfavorable financial market.
Therefore, Fig. 2 demonstrates that the SAHARA strategy over- and under-performs relative to
the exponential utility for high and low values of S7 respectively. The optimal terminal wealth
from the power utility is always positive and may over- or under-perform the SAHARA utility.
Note that a choice for power utility can be interpreted as the implementation of a “portfolio
insurance strategy” which makes sure the terminal wealth will always be strictly positive.

Fig. 3 reports the optimal amount 6 a SAHARA-investor should invest in the risky asset
at time ¢ depending on his wealth at that time, for different volatility levels. First, both graphs
exhibit the same shapes in which the SAHARA-investor invests the least amount in the risky
asset around the threshold wealth (X; = 0), since SAHARA utility reaches its maximum absolute
aversion at that point. Second, the more volatile the risky asset is, the less amount will be invested
in the risky asset. Hence, it is observed that the solid curve (o = 0.15) lies above the other two.
Third, for & = 2, less amount is invested in the risky asset than o = 0.95. The reason is that the
combination of « =2 and B = 2.66 (i.e. ¢ = 0.005) leads to a higher absolute risk aversion than
the ones generated by o = 0.95 and 8 = 1.12 (i.e. keeping the same probability of falling below
the threshold & = 0.005).

Fig. 4 compares the optimal amount for three utility functions. Under exponential utility, a
fixed amount 1s invested in the risky asset. Under power utility, a constant fraction of wealth
is invested in the risky asset and this has the consequence that the amount in the risky asset is
increasing in the wealth level X;.

In Fig. 5 we plot the densities of the differences in optimized terminal wealth X ;’SAHARA —
X ;’eXp and X ;’SAHARA - X ;’pow. We use the same parameter values and the same matching of
risk aversion in the initial wealth point as defined in (11). We notice that the distribution for the
difference between SAHARA and exponential terminal wealth has a large probability to attain a
small negative value and a small probability to attain large positive values. This is due to the fact
that for large positive and large negative wealth values the SAHARA utility is less risk averse
than the exponential one but for values around zero SAHARA is more risk averse. The difference
with power utility optimal wealth shows a large probability of positive values and a relatively fat
tail for large negative values. Under optimal investment strategies for power utility, wealth will
always remain positive since risk aversion becomes infinite in the threshold wealth. Optimal
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Fig. 4. Optimal amount for three utility functions for o = 2 (left) and o = 0.95 (right) with ¢ = 0.005.

Fig. 5. Distribution of differences in optimal terminal wealth, for « =2 and ¢ = 0.05.

strategies based on SAHARA utility functions try to avoid the threshold wealth but become less
risk averse once they have crossed it. This explains the fat tails to the left which correspond to
very disadvantageous scenarios for the equity process.
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S. Indifference pricing

In this section we want to consider the application of the SAHARA utility function to indif-
ference pricing. Indifference pricing has been well studied in recent years for exponential and
power utility functions, see e.g. [2,11,12,17,22-25].

One of the problems with the “traditional” utility functions is their inability to cope with
short positions in unbounded claims. Under power-utility, any possibility of negative wealth is
unacceptable, hence short positions with unbounded payoffs cannot be priced at all. Exponential
utility is defined for all levels of wealth, so negative wealth is acceptable under exponential
utility. However, even under exponential utility an unbounded short position in an asset with a
log-normal distribution (or any other distribution with even fatter tails) cannot be priced. This is
the well-known “‘short call” problem, see e.g. [11].

Our class of SAHARA utility functions can be used to price “short call” positions. As the
SAHARA utility function behaves asymptotically as a power-function and not as an exponential
function, the expectations do converge for log-normal distributions under SAHARA utility.

To illustrate the application of the SAHARA utility function to indifference pricing, we con-
sider the following example. We take a stylized form of a unit-linked insurance contract. Today,
at t = 0, a policyholder pays an initial amount (say 1) which is invested into the traded asset S.
At the maturity date T of the contract the policy holder receives the accumulated value S7/So of
the equity investment, provided the policyholder is still alive at time 7'. In case the policyholder
has died, a cash amount of Cj is paid to the policyholder beneficiaries.

To keep our example as simple as possible, we assume that the uncertainty about the poli-
cyholder life is not resolved until time 7', and that the mortality process in independent of the
financial market process S;. The expected utility of an agent with a SAHARA utility function
after writing this insurance claim is given by

gB[U (X1 — Sp)]+ (1 —)E[U (X7 — C)], (12)

where g denotes the probability that the policyholder survives until time 7.

