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Abstract

We exhibit incentive compatible multi-unit auctions that are not affine maximizers (i.e., are
not of the VCG family) and yet approximate the social welfare to within a factor of 1 + ǫ. For
the case of two-item two-bidder auctions we show that these auctions, termed Triage auctions, are
the only scalable ones that give an approximation factor better than 2. “Scalable” means that the
allocation does not depend on the units in which the valuations are measured. We deduce from
this that any scalable computationally-efficient incentive-compatible auction for m items and n ≥ 2
bidders cannot approximate the social welfare to within a factor better than 2. This is in contrast
to arbitrarily good approximations that can be reached under computational constraints alone, and
in contrast to the fact that the optimal social welfare can be obtained under incentive constraints
alone.
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1 Introduction

Background

The field of Algorithmic Mechanism Design [27] designs mechanisms for achieving various computa-
tional goals, under the assumption of rational selfishness of the involved parties. The notions used
are taken from the economic field of Mechanism Design, and a basic notion is that of incentive-
compatibility– where rational players are motivated to act truthfully. For background and survey see
part II of [28]. This paper will consider only the simplest and most robust notion of incentive compati-
bility, that of dominant strategies in quasi-linear settings with independent private values. The typical
question in the field asks for a computationally-efficient incentive compatible mechanism that imple-
ments a certain type of outcome, usually the approximate optimization of some target “social” goal.
There are two variants of this challenge, the first considers situations where incentive compatibility
itself is hard to achieve and the computational efficiency is just an additional burden, with the prime
example being approximate minimization of the makespan in scheduling problems [27]. The second
variant focuses on cases where each of the two constraints of incentive compatibility and computational
efficiency can be achieved separately, and the challenge is to get them simultaneously, with the prime
example being approximate welfare maximization in various types of combinatorial auctions [24].

While there has been much work and some progress on these types of challenges, with particular
emphasis on the problems mentioned above of combinatorial auctions (e.g., [22, 20, 3, 15, 23, 16,
13, 6]) and scheduling (e.g., [7, 21, 2]), the basic challenge remains mostly unanswered. As noted in
[22], the main issue turns out to be the richness of the domain of player’s valuations, i.e., of their
private information. On one extreme are single-dimensional domains where the private information
of each participant is captured by a scalar (or domains very close to it, e.g., [24]). For these types of
problems, incentive-compatible mechanisms are well characterized by a certain monotonicity condition
and, in most cases, the challenge of reconciling incentives with computational efficiency has been met
[24, 1, 5, 9, 8]. On the other extreme are problems which are “fully dimensional” (or close to fully
dimensional, e.g., [29, 17]) where there is no structure on valuations, in which case a key theorem of
Roberts [30] characterizes incentive compatible mechanisms as “affine maximizers” “on a sub-range”
– simple generalizations of the VCG mechanism. While such affine maximizers on a sub-range are
not completely powerless in polynomial time, in most cases this characterization implies impossibility
of good computationally efficient truthful mechanisms. Most interesting problems, including those
mentioned above, lie in an intermediate range where the valuation spaces are neither single dimensional
nor fully dimensional, a range for which very little is known. The main problem seems to be the lack
of a good characterization of incentive compatibility in these intermediate ranges1. In particular, the
key unknown is whether any useful truthful non-VCG mechanisms exist in the intermediate range2.

Multi-unit Auctions

As mentioned, the paradigmatic problems for the reconciliation of computational constraints with
incentive constraints are the various subclasses of combinatorial auctions. In this paper we consider the
simplest variant which exhibits this tension: multi-unit auctions. In this problem there are m identical
items for sale among n bidders, where each bidder i has a valuation function vi : {0...m} → ℜ, where
vi(k) denotes player i’s value for receiving k items. The valuations vi are assumed to be monotone
non-decreasing (free disposal) with vi(0) = 0 (normalization). Key and implicit here is that there are
no externalities: the value of bidder i depends only on what he gets rather than also on the allocation
to the others. The optimization goal is to find an allocation of items to the bidders, where bidder i

1The “weak monotonicity” [4, 31] characterization is from the point of view of a single player and is not specific enough
to be useful in this regard.

