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Abstract

This paper offers a tractable and fully rational model to study the economics of reputation in a dynamic
market with limited record-keeping, i.e., a market in which new entrants observe only the last few periods of
play of the long-run player instead of the full history of the market. We show that trust is gradually granted
to the opportunistic long-run player despite the fact that his type is perfectly observed by the short-run op-
ponents, and the perfectly informed short-run players ride and drive up “reputation bubbles” at the expense
of their uninformed successors. We characterize equilibrium payoffs uniformly over time, which is useful
for analyzing ongoing repeated relationships where the starting moments have passed.
© 2014 Elsevier Inc. All rights reserved.
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1. Introduction

Reputational concerns are an important dimension of informal incentives in dynamic markets,
and reputation models play a central role in the economics of long-run relationships. Typically,
our models assume that agents see the full history of past transactions. In reality, however,
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reputation inference is often based on limited information. For instance, in many countries, ac-
cess to borrower’s credit history is limited, insurance companies only observe the most recent
driving records that are cleared after a fixed period of time, and the Better Business Bureau in
the U.S. only reports customer complaints from the last 36 months.1 In less formal markets, in-
formation is conveyed by word of mouth, and in many new and fast-growing markets, the lack of
transparency over past transactions is often due to the relatively slow development of monitoring
institutions.

In this paper we analyze a reputation model with limited record keeping capturing that com-
mon feature of markets. We show how reputation effects change qualitatively as a result of limited
records by comparing our results to the existing reputation literature. Our results hopefully shed
light on the role of record keeping and could be used in further research to answer questions
about the optimal design of online reputation systems.

In our fully rational model there is a sequence of new agents who enter over time (one per
period) and interact with a long-run player who can be either of a commitment or an opportunistic
type. Under the assumption of limited records of the long-run player’s past actions, we show that
all equilibria are characterized by recurrences of “reputation bubbles”, along which short-run
players ride and drive up the reputation bubble by granting increasing amount of trust to the
opportunistic long-run player under perfect knowledge of his type – which does not happen in
existing reputation models. The strength of our characterization comes from the fact that it works
for all large discount factors, and it is independent of the size of the finite records or the exact
values of the prior belief, as long as the prior assigns positive probability, no matter how small,
to a commitment type. We show that the long-run player must achieve a high reputation payoff if
the records are long but finite. Our payoff bound is uniform across time and across all equilibria.
A large literature initiated in [12] under complete records has devoted efforts to bound payoffs at
the beginning of the game, whereas many applications we economists investigate feature ongoing
repeated relationships where the starting moments have passed. Thus our payoff result could shed
light on these ongoing relationships (see also [11]). Via an example, we show that with complete
records there exist equilibria with a very low payoff for the long-run player in the long run.
Hence, no such uniform reputational payoff property exists in games with complete records. In
other words, the natural assumption of limited records yields a model of reputation with sharp
behavioral and payoff predictions at any time of the game.

In our model in each period the long-run and short-run players act simultaneously (our model
is equivalent to a sequential move game in which the short-run player moves first). The short-
run player chooses an action y ∈ [0,1] which indicates how much he trusts the long-run player
who in turn decides how much to exploit the trust. The long-run player’s action is x ∈ [0,1],
where a lower action represents more exploitation. As usual in the reputation literature, we as-
sume that the long-run player might be potentially a commitment type who always plays a fixed
non-opportunistic action c > 0. A short-run player entering the game sees the long-run player’s
actions in the most recent K periods. For tractability, we assume that a short-run player does not
know how many interactions have occurred before his entry, but has a Bayesian prior over the
times at which he enters the game.

1 Limited records are also common in online markets. For instance, at Elance.com, an online labor market, the default
view of user feedback for contractors contains information from the last 12 months. Additionally, “star ratings” in online
markets are often combined with a list of individual reviews ranked by date. If users do not read all reviews and are more
likely to read recent ones than old ones (say, the first page), then our model of limited records applies to such markets as
well.

http://Elance.com
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We make several assumptions about the stage game payoffs to capture the reputational trade-
off. The important ones are that the long-run player always has a static incentive to fully exploit
the short-run player’s trust by taking the lowest possible action, x = 0, and that the static in-
centive to exploit grows as the short-run player becomes more trusting. The model assumptions
capture the following application: a long-run contractor/seller chooses the quality (x) of a prod-
uct, and a short-run consumer chooses the quantity/size of a project (y). The larger the project,
the more tempting it is for the contractor to shirk. Our results stem from the interaction of as-
suming records are finite and these payoff assumptions. The results are summarized as follows.

First, under finite records, belief over types no longer serves as a sufficient statistic of equilib-
rium strategies. We show that all stationary perfect Bayesian equilibria (PBE) depend on a simple
statistic of the observed history. In any equilibrium after a history containing at least one action
x �= c, the opportunistic long-run player mixes between fully exploiting a short-run player’s trust
(playing x = 0) and mimicking the non-opportunistic type. Once the history is “clean” (i.e., con-
sistent with non-opportunistic play), the rational long-run player exploits his opponent’s trust
for sure. The short-run players choose a positive amount of trust in every period, even when the
short-run players know that the long-run player is opportunistic. A central feature of our model
is that even if the current short-run player knows the long-run player’s type, and he knows that
several future short-run players will know the long-run player’s type, some short-run players in
the remote future might be uncertain about the long-run player’s type. Indeed, we show that in
the entire reputation building process, the type of the long-run player is known to the short-run
players. They “collude” with the opportunistic type because they understand that the opportunis-
tic player has incentives to build up his reputation to exploit it even more in the future. We call
this phenomenon “riding reputation bubbles”. This logic is, in spirit, related to that of Abreu and
Brunnermeier [1] who show that a lack of common knowledge of a financial bubble creates the
incentives for the perfectly informed arbitrageurs to ride the bubble. In [1], a bubble grows ex-
ogenously and the burst of the bubble is once and for all. In contrast, in our model, the perfectly
informed short-run players ride on the “reputation bubble” to take advantage of the reputation
building incentives of the long-run player who will exploit future uninformed short-run players.
Moreover, reputation bubbles endogenously grow and burst, and this process repeats itself. Rid-
ing reputation bubbles is a defining feature of our model. We return to this point in the related
literature section.

Second, to investigate payoff limits in games with finite records, the order of taking limits
(K and the discount factor δ) becomes relevant, while in games with unlimited records there is
only one limit to take since K = ∞. We prove a payoff bound if the record length, K , is large
enough (we characterize both orders). As the long-run player becomes infinitely patient, this
bound converges to the payoffs when he can pre-commit. From the point of view of designing
reputation systems that result implies that it is possible to sustain high payoffs with large but
finite record keeping, even though the behavior changes a lot. Moreover, in contrast to [12], our
bound applies at any time of the equilibrium play, not just at the beginning of the game, providing
a stronger long-run prediction. While the uniformity of the payoff bound stems from the finite
memory structure of the game, finite records post additional challenge to the proof which we
explain more carefully later. The classic technique from [12] is no longer sufficient to establish
the bound – we need to utilize additional properties of the equilibrium behavior established in
the first part of the paper. Indeed, our proof reveals a trade-off faced by the reputation carrier: if
the record length is short, reputation building is not effective (e.g., reputation cannot be built in
the extreme case of no record), while if the record length is long, rebuilding a clean record is too
costly.
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Our findings are relevant for understanding the functioning of reputational concerns in ap-
plications. In markets where complete and impartial record keeping is hard or even impossible,
as is the case for example in developing economies or in grey markets, transactions are often
conducted with limited records. Since a lack of good record keeping is often correlated with
weak contractual enforcement or a complete lack of it, reputation effects are believed to be an
important substitute for the formal legal system, as argued, for example, in [13]. In the same
vein, existing literature focused on how reputational concerns can successfully restore formal
contractual incentives in informal markets, and how long-run players can be motivated to behave
non-opportunistically to “keep their reputation”. In contrast, we show that if record keeping is
limited, then reputational concerns necessarily create incentives for repeatedly massaging one’s
reputation, consistent with informal observations of these markets.

Strategic mortgage default offers an example of a market on which our results might shed
some light. A strategic mortgage default occurs when a homeowner stops paying their mortgage
even though they are still financially able to do so, and it is a widespread phenomenon. Los Ange-
les Times2 reported the following surprising findings: (1) “strategic defaulters often go straight
from perfect payment histories to no mortgage payments at all”, (2) “homeowners with large
mortgage balances generally are more likely to pull the plug than those with lower balances”,
and (3) “people with credit ratings in the two highest categories . . . are far more likely to default
strategically than people in lower score categories”. These findings indicate a sophisticated repu-
tation manipulation. These findings are closely related to our theoretical predictions. We find that
(1) the strategic player is more likely to take the static dominant action when he achieves a clean
record, (2) he cheats for sure when the stake is the highest, and (3) a partner is exploited with the
highest probability when he trusts the most. Here one could interpret homeowners as long-run
players facing different lenders, and the credit record shows whether there is a default. Indeed,
the impact of a single default on credit scores is not permanent, which incentivizes strategic
defaults.3

1.1. Related literature

The reputation formation mechanism in our model is different from that of the existing lit-
erature. Belief evolution has been the prevalent feature of reputation and career concern models
since the classic work of [18,23], and [26]. See also a recent model of [15] that studies belief
formation of boundedly rational agents. Players cannot ride the bubbles in the models of this
large literature – once the uninformed players learn the type of their opponents, trust is lost for-
ever. A recent body of work has been focusing on the sustainability of reputation incentives and
the role of institutions. Mailath and Samuelson [21] study a model in which the strategic type
takes actions to separate herself from, rather than mimic, the bad type. They investigate how
ownership transactions affect the investment on reputation formation. Bar-Isaac [4] explores the
institution of partnership and team production as a means of introducing persistent adverse se-
lection. Tadelis [27] studies the separation of reputation carrier’s identity and entity and show
how market of name trading could sustain reputation incentives. Mailath and Samuelson [22]

2 “Homeowners who ‘strategically default’ on loans a growing problem” by Kenneth R. Harney on September 20,
2009.

