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Abstract

The paper introduces a notion of complementarity (substitutability) of two signals which

requires that in all decision problems each signal becomes more (less) valuable when the

other signal becomes available. We provide a general characterization which relates com-

plementarity and substitutability to a Blackwell comparison of two auxiliary signals. In

a setting with a binary state space and binary signals, we find an explicit characteriza-

tion that permits an intuitive interpretation of complementarity and substitutability. We

demonstrate how these conditions extend to more general settings. We also illustrate the

implications of our concepts for three economic applications: information disclosure in

auctions, information aggregation through voting, and polarization of beliefs.
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1 Introduction

Suppose that two signals are available to a decision maker, and that each signal contains

some information about an aspect of the world that is relevant to the decision maker’s

choice. In this paper we ask under which conditions these two signals are substitutes,

and under which conditions they are complements. Roughly speaking, we call signals

substitutes if the incentive to acquire one signal decreases as the other signal becomes

available, and we call them complements if this incentive increases as the other signal

becomes available.

The incentives to acquire signals depend on the decision for which the information will

be used. When we call signals complements or substitutes in this paper, then we mean

that the conditions described above are satisfied in all decision problems. Our notions of

substitutability and complementarity of signals are therefore in the spirit of Blackwell’s [6]

comparison of the informativeness of signals, because they do not refer to any particular

decision problem, but only to the joint distribution of signals, conditional on the various

possible states of the world. An example of complements in the sense of our definition are

two signals one of which communicates the state of the world using some code, and the

second signal provides the code, where the code is independent of the state. An example

of substitutes in the sense of our definition are completely correlated signals.

In addition to introducing new and general notions of substitutability and complemen-

tarity of signals, the main contribution of this paper is to identify conditions for the joint

distribution of signals that are necessary or sufficient for these signals to be substitutes or

complements. In some special cases these conditions are very simple, and straightforward

to check. We also show that there are more examples of complements and substitutes,

and in the case of complements also more robust examples, than those given in the pre-

vious paragraph. Finally, a sequence of applications will demonstrate the importance of

complementarity and substitutability relations among signals in economic contexts.

We begin our analysis by establishing that two signals are complements (resp. sub-

stitutes) if and only if, among two other signals that are derived from the two original

signals, one dominates the other in the sense of Blackwell [6], that is, is more valuable in all

decision problems. This observation is key for our analysis, because it allows us to reduce

the problem of determining whether two signals are complements (resp. substitutes) to

the problem of determining whether among two other signals one Blackwell dominates the

other. We can then use well-known characterizations of Blackwell dominance to determine
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whether two signals are complements (resp. substitutes).

It is well-known that Blackwell comparisons are qualitatively different in the case of

two states, and in the case of three or more states, with the case of two states being easier

to study (Blackwell and Girshick [7], Section 12.4). For this reason we obtain stronger

results for the case of two states than for the case of more states. If we assume not

only that there are only two states, but also that there are only two possible realizations,

then we can provide necessary and sufficient conditions for signals to be complements or

substitutes.

With two states, and two possible realizations per signal, signals are complements

if and only if there are a state and a realization of each signal so that if received by

themselves, each realization increases the probability of the state in comparison to the

prior, yet if received together, the two signal realizations decrease the probability of the

state. We refer to this as “meaning reversal:” the meaning of each realization is reversed

when received together with the realization of the other signal.

An example of meaning reversal is in Dow and Gorton [9]. A technology company is

observed by two analysts. One analyst learns whether the company’s lead engineer is leav-

ing the company to create an independent competitor. The other analyst learns whether

the technology that the engineer is working on is likely to succeed. If the technology is

likely to succeed and the engineer stays, then this is good news for the company’s value. If

the technology is likely to fail, and the engineer leaves, that is also good news because the

company is likely to stay dominant in its market. However, the remaining cases are bad

news about the company’s value, because either a competitor with a promising technology

is created, or because a dubious project will be continued further. The interpretation of

each analyst’s signal may be reversed by the other analyst’s signal.

The reversal result that we have just illustrated will be shown in this paper for the

setting with two states and two realizations per signal only. With two states, but more

than two realizations per signal, we obtain in the appendix a related sufficient condition

for signals to be complements. For the case of more than two states, or more than two

realizations per signal, it is, as we show in this paper under some additional assumptions,

necessary for complementarity of signals that the meaning of the realization of one signal

can be reverted by a realization of the other signal. This condition is not, in general,

sufficient.

Returning to the setting with two states and two realizations per signal, we prove that

a property that is related to perfect correlation is necessary and sufficient for signals to be
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substitutes. This property is weaker than perfect correlation, however. Roughly speaking,

it requires that conditional on observing certain realizations of one signal, the other signal

does not provide further information to the decision maker. In the general setting, with

arbitrarily many states and signal realizations, a similar condition is necessary, but not

sufficient for signals to be substitutes.

While our general investigation of complements and substitutes is formulated in a

setting with a single decision maker, we also show in applications where different agents

observe different signals, that complementarity and substitutability of the signals may

drive important properties of the agents’ strategic interaction. First, we revisit the ques-

tion when public disclosure of information by a seller increases the expected revenue from

a first price, common value auction.1 We demonstrate that a seller whose information is

complementary to the agents’ private information raises the agents’ informational advan-

tage, and therefore lowers expected revenue, by releasing his own information, whereas

releasing substitute information raises expected revenue. This is similar to, but different

from, a result due to Milgrom and Weber [18]. They use a notion of complementarity and

substitutability that is specific to the auction model, and that is not directly related to

ours. In fact, the assumptions of their model, if adapted to our auction model, rule out

that signals are complements in our sense.

In a second economic application we show that the ability of weighted majority voting

to efficiently aggregate information depends on whether voters’ private signals are substi-

tutes or complements. In our final application we investigate when the public disclosure of

information may lead to increased polarization of agents’ beliefs. Building on definitions

of polarization of beliefs due to Kondor [12] and Andreoni and Mylovanov [1], we show

that polarization is closely related to complementarity of public and private signals.

Section 2 provides general definitions and explains the connection between substi-

tutability, complementarity, and Blackwell comparisons. Section 3 is about the special

case that there are only two states of the world. Section 4 considers an arbitrary number

of states of the world. Applications are in Section 5. Section 6 concludes. An appendix

contains some results, proofs, and details left out in the main body of the paper.

1[17] has shown that this is the case when bidders’ signals are affiliated.
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2 Definitions

The state of the world is a random variable ω̃ with realizations ω in a finite set Ω which has

at least two elements. The probability distribution of ω̃ is denoted by π. Without loss of

generality we assume that each state in Ω occurs with the same probability: π(ω) = 1/|Ω|
for all ω ∈ Ω.2 Two signals are available: s̃1 with realizations s1 in the finite set S1 where

S1 has at least two elements, and s̃2 with realizations s2 in the finite set S2 where S2 also

has at least two elements. We assume without loss of generality that S1∩S2 is empty. The

joint distribution of signals s̃1 and s̃2 conditional on the state being ω ∈ Ω is denoted by

p12,ω. The probability assigned by this distribution to some realization (s1, s2) ∈ S1 × S2

is denoted by p12,ω(s1, s2). The unconditional distribution of (s̃1, s̃2) is denoted by p̄12 and

is given by: p̄12(s1, s2) =
∑

ω∈Ω p12,ω(s1, s2)π(ω) for all (s1, s2) ∈ S1×S2. The probability

distribution on Ω conditional on observing signal realization (s1, s2) ∈ S1 × S2 (where

p̄12(s1, s2) > 0) is denoted by qs1,s2 and is given by:

qs1,s2(ω) = π(ω)
p12,ω(s1, s2)

p̄12(s1, s2)
for all ω ∈ Ω. (1)

For i = 1, 2 the marginal distribution of signal s̃i conditional on the state being ω ∈ Ω

is denoted by pi,ω. The probability assigned by this distribution to some realization si ∈ Si
is denoted by pi,ω(si). For i = 1, 2 the unconditional distribution of s̃i is denoted by p̄i

and it is given by: p̄i(si) =
∑

ω∈Ω pi,ω(si)π(ω) for all si ∈ Si. Without loss of generality

we assume that p̄i(si) > 0 for all si ∈ Si. For i = 1, 2 the probability distribution on Ω

conditional on observing signal realization si ∈ Si is denoted by qsi
and is given by:

qsi
(ω) = π(ω)

pi,ω(si)

p̄i(si)
for all ω ∈ Ω. (2)

Our first objective is to define when the two signals are substitutes or complements.

To do so, we need some auxiliary definitions.

Definition 1. A decision problem is a pair (A, u) where A is some finite set of actions

and u is a utility function: u : A× Ω→ R.

Definition 2. For given decision problem (A, u):

2Our results would not be different if the prior was any other distribution with support Ω. This follows
from the relation between our analysis and the Blackwell comparison of signals that is pointed out in
Proposition 1 below, and from the fact that the Blackwell comparison of signals is independent of the
prior as long as the prior has full support.
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• The value of not having any signal is:

V∅(A, u) ≡ max
a∈A

∑
ω∈Ω

(u(a, ω)π(ω)) . (3)

• For i ∈ {1, 2} the value of having signal s̃i alone is:

Vi(A, u) ≡
∑
si∈Si

p̄i(si) max
a∈A

∑
ω∈Ω

(u(a, ω)qsi
(ω)). (4)

• The value of having both signals is:

V12(A, u) ≡
∑
s1∈S1

∑
s2∈S2

p̄12(s1, s2) max
a∈A

∑
ω∈Ω

(u(a, ω)qs1,s2(ω)). (5)

We can now introduce our notions of substitutes and complements of signals:

Definition 3. Signal s̃i is a substitute for signal s̃j if for all decision problems (A, u) we

have:

Vj(A, u)− V∅(A, u) ≥ V12(A, u)− Vi(A, u). (6)

Definition 4. Signal s̃i is a complement for signal s̃j if for all decision problems (A, u)

we have:

V12(A, u)− Vi(A, u) ≥ Vj(A, u)− V∅(A, u). (7)

Note that the inequalities in Definition 3 and 4 remain true when the indices i and j

are swapped. This makes clear that substitutability and complementarity are symmetric

notions: if signal 1 is a substitute for signal 2, then signal 2 is a substitute for signal 1,

and the same is true for complements.