2With a single positive exception for certain multi-unit combinatorial auctions [3].
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gets si items, with
∑

i si ≤ m, that maximizes social welfare
∑

i vi(si).
The problem becomes computationally challenging when the number of items m is “large”, i.e.,

when the running time of the mechanism is not allowed to be polynomial in m but rather just in logm.
There are two variant models in this case, the first assumes that the valuation functions are given as
“black boxes” that the algorithm may query3, and the second assumes that the valuation functions
are given in some succinct bidding language. Finding the optimal allocation is essentially a knapsack
problem and is computationally hard in both models: in the black-box model it requires exponentially
many queries, and in the succinct representation model, it is NP-hard. Just like Knapsack, the optimal
social welfare can be approximated arbitrarily well (in both models) and has an FPTAS: approxima-
tion ratio of 1 + ǫ obtained in time that is polynomial in n, logm, and ǫ−1. This FPTAS does not
imply any incentive compatible approximation though, and the question boils down to what degree of
approximation can be obtained in an incentive compatible way in polynomial time.

Already in Vickrey’s seminal paper [32] multi-unit auctions were considered, restricted to the case
of downward sloping valuations, i.e., vi(k+1)−vi(k) ≤ vi(k)−vi(k−1) for all 0 < k < m. For this case
the optimal allocation can be found efficiently, as an “equilibrium price” exists, which can be found by
binary search (together with the optimal allocation it implies), and attaching the Vickrey payments
– the point of his paper – gives incentive compatibility. For general valuations the exact optimum is
computationally hard to achieve, so further work considered approximations. The single-dimensional
“single minded” case was shown to have a truthful FPTAS [5], improving an earlier 2-approximation
[25]. In addition, a PTAS exists for somewhat richer valuations that can be described using certain
“bidding languages” (e.g., k-minded bidders for a fixed k) [14]. The general case was studied in [14]
where a truthful 2-approximation was obtained using a maximal-in-range VCG mechanism4. It was
also shown there that no computationally-efficient maximal in range VCG mechanism can achieve a
better approximation ratio.

The main open problem was whether there exist non-VCG truthful mechanisms with a better
approximation ratio. Some evidence [22, 17] supported the conjecture that that there are no such
mechanisms: truthful mechanisms for two players that always allocate all items must be affine maxi-
mizers5. It should be emphasized that the question regards deterministic mechanisms, as a randomized
FPTAS was obtained by [12]6.

Our Results

Given the evidences and our own intuition, we were surprised to find that there are non-VCG mecha-
nisms that provide arbitrarily good approximation ratios:

Theorem: For every ǫ > 0, there exists a truthful (1 + ǫ)-approximation mechanism for multi-unit
auctions of m items between two players which is not an affine maximizer.

We call these mechanisms Triage mechanisms as they split the valuation domain into three sub-
domains, depending on the ratios v(1)/v(m) and v(m − 1)/v(m). Their payment structure mimics
VCG prices with two exceptions: in the “low sub-domain”, the price for a single item is decreased to a
specific fraction of the value of all items, and in the “high sub-domain”, the payments of all non-empty
bundles are increased, by the same amount, in a specific linear way. This family of mechanisms is

3The usual query assumed is a “value query”, asking for vi(k) for some k, but most lower bounds hold for any queries,
as they apply in the communication complexity model.

4The situation here mirrors, with different parameters, that of other types of combinatorial auctions where there is
a gap between the computationally achievable approximation ratio and the best incentive compatible mechanism known
for the multi-parameter case, which is a maximal-in-range VCG mechanism [15, 18, 14].

5The driving force of these and similar characterization results is the annulment of the no-externalities condition as
everything not won by one player must be given to the other.