3 Unfortunately, the mortgage data are not sufficient to detect any cycles of reputation building, but they are suggestive
that some borrowers considering future default try to first improve their credit ratings to secure larger loans, as our model
predicts.
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and Bar-Isaac and Tadelis [5] provide useful overviews of additional theoretical models and their
applications.

The equilibrium patterns in our model are related to the ones described in papers with switch-
ing types (see for example [24] and [28]). In this literature, the exogenous, privately observed
stochastic process that governs type changing is the driving force of equilibrium dynamics. This
stochastic process replenishes short-run players’ beliefs about long-run player’s types from time
to time. Consequently, beliefs serve as state variables and gradual forgiveness is granted precisely
because belief improves. This is not the case in our model which features a dynamics of riding
reputation bubbles. Gradual forgiveness is not a part of our story, because type is fixed and hence
short-run players know their opponent’s types as long as they see a non-commitment action in
the past. As a result, equilibria in our game are not Markov with the belief as the state.

Technically, our paper contributes to the literature of repeated games with bounded memory
by looking at a class of incomplete information games. We want to emphasize an important dif-
ference between our model and the existing literature: that in our model the long-run player has
the ability to “clean up” history by unilaterally playing good actions for long enough regard-
less of the (on- and off-equilibrium) actions taken by his opponents. We get that property by
assuming that the past actions of short-run players are not observable by current short-run play-
ers. Otherwise (as we illustrate in Section 3.3), the bootstrapping type of equilibrium would be
re-introduced – as in the literature on repeated games with bounded memory under complete in-
formation, for example, [25,20], and [2,3]. We think this feature of bounded memory is realistic
in applications.

Bounded memory or finite record can be viewed as a reduced form of costly monitoring. Liu
[19] considers a product-choice game with explicit information acquisition cost. Costly endoge-
nous monitoring in repeated games has been previously investigated in [6] and [16]. However,
costly observation has a distinctive feature from our model. With observation costs, a phe-
nomenon of “random auditing” will appear. Even though payoff characterization is intractable
with costly information, [19] constructs a class of equilibria with reputation cycles, while we of-
fer a complete equilibrium characterization for a rich class of games and identify the assumptions
of the underlying games for which reputation dynamics ensued. Moreover, the phenomenon of
riding a reputation bubble under the knowledge of the long-run player’s type, which is central
in our model, does not appear in a model of costly observation; that is, if the short-run player
observes a cheating action of the long-run player, no trust can ever be granted. The reason is
intuitive: if trust is granted in Liu’s 2 × 2 product-choice game even though short-run players
find out a cheating action by paying a cost, then the short-run players should not pay the cost in
the first place.

Besides studying markets that have exogenously limited records, our paper is also a step
towards understanding the trade-offs in the design of record keeping. For example, what are
the consequences of the public credit registers (PCRs) or the Better Business Bureau changing
the time window of data reporting? In the credit history case, all PCRs in the European Union
eventually “forget” transactions which occurred in the remote past. Jappelli and Pagano [14]
argue that “this feature may reflect a concern to offer a ‘second chance’ to defaulting debtors,
which may be justified not only on equity grounds but also for economic efficiency”. In this
paper, instead of arguing when and whether limited record-keeping is optimal, we investigate
the positive implications of limited records but clearly the model can be also used for normative
questions. Relatedly, Ekmekci [10] considers the design of finite-state rating system to support a
high payoff equilibrium in product-choice games.
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The rest of the paper is organized as follows. We introduce the model in Section 2. Section 3
studies the behavioral implications of reputation and Section 4 studies the payoff implications.
Section 5 concludes. Appendices A–D contain omitted proofs.

2. Model

2.1. Basic setup

There is one long-run player (player 1) who over time, t = 0,1, . . . , plays with an infinite
sequence of short-run players. We refer to a generic short-run player as player 2. A short-run
player who arrives at time t plays one stage game with the long-run player and exits the game.

We consider the following stage game. In the stage game the players move simultaneously.4

Player 2 chooses an amount of trust, y ∈ [0,1] (denote the action space by Y ). Player 1 decides
how much to honor player 2’s trust by choosing x ∈ [0,1] (denote the action space by X), with
1 − x being a measure of how much player 1 “abuses” player 2’s trust. The stage game payoffs
are g1(x, y), g2(x, y) for the two players respectively and they are both continuous. Player 1
maximizes the expected discounted payoff with a discount factor δ ∈ (0,1). Each short-run player
maximizes his stage game payoff.

We make the following natural assumptions on the stage-game payoffs. In the repeated-sale
interpretation of our model, Assumption 1 says that in a one-shot interaction seller prefers to pro-
duce the lowest (cheapest) quality; Assumption 2 further says that seller’s benefit from lowering
the quality is higher when the buyer purchases a larger quantity; Assumption 3 says that buyer
will purchase more if he anticipates a higher quality.

Assumption 1 (Myopic incentive of player 1). g1(x, y) is strictly decreasing in x. As a conse-
quence, x = 0 is a dominant strategy for player 1 in a single repetition of the game.5

Assumption 2 (Monotone incentive of player 1). g1(x, y) − g1(x
′, y) is strictly increasing in y

for any x < x′. In words, player 1 has stronger static incentives to abuse player 2 for a higher
(trusting) action of player 2 or, to put it in the context of the product-choice game, it is more
expensive for the firm to provide high quality when the consumers buy more.6

Assumption 3 (Myopic incentive of player 2). For any (mixed) action by player 1, player 2 has a
unique best response, denoted by y∗(x) for pure actions and y∗(ν) for mixed actions ν. Moreover,
y∗(ν) increases if ν increases in the first-order stochastic dominance sense. We normalize the
payoffs and remove strictly dominated strategies for player 2, so that player 2’s best response
to player 1’s action 0 is y∗(0) = 0. This makes (0,0) the unique Nash equilibrium of the stage
game.

Observe that x = 0 and y = 0 are simply a normalization; for example, in the repeated sale
model, we can interpret y = 0 as the lowest demand in response to the worst quality, though
the lowest demand could still be positive. Assumptions 1 and 2 are the essence of the reputation
model we consider. Assumption 3 simplifies the analysis – player 2 simply reacts myopically

4 All of our results hold in a sequential-move game where the short-run players move first.
5 All the analysis allows also that g1(x, y) is weakly decreasing in x for each y, and strictly decreasing when y > 0.
6 See Appendix C for a further discussion of this assumption.
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to his expectations about player 1’s strategy; the pure action assumption can be justified by, for
example, risk aversion.

2.2. Incomplete information

We introduce a behavioral type for player 1. Player 1 has two types. With probability μ∗ ∈
(0,1) player 1 is a commitment type who always plays c ∈ (0,1] in the repeated game. With
probability 1 −μ∗ player 1 is rational (or opportunistic) with the strategies and payoffs specified
above. The type space is Θ = {r, c}, where r stands for “rational type” and with some abuse
of notation, c for “commitment type” who always plays action c. We emphasize that c is not
necessarily the Stackelberg type.

We add the following two assumptions about the stage game payoffs to capture the trade-off
of reputations in the presence of commitment types.

Assumption 4 (Reputation is valuable). g1(c, y
∗(c)) > g1(0,0). In words, player 1 prefers to

pre-commit to c rather than play the static Nash outcome (recall y∗(c) is player 2’s best response
to c).

Assumption 5 (Player 1 wants to be trusted). g1(x, y) is strictly increasing in y. Namely,
player 1 prefers a trusting action of player 2.

Throughout, we assume a high-enough discount factor. Let δ̄ = g1(0,y∗(c))−g1(c,y
∗(c))

g1(0,y∗(c))−g1(0,0)
. Assump-

tions 1 and 4 guarantee δ̄ ∈ (0,1). We assume δ > δ̄. The choice of δ̄ is such that

(1 − δ)g1
(
0, y∗(c)

) + δg1(0,0) < g1
(
c, y∗(c)

)
(1)

for each δ > δ̄. Therefore, maintaining a reputation of commitment type (with an associated pay-
off as on the right-hand side of (1)) is more desirable than cashing in on the reputation and losing
the reputation forever (with a corresponding payoff as on the left-hand side of (1)). Consequently,
for large δ, player 1 has incentives to build up reputation. We shall see later that the exact equi-
librium incentives are more subtle – since player 1 can regain his reputation, the incentive to
maintain a reputation will unravel though not completely.

2.3. Finite records and stationary strategies

For tractability, in this model we introduce another restriction about the information sets of
the short-run players. In particular, assume that a short-run player does not know the number of
transactions before them – or the calendar time since the game starts. But as a Bayesian player,
they share a common prior belief P over the periods in which they are likely to enter the game
before entering the game; i.e., they believe that they will enter in period t � 0 with probability
P(t) � 0. They will update their belief based on any new information they received.

The main assumption in our analysis is about the information of the short-run players. Unlike
most of the reputation literature, we assume that the short-run players observe only a finite and
partial history of past play. In particular, we assume a short-run player, upon entering the game,
observes only the actions chosen by player 1 in the previous K periods. As explained in the
introduction, the unobservability of the short-run players’ action enables the long-run player to
clean up his history unilaterally. This is the critical feature of the applications we are trying to



Q. Liu, A. Skrzypacz / Journal of Economic Theory 151 (2014) 2–29 9
capture in this model. This feature also distinguishes our model from the finite memory literature.
See Section 3.3 for more detailed comparison.

Formally, denote the finite histories of player 1’s play with length k = 1, . . . ,K by Hk = Xk ,
and the initial history by the null set H 0 = {∅}. The set of all finite histories observable to
player 2 is H = ⋃K

k=0 Hk . Hence, H is the collection of information sets in which player 2 can
be.