The agent will now try to find an optimal investment strategy that leads to an optimal terminal
wealth distribution X7*. We can proceed in a similar way as in Section 3 and find the following
first-order condition for the optimal wealth:

qU' (X35 = Sr)+ (A — U (X7 — C1) =Yr. (13)

This first-order condition cannot be solved analytically. However, for any given pair of values
{St, C1}, the function x — qU’(x — S7) + (1 — q)U’(x — Cy) is monotonically decreasing in x
and can assume any value in R, so a solution to (13) exists and is unique.

In our illustrations that we will give below, we have solved (13) numerically in the following
way. We first generate a grid with equally spaced outcomes for the Brownian motion Wz span-
ning the interval [—Sﬁ 5T ]. For each grid-point W,, we calculate the values S, = S7(W,,)
and M,, := Y7 (W,,)/ Yy that are generated by the value W,, of the Brownian motion Wr. Then we
search numerically for the values X i* that solve (13) on each grid-point. Given the values of X \*
we obtain on the grid, we can then evaluate the expected utility (12) via numerical integration.
Furthermore, we can calculate the initial cost Xj* of the optimal wealth by numerical integration
of the budget constraint in t = 0.

To fully solve the utility indifference pricing problem we have to equate the level of expected
utility that can be achieved before writing the insurance claim, to the level of utility that can be
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Fig. 6. Optimal hedge portfolio for unit-linked insurance contract.

achieved after writing the claim. We can control the level of expected utility in (12) by changing
the parameter Yy in (13). For this, we need to perform an additional numerical search to find the
correct value of Y. The difference in value X§* — xo is then the utility indifference price of the
insurance claim.

Let us consider a concrete example. For the traded asset we assume = 0.07, r =0.04, 0 =
0.15. For the SAHARA utility function we take o = 2, 8 = 2.5 with an initial wealth position
xo = 1. For the insurance contract we assume 7" = 10, an initial payment of 1, a cash payment of
C1 = le'T =1.49 and a survival probability ¢ = 0.5. We have constructed the insurance contract
in such a way that the market value of the asset payoff and the cash payoff are both equal to 1.

If we calculate for these parameters the optimal investment strategy before writing the insur-
ance claim X7, we can achieve an expected level of utility of —0.112. This level of expected
utility can be matched after writing the insurance claim by setting Yy = 0.0666, which corre-
sponds to an initial wealth position of X;* = 2.025. Therefore, the utility indifference price of
the insurance contract under SAHARA utility is equal to X" — xo = 1.025. Hence, the extra
price that a SAHARA-agent would require as compensation for the unhedgeable mortality risk
is 0.025.

We can also investigate the hedge-portfolio that the agent holds to optimally hedge the insur-
ance claim. We therefore plot the difference between X7* — X7 as a function of S7 in Fig. 6.
The solid line “delXopt” depicts the optimal hedge portfolio X7* — X7.. We have also plotted in
the same figure the cash payout of the insurance contract (dotted line “C”’) and the unit-linked
payout (dashed line “S(T)”). We see that the optimal hedge tries to strike a balance between the
two possible payouts of the insurance contract. Because the agent is more worried about losses
than about gains (due to the convex shape of the utility function) the optimal hedge is closer to
the highest possible payout.

The optimal hedge portfolio is a non-trivial function of the underlying share-price. In Fig. 7
we have plotted the delta-hedge d(X7* — X7)/0S(T) against the optimal wealth X7*. We see
that the optimal delta-hedge is driven by the risk aversion (or rather the “risk tolerance” 1/A(x)).
For low levels of wealth the risk tolerance is low, which leads to a relatively low exposure in the
share-price. For very low and very high levels of wealth, the agent has a higher risk tolerance and
hence the exposure in the share-price is increased.
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6. Conclusion

In the present paper, we introduce the new class of SAHARA utility functions which are quite
tractable and incorporate power utility and exponential utility functions as limiting cases. Under
SAHARA utility, risk aversion increases when we approach the threshold wealth from above, but
below the threshold wealth an agent becomes more and more indifferent between falling below
the threshold a bit or more severely. We solve the optimal investment problem under SAHARA
utility in a complete market setting and are able to obtain analytical solutions for the indirect
utilities and optimal investment strategy thanks to the convenient form of the inverse marginal
utility. We have also shown how indifference prices in incomplete markets can be defined under
this assumption. This will be very helpful for financial institutions such as life insurance compa-
nies. Many unit-linked types of insurance contracts that are sold by insurance companies contain
embedded options such as guarantees which are modeled using an unbounded loss distribution,
so models which allow utility to be defined on the whole real line are of particular importance in
that case. Even though possible losses will always be bounded in practice, many models in the
existing literature do not impose such a restriction. We therefore believe that SAHARA utility
functions will prove to be very useful, since they allow an extension of the class of contingent
claims which can be valued using indifference pricing methods.
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