6This again mirrors the situation in other types of combinatorial auctions where randomized mechanisms are known
with better approximation ratios than those obtained by deterministic ones [11, 12].
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parameterized by three parameters (specifying a weight and the “high thresholds” for both players),
with all other parameters uniquely determined by them. We also exhibit two other families of finitely
approximating incentive compatible mechanisms, but their approximation factor is worse.

Our next, and main, result shows that these Triage mechanisms are the only scalable incentive
compatible mechanisms with a good approximation ratio for the case of two items and two players.
Scalability means that the auction’s allocation rule does not depend on the “units” in which the
valuations are given: multiplying all valuations by the same positive constant does not change the
allocation7. Triage mechanisms and the other mechanisms mentioned above are all scalable.

Theorem: A scalable truthful c-approximation mechanism, for c < 2, in a multi-unit auction of two
items among two bidders must be a Triage mechanism for some choice of parameters.

This is the first characterization of truthfulness in an auction domain or, more generally, in a domain
with no externalities. Our novel approach is radically different than previous characterization results
(e.g., [30]): we analyze the payment functions of the players, rather than the allocation rule directly.
The proof is quite involved and reveals the properties of the payment functions (monotonicity, continu-
ity, invertibility, linearity, etc.) gradually, one property after the other. The proof also makes repeated
use of the approximation guarantee of the mechanism, in contrast to previous results that characterized
all mechanisms in a certain domain, and were not conditioned on the approximation ratio.

Triage mechanisms are affine maximizers on the “middle sub-domain” and we show that this extends
to auctions of an arbitrary number of items among two players.

Theorem: A scalable truthful c-approximation mechanism, for c < 2, in a multi-unit auction of
m > 2 items among two bidders, must be identical to an affine maximizer with VCG payments on the
sub-domain where vi(1) = 0 and vi(m− 1) = vi(m− 2) for every player i.

Adopting the point of view of economics, our theorem can be interpreted as follows: Green and Laffont
[19] characterize efficient (read: welfare-maximizing) mechanisms and show that VCG is the unique
efficient mechanism. We relax the efficiency requirement to “approximate efficiency” and (almost
completely) characterize all truthful (scalable) mechanisms in the multi-unit auction domain.

Interestingly, the theorem is not proved by direct characterization, but rather by reducing the
characterization problem to the two-item case. We achieve this by introducing a new technical tool that
enables us to use our two-item characterization as a black box: induced mechanisms. The technique
might be of independent interest: it hints that in general characterizing truthful mechanisms may
require only the characterization of small instances. The theorem immediately implies computational
hardness, a first-of-a-kind result for an auction domain:

Theorem: Fix a model of computation in which finding the exact social-welfare maximizing allocation
of m items between two players is computationally hard, even with valuations restricted to vi(1) = 0
and vi(m− 1) = vi(m− 2). Then, getting a scalable truthful c-approximation, for c < 2, of the social
welfare in a multi-unit auction of m items among any n ≥ 2 bidders, is also computationally hard.

This implies an exponential lower bound on communication in the black-box model [14] and implies
NP-hardness in the succinct representation model, with, e.g., the bidding language allowing valuations
to be specified by boolean circuits [22]8.

Very recently a different approach was introduced for proving the impossibility of polynomial-time
truthful mechanisms for combinatorial auctions with submodular bidders that use only value queries
[10]. However, we do not know how to apply the technique of [10] to multi-unit auctions. Also note

7In terms of pure computation, scalability comes for free as one can always scale all inputs by the largest value. We
also note that the truthful randomized FPTAS of [12] is scalable.

8As expected, the theorem does not imply hardness for, say, single minded bidders, since finding the welfare-maximizing
allocation among two single-minded bidders is computationally easy.
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that, unlike [10], the results in this paper are not restricted to a specific type of query. Furthermore,
we believe that obtaining characterizations of truthful mechanisms, whenever possible, is of interest
regardless of computational considerations.