Given Assumption 3, we shall write player 2’s strategy as σ :H → Y . Finally, we restrict
analysis to (stationary) PBE in which player 1 also plays a strategy which depends only on the
information set of player 2. That is, we look at PBE in which π :H → �(X).7

Standard Bayesian updating implies that π , P and μ∗ induce a posterior belief for player 2
over player 1’s type space Θ , μ(θ |h), for each h ∈ H that is reached in equilibrium with positive
probability. For any off the equilibrium histories in which player 1 played at least one action
different from c in the last K periods, we assume μ(c|h) = 0.8 Of course, for all histories reached
on the equilibrium path that contain at least one action different from c in the last K periods, the
Bayes’ rule implies μ(c|h) = 0 as well. Following the literature, we call player 2’s posterior
belief μ(c|h) player 1’s reputation (as a committed player).

Note that despite player 2 observing only a finite history, the game has perfect recall. There-
fore we can use this standard equilibrium notion in our analysis. Our goal is to characterize all
stationary PBE:

Definition 1. (π,σ,μ) is a stationary PBE if π and σ (which depend only on H ) are best re-
sponses to each other given μ and on the equilibrium path μ is consistent with Bayes’ rule given
π and priors P , μ∗ (while off the path, if player 2 observes any action different from c, then
μ(c|h) = 0).

We denote by V (h) the expected equilibrium payoff of player 1 (rescaled to average per-
period payoffs) given a history h. For parts of the analysis it will be easiest to describe the
equilibria in case P is the uniform improper prior – for h ∈ HK the resulting beliefs are equal to
the fraction of time type θ reaches a given state on the equilibrium path. See Appendix C.1 for
more discussion of beliefs.

3. Reputation effects on behavior

In this section we characterize the equilibrium behavior in all stationary PBE.

3.1. Sufficient statistics of history

The set H = ⋃K
k=0 Hk is a continuum, making it potentially difficult to describe the equilib-

rium strategies. In our model, it matters not only what short-run players know about the long-run

7 By a standard argument, if player 2’s strategy is measurable with respect to H then player 1 has a best response
which is also H -measurable. Hence, for every equilibrium in which player 1’s strategy is a more complicated function of
the entire history – which for him includes all his past actions and all past actions of the short-run players – there exists a
stationary equilibrium with the same payoff to player 1. Note also that the prior belief P over calendar times affect belief
updating. Therefore, technically, the assumption of unobservable calendar time is not equivalent to assuming observable
calendar times and stationary strategies of player 2.

8 The only other off-equilibrium histories are such that P(t) = 0. For t < K , we assume that in that case player 2
updates using π and σ . For t > K , we assume that P(t) assigns positive probability to at least one such time.
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player, but also what they know about what future short-run players would know. This reasoning
suggests that beliefs about long-run player’s type alone are insufficient to pin down all the strate-
gic incentives. We decompose the set H into three subsets. The first subset consists of histories
in which a non-commitment action has been played, and we denote this set by H−. The second
subset is a singleton – history (c, . . . , c︸ ︷︷ ︸

K

), i.e., a history in which player 1 played c in the previous

K periods. We call it the “clean history”. The residual is a finite set {∅,C1, . . . ,CK−1} where
Ck is a history of length k and the commitment action has been played in all periods so far.

We can partition H− further into a finite collection by counting how close the player is to a
clean history. Formally, I (h) for a history h = (x0, x1, . . . , xt ) ∈ H−, 0 � t < K is

I (h) = t − max
{
k: xk �= c

}
.

Therefore, I (h) measures the number of commitment actions in h since the most recent non-
commitment action. For convenience, let us define I (h) = K if h = (c, . . . , c︸ ︷︷ ︸

K

) and call I (h) the

commitment index of a history. A commitment action played on a history h with I (h) = k will
increase this index by 1 (or the index remains at K if k = K). A non-commitment action will
reduce the index down to 0.

For a fixed K , we denote the set of indices as I = {0,1,2, . . . ,K}. We claim that I (h) contains
all the strategically relevant information in any stationary PBE at history h ∈ H−9:

Proposition 1. In any stationary PBE, equilibrium strategies for histories in H−, on and off
the equilibrium path, depend only on I (h). That is, if I (h) = I (h′), then σ(h) = σ(h′) and
π(h) = π(h′).

This result greatly simplifies our analysis by allowing us to focus on a finite state space I ∪
{∅,C1, . . . ,CK−1}. We call I the set of regular indices for regular histories and {∅,C1, . . . ,

CK−1} the special indices for special histories. From now on write strategies π : I ∪ {∅,C1, . . . ,

CK−1} → �(X) and σ : I∪{∅,C1, . . . ,CK−1} → Y . We write μk = μ(c|h) for a regular history
h with I (h) = k. By definition, μK > 0 and μ0 = μ1 = · · · = μK−1 = 0.

Since, as we established in Proposition 1, the continuation payoff of player 1 depends only
on the commitment index of history, if he chooses to play an action different from c, his best
response is to play 0 (his myopic best response; see Lemma 4 in Appendix A for a formal
proof). In other words, π(k) assigns positive probability to at most two actions, {0, c}. Abusing
(to simplify) notation a bit, for regular indices we write player 1’s strategy as βk where βk is
the probability player 1 assigns to action c (which means he assigns probability 1 − βk to ac-
tion 0) and player 2’s strategy as yk ≡ σ(k). To further simplify notation, we also write y∗(βk)

as player 2’s best response when he believes that action c is played with probability βk .

3.2. Reputation bubble

We now focus on the strategies in states in HK , i.e., after histories ht for t � K . We deal with
the initial histories in Appendix B.3. We claim the following characterization of stationary PBE.
In every equilibrium, when the index of the history is k < K , player 1 mixes between 0 and c.

9 Even though we have assumed δ > δ, this proposition holds for all δ.
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When he achieves the “clean history”, index K , he plays 0 for sure, exploiting his reputation.
In every period player 2 trusts player 1 to some extent – and the equilibrium degree of trust is
increasing in how close the history is to the clean history and it is maximized at the clean history.

The strength of our characterization comes from the fact that it works for all large discount
factors and the qualitative prediction is independent of the exact values of K and μ∗ as long as
μ∗ assigns positive probability, no matter how small, on the commitment type. Formally,

Theorem 1. For any δ > δ̄, K > 0, and any prior μ∗ > 0, any stationary PBE takes the following
form:

1. There exists a strictly increasing sequence {βk}K−1
k=0 ⊂ (0,1) such that, if the index of the

history is k < K , player 1 plays c with probability βk and 0 with probability 1−βk ; player 2
plays yk = y∗(βk).

2. If the index is K , player 1 plays action 0 (with probability 1); player 2 plays y∗(μK), where
μK > βK−1.

Part 1 of Theorem 1 describes the behavior of riding the bubble – as k < K , player 2 knows
player 1’s type, but trust is granted and is increasing in k. Part 2 describes the burst – player 1
pricks the bubble to exploit the maximal amount of trust. Technically, we see the equilibrium
strategies critically depend on k though μk = 0 for all k < K . Hence belief over types is not a
sufficient statistic.

The proof of Theorem 1 is developed through a series of lemmas that show the following:
(1) When the history is clean (with index K), the type r player 1 plays 0 for sure. If not, he

would play c after every history because Assumption 2 implies that, if he is not tempted to play
0 when player 2 plays y, he is not tempted for all y′ < y. But, if he plays c after every history,
then for all histories player 2 would play y∗(c) – there would be no intertemporal incentives. As
a result, it would be a strict best response for player 1 to play 0, a contradiction. Similarly, for
any regular history it cannot be the case that player 1 plays c with probability 1 – that would be
the best period for him to deviate to 0!

(2) After a history with index k, player 1 either plays 0 with probability 1 or he plays c with
probability strictly higher than in state k −1. The reasoning is as follows. Suppose player 1 plays
c with positive probability in states k − 1 and k. The continuation payoff from playing 0 is the
same in both cases but playing 0 in state k − 1 delivers the extra myopic payoff sooner. For
player 1 to be willing to play c in state k − 1 it must be that he is rewarded next period with an
even higher reward for playing 0, to compensate for discounting (this is captured by Eq. (2)).

(3) If δ > δ̄, then playing 0 in every period is not an equilibrium. In fact, playing 0 for sure in
any of the regular histories is not an equilibrium. The reason is that otherwise in state K player 2
would assign a very high probability to type c and play close to y∗(c). If δ is high enough
then type r of player 1 prefers to mimic type c instead of deviating once and getting g1(0,0)

afterwards.
(4) Combining steps 2 and 3, βk ∈ (0,1) for all k ∈ {0, . . . ,K −1}. Since player 1 is indifferent

in states k < K , the incentive constraints require, for k ∈ {0, . . . ,K − 1},
g1(0, yk) − g1(c, yk) = δ

[
g1(0, yk+1) − g1(0, y0)

]
, (2)

where player 2’s best response requires yk = y∗(βk). These equations almost pin down the equi-
librium. The only remaining equation is for state K to pin down μK and yK . That in general
depends on P(t), μ∗, and the equilibrium strategies after the special histories (in the initial
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K − 1 periods with no deviations from c). Eq. (2) requires {βk}K−1
k=0 to be strictly increasing and

μK > βK−1. In Appendices A–D, we characterize equilibrium strategies for the initial periods
in which player 2 knows the calendar time (he deduces it from the length of the history).

We emphasize that player 1’s equilibrium strategies in the first K periods upon a (short) clean
history are very different. Hence, if player 2 observes the calendar time, his belief updating upon
observing K consecutive c’s when he enters at period K is different from that when he enters in
future periods.

In the special case of the improper uniform prior we can characterize the equilibrium even
further.

