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The existence of von Neumann–Morgenstern solutions (stable sets) for assign-

ment games has been an unsolved question since Shapley and Shubik [11].
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that are compatible with this matching. We prove in the present paper that

this set is the unique stable set for the assignment game that excludes third-
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usually defined on the core.
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1. Introduction

The assignment game was introduced by Shapley and Shubik [11] as a

cooperative model for a market with buyers and sellers. Each seller has one

indivisible good or “object” to sell, and each buyer wants to buy at most

one object. Objects are distinct and buyers may value them differently. The

valuation matrix summarizes the profit that each mixed-pair can attain by

the trade of the object between them. The worth of the grand coalition is the

total profit that can be obtained by optimally matching buyers to sellers, and

the worth of any other coalition is obtained in a similar way, just restricting

attention to the corresponding submatrix.

Von Neumann and Morgenstern [14] introduced the first solution con-

cept for general cooperative games, based on a dominance relation between

imputations, i.e. individually rational allocations of the worth of the grand

coalition. One imputation dominates another if each member of a given coali-

tion gets strictly more in the first imputation than in the second one, and

these payoffs are feasible for this coalition.

A von Neumann-Morgenstern solution (a stable set) V is a set of impu-

tations satisfying (i) internal stability: no coalition objects to an imputation

in V by proposing a dominating imputation in V , and (ii) external stability:

each imputation outside V is objected to by some coalition that proposes a

dominating imputation in V . According to von Neumann and Morgenstern,

each stable set represents a standard of behavior. Trivially, each stable set

of a game contains the core, that is, the set of undominated imputations

(Gillies, [3]). Stable sets are difficult to characterize (Aumann, [1]) and they

may not exist. Lucas ([5]) provides examples of games with no stable set.
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Although the core, in preference to the stable sets, has become the most

common solution applied to cooperative games, we argue in the present paper

that the core is not sufficient to analyze all the bargaining possibilities of the

agents in an assignment market.

Assume that, after an optimal matching has been agreed on, one buyer

decides to pay nothing for his assigned good. His assigned seller turns to the

remaining agents but, if he finds himself unmatched in the resulting subgame,

we may assume the buyer can obtain the object at a null price. Once this

buyer has left the market, the remaining agents can share the profit of their

partnership according to a core element of the subgame. This imputation,

which may be outside the core of the initial game, is undominated by any

core element. We show that imputations of this kind2 form a stable set of

the assignment game.

Consequently, our main result is the proof of the existence of stable sets for

the assignment game. The proof is constructive and the stable set is formed

by particular imputations of the sort described in the paragraph above. We

derive one stable set associated with each optimal matching of the market,

and this stable set is the only one that excludes third-party payments with

respect to this optimal matching.

The stable sets we characterize are very closely connected to the notion

of the core, since they enlarge the core by taking into consideration the core

elements of some submarkets. By doing so, these stable sets overcome some

drawbacks the core alone may present. When we choose the core as a solu-

2See Definition 3.1 and the concept of extended core in (4).
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tion we exclude an imputation if it is dominated by some other imputation,

although this other imputation may also be outside the core. An example

of this situation is provided by the “glove market”, a symmetric assignment

market with constant valuation matrix. In a glove market with fewer sell-

ers than buyers, the unique core allocation gives all the profit to the sellers,

while buyers get zero, not taking into account the fact that sellers need the

cooperation of at least a buyer to make any profit. Moreover, this unique

core allocation does not dominate any other imputation. Similar situations

appear in general assignment markets.

In [10], Shapley describes most of the von Neumann–Morgenstern stable

sets of a glove market. In Shubik [12], and also in some personal notes of

Shapley,3 a set of imputations is claimed as a stable set for the assignment

game. However, this claim is not accompanied by a complete proof. The

present paper closes this gap and establishes the existence of von Neumann-

Morgenstern stable sets for assignment games.

The set defined by Shubik consists of the union of the core of the assign-

ment market and the cores of some selected submarkets that are compatible

with an optimal matching which has been fixed beforehand. The stability

of this set is proved in Section 3 (part of the proof is consigned to the sup-

plemental material). In Section 2 the basic definitions regarding assignment

games are given. Section 4 concludes with some remarks.