The main open problem is to get rid of the scalability assumption which we believe is not really
necessary for all our theorems. We note that our reduction to the two-item case from an arbitrary
number of items does not require scalability, so the hurdle is really just in characterizing the two-
item two-bidder case. The fixed small size would perhaps suggest a direct attack, perhaps even a
computer-assisted one, but obviously we were not able to do so.

Organization

In Section 2 the setting and basic definitions are given. Triage auctions (and two additional families of
auctions) are discussed in Section 3. Section 4 characterizes two-item two-bidder truthful and scalable
mechanisms. Finally, Section 5 provides a characterization of mechanisms for any number of items.

2 Preliminaries

The Setting

In a multi-unit auction there is a set of m identical items, and a set N = {1, 2, . . . , n} of bidders.
Each bidder i has a valuation function vi : [m] → R

+, which is normalized (vi(0) = 0) and non-
decreasing. Denote by V the set of all normalized an non-decreasing valuations. An allocation of the
items ~s = (s1, . . . , sn) is a vector of non-negative integers such that Σisi ≤ m. Denote the set of
allocations by S. The goal is to find an allocation that maximizes the welfare: Σivi(si).

In most of this paper we concentrate in the case where n = 2. For convenience, we name the
bidders Alice and Bob. We usually denote Alice’s valuation by v, and Bob’s by u.

Truthfulness

The reader is referred to [26] for the (standard) proofs missing in this subsection. An n-bidder mecha-
nism for multi-unit auctions is a pair (A, p) where A : V n → S and p = (p(1), · · · , p(n)), where for each
i, p(i) : V n → R.

Definition 2.1 Let (A, p) be a mechanism. (A, p) is truthful if for all i, all vi, v
′
i and all v−i we have

that vi(A(vi, v−i)i)− p(i)(vi, v−i) ≥ vi(A(v
′
i, v−i)i)− p(i)(v′i, v−i).

It is well known that an algorithm (for multi-unit auctions) is truthful if and only if each bidder
is presented with a payment for each bundle t that does not depend on bidder i’s valuation (i.e.,

p(i) : V n−1 → R). Denote this payment by p
(i)
t (v−i). Each bidder is allocated a bundle that maximizes

his profit: vi(t) − p
(i)
t (v−i) (this is called the “taxation principle” – we will sometimes say that these

payments are induced by v−i). We note that we may assume without loss of generality that for

t > t′, p
(1)
t (v) ≥ p

(1)
t′ (v) (“payment monotonicity”): otherwise, we have a mechanism with the same

allocation rule by using p
(1)
t (v) = p

(1)
t′ (v) and the appropriate tie-breaking between bundles t and t′

when u(t) = u(t′). The following definition and proposition are standard:

Definition 2.2 A is an affine maximizer if there exist a set of allocations R, a constant αi ≥ 0 for each
i ∈ N , and a constant β~s ∈ ℜ for each ~s ∈ S, such that A(v1, ..., vn) ∈ argmax~s=(s1,...,sn)∈R(Σi(αivi(si))+
βs). A is called welfare maximizer if β~s = 0 for each ~s ∈ S.

Proposition 2.3 Let A be an affine maximizer (in particular, welfare maximizer). There are payments
p such that (A, p) is a truthful mechanism.
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Notice that when A is a two-bidder welfare maximizer, the payments are as follows: there is a

constant w > 0 such that for each t, a valuation v of Alice and a valuation u of Bob, p
(2)
t (v) =

w(v(m)− v(m− t)) and p
(1)
t (u) = (u(m)− u(m− t))/w. We sometimes use a table notation to denote

a 2-item instance. This notation is illustrated below for the 2-bidder welfare maximizer case (notice
that each bidder’s pavements depend only on the valuation of the other bidder):

Number Alice’s Alice’s Bob’s Bob’s
of items value payment value payment

One v(1) (u(2) − u(1))/w u(1) w(v(2) − v(1))

Two v(2) u(2)/w u(2) w · v(2)

Scalability

This paper considers two definitions of scalability.