Proposition 2. Assume P is the “improper uniform prior”. The equilibrium strategies β0, β1, . . . ,

βK−1 and the posterior belief μK are completely characterized by (2),

μK = μ∗(1 + β0 + β0β1 + · · · + β0β1 · · ·βK−1)

μ∗(1 + β0 + β0β1 + · · · + β0β1 · · ·βK−2) + β0β1 · · ·βK−1
, (3)

yK = y∗(μK). (4)

To summarize, we have established in this section the behavioral predictions of our model with
limited records. An interesting and new feature of the model is that, in the reputation building
stage, player 2 plays trusting actions even though he knows that player 1 is the rational type.
Moreover, player 2’s trust grows over the indices. This relationship building is different from
what we observe in models with changing types such as [24]. In Phelan’s model, the short-run
players never know for sure player 1’s type. Their trust grows precisely because they increasingly
believe that the long-run player’s type is the commitment type. This is not the case in our model.
The short-run players trust the long-run player not because they assign a high probability to the
long-run player being the commitment type. They know for sure that they are playing against
a rational type, but they know that with positive probability some future short-run players will
not know what they know. They also understand the long-run player’s incentive to cheat future
short-run players. As a result, they ride the bubble and effectively exploit future short-run players.

We stress that the dynamic reputation massaging in our model could not be a part of equi-
librium if the short-run players always see the complete history of player 1’s actions. Why? If
player 2 sees the full history of player 1’s play, then there is no room for player 1’s “manipula-
tion” – player 2 can be “surprised” on the equilibrium path only once. To see this, note that if
player 1 ever played an action different than c in the past, player 2 would know that he faces the
rational type and would expect x = 0 is coming. As a result, under complete records player 2
would not trust player 1 and would avoid being exploited (play y = 0). But that would mean that
player 1 should deviate to 0 one period before and the whole equilibrium would unravel. In con-
trast, with complete records and sufficiently high δ it is easy to construct grim-trigger equilibria
in which player 1 always plays c.

3.3. More on the role of limited records

Our assumption of limited records enables the long-run player to “clean up” his history, which
is new in the reputation literature. This realistic and important feature is shared by many applica-
tions and as we discussed above, it radically changes the equilibrium behavior (and as we show
in the next section, it leads to new, stronger payoff predictions as well).
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The assumption of limited records has two components – player 2 observes only a finite
history and he only observes the past actions of player 1. Both are important. Indeed, if the past
actions of a short-run player were observed, the current player 2 could infer something about the
behavior of the long-run player beyond the last K periods. This type of inference re-introduces
the infinite memory into the model and it is possible to construct equilibria that in which the
long-run player never deviates from c on the equilibrium path and once he does, the play (0,0)

ensues forever. The folk theorems obtained in [20] in complete information games are based on
this bootstrapping logic.

Again, what distinguishes our model from the bounded memory literature is precisely a play-
er’s ability to unilaterally clean up history, regardless of the opponents’ actions (both on and off
the equilibrium path). This is particularly compelling when one long-run player plays against a
sequence of different short-run players over time. The assumption that short-run players’ actions
are not observable to other short-run players is relevant in many real-life markets. For example,
the Better Business Bureau does not reveal volume of transactions at a given retailer nor details
on trading history; driving records show the driving faults but do not show the past insurance cov-
erage or premium. In general, a designer of the record-keeping system may not want to reveal
the data for privacy reasons (for example, a university may not want to reveal the grades of the
students that wrote negative feedback for a course, eBay may not want to reveal the size of the
transactions of buyers providing feedback, etc.). Finally, in some situations the long-run player
may observe the short-run players’ actions privately and is not able to reveal them credibly.

4. Reputation effects on payoffs

In this section, we provide three results regarding the lower bounds of equilibrium payoffs.
We first apply the classic argument of [12] to obtain a payoff bound at the beginning of the game.
This bound is not ideal for games with limited records. We refine this argument to obtain a tighter
bound uniformly for all histories. Finally, via an example, we show that uniform payoff bound is
not possible in games with unlimited records.

4.1. Payoff bounds

We now turn to the equilibrium payoffs. First using the argument of [12], we obtain the fol-
lowing bound:

Proposition 3. For any ε > 0 and μ∗ ∈ (0,1), there exists an integer K(ε,μ∗) > 0 (independent
of δ) such that if K > K(ε,μ∗) then in any stationary PBE player 1’s payoff computed at period
0 is at least B(δ,K) = (1 − δK(ε,μ∗))g1(c,0) + (δK(ε,μ∗) − δK)g1(c, y

∗(c)) + δKg1(0,0) − ε,
which converges to (1 − δK(ε,μ∗))g1(c,0) + δK(ε,μ∗)g1(c, y

∗(c)) − ε as K → ∞.

The proof follows almost exactly the steps in [12]. For brevity we omit the proof, but provide
the general idea (see Fig. 1 for an illustration). Player 2’s best response is continuous.10 For any
ε > 0, there exists η(ε) > 0 such that if player 2 believes that player 1 plays c with a probability
more than 1 − η(ε), then player 2’s best response will be very close to y∗(c). If that happens,
player 1’s payoff from playing c will be ε-close to g1(c, y

∗(c)). Fudenberg and Levine [12]

10 The bounded singleton valued upper semi-continuous best response correspondence must be continuous.
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Fig. 1. Illustration of payoff bounds with finite record.

show that if player 1 plays c constantly, there exists K(ε,μ∗) such that there are no more than
K(ε,μ∗) periods in which player 2 expects player 1 to play c with a probability less than 1 −
η(ε).11 The intuition is that if there are many periods in which player 2 expects player 1 to
play c with a probability not close to 1, then after observing a sequence of c the belief player 2
assigns to the c type has to increase close to 1. The bound is then constructed by considering
a deviation by player 1 to playing c > 0 for the first K periods and then playing 0. (We cannot
apply the argument of Fudenberg and Levine [12] to any periods with finite record – see the
discussion below.) In the worst case scenario player 1 receives g1(c,0) in each of these periods,
and for the remaining K −K(ε,μ∗) periods, player 1 is guaranteed to receive a payoff of at least
g(c, y∗(c)) − ε. After the K periods (when player 2 can no longer observe the calendar time),
player 1’s payoff is at least g1(0,0). That yields the bound.

Remark 1. Proposition 3 is not satisfactory for two reasons. First, the bound comes strictly
from the part of the game in which the information sets are exactly as in a standard game with
complete records. Hence, it does not tell us much about the impact of the limited records. To learn
about that one may be more interested in bounding the equilibrium payoffs at t � K . Second,
the limit of this payoff bound for patient players depends crucially on the order of taking limits:
limδ→1 limK→∞ B(δ,K) = g1(c, y

∗(c)) − ε, but limδ→1 B(δ,K) = g1(0,0) − ε for any K >

K(ε,μ∗). Note that only the first limit matters in games with complete records where K = ∞
by assumption, but with limited records the second limit seems to be of interest as well.

Remark 2. To address these two issues, we provide a tighter bound for PBE uniformly over time.
One might think of applying the argument of [12] after any history to provide such a bound for
any fixed K . But this will not work for the following reason. Fudenberg and Levine [12] show
that there are at most K(ε,μ∗) periods in which player 2 does not play close to y∗(c), but it is
not clear which those K(ε,μ∗) periods are. In fact, no matter how large K is, the period t = K

might be exactly one of the K(ε,μ∗) periods in which player 2 does not play close to y∗(c).
But any period beyond K looks to player 2 just like period K if he sees a sequence of c’s! If
player 2 plays very differently from y∗(c) after t = K , we cannot bound the payoffs uniformly
using Fudenberg and Levine’s technique. For example, if player 2 assigns a high probability that
he enters at t = K and he expects that at t = K after playing c for K times player 1 plays 0, then
after that history player 2 will play 0. Hence, a simple reasoning based on a deviation to play
c always is not enough and we need to use the equilibrium characterization from the previous
section to establish the second main result of this paper.

11 We can take K(ε,μ∗) = ln μ∗
.
ln η(ε)
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Motivated by the discussion above, our approach is to show that the posterior belief on the
commitment type, μK , is bounded from below in any PBE and the lower bound is close to 1
when K is large enough (and hence player 2 must play an action close to y∗(c)).

Lemma 1. For any η ∈ (0,1), whenever K >
ln(

ημ∗
1−μ∗ )

ln(1−η)
− 1, in any stationary PBE we have μK >

1 − η.

The general idea behind the proof is as follows. Suppose to the contrary that μK � 1 − η.
Then, as we have shown in Theorem 1, βk < μK � (1 − η), so from the history with index 0,
the rational type of player 1 reaches the clean history (with index K) with a probability at most∏K−1

k=0 βk < (1 − η)K . But then, if the prior P(t) assigns all the probabilities to the tails (such as
the improper uniform prior), for high enough K , player 2 would assign a very high probability
to type c after seeing the clean history, a contradiction. The extra twist is that, if P(t) assigns
positive probability to periods {K, . . . ,2K −1}, the belief depends also on the strategies after the
special initial histories (with indices ∅,C1, . . . ,CK−1), but we shall argue (in Appendix B.3)
that βk > β(Ck) and β0 > β(∅), so the same bound applies.

This lemma leads to our new payoff bound.

Theorem 2. For any ε > 0 and μ∗ ∈ (0,1), there exists an integer K(ε,μ∗) independent of the
equilibrium and the discount factor such that player 1’s payoff in any stationary PBE with limited
records of length K > K(ε,μ∗) at any history is bounded from below by(

1 − δK
)
g1(c,0) + δKg1

(
c, y∗(c)

) − ε,

which converges to g1(c, y
∗(c)) − ε as δ goes to 1.