3We thank professor T. Solymosi for providing us with these notes.
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2. Preliminaries

In an assignment market, a product that comes in indivisible units is on

sale, and each agent either supplies or demands exactly one unit. Thus, the

set of agents is partitioned into a finite set of buyers M and a finite set of

sellers M ′. The profit each mixed-pair (i, j) ∈ M × M ′ can attain is given

by the valuation matrix A = (aij)(i,j)∈M×M ′.

A matching for the market (M,M ′, A) is a bijection µ between a subset

of M and a subset of M ′. We denote by M(M,M ′) this set of matchings.

An optimal matching is a matching µ ∈ M(M,M ′) such that
∑

(i,j)∈µ aij ≥
∑

(i,j)∈µ′ aij for all µ′ ∈ M(M,M ′). We denote by M∗
A(M,M ′) the set of

optimal matchings for (M,M ′, A). If (i, j) ∈ µ we say that i and j are

matched (or assigned) by µ and we also write j = µ(i) and i = µ−1(j). If for

some buyer i ∈ M there is no j ∈ M ′ such that (i, j) ∈ µ we say that i is

unmatched (or unassigned) by µ (and similarly for sellers).

Given S ⊆ M and T ⊆ M ′, we denote by µ|S×T the restriction of µ ∈

M(M,M ′) to the pairs in S × T . Moreover, we denote by M(S, T ) and

M∗
A(S, T ) the set of matchings and optimal matchings of the submarket

(S, T, A|S×T ) defined by the subset S of buyers, the subset T of sellers and

the restriction of A to S × T . If S = ∅ or T = ∅, then the only possible

matching in M(S, T ) is µ = ∅ and by convention
∑

(i,j)∈∅ aij = 0.

The cooperative game (M ∪M ′, wA) for the assignment market is defined

by the set of players M ∪ M ′ and the characteristic function wA(S ∪ T ) =

max{
∑

(i,j)∈µ aij | µ ∈ M(S, T )}, for all S ⊆ M and T ⊆ M ′. The assign-

ment game is square if and only if its valuation matrix is square, that is, if

there are as many buyers as sellers.
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Given an assignment game (M ∪ M ′, wA), a payoff vector is (u, v) ∈

R
M × R

M ′
, where ui stands for the payoff to buyer i ∈ M and vj stands for

the payoff to seller j ∈ M ′. An imputation is a non-negative payoff vector

that is efficient,
∑

i∈M ui +
∑

j∈M ′ vj = wA(M ∪ M ′). We denote by I(wA)

the set of imputations of the assignment game (M ∪M ′, wA).

A binary relation is defined on the set of imputations. If (u, v), (u′, v′) ∈

I(wA), we say (u′, v′) dominates (u, v), and write (u′, v′) domwA(u, v), if and

only if there exists (i, j) ∈ M ×M ′ such that (u′, v′) domwA

{i,j}(u, v), that is to

say, u′
i > ui, v

′
j > vj and u′

i + v′j ≤ aij.
4 When no confusion regarding the

game arises, we simply write (u′, v′) dom (u, v).

A subset V of imputations is a stable set (von Neumann and Morgenstern,

[14]) if it is internally stable (for all (u, v), (u′, v′) ∈ V , (u′, v′) does not

dominate (u, v)) and externally stable (for all (u, v) ∈ I(wA) \V , there exists

(u′, v′) ∈ V such that (u′, v′) dom (u, v)).

The core is also defined by means of the above dominance relation as the

set of undominated imputations. Shapley and Shubik ( [11]) prove that an

assignment game (M∪M ′, wA) always has a non-empty core. Moreover, with

any optimal matching µ ∈ M∗
A(M,M ′) fixed, a non-negative payoff vector

(u, v) ∈ R
M
+ ×R

M ′

+ is in the core of (M∪M ′, wA) if and only if ui+vj ≥ aij for

all (i, j) ∈ M ×M ′, ui + vj = aij for all (i, j) ∈ µ, and all agents unmatched

by µ get a null payoff.

Two particular core allocations are the buyers-optimal core allocation

(uA, vA) where each buyer obtains her maximum core payoff, and each seller

4For assignment games, this dominance relation via mixed-pair coalitions is equivalent

to von Neumann and Morgenstern’s classical dominance relation.
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his minimum one, and the sellers-optimal core allocation (uA, vA) where each

seller obtains his maximum core payoff and each buyer her minimum one.