For a simple interpretation of the inequalities in Definitions 3 and 4 suppose that the

decision maker’s not explicitly modeled overall utility is additive in the expected utility

from decision problem (A, u) and money. Then the inequalities in Definitions 3 and 4

compare the decision maker’s willingness to pay for signals in different scenarios. For

example, the inequality in Definition 3 says that the willingness to pay for signal s̃j is

larger if signal s̃i is not available than if it is available. It seems natural to call signals

substitutes in this case.3

3Without postulating the existence of money, and additive utility, one could interpret the inequalities
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We can obtain an alternative way of writing the definition of complements or sub-

stitutes by defining two auxiliary signals, s̃S and s̃C . The signal s̃S can be described as

follows. An unbiased coin is tossed. If “heads” comes up, the decision maker is informed

about the realization of s̃1. If “tails” comes up, the decision maker is informed about the

realization of s̃2. Therefore, for a given decision problem (A, u), the value of having signal

s̃S is given by:

VS(A, u) =
1

2
· V1(A, u) +

1

2
· V2(A, u). (8)

The second auxiliary signal, s̃C , is constructed as follows. An unbiased coin is tossed.

If “heads” comes up, the decision maker is informed about the realizations of s̃1 and s̃2.

If “tails” comes up, the decision maker receives no information. Therefore, for a given

decision problem (A, u), the value of having signal s̃C is given by

VC(A, u) =
1

2
· V12(A, u) +

1

2
· V∅(A, u). (9)

The following result is a simple re-writing of the definition of substitutes and comple-

ments. We omit the proof.

Proposition 1. (i) Signals s̃1 and s̃2 are substitutes if and only if signal s̃S Blackwell

dominates signal s̃C, i.e. in all decision problems (A, u):

VS(A, u) ≥ VC(A, u). (10)

(ii) Signals s̃1 and s̃2 are complements if and only if signal s̃C Blackwell dominates signal

s̃S, i.e. in all decision problems (A, u):

VC(A, u) ≥ VS(A, u). (11)

Blackwell and Girshick [7, Theorem 12.2.2.] offer a variety of necessary and sufficient

conditions for Blackwell dominance. Proposition 1 allows one to use those conditions to

characterize substitutes and complements.

We shall say that signal s̃i is “informative” if there is at least one si ∈ Si such that

in Definitions 3 and 4 using an idea in [22, p. 18]. They argue that inequalities that involve differences
of von Neumann Morgenstern utilities reflect differences in the intensity of a preference. For example, in
the case of Definition 3, this interpretation says that the preference for having signal s̃1 over not having
signal s̃1 is more intense when signal s̃2 is not present than when it is present. This interpretation of the
difference of von Neumann Morgenstern utilities is not universally accepted, however. [15, p. 32] regards
this interpretation as a fallacy, whereas [5, p. 67] is sympathetic to this interpretation.
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qsi
6= π. It is obvious that signals are complements if at least one of the signals is

uninformative. In the rest of the paper we shall assume that both signals are informative.

3 The Case of Two States

It is easier to verify Blackwell dominance when there are only two states of the world,

and therefore beliefs are one-dimensional, than when there are more than two states of

the world, and therefore beliefs are multi-dimensional. The qualitative difference between

the one-dimensional case and the case of two or more dimensions is explained in Section

12.4 of Blackwell and Girshick [7]. In the one-dimensional case the convex value function4

arising from an arbitrary decision problem can be approximated arbitrarily closely by

linear combinations of a very simple subclass of piecewise linear, convex functions. No

such approximation result is known in the two or more-dimensional case. The relevance

of having a dense class of simple value functions is that one can correspondingly restrict

attention to a simple class of decision problems when checking Blackwell dominance. A

suitable class of decision problems is the set of all two action decision problems where

A = {T,B} and u is given by Figure 1.

ω = a ω = b

T 0 x

B 1− x 0

Figure 1: A two action decision problem

Lemma 1. In the two states model, signals are complements (substitutes) if and only if

they are complements (substitutes) in all two action decision problems given by Figure 1

with x ∈ (0, 1).

Proof. The main argument in the proof of Theorem 12.4.1. in Blackwell and Girshick [7]

demonstrates that in the two states case a signal s̃ Blackwell dominates another signal s̃′

if and only if s̃ is more valuable than s̃′ in all two action problems of the form shown in

Figure 1.5 We can then apply Proposition 1 to infer Lemma 1.

4Value functions map posterior beliefs into the expected utility that the decision maker obtains when
holding those beliefs and choosing optimally. Every decision problem gives rise to a convex value function.

5Blackwell and Girshick’s proof refers to a decision problem that is as in Figure 1 but with the first
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This result motivates our focus in this section on the case of only two states. We also

assume that each signal has only two realizations. Without loss of generality we assume

that observing α or α̂ (resp. β or β̂) alone raises the decision maker’s belief that the state

is a (resp. b): qα(a) > π(a) and qα̂(a) > π(a). We refer to the model with two states and

two realizations per signal if it satisfies this assumption as the “binary-binary” model.

3.1 Substitutes

Proposition 2. In the binary-binary model, signals are substitutes if and only if the joint

realizations (α, α̂) and (β, β̂) each have strictly positive prior probability, and

qα,α̂(a) = max{qα(a), qα̂(a)}, and (12)

qβ,β̂(b) = max{qβ(b), qβ̂(b)}. (13)

Call a realization of a single signal “extreme” if it provides the strongest evidence

for state a, or state b, among all four individual signal realizations. The conditions in

Proposition 2 say that conditional on an extreme realization of a signal the other signal

is not informative. Thus, in the binary-binary model, substitutability amounts to a form

of conditional uninformativeness of signals.

Signal distributions that satisfy the conditions of Proposition 2 can be classified into

two types. For signal distributions of the first type the two extreme realizations are

different realizations of the same signal, whereas for signal distributions of the second

type, the two extreme realizations are realizations of two different signals. We illustrate

these two types in Figure 2. For each example, we provide two tables which display the

two conditional distributions p12,a and p12,b. Rows correspond to realizations of signal s̃1,

and columns correspond to realizations of signal s̃2.

Example 1 illustrates the first type. We show the case in which both extreme signal

realizations come from signal s̃1. It then has to be the case that, conditional on the

realization of signal s̃1, signal s̃2 is always not informative. This happens if conditional on

any realization of signal s̃1, the likelihood ratios of joint signal realizations are the same

for all realizations of signal s̃2. The corresponding information structure is displayed in

row of payoffs replaced by (−(1 − x), x), where x ∈ (0, 1), and the second row of payoffs replaced by
(0, 0). The same argument that Blackwell and Girshick use can be used to demonstrate that a signal s̃
Blackwell dominates another signal s̃′ if and only if s̃ is more valuable than s̃′ in all two action problems
of the form shown in Figure 1.
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α̂ β̂

α ρ ϕ

β µϕ′ µρ′

α̂ β̂

α ηρ ηϕ

β ϕ′ ρ′

ω = a ω = b

Example 1 (α and β are extreme signal realizations)

α̂ β̂

α ρ 0

β ϕ 1− ρ− ϕ

α̂ β̂

α ρ′ 0

β ϕ′ 1− ρ′ − ϕ′

ω = a ω = b

Example 2 (α and β̂ are extreme signal realizations)

Figure 2: Two different types of substitutes

Example 1 where the likelihood ratios are denoted by η and µ which are both less than 1.6

Note that the case of perfect correlation is a special case of Example 1 where ϕ = ϕ′ = 0,

ρ = ρ′ and µρ′ = ηρ = 1− ρ.

Example 2 illustrates the second type of signal distributions that make signals substi-

tutes. In this type, the two extreme realizations come from different signals. We show the

case in which α and β̂ are the extreme realizations. In this case, signals are substitutes if

and only if signal s̃1 is not informative conditional on β̂, and signal s̃2 is not informative

conditional on α. It is not hard to see that this is equivalent to the realization (α, β̂)

having zero probability in both states. Accordingly, the information structure is of the

form shown in Example 2.7 Note that perfect correlation is also a special case of Example

2, when ϕ = ϕ′ = 0 and ρ′ = 1− ρ.

We prove the sufficiency of the conditions in Proposition 2 in the appendix. The proof

is by calculation, using the fact that according to Lemma 1 we can restrict attention to

6Of course, the entries in each table in Example 1 have to sum to one. Moreover, since (α, α̂) and
(β, β̂) occur with positive probability, we have ρ, ρ′ > 0 while ϕ,ϕ′ ≥ 0. Finally, to satisfy our assumption
that α̂ indicates state a, we need that ρ+ µϕ′ ≥ ηρ+ ϕ′.

7In accordance with Proposition 2 we need ρ, ρ′ > 0 and ϕ,ϕ′ ≥ 0. To satisfy our assumption that α
and α̂ indicate state a, we need that ρ ≥ ρ′ and ρ+ϕ ≥ ρ′ + ϕ′. To ensure that α is the strongest signal
for state a we need: ρϕ′ ≥ ρ′ϕ, and finally, to ensure that β̂ is the strongest signal for state b we need:
(1− ρ)ϕ′ ≤ (1− ρ′)ϕ.
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the decision problems in Figure 1. The necessity of the conditions in Proposition 2 follows

from the more general Corollary 1 below.

3.2 Complements

Proposition 3. In the binary-binary model, signals are complements if and only if the

joint realizations (α, α̂) and (β, β̂) each have strictly positive probability in at least one

state, and one of the following conditions holds:8

qα,α̂(a) ≤ π(a), or (14)

qβ,β̂(b) ≤ π(b). (15)

Inequality (14) says that if the decision maker receives signal (α, α̂) the decision

maker’s posterior probability of state a is less than or equal to the prior π(a), even

though individually both α and α̂ move the decision maker’s probability of state a above

π(a). Inequality (15) is the analogous condition for the signal realization (β, β̂). In both

cases, two signals which by themselves move the decision maker’s beliefs into one direc-

tion, if received together move the decision maker’s beliefs into the opposite direction.

The “meaning” of these signals is reversed if they are received together.

We prove the sufficiency of the conditions in Proposition 3 in the appendix. We derive

the necessity in the next section from a more general result. Example 3 shows a class of

complements. If ν > µ, the signal realizations α and α̂ by themselves raise the decision

maker’s belief that the true state is a. If ρ ≤ ϕ, then the joint signal realization (α, α̂),

by contrast, reduces the decision maker’s probability that the true state is a or leaves it

unchanged.9

In the appendix, we generalize the sufficiency part of Proposition 3 to the case of more

than two signal realizations.