Proof. From the continuity of player 2’s best response and the continuity of player 1’s payoff
function, for any ε > 0 there exists an η(ε) > 0 such that if player 2 believes that player 1 plays
c with probability at least 1 − η(ε), then player 1’s payoff is ε-close to g1(c, y

∗(c)) this period.
Consider player 1’s deviation to always playing c. If μK > 1 − η(ε), the result is immediate:

in the worst case, player 1 gets g1(c,0) in the first K periods, and stays in state K with a payoff
of at least g1(c, y

∗(c))− ε. If μK � 1 −η(ε), then take K(ε,μ∗) = ln(
η(ε)μ∗
1−μ∗ )/ ln(1 −η(ε))− 1.

The rest follows from Lemma 1. �
It is easy to see that the payoff bound established in Theorem 2 work for all PBE (see foot-

note 7). It is worth noting that the record length, K , plays a dual role on the equilibrium path.
A larger K makes a clean history a convincing signal for the commitment type which increases
reputation benefit, but it also makes it harder to clean a history and hence lowers the equilibrium
payoffs. This reminds us the education signaling models with multiple equilibrium levels of ed-
ucation (see also [17] for a repeated signaling model with persistent private information and its
connection to reputation formation).

Summing up this section, we have shown that even though with limited records the equilib-
rium behavior is quite different from that with complete records, if the records are long enough
and player 1 is patient enough, he can still achieve payoffs close to g1(c, y

∗(c)). The difference
from the game with complete records is that we are able to establish our payoff bound for any
time in the game. We also want to emphasize that Ekmekci et al. [11] obtain a uniform pay-
off bound for reputation games under a very different mechanism. In their model, full history
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is observed but the long-run player’s type changes over time. They employ a powerful entropy
technique to general payoff structures which include the model of [24] as a special case.

4.2. Payoffs under complete records

To finish this section, we present an example that shows how, under complete records, it is
impossible to have a reputational payoff bound which is uniform across all periods. Making
use of a public randomization device, we construct an equilibrium in which players’ behavioral
strategies after each history depend only on reputation levels the history induces at the previous
two periods. We consider the following payoff functions:

g1(x, y) = (2 − x)y, and g2(x, y) = −(x − y)2.

Assume c = 1
3 . If player 2 plays 1

3 with probability p and 0 with probability 1 − p, player 2’s
best response is p

3 due to his quadratic payoff function. Player 1’s Stackelberg action is 1 and
his Stackelberg payoff is g1(1,1) = 1. We abuse some notation by writing μt as the belief at
the beginning of period t , with μ0 = μ∗. We shall show the following is a perfect Bayesian
equilibrium for δ > 1

2 .

1. If the opportunistic type has reputation μt ∈ (0,1), he plays x = c with probability
(μt )

1
2 −μt

1−μt
∈ (0,1) and x = 0 with the remaining probability.

2. If μt > 0 and μt+1 = 0, then a public randomization device is invoked at the beginning of
period t + 1 to determine the play of the continuation game:
(a) with probability 1 − q(μt ), the static Nash equilibrium (0,0) is repeated indefinitely.
(b) with probability q(μt ), the following trigger strategy profile is played: (1,1) is played

on the equilibrium path, and a player 1’s deviation triggers the repetition of static Nash
equilibrium (0,0).

3. Deviations of the short-run player 2 are ignored.

For the trigger strategy profile in part 2(b) to form an equilibrium, it suffices that δ > 1
2 , where

δ = 1
2 is the unique solution for (1 − δ)g1(0,1) + δg1(0,0) = g1(1,1).

We now determine q(μt ) and verify that parts 1–3 indeed form a PBE. Suppose μt ∈ (0,1).
Then the posterior belief upon c is observed is

μt+1 = μt

μt + (1 − μt)
(μt )

1
2 −μt

1−μt

= (μt )
1
2 .

According to the candidate equilibrium prescribed by part 1, the total probability that c is played

at period t by both types of player 1 is (μt )
1
2 . Player 2’s best response to this belief is 1

3 (μt )
1
2 .

Player 1’s expected normalized discounted payoff from playing 0 is

(1 − δ)g1

(
0,

1

3
(μt )

1
2

)
+ δ

[(
1 − q(μt )

)
g1(0,0) + q(μt )g1(1,1)

]
= 2

3
(1 − δ)(μt )

1
2 + δq(μt ).

If player 1 plays c = 1
3 this period and plays c thereafter, his normalized discounted continuation

payoff is
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(1 − δ)

∞∑
s=t

δs−t g1

(
1

3
,

1

3
(μs)

1
2

)
= 5

9
(1 − δ)

∞∑
s=t

δs−t (μs)
1
2 .

For player 1 to randomize at t as prescribed by part 1, the following indifference condition needs
to hold:

(1 − δ)
2

3
(μt )

1
2 + δq(μt ) = 5

9
(1 − δ)

∞∑
s=t

δs−t (μs)
1
2 .

Therefore,

q(μt ) = 1 − δ

δ

(
5

9

∞∑
s=t+1

δs−t (μs)
1
2 − 1

9
(μt )

1
2

)
. (5)

Since μs > μt for s > t and δ > 1
2 ,

q(μt ) >
1 − δ

δ

(
5

9
(μt )

1
2

∞∑
s=t+1

δs−t − 1

9
(μt )

1
2

)

= 1 − δ

δ
(μt )

1
2

(
5

9

δ

1 − δ
− 1

9

)
>

4

9
(μt )

1
2 >

4

9

(
μ∗) 1

2 .

Since μs < 1, we have

q(μt ) <
5

9

1 − δ

δ

∞∑
s=t+1

δs−t = 5

9
.

Therefore, q(μt ) ∈ ( 4
9 (μ∗) 1

2 , 5
9 ) given by (5) is a well-defined probability.

To summarize, in the constructed equilibrium the opportunistic player 1 randomizes between c

and 0 before revealing his type and the sequence of reputation levels before revelation is {(μ∗)
1
2t }.

With a positive probability, player 1 reveals his type and then either the static Nash equilibrium is
played with a continuation payoff of 0 or the Stackelberg equilibrium is played with continuation
payoff of 1.

5. Conclusion

In this paper, we have studied the impact of limited records on reputation effects. We have
shown that limited records dramatically change the equilibrium behavior and lead to long-run
predictions of reputation that are not possible under complete records.

An interesting direction for future research is to consider games with imperfect monitoring.
In our model, the actions of player 1 are observed without noise. Yet, in some applications, it is
natural to ask what happens if monitoring is imperfect. We have done some preliminary work
which shows that, in the model with a commitment type, strategies will depend on the history
in a more complex way – it will no longer be sufficient to keep track only of the commitment
index because even a history containing some non-commitment actions would be consistent with
player 1 being the c type. Nevertheless, we conjecture that, for sufficiently low noise in monitor-
ing, there would exist equilibria similar to the ones described in this paper (we have constructed
examples for K = 1). Cripps et al. [9] have shown that reputation effects are short-run in imper-
fect monitoring models, and, under fairly reasonable assumptions, “anything goes” with regard
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to long-run equilibrium behavior and payoffs. Ekmekci [10] showed that, if histories are re-
stricted to a rating system, there exists an equilibrium with high continuation payoffs after all
histories. We conjecture that, in our games with limited records, all equilibria would have high
payoffs after all histories, for sufficiently precise monitoring. Yet, it remains to be discovered
what other new, dynamic effects limited records would introduce in games with imperfect moni-
toring. One might also take a mechanism design approach to study limited records. These richer
models, though beyond the scope of the current work, might help to understand the reputation
phenomenon observed in online auctions; see, e.g., [7].

Appendix A. Proof of Proposition 1: Sufficient statistics

In this appendix we prove Proposition 1:

Proposition 1. In any stationary PBE, equilibrium strategies for histories in H−, on and off
the equilibrium path, depend only on I (h). That is, if I (h) = I (h′), then σ(h) = σ(h′) and
π(h) = π(h′).

Our proof utilizes the following auxiliary relation between histories, which we term
“n-similarity”. In words, if h and h′ are n-similar, then h and h′ share the same most recent
n − 1 elements and their nth recent entries are different from the commitment action c. Let L(h)

be the length of the history h. Formally,

Definition 2. For any h,h′ ∈ H−, we say that h and h′ are n-similar, for 1 � n � min{L(h),

L(h′)}, denoted by h ∼n h′, if

1) τn−1(h) = τn−1(h′) and
2) τn(h) �= (τn−1(h), c) and τn(h′) �= (τn−1(h′), c).

For example, take K = 5.

1) h = (0,0, c, c, c) and h′ = (0, c, c, c, c) are not n-similar for any n (even though last 3 entries
are the same, since the 4th most recent entry in h′ is c they are not 4-similar).

2) h = (0,0, c, c, c) and h′ = (c,0, c, c, c) are 4-similar.
3) h = (0,0, c,0,0) and h′ = (0,0,0,0,0) are 1-similar and 2-similar.
4) h = (0, c) and h′ = (c, c,0,0, c) are 1-similar.

We use the following relationship between the commitment index of the histories and their
n-similarity.

Lemma 2. For any h,h′ ∈ H−, if I (h) = I (h′), then either h = h′ or h ∼n h′, for some n ∈
{1,2, . . . ,K}.

Proof. Suppose I (h) = I (h′) = i and h �= h′. This implies that i < min{L(h),L(h′)} � K

and that there exist some x, x′ �= c such that τ i+1(h) = (x, c, c, . . . , c︸ ︷︷ ︸
i

) and τ i+1(h′) = (x′,

c, c, . . . , c︸ ︷︷ ︸). Therefore, h ∼i+1 h′. �

i
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Our next (main) step is to show that if two regular histories have the same index, then player 2
plays the same strategy after seeing these two strategies, and player 1 payoffs in these two states
are the same.

Lemma 3. If I (h) = I (h′), then σ(h) = σ(h′) and V (h) = V (h′).

Proof. By Lemma 2, we only need to show that if h ∼n h′ for some n ∈ {1,2, . . . ,K}, then
σ(h) = σ(h′) and V (h) = V (h′). We do so by induction. Consider any stationary PBE, (π,σ,μ).