Solymosi and Raghavan ([13]) prove that the core of an assignment game

(M ∪M ′, wA) is a von Neumann-Morgenstern stable set if and only if uA
i = 0

for all i ∈ M and vAj = 0 for all j ∈ M ′. When the assignment matrix is

square, this is equivalent to saying that each matrix entry corresponding to

an optimal pair is a row and column maximum.

In Núñez and Rafels [6], it is shown that given an assignment game (M ∪

M ′, wA), there exists another (and unique) assignment game (M ∪M ′, wAr)

with the same core, C(wA) = C(wAr), and the property that for all (i, j) ∈

M ×M ′ there exists (x, y) ∈ C(wAr) = C(wA) such that xi + yj = arij. This

game is defined by arij = min(u,v)∈C(wA) ui + vj for all (i, j) ∈ M × M ′, and

matrix Ar is the buyer-seller exact representative of matrix A. When there

are as many buyers as sellers and µ ∈ M∗
A(M,M ′) is an optimal matching

that does not leave agents unassigned, Ar can also be obtained only in terms

of the entries of the original valuation matrix:

arij = max
{k1,...,kr}⊆M\{i,µ−1(j)}

{aiµ(k1)+ak1µ(k2)+· · ·+akrj−ak1µ(k1)−· · ·−akrµ(kr)}.

(1)

Expression (1) will be repeatedly used in the proof of the main theorem.

Finally, the matrix Ae is defined, for all (i, j) ∈ M ×M ′, by

aeij = arij − uA
i − vAj . (2)

This matrix Ae is introduced in Núñez and Rafels [7] and its associated

assignment game (M ∪M ′, wAe) has two properties that are relevant for our

purposes: C(wA) = {(uA, vA)}+C(wAe) and C(wAe) is the unique stable set
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of the game (M ∪M ′, wAe).

In the paper, we will mainly focus on those imputations where, as happens

to the core, transfers of money are only made between matched agents. Given

an assignment game (M∪M ′, wA) and an optimal matching µ ∈ M∗
A(M,M ′),

(u, v) ∈ R
M
+ ×R

M ′

+ belongs to the µ-principal sectionBµ(wA) if and only if ui+

vj = aij for all (i, j) ∈ µ, while unmatched agents get zero. The domination

relation between imputations in the µ-principal section is preserved if we

make the market square by adding dummy agents on the short side (that is,

zero row/columns to the matrix).

3. The main result

In this section we define the notion of a compatible subgame, introduced

in Shubik [12], and prove how the cores of these subgames determine a stable

set for the assignment game.

Definition 3.1. Let (M ∪M ′, wA) be an assignment game, µ ∈ M∗
A(M,M ′)

and let I ⊆ M and J ⊆ M ′. The subgame ((M \I)∪(M ′\J)), wA|(M\I)×(M′\J)
)

is a µ-compatible subgame of (M ∪M ′, wA) if and only if

wA((M\I)∪(M ′\J))+
∑

i∈I

i assigned by µ

aiµ(i)+
∑

j∈J

j assigned by µ

aµ−1(j)j = wA(M∪M ′). (3)

Notice that, for any assignment game and any optimal matching µ, there

always exist µ-compatible subgames5 (just take I = J = ∅).

We write wA−I∪J
for the characteristic function of the subgame with player

set (M\I)∪(M ′\J). To say that ((M\I)∪(M ′\J), wA−I∪J
) is a µ-compatible

5Properties of the µ-compatible subgames can be found in the supplemental material.
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subgame is equivalent to saying that the restriction of µ to (M \I)× (M ′ \J)

is still optimal for the resulting submarket and whenever an agent has been

excluded (let us say i ∈ I), his partner remains in the submarket (µ(i) 6∈ J),

unless aiµ(i) = 0.

Given an assignment game (M∪M ′, wA) and µ ∈ M∗
A(M,M ′), if for some

I ⊆ M and J ⊆ M ′ the subgame ((M \I)∪(M ′\J), wA−I∪J
) is µ-compatible,

then Ĉ(wA−I∪J
) is its extended core,

Ĉ(wA−I∪J
) =



















(u, v) ∈ Bµ(wA)

∣

∣

∣

∣

∣

∣

∣

∣

∣

(u−I , v−J) ∈ C(wA−I∪J
),

ui = aiµ(i) for all i ∈ I assigned by µ,

vj = aµ−1(j)j for all j ∈ J assigned by µ



















(4)

The claim in Shubik [12] is that, for any optimal matching µ, we should

add to the core of the game (M ∪ M ′, wA) the extended cores of all its µ-

compatible subgames to obtain a stable set. Let us denote by Cµ
A the set of

pairs (I, J), I ⊆ M and J ⊆ M ′, such that ((M \ I) ∪ (M ′ \ J), wA−I∪J
) is a

µ-compatible subgame of (M ∪M ′, wA).