Remark 1. Among all pairs of conditional joint distributions of signals s̃1 and s̃2 in the

binary-binary model the ones shown in Figure 2 are rare. One way of saying this formally

8One can show that the two conditions are mutually exclusive.
9Example 3 captures all conditional joint probability distributions of the two signals in the binary-

binary model for which condition (14) holds, and for which in each state the probabilities of the two signal
realizations (α, β̂) and (β, α̂) are the same. (There are, of course, other conditional joint distributions
of the two signals for which signals are complements.) All suitable values for the four parameters in
Example 3 can be found by making choices allowed in the following procedure: First pick ν such that
0 < ν < 1. Then pick µ > 0 such that 2ν − 1 ≤ µ < ν. Then pick ϕ ≥ 0 such that 2ν − 1 ≤ ϕ ≤ µ.
Finally, pick ρ ≥ 0 such that 2ν − 1 ≤ ρ ≤ ϕ.
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α̂ β̂

α ρ ν − ρ

β ν − ρ 1 + ρ− 2ν

α̂ β̂

α ϕ µ− ϕ

β µ− ϕ 1 + ϕ− 2µ

ω = a ω = b

Figure 3: Example 3 (signals are complements)

is to identify pairs of conditional joint distributions of the two signals with vectors in

8-dimensional Euclidean space, and to endow the set of all joint distributions with the

relative Euclidean topology. The set of distributions that are not like the distributions

in Figure 2 is then an open and dense subset of the set of all joint distributions, and is

thus generic. This may seem intuitively plausible given how stringent the requirement that

defines substitutes is. However, in the same topological sense, complements, although their

definition seems equally stringent, are not rare. The set of distributions that correspond

to complements has an open subset. For example, a small open ball around a pair of

full support distributions that satisfy one of the conditions in Proposition 3 as a strict

inequality10 is a subset of the set of all distributions that correspond to complements. The

stringency of the requirement that defines complements makes this observation intuitively

surprising.

4 The General Case

The main results of this section show that the conditions that are necessary and sufficient

for substitutes or complements in the binary-binary model are necessary, but not sufficient,

for substitutes or complements in the general model.

4.1 Substitutes

We showed in the previous section that in the binary-binary model a necessary and suffi-

cient condition for substitutes is that a signal is not informative conditional on the other

signal having a realization that induces extreme posteriors. We now show that a similar

condition is in general necessary for substitutes. An example in the appendix shows that

the condition is not sufficient. For any subset C of a finite-dimensional Euclidean space

10With a suitable choice of parameters in Example 3, condition (14) holds as a strict inequality.
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we denote by “co C” the convex hull of C.

Proposition 4. If signals are substitutes, then for every (s1, s2) ∈ S1 × S2 such that

p̄12(s1, s2) > 0:

qs1,s2 ∈ co {qsi
|i ∈ {1, 2}, si ∈ Si} . (16)

Proof. By part (i) of Proposition 1, if signals are substitutes, s̃S Blackwell dominates s̃C .

By condition (5) of Theorem 12.2.2. in Blackwell and Girshick [7] this means that the

posteriors after observing s̃S are a mean-preserving spread of the posteriors after observing

s̃C . Therefore, the posteriors after observing s̃C are contained in the convex hull of the

posteriors after observing s̃S. This implies Proposition 4.

Recall that an element of a convex set C is called an “extreme point” of C if it is not

a convex combination of at least two different elements of C where each of these elements

has strictly positive weight.

Corollary 1. Suppose signals are substitutes. If for some i ∈ {1, 2} and some s∗i ∈ Si the

vector qs∗i is an extreme point of co {qsk
|k ∈ {1, 2}, sk ∈ Sk}, then signal s̃j (where j 6= i)

is not informative conditional on signal realization s∗i .

Corollary 1 is a generalization of the necessity part of Proposition 2. An example

in the appendix shows that the condition in Corollary 1 is in general not sufficient for

substitutes, in contrast to the case of Proposition 2.

Proof. Indirect. Suppose qs∗i ,sj
6= qs∗i for some sj ∈ Sj with p̄12(s∗i , sj) > 0. By standard

properties of posteriors qs∗i can be written as a convex combination of the vectors qs∗i ,sj

(sj ∈ Sj). We can infer that qs∗i ,sj
6= qs∗i for at least two sj ∈ Sj with p̄12(s∗i , sj) > 0, and

that both of these vectors qs∗i ,sj
receive positive weight in the convex combination that

makes up qs∗i . By Proposition 4 for every sj ∈ Sj with p̄12(s∗i , sj) > 0 the vector qs∗i ,sj
is

an element of co {qsi
|i ∈ {1, 2}, si ∈ Si}. We have thus inferred that qs∗i can be written

as the convex combination of at least two different elements of co {qsi
|i ∈ {1, 2} si ∈ Si}

where each element receives positive weight. This contradicts our assumption that qs∗i is

an extreme point of co {qsi
|i ∈ {1, 2}, si ∈ Si} .

One can use Corollary 1 to prove the necessity of the condition in Proposition 2.

Indeed, the necessity of the condition in Proposition 2 is an immediate consequence of

Corollary 1 once one shows that the signal realizations (α, α̂) and (β, β̂) have strictly

positive probability in some state. We omit the elementary proof of this.
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4.2 Complements

Earlier we showed that a form of “meaning reversal” is necessary and sufficient for signals

to be complements in the binary-binary example. The next result shows that with more

than two states or more than two signal realizations, under an additional assumption,

meaning reversal is necessary for complements. An example in the appendix shows that

the condition is not sufficient. The following result looks formidable. We explain it in the

text that follows the result. The proof of the result is in the appendix.

Proposition 5. Suppose signals are complements. Consider any r ∈ R|Ω|. Define e ≡ rπ.

If for each i ∈ {1, 2} there is a partition (SEi , S
R
i ) of Si such that the following three

conditions are satisfied:

(i) For each i ∈ {1, 2}:

e ≥ rqsi
for all si ∈ SEi and e > rqsi

for at least one si ∈ SEi , (17)

and

rqsi
≥ e for all si ∈ SRi and rqsi

> e for at least one si ∈ SRi ; (18)

(ii) For each k ∈ {E,R} there is at least one (s1, s2) ∈ Sk1 × Sk2 such that

p̄12(s1, s2) > 0; (19)

(iii) For each (k, `) ∈ {(E,R), (R,E)}:

e ≥ rqs1,s2 for all (s1, s2) ∈ Sk1 × S`2 with p̄12(s1, s2) > 0, (20)

or

rqs1,s2 ≥ e for all (s1, s2) ∈ Sk1 × S`2 with p̄12(s1, s2) > 0; (21)

then

rqs1,s2 ≥ e for some (s1, s2) ∈ SE1 × SE2 with p̄12(s1, s2) > 0, (22)

or

e ≥ rqs1,s2 for some (s1, s2) ∈ SR1 × SR2 with p̄12(s1, s2) > 0. (23)

Lines (22) and (23) show that a form of meaning reversal is necessary for complemen-

tarity. To interpret the result suppose the decision maker wants to learn from the signals

13



whether the expected utility of a risky action R whose payoffs are given by the vector r

is larger or smaller than the expected utility from a safe action E that yields payoff e in

all states. Assume that r and e are such that with the prior belief π the decision maker is

indifferent between the two actions. We denote the set of realizations of signal s̃i which

imply a posterior belief for which action E has higher expected utility than action R by

SEi , and we denote the set of realizations of signal s̃i which imply a posterior belief for

which action R has higher expected utility than action E by SRi . Beliefs for which the

decision maker is indifferent can be assigned arbitrarily to one of these two sets.

Signal realizations in SEi by themselves indicate that the expected value rqsi
is not

larger than e. But according to (22) for some joint realization where both realizations

are in SEi we have (almost11) the reverse: rqs1,s2 ≥ e. In the same way, (23) is a form of

meaning reversal. At least one of these two meaning reversals must occur according to

Proposition 5.

Note, however, that the meaning reversal is necessary only if conditions (19), (20)

and (21) hold. Among these, (19) is a mild regularity condition. The remaining two

conditions are more restrictive. They refer to the case that the decision maker receives

“mixed messages” from the two signal. There are two possible types of mixed messages:

the first type is when s1 is in SE1 but s2 is in SR2 ; the second type is when s1 is in SR1 but

s2 is in SE2 . The conditions require that for each of the two types of mixed signals one

can say unambiguously which signal is “stronger,” irrespective of the specific realization

of the signals. Thus either for all mixed realizations of the first type the expected value of

action E is at least as large as that of action R, and hence signal s̃1 is stronger, or for all

mixed realizations of the first type the expected value of action R is at least as large as

that of action E, and hence signal s̃2 is stronger. An analogous condition needs to hold

for all mixed realizations of the second type, but it is not necessary that the same signal

is stronger for mixed realizations of both types.

In the appendix we show how to use Proposition 5 to derive the necessity part of

Proposition 3.

5 Applications

We present three applications of our analysis. These applications will be models of asym-

metric information, in which two signals that are either complements or substitutes are

11Ignoring the possibility of indifference.
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observed by two different agents, who then interact in a game. We focus on the binary-

binary model, and use the notation from that model. For each application we also briefly

explain what we know about possible generalizations of our results to the case of more

than two states and signal realizations.

5.1 Information Disclosure in Auctions

Milgrom and Weber [17, 18] have presented models of common value auctions in which an

auctioneer can increase her expected revenue by publicly disclosing her own information

about the object that she is selling. In Milgrom and Weber [18] it is argued that this

result always holds if the auctioneer’s information is in a substitute relation with the

information that bidders hold privately, but that it need not hold if the auctioneer’s

information is complementary to bidders’ private information. The intuition for this is as

follows: in common value auctions, bidders can gain expected surplus if they hold private

information that, if shared with other bidders, would change those bidders’ expected

values of the object. By publicly disclosing information that is in a substitute relation with

some bidders’ private information, the auctioneer reduces these bidders’ informational

advantage, and thus increases her expected revenue. By publicly disclosing information

that is a complement to some bidders’ private information, the auctioneer increases these

bidders’ information advantage, and thus reduces her expected revenue.

Milgrom and Weber’s [18] notion of complements and substitutes for signals is tailored

to their particular model. In this subsection we re-consider Milgrom and Weber’s result

using the definitions of complements and substitutes developed in this paper. Note that

our definitions are not directly related to Milgrom and Weber’s. Indeed, their defini-

tions are only meaningful under the assumption that the expected value of the object

conditional on both signals, and conditional on the bidder’s private signal alone, are

both increasing in the realization of the bidder’s private signal. One can easily deduce

from our Proposition 3 that this assumption, if adapted to our auction model, rules out

complements in our sense.

As we mentioned above, we focus on the binary-binary model. We assume that the

state indicates the common value of the good. Without loss of generality, we assume that

the common value is one if the state is a, and zero if the state is b. Bidder 1 observes

the realization of s̃1, bidder 2 has no private information, and the auctioneer observes

the realization of s̃2. The auction is a first price auction with minimum bid zero. The
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winner’s utility is the difference between the common value of the good and the winner’s

bid, and the loser’s utility is zero. We study how the auctioneer’s expected revenue varies

if the auctioneer commits to disclosing the realization of signal s̃2 publicly to both bidders

before bidders submit their bids.