Step 1: If h ∼K h′, then σ(h) = σ(h′) and V (h) = V (h′).
Suppose to the contrary that σ(h) �= σ(h′), and, without loss of generality, take σ(h) >

σ(h′) � 0. Since player 1’s type is known to player 2 after each of the two histories (if two
histories are n-similar, they both have to contain at least one action different from c) there ex-
ists d > 0 such that π(h)([d,1]) > 0 (otherwise, we would have player 1 play 0 for sure and
σ(h) = 0). Let D be the set of such d .

Next, it must be that π(h′)([0, d)) > 0 for some d ∈ D. Suppose, to the contrary that
π(h′)([d,1]) = 1 for any d ∈ D, then π(h′) first order dominates π(h). This would violate As-
sumption 3 and the assumption σ(h) > σ(h′).

Therefore, there exists d > 0 such that

π(h)
([d,1]) > 0, π

(
h′)([0, d)

)
< 1.

Take d∗ ∈ [d,1] from the support of π(h) and d∗ ∈ [0, d) from the support of π(h′). The IC
constraint for player 1 in state h implies

(1 − δ)
(
g1

(
d∗, σ (h)

) − g1
(
d∗, σ (h)

))
� δ

(
V

(
(h, d∗)

) − V
((

h,d∗))), (A.1)

where h,d∗ is the history obtained by appending d∗ to h and then dropping the oldest entry of h,
and V ((h, d∗)) indicates the continuation payoff at this history.

Similarly, the incentive constraint in state h′ implies that

(1 − δ)
(
g1

(
d∗, σ

(
h′)) − g1

(
d∗, σ

(
h′))) � δ

(
V

((
h′, d∗

)) − V
((

h′, d∗))). (A.2)

Note that (h′, d∗) = (h, d∗) and (h′, d∗) = (h, d∗) because h ∼K h′ (since the two histories are
K-similar, after appending the same action today and dropping the latest action, they become
identical). Combining (A.1) and (A.2), we get

g1
(
d∗, σ

(
h′)) − g1

(
d∗, σ

(
h′)) � g1

(
d∗, σ (h)

) − g1
(
d∗, σ (h)

)
which contradicts Assumption 2.

Therefore, σ(h) = σ(h′) if h ∼K h′. It follows immediately that V (h) = V (h′).
Step 2: Assume, for any k � 2, that if h ∼k h′, then V (h) = V (h′) and σ(h) = σ(h′). We

claim this implies that the same is true for k − 1.
Suppose h ∼k−1 h′, but σ(h) �= σ(h′). Then, either σ(h) > σ(h′), or σ(h′) > σ(h). Assume

the former, without loss of generality. Following the argument in Step 1, we obtain (A.1) and
(A.2). But since (h′, d∗) ∼k (h, d∗), and (h′, d∗) ∼k (h, d∗), we again derive a contradiction with
Assumption 2 using the induction assumption. �

As we argued in the text, in any equilibrium, player 1 plays only either c or 0 after any history
(not only after regular histories)
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Lemma 4. In any equilibrium after any history, player 1 plays with positive probability only 0
or c.

Proof. Assume that player 1 plays a strategy π(h) that puts positive probability on (0, c) ∪
(c,1]. Then, player 2’s best response is σ(h) > 0 by Assumption 3. Now consider player 1’s
intertemporal incentive at h. For any x ∈ (0, c) ∪ (c,1] in the support of π(h),

V (h) = (1 − δ)g1
(
x,σ (h)

) + δV
(
(h, x)

)
< (1 − δ)g1

(
0, σ (h)

) + δV
(
(h, x)

)
= (1 − δ)g1

(
0, σ (h)

) + δV
(
(h,0)

)
,

where the last equality follows from Lemma 3 because I ((h, x)) = I ((h,0)). Therefore, x is not
a best response. �

Finally, we can pin down the strategy of player 1.

Lemma 5. π(h) = π(h′) if I (h) = I (h′).

Proof. By Lemma 3, if I (h) = I (h′) then σ(h) = σ(h′). By Lemma 4, player 1 only plays 0
and c. If π(h) �= π(h′) then π(h) and π(h′) can be ranked according to the first-order stochastic
dominance. Therefore, when I (h) < K , σ(h) �= σ(h′), a contradiction. �

This finishes the proof of Proposition 1.

Appendix B. Proof of results on behavioral predictions

B.1. Proof of Theorem 1

In this appendix we prove the general characterization of Theorem 1 (the structure of all
stationary PBE with sufficiently patient players).

Since Proposition 1 established that equilibrium strategies depend only on the index of the
history, we now write the continuation payoffs V (i) as a function of the index alone. Recall
that we now denote by y∗(β) player 2’s best response if he expects player 1 will play c with
probability β and 0 with probability (1 − β), and we denote by yk the equilibrium strategy of
player 2 as a function of the history index k.

Our first lemma and corollary establish that in state K , when player 2 observes a clean history
consisting of K observations of c, the rational type of player 1 plays 0 for sure.

Lemma 6. If player 1 weakly prefers action c in state K , then, in each state i = 0,1, . . . ,K − 1,
we have (1) player 1 weakly prefers action c, (2) yi = yK , and (3) V (i) = V (K).

Proof. Since player 1 weakly prefers action c in state K , V (K) = g1(c, yK). Assume, for in-
duction, that, for i = k + 1, . . . ,K , the three properties hold. Consider i = k.

Step 1: We first show that yk � yk+1 = yK .
Suppose to the contrary that yk > yk+1. Let rk(x) be player 1’s payoff from playing x in state

k once and then returning to the equilibrium strategy. These payoffs are

rk(0) = (1 − δ)g1(0, yk) + δV (0), rk(c) = (1 − δ)g1(c, yk) + δV (K)
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and, analogously,

rk+1(0) = (1 − δ)g1(0, yk+1) + δV (0), rk+1(c) = (1 − δ)g1(c, yk+1) + δV (K).

Note that yk > 0 by the assumption yk > yk+1. Thus rk(0) − rk(c) � 0 and[
rk+1(0) − rk+1(c)

] − [
rk(0) − rk(c)

]︸ ︷︷ ︸
�0

= (1 − δ)
{[

g1(0, yk+1) − g1(c, yk+1)
] − [

g1(0, yk) − g1(c, yk)
]}

< 0,

where the inequality follows from Assumption 2 and yk > yk+1. This requires rk+1(0) −
rk+1(c) < 0.

But then βk+1 = 1 which contradicts yk > yk+1 (because yk is never higher than y∗(c) =
y∗(1) = yk+1).

Step 2: We finish the induction.
We either have βk = 1 or βk < 1. If βk = 1, then yk = yk+1 because βk = 1 implies yk =

y∗(c). Step 1 implies yk+1 � yk and yj � y∗(c) for any j . Properties (1) and (3) hold in this
case as well.

Now, suppose βk < 1 and yk < yk+1, then from calculations in Step 1,[
rk+1(0) − rk+1(c)

] − [
rk(0) − rk(c)

]
> 0. (B.1)

But, βk < 1 requires rk(0) � rk(c) (0 is a best response in state k). To satisfy inequality (B.1) we
require rk+1(0) > rk+1(c), i.e., player 1 strictly prefers action 0 in state k + 1, contradicting the
induction hypothesis.

Finishing up, we have shown yk = yk+1. Using calculations in step 1, it yields rk(0)− rk(c) =
rk+1(0) − rk+1(c). In turn, this implies that player 1 weakly prefers action c in state k and
obviously property (3) holds as well. �
Corollary 1. Player 1 strictly prefers action 0 in state K and βK = 0.

Proof. If player 1 weakly prefers action c, then player 2’s strategies do not depend on the history
of the game, according to the previous lemma (and since μK � μ∗, y > 0 in every period). As a
result, player 1 would strictly prefer action 0, a contradiction. �

The next step is to show that yk is 0 or yk − yk−1 > 0 and analogously the payoffs are weakly
increasing in k.

Lemma 7. Player 2’s strategy {yi}Ki=0 and player 1’s payoff {V (i)}Ki=0 are weakly increasing
in i. Moreover, if for some j < K , yj+1 > 0, then they are strictly increasing for all i � j . As a
result, for any i < K , yi < y∗(c) and βi < 1.

Proof. We first show that yK−1 < yK .
There are two possibilities: yK−1 = 0 and yK−1 > 0. In the first case, immediately yK−1 < yK

since yK � y∗(μ∗). Also, immediately V (K) > V (K −1) (since yK−1 = 0 ⇔ βK−1 = 0 and we
have yK > 0 and βK = 0).
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Now consider yK−1 > 0 ⇔ βK−1 > 0.
Since player 1 strictly prefers action 0 in state K and weakly prefers c in state K − 1, we have

(1 − δ)g1(0, yK) + δV (0) > (1 − δ)g1(c, yK) + δV (K),

(1 − δ)g1(c, yK−1) + δV (K) � (1 − δ)g1(0, yK−1) + δV (0).

Summing up the two inequalities, we have g1(0, yK) − g1(c, yK) > g1(0, yK−1) − g1(c, yK−1).
By Assumption 2, we have yK > yK−1, as claimed. Moreover,

V (K) > (1 − δ)g1(c, yK) + δV (K) � (1 − δ)g1(c, yK−1) + δV (K) = V (K − 1),

which establishes the claim for K and K − 1.
Now consider any i and suppose yi = 0 for some i. Let i∗ < K be the highest such i. We claim

that for all i < i∗, yi is zero as well. Suppose not, then there are two states, i and i + 1, such that
βi > 0, βi+1 = 0, and i + 1 < K . Since βi+1 = 0, yi+1 = 0, and hence, V (i + 1) = V (0) and the
incentive compatibility constraint is

(1 − δ)g1(c, yi) + δV (i + 1) � (1 − δ)g1(0, yi) + δV (0),

which cannot be satisfied (if player 1 plays 0 for sure next period and this period y > 0, he prefers
to speed up playing 0).