Theorem 3.1. Let (M∪M ′, wA) be an assignment game and µ ∈ M∗
A(M,M ′)

an optimal matching. The set

V µ(wA) =
⋃

(I,J)∈Cµ
A

Ĉ(wA−I∪J
) (5)

is a von Neumann-Morgenstern stable set of (M ∪M ′, wA).

Proof. On page 207 of Shubik [12] it is proved that V µ(wA) is undominated

by any imputation in the µ-principal section, which implies the internal sta-

bility of V µ(wA), and that any imputation outside the µ-principal section is

dominated by an element in V µ(wA).
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We will complete the proof of the external stability of V µ(wA) by stating

and proving three claims. Before that, and since C(wA) ⊆ V µ(wA), we define

the subset Rµ(wA) of the µ-principal section formed by allocations in which

each agent is paid an amount in between his/her minimum and maximum

core payoff: given an assignment game (M ∪M ′, wA) and µ ∈ M∗
A(M,M ′),

Rµ(wA) = {(u, v) ∈ Bµ(wA) | u
A
i ≤ ui ≤ uA

i for all i ∈ M}. (6)

Consequently, for all (u, v) ∈ Rµ(wA) it also holds vAj ≤ vj ≤ vAj for all

j ∈ M ′.

Notice that C(wA) ⊆ Rµ(wA) ⊆ Bµ(wA) ⊆ I(wA). We first claim that

any imputation in Rµ(wA) \ V µ(wA) is dominated by a core allocation of

(M ∪M ′, wA).

Claim 3.1. Let (M ∪M ′, wA) be an assignment game and µ ∈ M∗
A(M,M ′).

For all (u, v) ∈ Rµ(wA) \ V µ(wA), there exists (u′, v′) ∈ C(wA) such that

(u′, v′) domwA(u, v).

Proof of Claim 3.1 We may assume without loss of generality that A is

a square matrix, and that µ does not leave agents unassigned, since both

C(wA) and Rµ(wA) allow for this simplification. Let (M ∪M ′, wAe) be the

related exact assignment game and remember from (2) that aeij = arij − uA
i −

vAj for all i ∈ M , j ∈ M ′. Notice first that (u, v) ∈ Rµ(wA) \ V µ(wA)

implies (u, v) ∈ Rµ(wA) \ C(wA). Since µ is also an optimal matching for

(M,M ′, Ae) and for (M,M ′, Ar), and C(wA) = {(uA, vA)} + C(wAe), given

(u, v) ∈ Rµ(wA) \ C(wA), we have (u− uA, v − vA) ∈ Bµ(wAe) \ C(wAe).

Since (M ∪M ′, wAe) has a stable core, there exist (u′′, v′′) ∈ C(wAe) and

(i∗, j∗) ∈ M ×M ′ such that (u′′, v′′) domwAe

{i∗,j∗}(u− uA, v − vA).
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This means that

u′′
i∗ > ui∗ − uA

i∗ , v′′j∗ > vj∗ − vAj∗, and u′′
i∗ + v′′j∗ ≤ aei∗j∗. (7)

Let us now define

(ũ, ṽ) = (u′′, v′′) + (uA, vA). (8)

Notice that (ũ, ṽ) ∈ C(wA) = C(wAr) and, by (7),

ũi∗ = u′′
i∗ + uA

i∗ > ui∗, ṽj∗ = v′′j∗ + vAj∗ > vj∗ and ũi∗ + ṽj∗ ≤ ari∗j∗ , (9)

which implies (ũ, ṽ) domwAr

{i∗,j∗}(u, v). We must prove that (u, v) is also dom-

inated by a core allocation in terms of the game wA instead of wAr . From

(1), either ari∗j∗ = ai∗j∗ and we are done, or

ũi∗+ ṽj∗ ≤ ari∗j∗ = ai∗µ(i1)+ai1µ(i2)+ · · ·+airj∗ −ai1µ(i1)−ai2µ(i2)−· · ·−airµ(ir)

for some distinct i1, i2, . . . , ir ∈ M \ {i∗, µ−1(j∗)}.