In the appendix we construct equilibria in mixed strategies of the auction without

and with information disclosure. Conditional on public information, the expected utility

of the bidder without private information is zero, and the bidder with private informa-

tion has zero expected utility when observing a signal realization that makes him less

optimistic about the value of the good. Otherwise, his expected utility is equal to the

difference between the expected value conditional on all information and the expected

value conditional on the public information. One can derive the auctioneer’s expected

revenue from the observation that it is equal to the difference between the unconditional

expected value of the good and the sum of the bidders’ expected utilities. Without public

disclosure of information, expected revenue is given by:

π(a)− p̄(α) (qα(a)− π(a)) . (24)

With public disclosure of information the auctioneer’s expected revenue is:

π(a)− p̄(σ̄(α̂), α̂)(qσ̄(α̂),α̂(a)− qα̂(a))− p̄(σ̄(β̂), β̂)(qσ̄(β̂),β̂(a)− qβ̂(a)), (25)

where for every realization s2 of s̃2 we define:

σ̄(s2) = arg max
{s1:p̄(s1,s2)>0}

qs1,s2(a). (26)

Using these expressions, we can prove:

Proposition 6. If signals are complements, information disclosure does not increase the

auctioneer’s expected revenue. If signals are substitutes, information disclosure does not

decrease the auctioneer’s expected revenue.

Proof. Suppose signals are complements. We want to show that (25) is not more than

(24). Since the prior is a convex combination of the posteriors, each of the two terms

subtracted in (25) is non-negative by definition of σ̄(s2). Thus, it is sufficient to show

that one of the two terms subtracted in (25) is at least as large as the term subtracted in
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(24):

p̄(σ̄(α̂), α̂)(qσ̄(α̂),α̂(a)− qα̂(a)) ≥ p̄(α)(qα(a)− π(a)), or (27)

p̄(σ̄(β̂), β̂)(qσ̄(β̂),β̂(a)− qβ̂(a)) ≥ p̄(α)(qα(a)− π(a)). (28)

Now suppose that inequality (14) holds. We show (28). Note that (14) implies that

σ̄(β̂) = α because the prior is a convex combination of the posteriors and qα(a) > π(a).

Thus, we can show (28) as follows:

p̄(α, β̂)(qα,β̂(a)− qβ̂(a)) = p̄(α, β̂)(qα,β̂(a)− qα(a)) + p̄(α, β̂)(qα(a)− qβ̂(a))

= p̄(α, α̂)(qα(a)− qα,α̂(a)) + p̄(α, β̂)(qα(a)− qβ̂(a))

≥ p̄(α, α̂)(qα(a)− π(a)) + p̄(α, β̂)(qα(a))− π(a))

= p̄(α)(qα(a)− π(a)). (29)

The equalities in the first and fourth line are obvious. The first term in the sum in the

first line is the same as the first term in the sum in the second line because p̄(α, β̂)(qα,β̂(a)−
qα(a) = p̄(α, α̂)(qα(a)−qα,α̂(a)) is equivalent to: p̄(α)qα(a) = p̄(α, α̂)qα,α̂(a)+p̄(α, β̂)qα,β̂(a),

which is true by the equality of the expected posterior and the prior. The inequality in

the third line follows from (14) and the assumption qβ̂(a) ≤ π(a). This proves the claim

when (14) holds.

If inequality (15) holds, we can show (27). Indeed, one can show using (twice) that the

prior is a convex combination of the posteriors and using that qβ(a) < π(a) < qα̂(a) that

(15) implies that σ̄(α̂) = α. Hence, by using again the equality of the expected posterior

and the prior, we can write the left-hand side of (27) as:

p(α, α̂) (qα,α̂(a)− qα̂(a)) = p(β, α̂) (qα̂(a)− qβ,α̂(a)) = p(β, α̂) (qβ,α̂(b)− qα̂(b)) . (30)

By a similar argument, the right-hand side of (27) is equal to p̄(β) (qβ(b)− π(b)). Thus,

(27) is equivalent to:

p(β, α̂) (qβ,α̂(b)− qα̂(b)) ≥ p̄(β) (qβ(b)− π(b)) . (31)

To establish (31), we can now proceed in the same way as we did in (29), with α being

replaced by β, and α̂ being replaced by β̂.

The proof for the case that signals are substitutes is in the appendix.

17



The difficulty in extending Proposition 6 beyond the binary-binary case is that the ex-

pected value comparisons in Proposition 6 require knowledge of the complete distribution

of posteriors induced by the joint signal realizations. However, the general necessary con-

ditions for substitutes and complements for the case with an arbitrary number of states

and signals realizations as stated in Propositions 4, Corollary 1, and Proposition 5 only

imply restrictions on a small subset of posteriors. Therefore, the necessary conditions

developed in the previous section are too weak to extend Proposition 6 to the general

case.

5.2 Information Aggregation Through Voting12

Weighted majority voting over two alternatives has strong efficiency properties when the

role of voting is to aggregate different voters’ preferences and voters’ types are independent

(Schmitz and Tröger [21], Azreli and Kim [4]). When voters have identical preferences,

and voting serves the purpose of information aggregation, on the other hand, it is known

that weighted majority voting may fail to produce efficient information aggregation. By

“efficient information aggregation” we mean that the best decision is made given the

combined information of all voters.13 One reason why weighted majority voting may fail

to efficiently aggregate information is that the weights assigned to different voters and

the majority requirement may be wrong. The weights and majority requirement that are

suitable for efficient information aggregation are very sensitive to the environment. When

different weights or majority requirements are used, efficient information aggregation may

fail, as exemplified by the voting equilibrium described in Lemma 1 in Austen-Smith [3]. In

this section we show another way in which weighted majority voting may fail to aggregate

information efficiently: when different voters hold complementary private information,

there need not be any weights and majority requirement that allow efficient information

aggregation. The intuition for this finding is that an additive method for aggregating

votes does not allow a vote to reverse meaning, which is required for efficient information

aggregation if signals are complements, and hence sometimes reverse meaning.14

12The example in this subsection is based on Lemma 1 in [8]. We thank Kata Bognar for allowing us
to describe her result here.

13Note that we are concerned here with the efficiency of information aggregation for a fixed and finite
number of voters. There is also a literature (e.g. [10]) investigating the efficiency of weighted majority
voting in aggregating information when the number of voters tends to infinity.

14[20] considers a model of common value voting with endogenous information acquisition, and shows
how the voting rule may induce the signals of different voters to be complementary.
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We consider a model with two agents: i ∈ {1, 2}. Agent i privately observes the

realization of signal s̃i. The agents have to choose one from a set of two candidates:

A = {A,B}. Both agents have the same utility. The utility from choosing each of the

two candidates depends on the state in the way indicated in the table below:

ω = a ω = b

A x 0

B 0 1− x

where x ∈ (0, 1).

The two agents play the following game: each agent is allocated a weight wi ∈ (0, 1).

The sum of the weights is: w1 +w2 = 1. Agents simultaneously and independently choose

how to allocate the weight between the two candidates. Denote by wAi ≥ 0 the weight

that agent i assigns to candidate A and denote by wBi ≥ 0 the weight that agent i assigns

to candidate B. We require: wAi + wBi = wi for i ∈ {1, 2}. The candidate for whom the

sum of the assigned weights is largest wins. In case of a tie, one of the two candidates is

chosen randomly. A pure strategy for agent 1 is a function σ1 : {α, β} → [0, w1], where

σ1(s1) is the weight that agent 1 assigns to candidate A if observing signal realization s1.

Analogously, a pure strategy for agent 2 is a function σ2 : {α̂, β̂} → [0, w2].15

Definition 5. The utility function parameterized by x, and the joint distribution of signals

p12,a, p12,b allow efficient information aggregation through voting if and only if there is a

pair of pure strategies (σ1, σ2) such that

qα,α̂(a) > 1− x ⇒ σ1(α) + σ2(α̂) > 0.5, (32)

qα,α̂(a) < 1− x ⇒ σ1(α) + σ2(α̂) < 0.5, (33)

and analogous conditions hold for the three other combinations of signal realizations.

Note that any strategy pair that has the properties in Definition 5 leads to expected

utility maximizing choices conditional on all signal realizations, and is therefore a Bayesian

Nash equilibrium of the voting game (McLennan [16]). There may be other Bayesian Nash

equilibria of this game, but we shall ignore them.

15We allow voters to divide their weight among candidates. Thus, implicitly, we allow abstention.
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Proposition 7. (i) If signals are complements, then there exists x ∈ (0, 1) such that

the utility function parameterized by x and the joint distribution of signals do not allow

efficient information aggregation through voting.

(ii) If signals are substitutes, then for all x ∈ (0, 1) the utility function parameterized by x

and the joint distribution of signals allow efficient information aggregation through voting.

Proof. (i) Suppose that signals are complements, and that inequality (14) holds (the

case in which (15) holds is analogous.) That the prior is a convex combination of the

posteriors means that (14), qα(a) > π(a), and qα̂(a) > π(a) imply that qα,β̂(a) > π(a) and

qβ,α̂(a) > π(a). These inequalities, together with qβ(a) < π(a) imply that qβ,β̂(a) < π(a).

Now pick x < 1− π(a). Then, for efficient information aggregation through voting to be

possible, we have to have:

σ1(α) + σ2(α̂) < 0.5 (because qα,α̂(a) < 1− x); (34)

σ1(β) + σ2(β̂) < 0.5 (because qβ,β̂(a) < 1− x). (35)

Adding these two inequalities, we obtain:

σ1(α) + σ2(α̂) + σ1(β) + σ2(β̂) < 1. (36)

This implies that at least one of the sums σ1(α)+σ2(β̂) and σ1(β)+σ2(α̂) must be strictly

less than 0.5, which contradicts efficient information aggregation, as qα,β̂(a) > 1− x and

qβ,α̂(a) > 1− x if x is sufficiently close to 1− π(a).

(ii) Suppose that signals are substitutes. If the two extreme realizations referred to in

Proposition 2 are realizations of the same signal σ̃i, then efficient information aggregation

can be achieved by the pair of strategies where voter i allocates all weight wi to candidate

A if i observes the signal realization α (resp. α̂) and to candidate B if i observes the signal

realization β (resp. β̂). Voter j 6= i allocates wj/2 votes to each of the two candidates.

Next consider the case that the two extreme realizations referred to in Proposition 2

are realizations of two different signals. Without loss of generality assume that we are

in the case of Example 2. If the optimal choice conditional on the two extreme signal

realizations is the same, then voting weights can be allocated arbitrarily. Now suppose

that the optimal candidate conditional on α is A, whereas conditional on β̂ it is B. If the

optimal candidate conditional on (β, α̂) is A, then only voter 2’s signal matters for the

optimal decision. If the optimal candidate conditional on (β, α̂) is B, then only voter 1’s
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signal matters for the optimal decision. Let i denote the voter whose signal realization

determines the optimal decision. By adopting the strategy described in the previous

paragraph, information can be efficiently aggregated through voting.