Now suppose that yi > 0 and yi − yi−1 is not strictly positive. Let i∗ be the largest state in
which yi∗−1 � yi∗ > 0. By the result for K and K − 1, we know that 1 � i∗ < K . It must also
be the case that βi∗ < 1. Otherwise, yi∗ � yi∗+1, contradicting the definition of i∗. Since βi∗ > 0
and βi∗−1 > 0,

V
(
i∗ − 1

) = (1 − δ)
[
g1(c, yi∗−1) + δg1(c, yi∗) + · · · + δK−i∗−1g1(c, yK−2)

]
+ δK−i∗V (K − 1)

� (1 − δ)g1(0, yi∗−1) + δV (0)

and

V
(
i∗

) = (1 − δ)
[
g1(c, yi∗) + δg1(c, yi∗+1) + · · · + δK−i∗−1g1(c, yK−1)

] + δK−i∗V (K)

= (1 − δ)g1(0, yi∗) + δV (0).

The last equality follows because 0 < βi∗ < 1.
Subtracting the second expression from the first, and rearranging terms, we have,

K−1∑
k=i∗+1

δk−i∗[g1(c, yk−1) − g1(c, yk)
] + δK−i∗[V (K − 1) − V (K)

]
�

[
g1(0, yi∗−1) − g1(0, yi∗)

] − [
g1(c, yi∗−1) − g1(c, yi∗)

]
.

For each k > i∗, we have yk−1 � yk , and, hence, g1(c, yk−1) − g1(c, yk) � 0. Furthermore,
V (K − 1) < V (K) as we have shown above. Therefore, from the above inequality,

g1(0, yi∗−1) − g1(c, yi∗−1) < g1(0, yi∗) − g1(c, yi∗).

By Assumption 2, yi∗−1 < yi∗ , contradicting the definition of i∗. So it must be that yi > yi−1
whenever yi > 0.

When yi is strictly increasing, V (i) = (1 − δ)g1(0, yi) + δV (0) is also strictly increasing.
Since yK � y∗(c), it must be that for all k, yk < y∗(c) and hence βk < 1. �
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So, we have established that in any stationary PBE, in state K player 1 plays 0, and in all
other states he plays 0 with positive probability. The next lemma shows that he must also play c

with positive probability in all states i < K .

Lemma 8. If δ > δ̄, then βi > 0 for each i < K . In words, player 1 plays the commitment action
c with positive probability if i < K .

Proof. Assume to the contrary that the statement is not true, i.e., player 1 plays 0 with proba-
bility 1 in some states lower than K . Let i∗ be the smallest such state at which player 1 plays 0
with probability 1.

We first show i∗ = 0. Suppose instead i∗ > 0. By definition, i∗ < K . Then player 2 plays 0 at
i∗ because his belief is μi∗ = 0. Player 1 payoffs at states i = 0,1, . . . , i∗ − 1 and i∗ are

V (i) = (1 − δ)g1(c, yi) + δV (i + 1), i = 0,1, . . . , i∗ − 1,

V
(
i∗

) = (1 − δ)g1(0,0) + δV (0).

Note that

V
(
i∗ − 1

) = (1 − δ)g1(c, yi∗−1) + δV
(
i∗

)
< (1 − δ)g1(0, yi∗−1) + (1 − δ)δg1(0,0) + δ2V (0)

< (1 − δ)g1(0, yi∗−1) + (1 − δ)δg1(0, y0)) + δ2V (0)

� (1 − δ)g1(0, yi∗−1) + δV (0),

where the first and second inequalities follow from the monotonicity of g1 given yi > 0, and the
third inequality follows from the incentive constraints in state 0. Therefore, we conclude that
player 1 should play action 0 instead of action c in state i∗ − 1, contradicting i∗ > 0. Therefore,
i∗ = 0.

Second, suppose that i∗ = 0, which means β0 = 0 and implies y0 = 0. Therefore, V (0) =
g1(0,0).

Case 1: Suppose yK = y∗(c).
Note that if δ >

g1(0,y∗(c))−g1(c,y
∗(c))

g1(0,y∗(c))−g1(0,0)
= δ̄, then

(1 − δ)g1
(
0, y∗(c)

) + δg1(0,0) < g1
(
c, y∗(c)

)
.

The left-hand side is player 1’s payoff if he plays 0 in state K , and the right-hand side is his
payoff if he plays c forever. Therefore, player 1 has a unique best response at state K – to play c.

Case 2: Suppose yK < y∗(c).
This implies that there exists t such that P(t) > 0, player 1 plays c in periods (t −1, . . . , t −K)

with positive probability, and at t , if the index is K , player 1 plays 0 with positive probability.
If β0 = 0, as we assumed, that can happen only if player 1 plays c with positive probabilities in
periods 0, . . . ,K − 1 and then plays 0 with positive probability.

Consider history hn
c = (c, c, . . . , c) ∈ Hn, for n < K , which has index Cn. This is a history in

period t = n < K in which player 1 has played c in all the periods so far. We claim that if β0 = 0,
then in period 0 player 1 plays 0 for sure, and, hence, we have a contradiction – a history with
index K is never reached by a type r player 1.

We show this claim by induction. First, consider a history with index CK−1. Since player 1
plays c with positive probability after that history, his IC constraint is
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(1 − δ)g1
(
c, σ

(
CK−1)) + δV (K) � (1 − δ)g1

(
0, σ

(
CK−1)) + δV (0).

We combine it with the IC constraint in state K − 1 (which is a history for t > K). Since, as
we have shown above, in state k < K player 1 plays 0 with positive probability,

(1 − δ)g1(0, yK−1) + δV (0) � (1 − δ)g1(c, yK−1) + δV (K).

Adding these two IC constraints together, and re-arranging terms, we obtain

g1(0, yK−1) − g1(c, yK−1) � g1
(
0, σ

(
CK−1)) − g1

(
c, σ

(
CK−1)).

Using Assumption 2, this implies

yK−1 � σ
(
CK−1), V (K − 1) � V

(
CK−1).

We proceed with induction. Suppose that for all {n,n + 1, . . . ,K − 1} we have

yn � σ
(
Cn

)
, V (n) � V

(
Cn

)
.

Then the IC constraints in states Cn−1 and k = n − 1 are (recall that βn < 1 and we supposed
βCn > 0)

(1 − δ)g1
(
c, σ

(
Cn−1)) + δV

(
Cn

)
� (1 − δ)g1

(
0, σ

(
Cn−1)) + δV (0),

(1 − δ)g1(0, yn−1) + δV (0) � (1 − δ)g1(c, yn−1) + δV (n),

where we used the result that even for t ∈ {1, . . . ,K −1}, if player 1 plays any action other than c,
the continuation equilibrium depends only on the commitment index of the history, which after
the first non-c action, is 0.

Adding these two IC constraints together, and rearranging terms, we obtain

g1(0, yn−1) − g1(c, yn−1) � g1
(
0, σ

(
Cn−1)) − g1

(
c, σ

(
Cn−1)),

and, again by Assumption 2, this implies that

yn−1 � σ
(
Cn−1), V (n − 1) � V

(
Cn−1).

Going all the way to n = 1, the next iteration establishes a bound on the strategy of player 1
at the beginning of the game (t = 0): he plays c with probability at most β0. But that leads to
a contradiction; we cannot have β0 = 0 and yK < y∗(c), since then the only type ever reaching
history with index K would be the commitment type, which would imply μK = 1 and yK =
y∗(c). �
Corollary 2. {yi}Ki=0 and {βi}K−1

i=0 are strictly increasing and 0 < βi < 1, i = 0,1, . . . ,K − 1.

Proof. We have shown that βi > 0 for all i ∈ {0, . . .K − 1}. Hence yi > 0 and, by Lemma 7,
{yi}Ki=0 is a strictly increasing sequence. Since {yi}Ki=0 is strictly increasing, {βi}K−1

i=0 must be
strictly increasing. Since yK−1 < yK , we have βK−1 < 1. βi > 0 is shown in Lemma 8. �
Corollary 3. {V (i)}Ki=0 is strictly increasing.

Proof. We have already shown that V (K − 1) < V (K) in Lemma 7. For each i = 0,1, . . . ,

K − 1, we have 0 < βi < 1 and hence

V (i) = (1 − δ)g1(0, yi) + δV (0).

Since yi is strictly increasing, V (i) is strictly increasing. �
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B.2. Proof of Proposition 2

This result follows from Theorem 1. In state k � K −1, player 1 is indifferent between playing
0 immediately, returning to state 0, and staying there by playing 0 repeatedly; or playing c once,
moving to state k + 1, playing 0 there, and returning to state 0. The indifference condition is

(1 − δ)g1(0, yk) + δg1(0, y0) = (1 − δ)g1(c, yk) + δ(1 − δ)g1(0, yk+1)) + δ2g1(0, y0),

which simplifies to Eq. (2) in the main text. Eq. (3) in the main text is immediate from the Bayes’
rule.

B.3. Initial K periods

In the initial K periods of the game, player 2 knows the calendar time simply from the length
of the history. As a result, he (and hence player 1) can play differently in these initial periods
than later in the game. We have already established in Proposition 1 that, if any action x �= c

is observed in the initial periods, the equilibrium depends only on the commitment index of the
history.