In this case, since (ũ, ṽ) ∈ Bµ(wA), ũil+ ṽµ(il) = ailµ(il) for l ∈ {1, 2, . . . , r}

we obtain

ũi∗ + ṽj∗ + ũi1 + ṽµ(i1) + · · ·+ ũir + ṽµ(ir) ≤ ai∗µ(i1) + ai1µ(i2) + · · ·+ airj∗ .

Together with (ũ, ṽ) ∈ C(wA), this implies ũi∗+ṽµ(i1) = ai∗µ(i1), ũil+ṽµ(il+1) =

ailµ(il+1) for all l ∈ {1, 2, . . . , r − 1} and ũir + ṽj∗ = airj∗.

• If ṽµ(i1) > vµ(i1), and since, by (9), ũi∗ > ui∗ , we are done because

(ũ, ṽ) domwA

{i∗,µ(i1)}
(u, v). Otherwise, that is ṽµ(i1) ≤ vµ(i1), we analyze three

cases.

• If ṽµ(i1) = vµ(i1) = vAµ(i1), then, since (ũ, ṽ) and (uA, vA) belong to C(wA),

uA
i∗ ≤ ũi∗ = ai∗µ(i1) − ṽµ(i1) = ai∗µ(i1) − vAµ(i1) ≤ uA

i∗ .
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But then, by (9), ui∗ < ũi∗ = uA
i∗ contradicts (u, v) ∈ Rµ(wA).

• If ṽµ(i1) = vµ(i1) < vAµ(i1), define

uε
i = ũi − ε and vεµ(i) = ṽµ(i) + ε for all i ∈ M such that ṽµ(i) < vAµ(i),

uε
i = ũi and vεµ(i) = ṽµ(i) for all i ∈ M such that ṽµ(i) = vAµ(i).

Notice that, for ε > 0 small enough (uε, vε) ∈ C(wA). Indeed, if ṽµ(i) < vAµ(i),

we have ũi > uA
i ≥ 0. Also, if ṽµ(i) < vAµ(i) and ṽj = vAj , we prove that

ũi+ṽj > aij and thus, for ε > 0 small enough, uε
i+vεj ≥ aij . The reason is that

if ṽj = vAj and ũi+ṽj = aij , then uA
i ≤ ũi = aij−ṽj = aij−vAj ≤ uA

i , where the

last inequality follows from (uA, vA) ∈ C(wA). Thus ũi = uA
i , but this implies

ṽµ(i) = vAµ(i), in contradiction with the assumption. Moreover, since ũi∗ >

ui∗ ≥ uA
i∗ , we have ṽµ(i∗) < vAµ(i∗) which implies the existence of ε > 0 small

enough we so that (uε, vε) ∈ C(wA) with uε
i∗ > ui∗ , v

ε
µ(i1)

> ṽµ(i1) = vµ(i1) and

uε
i∗ + vεµ(i1) = ũi∗ + ṽµ(i1) = ai∗µ(i1). Therefore (uε, vε) domwA

{i∗,µ(i1)}
(u, v).

• If ṽµ(i1) < vµ(i1), then, since both (ũ, ṽ) and (u, v) are in the µ-principal

section, ũi1 > ui1. We then repeat the argument above with the mixed

pair {i1, µ(i2)}. Either we find that there exists (u′, v′) ∈ C(wA) such that

(u′, v′) domwA

{il,µ(il+1)}
(u, v) for some l ∈ {1, 2, . . . , r − 1} or we reach ũir > uir

and, since ṽj∗ > vj∗ and ũir + ṽj∗ = airj∗, we obtain (ũ, ṽ) domwA

{ir,j∗}
(u, v).

This concludes the proof of Claim 3.1. It remains to prove external stabil-

ity for elements in the µ-principal section but outside the limits of individual

core bounds. We do this first under some additional assumptions.

Claim 3.2. Let (M∪M ′, wA) be a square assignment game and µ ∈ M∗
A(M,M ′).

If aij > 0 for all (i, j) ∈ µ, then any (u, v) ∈ Bµ(wA) \ (R
µ(wA) ∪ V µ(wA))

is dominated by some element of V µ(wA).
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The proof of this claim is consigned to Appendix B in the supplemental

material since it is rather long and technical. In this proof, among other

results on assignment games, we make use of Claim 3.1 above.

Notice that this completes the stability of V µ(wA) for square assignment

markets where all optimal pairs make a positive profit. We only need to

extend this to the remaining assignment games.