The impossibility of information aggregation in the complementarity case results from

the simultaneity of voting. With sequential voting, the first voter can always use her

vote to signal her observation, but at the same time leave the decision to the second

voter. With more than two states and signal realizations part (i) of Proposition 7 can be

shown using the same proof as above if one can find a partition of signal realizations that

satisfies the conditions in Proposition 5. By contrast, the proof of part (ii) of Proposition

7 does not apply to the case of more than two states and signal realizations, because

general necessary conditions for substitutes as stated in Proposition 4 and Corollary 1

imply restrictions only on the joint signal realizations that induce extreme beliefs, but

do not restrict the ordering of beliefs which are not extreme. Therefore, we do not know

whether Proposition 7 remains true in that case.

5.3 Polarization and Disagreement16

In this section we show that complementarity of signals is closely related to the phe-

nomenon that two agents whose initial beliefs disagree, may come to disagree even more

when confronted with additional public evidence. In an influential psychological study,

Lord et al. [14] show that experimental subjects’ attitudes towards the deterrent efficacy

of capital punishment become more polarized when subjects are exposed to the same,

mixed empirical evidence on deterrent effects. Lord et al. interpret their findings as

evidence for biased information processing. In contrast, Kondor [12] and Andreoni and

Mylovanov [1] have recently described information structures where increased polarization

following the public disclosure of additional evidence is consistent with Bayesian updat-

ing.17 In these authors’ models agents hold opposing private information about how to

interpret the public signal. For example, they may disagree about how reliable or neutral

the public evidence is. This means that the agents’ private and the public information

are complements in our sense.

Confining ourselves again to the case of the binary-binary model, we assume that there

are two agents who privately each observe a realization of a conditionally independent

16We thank Christian Hellwig for pointing us to the example discussed in this subsection.
17For other approaches that rationalize belief disagreement, see the references in [1].
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version of signal 1, potentially inducing different private beliefs about the state. Then,

the realization of signal 2 is publicly disclosed, leading decision makers to update their

private beliefs.

Now suppose one agent has observed realization α of signal 1, raising his belief that the

state is a; and the other agent has observed realization β (of a conditionally independent

version) of signal 1, decreasing his belief that the state is a. Thus, the agents disagree.

We are interested in how their disagreement evolves after signal 2 is released. We discuss

the notions of disagreement proposed by Kondor [12] and Andreoni and Mylovanov [1].

Kondor offers the following notion of disagreement:

Definition 6. (i) Signals exhibit polarization with respect to s2 ∈ {α̂, β̂} if observing s2

induces more extreme beliefs: qβ,s2(a) < qβ(a) and qα(a) < qα,s2(a).

(ii) Signals exhibit belief swap with respect to s2 ∈ {α̂, β̂} if observing s2 swaps the order

of beliefs: qβ,s2(a) > qα,s2(a).18

We now show that complements display polarization and belief swap.

Proposition 8. (i) If signals are complements, then they exhibit polarization with respect

to one and belief swap with respect to the other realization of signal 2.

(ii) If signals are substitutes, then they do not exhibit polarization or belief swap with

respect to any realization of signal 2.

Proof. (i) Suppose signals are complements and (14) holds (the case in which (15) holds is

analogous.) One can show using that the prior is a convex combination of the posteriors

that (I) (14) and qα(a) > π(a) imply that qα,β̂(a) > qα(a); (II) (14) and qα̂(a) > π(a)

imply that qβ,α̂(a) > qα̂(a) > π(a); and (III) qβ,α̂(a) > π(a) and qβ(a) < π(a) imply that

qβ,β̂(a) < qβ(a). The conclusions of (I) and (III) mean that signals display polarization

with respect to β̂ and the conclusion of (II) and (14) that signals display belief swap with

respect to α̂. This establishes part (i).

(ii) Suppose signals are substitutes. We distinguish three cases. The first case is that

the two extreme realizations referred to in Proposition 2 are from signal 1, then we have

for all s2 ∈ {α̂, β̂} that qα,s2(a) = qα(a) and qβ,s2(a) = qβ(a), or one of the realizations

(α, β̂) or (β, α̂) has zero probability. Thus, there is neither polarization nor belief swap

with respect to s2. The second case is that the two extreme realizations referred to in

18If one of the realizations mentioned in the definition has zero probability, we say that polarization or
belief swap do not occur.
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Proposition 2 are from signal 2, then we have for all s2 ∈ {α̂, β̂} that qα,s2(a) = qβ,s2(a),

or one of the realizations (α, β̂) or (β, α̂) has zero probability. This implies that there

is neither polarization nor belief swap with respect to s2. Finally, suppose the extreme

realizations referred to in Proposition 2 are from different signals. Suppose realizations α

and β̂ are extreme. (The other case is analogous.) Then qα,α̂(a) = qα(a) ≥ qβ,α̂(a). This

implies that there is no polarization or belief swap with respect to s2 = α̂. Moreover,

since the realization (α, β̂) has zero probability, polarization and belief swap with respect

to β̂ do not occur.

Next, we turn to the notion of disagreement proposed by Andreoni and Mylovanov

[1] who define disagreement in terms of disagreement about the optimal course of action.

They consider a two action decision problem where agents are indifferent between the

actions at the prior π. Agents privately observe conditionally independent versions of

signal 1, and then observe a public signal 2. Disagreement is said to occur when agents

who have privately observed different realizations of signal 1 prefer different actions even

after observing the public signal. When signal 1 is decisive in the sense that the beliefs

induced by itself are so extreme that no realization of signal 2 would induce an action

change, then disagreement trivially occurs. Therefore, the possibility of disagreement is

primarily interesting when signal 1 is not decisive.

We now investigate Andreoni and Mylovanov’s notion of disagreement in the binary–

binary model. We say that signal 1 is not decisive if for at least one realization of signal 1

there is one realization of signal 2 that can sway the agent and induce a different action.

Moreover, disagreement about the optimal action means that after the release of signal

2, one agent’s belief is larger and the other agent’s belief is smaller than the prior.

Definition 7. (i) Signal 1 is not decisive if there is s1 ∈ {α, β} and s2 ∈ {α̂, β̂} so that

(qs1(a)− π(a))(qs1,s2(a)− π(a)) < 0.

(ii) Signal 2 induces action disagreement with respect to s2 ∈ {α̂, β̂} if after observing s2,

agents prefer different actions:19

(qα,s2(a)− π(a))(qβ,s2(a)− π(a)) ≤ 0. (37)

The next result shows that action disagreement with respect to all realizations of

signal 2 is implied by complementarity and, in fact, characterizes complementarity when

19[1] distinguish between “strict” and “weak” action disagreement depending on whether the inequality
is strict or weak. For simplicity, we only consider weak disagreement.
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signal 1 is not decisive.

Proposition 9. (i) If signals are complements, then signal 2 induces action disagreement

with respect to s2 = α̂ and s2 = β̂.

(ii) Let signal 1 be not decisive. If signal 2 induces action disagreement with respect to

s2 = α̂ and s2 = β̂, then signals are complements.

Proof. (i) Suppose signals are complements and (14) holds (the case in which (15) holds

is analogous.) As we have already shown in the proof of Proposition 8, (14) implies

that qβ,α̂(a) > π(a), qα,β̂(a) > qα(a) and qβ,β̂(a) < qβ(a). The first inequality and (14)

mean that (37) follows for s2 = α̂, and the second and third inequalities together with

qβ(a) < π(a) < qα(a) mean that (37) also follows for s2 = β̂.

(ii) Suppose signals are not complements, that is, qα,α̂ > π(a) and qβ,β̂ < π(a). Because

signal 1 is not decisive, this implies that qα,β̂ < π(a) or qβ,α̂ > π(a). In the first case, (37) is

violated for s2 = β̂, and in the second case, (37) is violated for s2 = α̂, a contradiction.

Turning to substitutes, note because complementarity and substitutability exclude

each other in the binary–binary model, the second part of the previous lemma makes

clear that if signal 1 is not decisive, substitutes do not induce action disagreement.

For the case with more than two signal realizations yet still two states20, part (i) of

Proposition 9 can be generalized if one can find a partition of signal realizations that

satisfies the conditions of Proposition 5. In that case, disagreement occurs in the sense

that there are at least two realizations s′1 and s′′1 of signal 1 and a realization s2 of

signal 2 so that if the two agents have privately observed s′1 and s′′1 of (conditionally

independent versions) of signal 1, then signal 2 induces disagreement with respect to s2,

i.e., (qs′1,s2−π(a))(qs′′1 ,s2−π(a)) ≤ 0.21 By contrast, the necessary conditions in Proposition

5 are too weak to imply polarization and belief swap.

For the same reason as in the previous subsection, our general necessary conditions for

substitutes in the case with two or more signal realizations imply too little restrictions on

20It is not fully obvious how to best extend the notions of belief swap, polarization, or disagreement to
the case with more than two states.

21To see this, let r in Proposition 5 correspond to the action that pays 1 in state b and 0 in state a.
Thus, e = π(a). Now consider some (s′

1, s2) ∈ SE
1 × SE

2 for which, say, (22) holds, i.e., rqs′
1,s2 − e =

qs′
1,s2 − π(a) ≥ 0 Then there are two cases. Either there is a realization s′′

1 ∈ SE
1 which, together

with observation s2 induces action E: rqs′′
1 ,s2 − e = qs′′

1 ,s2 − π(a) ≤ 0. Then the claim holds for the
realizations s′

1, s′′
1 and s2. Or, all realizations s1 ∈ SE

1 induce action R when observed together with s2:
rqs1,s2 − e = qs1,s2 −π(a) ≥ 0. Then condition (iii) in Proposition 5 implies that all realizations s′′

1 ∈ SR
1 ,

when observed together with s2 induce action E: rqs′′
1 ,s2 − e = qs′′

1 ,s2 − π(a) ≤ 0. Hence, in this case the
claim holds for these realizations s′′

1 .
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posterior beliefs to rule out that in the general case substitutability of signals is consistent

with belief swap, polarization, or disagreement for some realizations.

The conclusion that emerges from this analysis is that complementarity of signals can

rationalize the psychological evidence on belief disagreement. Whether rational or biased,

if polarization aggravates desirable consensus finding in committees or public debate,

then providing additional information might be normatively problematic. In contrast

to psychological accounts of polarization, our analysis points out that what might be

problematic is not the release of public information in general, but in particular the

release of public information which is complementary to agents’ private information.

6 Conclusion

This paper has provided some insights into the nature of substitutability and comple-

mentarity relations among signals, and into the strategic importance of these relations.

Further development of the general statistical theory should also open up the possibility

of more applied work. Our most general conditions for substitutability and complemen-

tarity in the case that there are more than two states are only necessary, not sufficient,

and therefore give us only a partial description of signals that are substitutes or comple-

ments. As the necessary condition for substitutes is obviously very restrictive, whereas

the necessary condition for complements is not obviously as restrictive, perhaps the most

intriguing open question is how large the class of complements is if there are more than

two states.