So, to finish characterization of the equilibrium, we need to pin down σ(Ck) and β(Ck)

for k ∈ {0, . . . ,K − 1} (with C0 ≡ ∅ being the empty history). First of all, a stationary PBE
always exists. It is described by a finite collection of β0, . . . , βK,β(C0), . . . , β(CK−1), μK ,
and {μ(c|Ck)}K−1

k=1 , together with the corresponding unique player 2 best responses – since the
payoffs are continuous and the action space is compact, standard arguments guarantee existence.
For a general P(t), equilibrium strategies σ(Ck) and β(Ck) can be computed as a fixed point of
the best-response conditions and Bayes’ rule equations, noting that they depend on μK via V (K)

and, in turn, if P(t) > 0 for t ∈ {K,2K − 1}, μK depends on β(Ck).
Finally, in the end of proof of Theorem 1 we have also established that for all k ∈ {0, . . . ,

K − 1}, if in equilibrium β(Ck) > 0,

yk � σ
(
Ck

)
, V (k) � V

(
Ck−1),

and, if β(Ck) > 0, then σ(Ck+1) > σ(Ck). The inequality yk � σ(Ck) additionally implies that

βk > β
(
CK

)
,

since at history Ck player 2 believes that player 1 will play c with probability at least μ∗ + (1 −
μ∗)β(CK), and his response is weakly lower than that to βk . Note that this last bound holds even
if β(Ck) = 0, which can be the case for some μ∗.

Appendix C. Proof of payoff results

C.1. Derivation of belief updating

Let Ω = Θ ×X∞ be the set of all possible outcomes. For example, a state (θ, x0, x1, . . .) ∈ Ω

describes a situation where player 1’s type is θ , and player 1’s period t � 0 play is xt . We
consider the σ -algebra on Ω generated by (t + 1)-dimensional calendar sets {θ} × B0 × B1 ×
· · · × Bt−1, where θ ∈ Θ and {Bt } is a sequence of Borel measurable subsets of X. For each
history h = (x0, x1, . . . , xt−1) ∈ Ht , we identify h with the subset {(x̂0, x̂1, . . .) ∈ X∞: x̂0 = x0,

x̂1 = x1, . . . , x̂
t−1 = xt−1}. Denote this set by (Proj)−1(h).
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Step 1. We first define the probability measure Q on Ω induced by π :H → �X and μ∗.
The rational player 1’s strategy π :H → �(X) induces a probability measure Πt over mea-

surable rectangles B0 × B1 × · · · × Bt of the (t + 1)-dimensional space Xt+1, t � 0, inductively
as follows.

Π0(B0) = π(∅)(B0),

Πt (B0 × B1 × · · · × Bt) =
∫

B0×B2×···×Bt−1

π
(
x0, x1, . . . , xt−1)(Bt ) dΠt−1.

By Kolmogorov Extension Theorem, the sequence of measures {Πt } extends uniquely to
a probability measure Π over X∞. Then Π and μ∗ induce Q ∈ �(Ω) as follows. For any
measurable set A ⊂ X∞.

Q
({c} × A

) =
{

μ∗, if (c, c, . . .) ∈ A,

0, otherwise,
Q

({r} × A
) = (

1 − μ∗)Π(A).

In words, Q is an outside observer’s belief about the outcomes if player 1 plays π .
Step 2. We derive player 2’s ex ante belief, μ, over Θ × τK(H) before entering the game.
Formally, μ is induced by Q and P as follows. For each θ ∈ Θ , if A ⊂ ⋃K−1

t=0 Ht ⊂ τK(H),
then

μ
({θ} × A

) = P(t)Q
({θ} × (Proj)−1(A)

)
,

and if A ⊂ HK ⊂ τK(H), then

μ
({θ} × A

) = lim
n→∞

K+n∑
t=K

P (t)Q
({θ} × Xt−K × (Proj)−1(τK(A)

))
.

Step 3. After player 2 enters the game and observes a truncated history, h ∈ τK(H) =⋃K
t=0 Ht , he updates his belief on the type of player 1. Let’s denote this posterior belief by

μ(θ |h). We take μ(θ |h) as a version of the conditional probability μ({θ} × τK(H)|Θ × {h})
such that μ(c|h) = 0 if μ((c,h)) = 0.

Remark 3. In parts of the paper we use the special case of P being the improper uniform prior. In
computing beliefs in this case, only Step 2 needs to be refined. For each θ ∈ Θ , if A ⊂ ⋃K−1

t=0 Ht ,
then

μ
({θ} × A

) = 1

K
Q

({θ} × (Proj)−1(A)
)
.

For A ⊂ HK ⊂ τK(H), define

μ
({θ} × A

) = lim
n→∞

1

n

K+n∑
t=K

Q
({θ} × Xt−K × (Proj)−1(τK(A)

))
if the limit exists (and μ is arbitrary otherwise).12

12 The existence is not guaranteed for an arbitrary strategy π . Alternatively, we can define μ from the ergodic limit

of the Markov process induced by Π on HK with the initial measure ΠK−1. The ergodic limit need not exist because
HK is a continuum. However, we show that for equilibrium π the limit exists and coincides with the unique invariant
measure.
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C.2. Proof of Lemma 1

Proof of Lemma 1. Assume instead μK � 1 − η. In Theorem 1 we have established that in any
stationary PBE, βk < μK and β(Ck) < βk for the initial histories (see Appendix B.3).

Hence, the probability of observing a history with index K in period t � K , conditional on
player 1 being the r type, is bounded above by

K−1∏
k=0

βk < μK
K � (1 − η)K.

We now use the Bayes’ rule to show that this contradicts μK � 1 − η, for high enough K .
Write CK as the history (c, c, . . . , c) ∈ HK (the history with index K). Using the notation in the
derivation of μ(θ |h) in Appendix C.1 below, Πt((Proj)−1(CK)) < (1 − η)K for t � K by our
analysis above. Therefore,

Q
({c} × Xt−K × (Proj)−1(CK

)) = μ∗,
Q

({r} × Xt−K × (Proj)−1(CK
))

<
(
1 − μ∗)(1 − η)K.

The joint probability of player 1 being the c type and player 2 observing the CK history, denoted
μ(c,CK), is

μ
(
c,CK

) = μ∗
∞∑

t=K

P (t).

We also get

μ
(
r
∣∣CK

) =
∞∑

t=K

P (t)Q
({r} × Xt−K × (Proj)−1(CK

))
�

(
1 − μ∗) ∞∑

t=K

P (t)(1 − η)K.

Hence,

μK = μ
(
c
∣∣CK

)
� μ∗ ∑∞

t=K P (t)

μ∗ ∑∞
t=K P (t) + (1 − μ∗)

∑∞
t=K P (t)(1 − η)K

= μ∗

μ∗ + (1 − μ∗)(1 − η)K
.

Therefore, μK > 1 − η whenever K >
ln(

ημ∗
1−μ∗ )

ln(1−η)
− 1, a contradiction. �

Appendix D. More on payoff assumptions

In the game we study, player 1 has stronger static incentives to abuse player 2 for a higher
(trusting) action of player 2. This property is captured by Assumption 2, the long-run player’s
payoff function is strictly submodular in the profile of pure strategies. This natural property of
reputation games plays a crucial in shaping reputation incentives and equilibrium dynamics. We
now show that the flip side of Assumption 2 leads to very different equilibrium predictions.13

13 In repeated prisoner’s dilemma game, Cole and Kocherlakota [8] observe that supermodularity determines whether a
folk theorem can be obtained via symmetric strategies.
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We show that if Assumption 2 is violated then “full cooperation” can be achieved in equi-
librium. The strength of this result is that it does not depend on the prior belief μ∗ and record
size K . It works even when μ∗ = 0 and K = 1. Let δ̂ = g1(0,0)−g1(c,0)

g1(c,y
∗(c))−g1(c,0)

. From Assumptions 1

and 4, we know δ̂ ∈ (0,1).

Assumption 2∗. g1(x, y) − g1(x
′, y) is weakly decreasing in y for any x < x′.

Proposition 4. Suppose Assumption 2 is replaced by Assumption 2∗ and other assumptions re-
main unchanged. Then for any δ > δ̂ and any K � 1 there is an equilibrium in which (c, y∗(c))
is played in every period on the equilibrium path.

Proof. We construct the equilibrium with two phases. The play starts with the cooperation phase
(C) in which (c, y∗(c)) is played. Player 2’s deviation is ignored. If player 1 deviates, the de-
viation phase (D) is played: player 1 plays x = c with probability p ∈ (0,1) and x = 0 with
probability 1 − p; player 2 plays his static best response which we simply write as y∗(p); the
play returns to phase (C) only after x = c for one period and remains at phase (D) otherwise.
This strategy profile only utilizes one period memory and, hence, is well-defined for any K � 1.

We shall choose the values of p and y∗(p) appropriately to make the strategy profile an
equilibrium. For player 1 to be indifferent in phase (D), we require y∗(p) be a solution of

g1(0, y) = (1 − δ)g1(c, y) + δg1
(
c, y∗(c)

)
. (D.1)

We claim that when δ > δ̂, y = y∗(p) is indeed a solution to Eq. (D.1) and 0 < y∗(p) < y∗(c).
The argument is as follows. By Assumption 1,

g1
(
0, y∗(c)

)
> (1 − δ)g1

(
c, y∗(c)

) + δg1
(
c, y∗(c)

)
,

and when δ > δ̂,

g1(0,0) < (1 − δ)g1(c,0) + δg1
(
c, y∗(c)

)
.

The claim follows directly from the intermediate value theorem and continuity of g1. We now
pick p ∈ (0,1) such that y∗(p) is a best response. The existence of p follows from the interme-
diate value theorem and the continuity of player 2’s best response.

In phase (C), the one-step deviation condition for player 1 is

g1
(
c, y∗(c)

)
� (1 − δ)g1

(
0, y∗(c)

) + δg1
(
0, y∗(p)

)
. (D.2)

In view of Eq. (D.1), condition (D.2) can be rewritten as

g1
(
0, y∗(p)

) − g1
(
c, y∗(p)

)
� g1

(
0, y∗(c)

) − g1
(
c, y∗(c)

)
,

which is guaranteed to hold by Assumption 2∗ and the fact that y∗(p) < y∗(c). �
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