Claim 3.3. Let (M ∪M ′, wA) be an assignment game, µ ∈ M∗
A(M,M ′) and

assume that there exists i ∈ M such that aiµ(i) = 0 or there exist unassigned

agents. Then V µ(wA) is a stable set.

Proof of Claim 3.3

In this case, let I = {i ∈ M | aiµ(i) = 0 or i is unmatched by µ} and

J = {j ∈ M ′ | aµ−1(j)j = 0 or j is unmatched by µ}. With some abuse of

notation, we denote by µ the restriction of µ to (M \I)×(M ′\J). Then, if we

consider the submarket ((M\I)∪(M ′\J), wA′) where A′ = A|(M\I)×(M ′\J), we

are under the assumptions of Claim 3.2 and we already know that V µ(wA′) =
⋃

(R,S)∈Cµ

A′
Ĉ(wA′

−R∪S
) is a stable set of ((M \ I)∪ (M ′ \ J), wA′). Notice also

that

Bµ(wA) =







(u, v) ∈ R
M × R

M ′

∣

∣

∣

∣

∣

∣

(u−I , v−J) ∈ Bµ(wA′),

ui = 0 for all i ∈ I, vj = 0 for all j ∈ J







.

We now claim

V µ(wA) =







(u, v) ∈ R
M × R

M ′

∣

∣

∣

∣

∣

∣

(u−I , v−J) ∈ V µ(wA′),

ui = 0 for all i ∈ I, vj = 0 for all j ∈ J







(10)

and it is a stable set for the initial market (M ∪M ′, wA). Let us denote by

V̂ µ(wA′) the right-hand side of (10).
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To prove the above equality, notice first that ((M \I)∪(M ′\J), wA−I∪J
) is

a µ-compatible subgame of (M∪M ′, wA). Moreover, because of the definition

of the sets I and J , any µ-compatible subgame of ((M\I)∪(M ′\J), wA−I∪J
) is

also a µ-compatible subgame of (M∪M ′, wA). Therefore V̂
µ(wA′) ⊆ V µ(wA).

Now, if there existed (u, v) ∈ V µ(wA) \ V̂
µ(wA′), then (u−I , v−J) ∈ I(wA′) \

V µ(wA′) and the external stability of V µ(wA′) would imply the existence

of (u′
−I , v

′
−J) ∈ V µ(wA′) such that (u′

−I , v
′
−J) dom

wA′ (u−I , v−J). The usual

completion of (u′
−I , v

′
−J) by giving null payoffs to agents in I ∪ J leads to

(u′, v′) ∈ V̂ µ(wA′) ⊆ V µ(wA) which dominates (u, v), in contradiction to the

known internal stability of V µ(wA). Once obtained that V µ(wA) = V̂ µ(wA′),

the internal and external stability of this set follow straightforwardly from

those of V µ(wA′). ✷

Hence, we have proved that any assignment game has a von Neumann-

Morgenstern stable set (in fact there exists one for each optimal matching).

Let us illustrate this main result with an example of assignment game pro-

posed in Shapley and Shubik [11].

Example 3.1. Let M = {1, 2, 3} be the set of buyers, M ′ = {1′, 2′, 3′} be

the set of sellers, and the valuation matrix be

1’ 2’ 3’

1

2

3

5 8 2

7 9 6

2 3 0

The only optimal matching is µ = {(1, 2′), (2, 3′), (3, 1′)} and the non-trivial

µ-compatible subgames wA−I∪J
are defined by the following pairs (I, J):

14



I = {2}, J = ∅ I = ∅, J = {1′} I = {2}, J = {1′}

I = {2, 3}, J = ∅ I = ∅, J = {1′, 2′}

To obtain a µ-compatible subgame, usually I and J cannot be simulta-

neously non-empty. The reason is that if agents of both sides of the market

are removed (and these are not unassigned agents), then their optimal part-

ners by µ tend to become matched in the submarket and this in general

contradicts the fact that the restriction of µ is an optimal matching of the

submarket. There are, nevertheless, exceptions that occur either when the

market is not square and one of the removed agents is an unassigned agent on

the large side, or when i ∈ I ∩ µ−1(M ′), j ∈ J ∩ µ(M) and aµ−1(j)µ(i) = 0, as

is the case in the present example with I = {2} and J = {1′}, since a33 = 0.