Many pairs of signals are neither complements nor substitutes if our definitions are

used. This is because our definitions of these terms require certain conditions to be true

in all decision problems. This is in the spirit of Blackwell’s comparison whose ordering

of signals is incomplete. More signals will satisfy the conditions for being substitutes or

complements if we restrict attention to smaller classes of decision problems. In the context

of Blackwell’s original work this line of investigation has been pursued by Lehmann [13],

Persico [19], Athey and Levin [2] and Jewitt [11]. A similar research agenda is feasible in

our context.

Complementarity of signals may also matter when agents acquire signals sequentially.

In this case, the second signal may be acquired when the agent already knows the realiza-

tion of the first signal. By contrast, in our setting, each signal is acquired without knowing

the realization of the other signal. Extending our results to a setting where agents evaluate
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signals knowing the realization of other signals is another project for future work.
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Appendix

Proof of the Sufficiency Part of Proposition 2

We only consider the case in which the realization α provides the strongest individual

evidence for state a: qα(a) ≥ qα̂(a). The other case can be dealt with analogously.

There are two further cases: we first consider the case in which β provides the strongest

individual evidence for b: qβ(b) ≥ qβ̂(b). In this case, conditions (12) and (13) become:

qα,α̂(a) = qα(a), qβ,β̂(a) = qβ(a). (38)

We now argue that signal s̃2 does not affect the decision maker’s belief if he has observed

signal s̃1. Indeed, if the realization (α, β̂) has strictly positive probability in some state,

then since qα(a) is a convex combination of qα,s2(a), s2 ∈ {α̂, β̂}, the left equality above

implies that qα,β̂(b) = qα(b). Moreover, if (α, β̂) has zero probability in all states, then

clearly the decision maker maintains his belief after having observed the realization α

with probability 1. In sum, we have shown that the probability that a realization of

signal s̃2 changes the decision maker’s belief if realization α of signal s̃1 has been observed

is zero. Symmetrically, the probability that a realization of signal s̃2 changes the decision

maker’s belief if realization β of signal s̃1 has been observed is zero. But this means that

the marginal value of signal s̃2, if signal s̃1 is available, is zero in all decision problems.

Hence, signals are substitutes.

We next consider the case qβ̂(b) ≥ qβ(b). In this case, conditions (12) and (13) become:

qα,α̂(a) = qα(a), qβ,β̂(b) = qβ̂(b). (39)

We first argue that this implies

p12,a(α, β̂) = p12,b(α, β̂) = 0. (40)

Indeed, suppose the contrary were true. Then because for i, j, qsi
(a) is a convex combi-

nation of qsi,sj
(a), sj ∈ Sj, (39) would imply that qα,β̂(a) = qα(a), and qα,β̂(a) = qβ̂(a),

a contradiction to our assumption that realization α indicates state a and realization β̂

indicates state b.

We now demonstrate that signals are substitutes. Suppose first that the realization

(β, α̂) has zero probability in all states. Then (40) implies that signals are perfectly
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correlated. Therefore, the probability that a realization of one signal changes the decision

maker’s belief if the other signal is available is zero. Hence, signals are substitutes.

Suppose next that (β, α̂) has strictly positive probability in some state. (39) together

with the fact that for i, j, qsi
(a) is a convex combination of qsi,sj

(a), sj ∈ Sj and the

assumption that α provides the strongest and β̂ the weakest individual evidence for state

a implies the ordering:

qβ,β̂(a) = qβ̂(a) ≤ qβ(a) ≤ qβ,α̂(a) ≤ qα̂(a) ≤ qα(a) = qα,α̂(a). (41)

We now use Lemma 1 to demonstrate that signals are substitutes. By Lemma 1, it is

sufficient to verify that signals are substitutes in all two action problems of Figure 1 for

all x ∈ (0, 1). We show that for any x there is a signal s̃i so that V12(A, u)− Vi(A, u) = 0

holds for the two action decision problem (A, u) with parameter x.

• x ≤ qβ,β̂(a) or x ≥ qα,α̂(a): Then all realizations of (s̃1, s̃2), s̃1, s̃2 induce the same

optimal action, so that V12(A, u)− V1(A, u) = V12(A, u)− V2(A, u) = 0.

• x ∈ (qβ,β̂(a), qβ,α̂(a)]: Then the probability that a realization of signal s̃1 moves the

decision maker’s belief when realization β̂ of signal s̃2 has been observed is zero,

and no realization of signal s̃1 changes the optimal action if realization α̂ of signal

s̃2 has already been observed. Therefore, V12(A, u)− V2(A, u) = 0.

• x ∈ (qβ,α̂(a), qα,α̂(a)]: Then the probability that a realization of signal s̃2 moves the

decision maker’s belief if realization α of signal s̃1 has been observed is zero, and no

realization of signal s̃2 changes the optimal action if realization β of signal s̃1 has

already been observed. Therefore, V12(A, u)− V1(A, u) = 0.

Proof of the Sufficiency Part of Proposition 3

We begin with the observation that the conditions in Proposition 3 imply that all signal

realizations have strictly positive prior probability. Suppose, for example, (14) were true

and p̄12(α, β̂) = 0. Then qα(a) = qα,α̂(a) ≤ π(a) which would contradict our assumption

that qα(a) > π(a). The argument can be completed by repeating this step a number of

times.

By Lemma 1, it suffices to verify complementarity for all two action problems described

in Figure 1. Below, we shall assume that x ≤ 0.5 = π(a). If x ≤ 0.5, then it is optimal

29



under the prior belief to choose B. We shall assume that qβ(a) < x and qβ̂(a) < x so that

after observing β or β̂ it is strictly optimal to choose T . If this were not true, at least

one of the signals would by itself never provide a strict incentive to switch away from

the action that maximizes expected utility under the prior, and thus this signal by itself

would have zero value. Signals would then trivially be complements.

A signal has positive value by itself if it sometimes induces the decision maker to

switch to T , and the value of the signal is the expected utility increase arising from these

switches. If the decision maker attaches probability q(a) < x to state a, and switches

from B to T , then the increase in expected utility is:

(1− q(a))x− q(a)(1− x) = x− q(a). (42)

Observing a second signal realization sometimes induces the decision maker to switch

back from T to B. If some signal observation induces the decision maker to hold beliefs

q(a) > x, and to switch from T to B, then the increase in expected utility is:

q(a)(1− x)− (1− q(a))x = q(a)− x. (43)

Building on these considerations, we can now calculate for the two action decision

problem (A, u) that corresponds to the parameter value x:

V2(A, u)− V∅(A, u) = p̄2(β̂)[x− qβ̂(a)]

= p̄12(β, β̂)[x− qβ,β̂(a)] + p̄12(α, β̂)[x− qα,β̂(a)]. (44)

The first line uses the assumption qβ̂(a) < x. The first and the second line are equal

because the expected value of the posterior belief after observing both signal realizations,

taking expected values over the realizations of signal 1, is the posterior belief after ob-

serving the realization of signal 2 only. We next compute the marginal value of signal s̃2

when signal s̃1 is available:

V12(A, u)− V1(A, u) = p̄12(β, α̂)[qβ,α̂(a)− x]+ + p̄12(β, β̂)[qβ,β̂(a)− x]+

+p̄12(α, α̂)[x− qα,α̂(a)]+ + p̄12(α, β̂)[x− qα,β̂(a)]+. (45)

Here, we use for any real number z the following notation: z+ ≡ z if z ≥ 0, and z+ ≡ 0

if z < 0. We have also made use of our assumption qβ(a) < x.
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We now prove first that (14) implies that signals are complements. Condition (14)

implies that qβ,α̂(a) > 0.5 > x because otherwise we could not have qα̂(a) > 0.5 = π(a).

Thus,

V12(A, u)− V1(A, u) ≥ p̄12(β, α̂)[qβ,α̂(a)− x]. (46)

Therefore, we obtain for the difference:

V12(A, u)− V1(A, u)− (V2(A, u)− V∅(A, u))

≥ p̄12(β, α̂)[qβ,α̂(a)− x] + p̄12(β, β̂)[qβ,β̂(a)− x] + p̄12(α, β̂)[qα,β̂(a)− x]. (47)

Now we add and subtract p̄12(α, α̂)[qα,α̂(a) − x] on the right-hand side. Using the fact

that
∑

(s1,s2)∈S1×S2
p̄12(s1, s2)qs1,s2(a) = π(a) = 0.5, the right-hand side of (47) becomes

equal to

0.5− x− p̄12(α, α̂)[qα,α̂(a)− x] ≥ 0.5− x− p̄12(α, α̂)[0.5− x] ≥ 0. (48)

The first inequality follows because qα,α̂(a) ≤ 0.5 by (14). The second inequality follows

because x ≤ 0.5 and since p̄12(α, α̂) < 1. This establishes that (14) implies that signals

are complements.

We next prove that (15) implies that signals are complements. Condition (15) implies:

qβ,β̂(a) ≥ π(a) = 0.5 ≥ x, and hence we have:

V12(A, u)− V1(A, u) ≥ p̄12(β, β̂)[qβ,β̂(a)− x] + p̄12(α, β̂)[x− qα,β̂(a)]+. (49)

Thus,

V12(A, u)− V1(A, u)− (V2(A, u)− V∅(A, u))

≥ p̄12(β, β̂)[qβ,β̂(a)− x] + p̄12(α, β̂)[x− qα,β̂(a)]+

+p̄12(β, β̂)[qβ,β̂(a)− x] + p̄12(α, β̂)[qα,β̂(a)− x] ≥ 0. (50)

The sum in (50) is non-negative since qβ,β̂(a) ≥ π(a) = 0.5 ≥ x by (15), and because the

sum of the second and the fourth term is always non-negative. Thus we have again shown

that signals are complements.
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A Sufficient Condition for Complements with Two States and

Many Signal Realizations

We generalize the sufficiency part of Proposition 3 to obtain a sufficient condition for

complementarity in the case when signals have arbitrarily many realizations. Let si (resp.

s̄i) be the realization of signal s̃i, which provides the weakest (resp. strongest) support

for state a: qsi
(a) = minsi

qsi
(a) and qs̄i

(a) = maxsi
qsi

(a). Let

x ∈ X ≡
(
max{qs1(a), qs2(a)},min{qs̄1(a), qs̄2(a)}

)
, (51)

that is, x is larger than the smallest posterior probability of a that is induced by any

realization of a single signal, and smaller than the largest posterior probability of a induced

by any realization of a single signal. We partition the set Si of realizations of signal s̃i into

two subsets, depending on whether they induce posterior beliefs qsi
(a) that are smaller or

larger than x:

Sβi (x) = {si ∈ Si | qsi
(a) ≤ x}, Sαi (x) = {si ∈ Si | qsi

(a) > x}. (52)

Now imagine that, instead of observing each realization of signal s̃i, the decision maker

only observes whether a realization is in one of the two partitions. This amounts to

observing a signal with two realizations. We call this binary signal t̃i(x) and denote the

realization of t̃i(x) by tβi (x) if si ∈ Sβi (x) and by tαi (x) if si ∈ Sαi (x).

Proposition 10. In the two state case, if for all x ∈ X the signals t̃1(x) and t̃2(x) are

complements, then the signals s̃1 and s̃2 are complements.

Proof. We denote the expected utility that the decision maker receives when maximizing

expected utility in some arbitrary decision problem (A, u) after observing the realization

of t̃i(x) by Vi,x(A, u) and we denote the expected utility that the decision maker receives

when maximizing expected utility in decision problem (A, u) after observing the joint

realization (t̃1(x), t̃2(x)) by V12,x(A, u). Let the auxiliary signals t̃C(x) and t̃S(x) be defined

analogously to s̃C and s̃S, and denote the expected utility that the decision maker receives

when maximizing expected utility in decision problem (A, u) after observing these signals

by VC,x(A, u) and VS,x(A, u).

By Lemma 1 it is sufficient to verify complementarity for the two action problem

of Figure 1 for all x ∈ (0, 1). For x 6∈ X, there is at least one signal s̃i which is not
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informative. Hence, signals are obviously complements. Let x ∈ X, and let (A, u) for the

purposes of this proof be the corresponding two action decision problem. By Proposition

1, it is sufficient to show that VC(A, u) ≥ VS(A, u).

To demonstrate this, we begin with two observations. The first observation is that

Vi(A, u) = Vi,x(A, u). This is so since in the two action problem at hand, all that matters

for the decision maker’s optimal action after observing realization si of signal s̃i is whether

the posterior belief qsi
(a) is smaller or larger than x. But this is precisely the information

provided by signal t̃i(x). We omit the formal proof. The second observation is that,

evidently, the signal (s̃1, s̃2) is (weakly) more informative than the signal (t̃1(x), t̃2(x)).

Hence, V12(A, u) ≥ V12,x(A, u). Using these two observations, we can deduce:

VC(A, u) = 0.5V12(A, u) + 0.5V∅(A, u)

≥ 0.5V12,x(A, u) + 0.5V∅(A, u)

= VC,x(A, u)

≥ VS,x(A, u) (53)

= 0.5V1,x(A, u) + 0.5V2,x(A, u)

= 0.5V1(A, u) + 0.5V2(A, u)

= VS(A, u),

where the inequality in the fourth line follows because by assumption t̃1(x) and t̃2(x) are

complements. This proves the claim.

Proof of Proposition 5

Indirect. Assume for some r ∈ R|Ω| and e ∈ R there were partitions (SEi , S
R
i ) (for

i ∈ {1, 2}) that satisfy the conditions (i)-(iii) of the Proposition, but neither (22) nor (23)

were true. Consider the decision problem with two actions, R and E, where the payoff

of action R in state ω is given by the ω-th component of r, and the payoff of action E is

equal to e in all states of the world. For an arbitrary belief q the expected payoff of action

R is rq, and the expected payoff of E is e. By assumption, the prior π is such that rπ = e,

that is, the agent is indifferent between the two actions based on the prior. We shall show

that the signals are not complements in this decision problem. For the remainder of this

proof, (A, u) will denote this particular decision problem.

Suppose for (k, `) = (E,R) condition (20) were true, and for (k, `) = (R,E) condition
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(21) were true. Together with the assumption that neither (22) nor (23) are true, we

can deduce that, conditional on observing any joint signal realization (s1, s2), one optimal

action for the decision maker is E whenever s1 ∈ SE1 , independent of the realization

of signal s̃2, and R whenever s1 ∈ SR1 , again independent of the realization of signal

s̃2. Therefore, V12(A, u) − V1(A, u) = 0. On the other hand, the strict inequalities in

conditions (17) and (18), applied to i = 2, imply that V2(A, u) − V∅(A, u) > 0. Thus,

signals are not complements. The case that for (k, `) = (E,R) condition (21) is true, and

for (k, `) = (R,E) condition (20) is true, is analogous, with the roles of signals 1 and 2

swapped.

Now consider the case that for both admissible (k, `) condition (20) holds. We shall

calculate V1(A, u)−V∅(A, u) and V12(A, u)−V2(A, u). To calculate these value differences

we recall that a positive marginal value from a signal arises only when the signal changes

the decision maker’s optimal choice. As the prior makes the decision maker indifferent,

we can pick the decision maker’s choice when holding the prior as is convenient for our

proof. We pick it to be R. Then we have:

V1(A, u)− V∅(A, u) =
∑
s1∈SE

1

p̄1(s1)(e− rqs1) (54)

=
∑
s1∈SE

1

∑
s2∈S2:

p̄12(s1,s2)>0

p̄12(s1, s2)(e− rqs1,s2), (55)

where the second line equals the first because the expected value of the posterior belief

conditional on the realizations of both signals is the posterior belief conditional on the

realization of signal s̃1. Focusing again on signal realizations that change the set of optimal

choices for the decision maker we also calculate:

V12(A, u)− V2(A, u) =
∑
s1∈SE

1

∑
s2∈SR

2 :
p̄12(s1,s2)>0

p̄12(s1, s2)(e− rqs1,s2). (56)

This equation follows from the assumption that (20) holds for both admissible (k, `) and
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that neither (22) nor (23) are true. Subtracting (56) from (55), we find:

V1(A, u)− V∅(A, u)− (V12(A, u)− V2(A, u))

=
∑
s1∈SE

1

∑
s2∈SE

2 :
p̄12(s1,s2)>0

p̄12(s1, s2)(e− rqs1,s2). (57)

By condition (19), applied to k = E, in Proposition 5, the sum on the right-hand side of

the last equality is over at least one pair (s1, s2). Moreover, because (22) does not hold for

any (s1, s2) ∈ SE1 × SE2 , this sum is negative, and therefore signals are not complements.

The remaining case, when for both admissible (k, `) condition (21) holds, is analogous,

with the optimal choice under the prior taken to be E.

Proof of the Necessity Part of Proposition 3

We use the following corollary to Proposition 5.

Corollary 2. If signals are complements, then for every signal realization (s′1, s
′
2) with

p̄12(s′1, s
′
2) > 0 we have:

π ∈ co {qs1,s2|(s1, s2) ∈ S1 × S2 \ {(s′1, s′2)} and p̄12(s1, s2) > 0} . (58)

Proof. Indirect. Denote the convex hull to which the corollary refers by C and suppose

π /∈ C. Then there is a hyperplane through π that does not intersect with C. Let r be

the orthogonal vector of this hyperplane, and define e ≡ rπ. We can choose r such that

rq < e for all q ∈ C. We now show that with this choice of r and e the necessary condition

of Proposition 5 is violated. For i = 1, 2 define SEi ≡ Si \ {s′i} and SRi ≡ {s′i}. We first

verify conditions (17) and (18) of Proposition 5. Let i ∈ {1, 2} and j 6= i. Because for

every si ∈ SEi and every sj ∈ Sj we have: qsi,sj
∈ C, we can conclude: rqsi,sj

< e. Because

qsi
is a convex combination of qsi,sj

for sj ∈ Sj, this implies: rqsi
< e, and thus (17)

holds. Now consider qs′i . If this belief satisfied: rqs′i ≤ e, then we could infer rπ < e,

because π is a convex combination of qsi
for si ∈ Si, which contradicts e = rπ. Therefore:

rqs′i > e, which verifies (18). Next, we note that (19) holds by construction, and that also

by construction (20) is true for both (k, `). On the other hand, (22) and (23) are violated

by construction. Thus, Proposition 5 implies that signals are not complements.

35



We now use Corollary 2 to derive the necessity part of Proposition 3. We begin by

proving that p̄12(α, α̂) > 0 and p̄12(β, β̂) > 0. The proof is indirect. Suppose first that

both probabilities were zero. Then the signals would be perfectly correlated, and therefore

not be complements. Next suppose p̄12(α, α̂) = 0 but p̄12(β, β̂) > 0. Because α and α̂

occur with strictly positive prior probability probability, we have to have: p̄12(α, β̂) > 0

and p̄12(β, α̂) > 0. Because α and α̂ indicate that the state is more likely to be a, it

must be that qα,β̂(a) > π(a) and qβ,α̂(a) > π(a). But then the condition of Corollary 2 is

violated if we take (s′1, s
′
2) to be (β, β̂). A symmetric argument applies if p̄12(α, α̂) > 0 and

p̄12(β, β̂) = 0. We conclude that (α, α̂) and (β, β̂) have strictly positive prior probability.

We now prove that qα,α̂(a) ≤ π(a) or qβ,β̂(b) ≤ π(b). The proof is indirect. Suppose

qα,α̂(a) > π(a) and qβ,β̂(b) > π(b). (59)

We begin with the case that the two mixed realizations (α, β̂) and (β, α̂) both have strictly

positive prior probability so that posteriors conditioning on these signal realizations are

well-defined. We go through different possible orderings of the posterior beliefs, and

show that none of them is compatible with signals being complements. Consider first the

following two cases:

qα,β̂(a) ≥ π(a) and qβ,α̂(a) ≤ π(a), (60)

qα,β̂(a) ≤ π(a) and qβ,α̂(a) ≥ π(a). (61)

Condition (60) together with (59) implies that in the decision problem of Figure 1 with

x = 0.5 = π(a), which we shall denote by (A, u) in this proof, the marginal value of

signal s̃2 conditional on signal s̃1 is zero for both signal realizations of signal s̃1. Thus,

V12(A, u)−V1(A, u) = 0, and signals are not complements (note that V2(A, u)−V∅(A, u) >

0 by the assumption that signal s̃2 is informative and x = 0.5.) For ordering (61) the

argument is the same with the roles of signals 1 and 2 swapped.

We are left with the orderings:

qα,β̂(a) > π(a) and qβ,α̂(a) > π(a), (62)

qα,β̂(a) < π(a) and qβ,α̂(a) < π(a). (63)

If (62) holds in combination with (59), the necessary condition in Corollary 2 is violated

if we choose (s′1, s
′
2) = (β, β̂), and if (63) holds in combination with (59), the necessary

36



α2 σ2 σ′2 β2

α1 ρ 0 0 0

σ1 0 ϕ λϕ 0

σ′1 0 λϕ ϕ 0

β1 0 0 0 λρ

α2 σ2 σ′2 β2

α1 λρ 0 0 0

σ1 0 λϕ ϕ 0

σ′1 0 ϕ λϕ 0

β1 0 0 0 ρ

ω = a ω = b

Figure 4: Example 4 (signals are substitutes if 2ϕ ≤ ρ and complements if 2ϕ ≥ ρ)

condition in Corollary 2 is violated if we choose (s′1, s
′
2) = (α, α̂).