The claimed von Neumann-Morgenstern stable set (see Figure 1) is

V µ(wA) = C(wA)∪Ĉ(wA−{2}
)∪Ĉ(wA−{2,3}

)∪Ĉ(wA−{1′}
)∪Ĉ(wA−{1′2′}

)∪Ĉ(wA−{2,1′}
).

0

1

2

0 2 4 6 8
0

6

2

4

3 5

5

u3(= 2− v1)

u1(= 8− v2)

u2(= 6− v3)

A B

C

D

E
F

Figure 1:
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The parallelepiped [0, 8] × [0, 6] × [0, 2] is the projection of the principal

section Bµ(wA) to the space of the buyers’ payoff. To obtain the sellers’

payoffs, remember that µ = {(1, 2′), (2, 3′), (3, 1′)}, and ui + vµ(i) = aiµ(i) for

all i ∈ M and (u, v) ∈ Bµ(wA). Inside this parallelepiped we represent the

core C(wA) in dark grey. The shaded area in the face u2 = a23 = 6 is the

extended core of one µ-compatible subgame, Ĉ(wA−{2}
); and the shaded area

in the face v1 = a31 = 2 (or u3 = 0) is Ĉ(wA−{1′}
). The segment [A,B]

is Ĉ(wA−{2,3}
), while the segment [C,D] is Ĉ(wA−{1′2′}

). In this example,

Ĉ(wA−{2,1′}
) = [E, F ] ⊆ Ĉ(wA−{1′}

).

4. Concluding remarks

The von Neumann-Morgenstern stable set V µ(wA) we have proved to

exist for the assignment game (M ∪M ′, wA) is the only one in the µ-principal

section. The reason is that, by Shubik [12], no imputation in V µ(wA) can be

dominated by another imputation in the µ-principal section.

Proposition 4.1 (Shubik, 1984). Let (M∪M ′, wA) be an assignment game

and µ ∈ M∗
A(M,M ′) an optimal matching. The only stable set that excludes

third-party payments (according to µ) is V µ(wA).

Such stable sets represent a quite natural standard of behavior: once an

optimal matching µ has been agreed on, if some agents leave the market

with the whole profit of their respective partnerships in such a way that their

partners remain in the market6 and the restriction of the selected matching is

6When aiµ(i) = 0 for some i ∈ M , both partners may leave the market.
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still optimal for the submarket, then the remaining agents allocate the profit

of the submarket following the core principle of undomination.

There are, however, many other stable sets of the assignment game outside

the µ-principal sections. It is possible to find examples in markets with at

most two agents on each side. Moreover, Shapley [10] describes infinitely

many stable sets for the symmetric assignment games (glove markets).

All these stable sets are complete lattices7 with respect to the same partial

order.

Given (u, v), (u′, v′) ∈ I(wA), we say (u, v) ≤M (u′, v′) if and only if

ui ≤ u′
i for all i ∈ M and vj ≥ v′j for all j ∈ M ′. It is not difficult to prove

that the stable set V µ(wA) is a complete lattice with respect to ≤M , but in

fact this result is more general.

Proposition 4.2. Every stable set of an assignment game is a complete lat-

tice with respect to ≤M .

The proof is based on the fact that no stable set of an assignment game with

at least three agents contains an open set of the imputation set. To see this,

we only need to follow the proof of Shapley [10] for the symmetric case.

The lattice property is something the stable sets of the assignment game

have in common with the stable sets of the one-to-one matching problems

(the marriage problem), as proved recently by Ehlers [2].

Finally, the present paper suggests a procedure that may be useful for

obtaining stable sets for other classes of games. We may look for stable sets

that are the union of the core of the game and the extended cores of certain

7See Shapley and Shubik [11] for a definition of a complete lattice in this setting.
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subgames. For instance, this procedure could be useful for looking for stable

sets in markets with one seller who owns several objects and several buyers

on the opposite side who demand one unit each, or even in the more general

assignment markets (with several sellers) of Kaneko [4].

Also in the marriage problem (see Roth and Sotomayor, [9]) it would be

interesting to analyze whether a stable set can be obtained by enlarging the

set of stable matchings by adding stable matchings of certain submarkets.

This would be even more interesting in some generalizations of the marriage

market that may have an empty core, as is the case of many-to-one match-

ing markets or three-sided matching markets, as well as in the multisided

generalization of the assignment game (Quint, [8]).
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