It remains to discuss the cases in which at least one of (α, β̂) and (β, α̂) does not have

strictly positive prior probability. Suppose first that both realizations (α, β̂) and (β, α̂)

have zero prior probability. This means that signals are perfectly correlated and therefore

the marginal value of a signal when the other signal is available is zero. Hence, signals

are not complements. Suppose next that (α, β̂), but not (β, α̂) has zero probability.

If qβ,α̂(a) ≤ π(a), then the same argument as for ordering (60) can be used, and if

qβ,α̂(a) ≥ π(a), the same argument as for ordering (61) can be used. For the remaining

case that (β, α̂), but not (α, β̂) has zero probability, the argument is analogous.

A Counterexample

In this subsection we present an example that shows that the conditions in Proposition 4

for substitutes and Proposition 5 for complements are only necessary, but not sufficient.

The example also shows that the sufficient conditions for complements in Proposition 10

are not necessary for complements.

Example 4 is shown in Figure 4.22 The example is a two state example: Ω = {a, b}.
Each individual signal s̃i has two informative realizations: αi, βi, and two not informative

realizations: σi, σ
′
i. Among all individual and joint signal realizations, the posterior

belief that the state is a can take on only three values: it equals 1/(1 + λ) > 1/2 for

the realizations αi, (σ1, σ2), (σ′1, σ
′
2); it equals 1/2 for the realizations σi, σ

′
i; and it equals

λ/(1 + λ) < 1/2 for the realizations βi, (σ1, σ
′
2), (σ′1, σ2).

Lemma 2. In Example 4 signals are substitutes if 2ϕ ≤ ρ and complements if 2ϕ ≥ ρ.

22To ensure that all probabilities are non-negative and sum to one, we have to choose the parameters
ρ, ϕ, λ ∈ (0, 1) such that (1 + λ)(ρ+ 2ϕ) = 1.
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Proof. Individually, a signal is informative with probability (1 + λ)ρ. If it is informative,

it induces the same posteriors as a signal with likelihood ratios 1/λ and λ. Therefore, the

marginal value of an individual signal is the same as the marginal value of a signal with

likelihood ratios 1/λ and λ multiplied by the probability (1 + λ)ρ.

Conditional on being informative, signals are perfectly correlated. Therefore, if one

signal is available and is informative, then the other signal’s marginal value is zero. On

the other hand, if one signal is available and not informative, the other signal induces

the same posteriors as a signal with likelihood ratios 1/λ and λ. Therefore, the marginal

value of a signal given the other signal is already available is the same as the marginal

value of a signal with likelihood ratios 1/λ and λ multiplied by the probability that the

other signal is not informative, which is 1− (1 + λ)ρ.

It follows that signals are substitutes if and only if 1− (1 +λ)ρ ≤ (1 +λ)ρ, and signals

are complements if and only if 1− (1 + λ)ρ ≥ (1 + λ)ρ. With (1 + λ)(ρ+ 2ϕ) = 1, these

conditions are equivalent to 2ϕ ≤ ρ resp. 2ϕ ≥ ρ.

We shall now show that the example satisfies, for all parameter combinations, the

necessary conditions in Proposition 4 for substitutes and Proposition 5 for complements.

We shall thus show that neither set of conditions is sufficient. Consider first the conditions

in Proposition 4. The realizations of signal s̃i which individually induce the most extreme

posteriors are αi and βi. Conditional on such an extreme realization, signals are perfectly

correlated. In particular, once an extreme realization is observed, no realization of the

other signal changes the decision maker’s belief. This means that the necessary condition

for substitutes in Proposition 4 is met for both signals s̃i. However, for 2ϕ > ρ, signals

are not substitutes.

Next, we show that the example satisfies all conditions of Proposition 5. It is easy

to see that for any r and e for which some partition of S1 and S2 satisfies condition

(i) of Proposition 5, the equation rq ≥ e is equivalent to q(a) ≥ 0.5 or q(a) ≤ 0.5.

Without loss of generality we assume it is equivalent to q(a) ≥ 0.5. For each of the two

sets Si there are four partitions that satisfy condition (i) of Proposition 5. We must

have αi ∈ SRi and βi ∈ SEi , but σi and σ′i can each be allocated to either of the two

sets. This yields 16 pairs of partitions, all of which satisfy condition (ii) of Proposition

5. One can check that condition (iii) is violated by the two pairs of partitions for which

σi and σ′i are both in SEi for some i ∈ {1, 2} and σj and σ′j are both in SRj for j 6= i.

Ignoring these two cases, one can check that in all other cases there is some meaning
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reversal. For example, if SR1 = {α1, σ1}, SE1 = {σ′1, β1}, SR2 = {α2, σ
′
2}, and SE2 = {σ2, β2},

then meaning reversal occurs for the signal realizations (σ1, σ
′
2). This shows that the

example satisfies the necessary condition for complementarity in Proposition 5. However,

for 2ϕ < ρ, signals are not complements.

The example also demonstrates that the sufficient condition in Proposition 10 for

complementarity is not necessary. To see this, pick some x such that λ/(1+λ) < x < 0.5,

and note that Sαi (x) = {αi, σi, σ′i} and Sβi (x) = {βi} for i = 1, 2. The information

structure for the derived signals t̃1(x) and t̃2(x) is shown in Figure 5. Observe that t̃1(x)

and t̃2(x) are perfectly correlated and therefore are not complements.

tα2 (x) tβ2 (x)

tα1 (x) 1− λρ 0

tβ1 (x) 0 λρ

tα2 (x) tβ2 (x)

tα1 (x) 1− ρ 0

tβ1 (x) 0 ρ

ω = a ω = b

Figure 5: Signals t̃1(x) and t̃2(x) for Example 4 and partition {{σ′i, σi, αi}, {βi}}

Equilibrium Bidding in the Auction in Subsection 5.1

We begin with the case with no information disclosure. If there is no information disclo-

sure, it is an equilibrium that the uninformed bidder chooses a bid randomly from the

interval [qβ(a), π(a)] with a cumulative distribution function:

G(p) =
qα(a)− π(a)

qα(a)− p
, (64)

and the informed bidder bids qβ(a) when he observes the realization β and chooses a bid

randomly from the interval (qβ(a), π(a)] with a cumulative distribution function:

F (p) =
p̄1(β) (p− qβ(a))

p̄1(α) (qα(a)− p)
(65)

when he observes the realization α.

To check that the uninformed bidder does not have incentives to deviate, we first show

that she is indifferent between any bid in [qβ(a), π(a)]. Her expected utility of bidding
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p ∈ (qβ(a), π(a)] is equal to:

p̄1(β) (qβ(a)− p) + p̄1(α)F (p) (qα(a)− p) , (66)

which is equal to zero by the definition of F . It is easy to see that a bid equal to qβ(a)

also gives the uninformed bidder zero expected utility. Finally, it is immediate that the

uninformed bidder cannot gain by submitting a bid outside of [qβ(a), π(a)].

That the informed bidder has no incentive to deviate upon observing β is obvi-

ous. If the informed bidder observes α, then his expected utility of bidding a price

p ∈ (qβ(a), π(a)] is equal to:

(qα(a)− p)G(p), (67)

which is equal to (qα(a)− π(a)) by definition of G. Thus, the informed bidder is indifferent

between any bid in (qβ(a), π(a)]. It is obvious that the informed bidder cannot gain by

submitting bids outside of (qβ(a), π(a)] when the informed bidder observes α.

The case with information disclosure is analogous, with the expected value of the good

conditional on the publicly released signal realization taking the role of π(a), provided that

bidder 1’s observation of s̃1 provides additional information about the value of the good

conditional on the realization of signal 2. If bidder 1’s observation of s̃1 is uninformative

conditional on the realization of signal 2, then both bidders bid in equilibrium the expected

value of the good conditional on the realization of signal 2.

Proof of Proposition 6 in the Case That Signals are Substitutes

If signals are substitutes, and if the two realizations of signal s̃2 generate extreme beliefs

in the sense of Proposition 2, then by publicly releasing the realization of signal s̃2 the

auctioneer ensures that the two bidders have identical beliefs about the value of the object.

The bidders in a first price auction then engage in Bertrand competition, and it is obvious

that no other policy can generate larger expected revenue for the auctioneer.

Next suppose that the two realizations of signal s̃1 generate extreme beliefs in the sense

of Proposition 2. We shall only deal with the case in which all joint signal realizations

occur with positive probability, i.e. p(s1, s2) > 0 for all (s1, s2) ∈ {α, β} × {α̂, β̂}. When

some joint signal realizations have zero probability, then the analysis that we present

in the final two parts of the proof can be used. For example, p(α, β̂) = 0 implies that

qβ̂(a) = qβ,β̂(a) = qβ(a) which means that β̂ is also an extreme realization. Thus we have
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a special instance of the case in which α and β̂ give rise to extreme beliefs. The case

p(β, α̂) = 0 is analogous.

If all joint signal realizations occur with positive probability expression (24) is equal

to:

π(a)− p̄(α)(1− p̄(α)) (qα(a)− qβ(a)) , (68)

which can be shown using the equality of the expected posterior and the prior. Similarly,

expression (25) is equal to:

π(a)−
∑

s2∈{α̂,β̂}

p̄(s2)p̄(α|s2)(1− p̄(α|s2)) (qα,s2(a)− qβ,s2(a)) , (69)

where p̄(s1|s2) = p̄(s1, s2)/p̄(s2). Because signal 2 is uninformative conditional on signal

1, (69) this is the same as:

π(a)−
∑

s2∈{α̂,β̂}

p(s2)p(α|s2)(1− p(α|s2)) (qα(a)− qβ(a)) . (70)

The concavity of x(1− x) implies that this is not less than

π(a)− p(α) (1− p(α)) (qα(a)− qβ(a)) . (71)

which is equal to expression (68), as desired.

If signals are substitutes and the signals α and β̂ give rise to extreme beliefs, as in

Example 2, expression (24) can be written as:

π(a)− p̄(α)(qα(a)− π(a)) = π(a)− p̄(α, α̂)(qα,α̂(a)− π(a)), (72)

and expression (25) equals:

π(a)− p̄(α, α̂)(qα,α̂(a)− qα̂(a)), (73)

and the former is larger than the latter because qα̂(a) > π(a).

If signals are substitutes and the signals β and α̂ give rise to extreme beliefs, expression

(24) can be written as:

π(a)−p̄(α)(qα(a)−π(a)) = π(a)−p̄(β)(π(a)−qβ(a)) = π(a)−p̄(β, β̂)(π(a)−qβ,β̂(a)) (74)

41



and expression (25) is equal to:

π(a)− p̄(α, β̂)(qα,β̂(a)− qβ̂(a)) = π(a)− p̄(β, β̂)(qβ̂(a)− qβ,β̂(a)), (75)

and the former is larger than the latter because qβ̂(a) < π(a).
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