Definition 2.4 An auction is allocation scalable if multiplying the valuations of all bidders by the
same positive factor does not change the allocation.

Definition 2.5 An auction is payment scalable if for each bidder i, valuations of the other bidders
v−i, and α > 0, α · p(i)(v−i) = p(i)(α · v−i).

In the appendix (Proposition A.1) we show that every allocation scalable mechanism is also payment
scalable, and thus in this paper we use the term scalable to denote the less restrictive notion of
scalability – payment scalability.

3 The Triage Auction

We present three families of truthful mechanisms for multi-unit auctions that provide a bounded
approximation ratio for multi-unit auctions with two bidders. Each of the families contain mechanisms
that are not affine maximizers. The first family, the Triage auction, includes mechanism that guarantee
an approximation ratio of 1+ ǫ, and the next sections show that triage auctions are the only two-item
truthful and scalable mechanisms that provide an approximation ratio better than 2. The other two
families – shifted welfare maximizers and fractions auctions – provide an approximation of almost 2. We
postpone their description to the appendix. To the best of our knowledge all previously known finitely-
approximating mechanisms are either affine maximizers or are essentially single-parameter mechanisms
(i.e., each bidder either receives all items, or no items at all).

We describe the mechanisms by specifying the payment functions of the bidders (recall that each
function depends only on the other bidder’s valuation). Truthfulness is obvious since each bidder is
allocated a bundle that maximizes his profit, and we are left only with proving feasibility and analyzing
the approximation ratio. The proof of the theorem below appears in the appendix.

Definition 3.1 The Triage auction is parameterized by three parameters, w, θA, θB, for w > 0, 0 ≤
θA, θB ≤ 1, and θA ≥ 1− θB. The payment functions are:

• p
(2)
m (v) = wv(m) if v(1) < θAv(m), and p

(2)
m (v) = wv(1)

θA
otherwise.

• For 2 ≤ k ≤ m− 1, p
(2)
k (v) = p

(2)
m (v)− w · v(m− k).

• p
(2)
1 (v) = p

(2)
m (v)−wv(m− 1) if v(m− 1) > (1− θB)v(m), and p

(2)
1 (v) = p

(2)
m (v)−w(1− θB)v(m)

otherwise (notice that in the latter case we have in fact p
(2)
m (v) = wv(m)).
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and

• p
(1)
m (u) = w−1u(m) if u(1) < θBu(m), and p

(1)
m (u) = w−1u(1)

θB
otherwise.

• For 2 ≤ k ≤ m− 1, p
(1)
k (v) = p

(1)
m (u)− w−1 · u(m− k).

• p
(1)
1 (u) = p

(1)
m (u) − w−1u(m − 1) if u(m − 1) > (1 − θA)u(m), and p

(1)
1 (v) = p

(1)
m (u) − w−1(1 −

θA)u(m) otherwise (again, in the latter case p
(1)
m (u) = wu(m)).

Theorem 3.2 The (w, θA, θB)-Triage auction is feasible. The (1, θA, θB)-Triage auction provides an
approximation ratio of max( 1

θA
, 1
θB

).

We remark that when w = θA = θB = 1 we get the VCG mechanism.

4 Characterization of Scalable 2-Item Auctions

This section is devoted to proving the following characterization result:

Theorem 4.1 (two-item characterization) The only feasible, scalable and truthful auctions with
an approximation ratio strictly better than 2 for two identical goods and two bidders are triage auctions
for some (w, θA, θB).

We now provide a brief road map to the proof of the theorem. Very differently from Roberts’
theorem proof, we analyze the payment functions of the bidders (rather then the allocation rule) and
show that the payment functions are identical to the payment functions of some triage auction. Recall
that in the two-item case, the payment functions of a triage auction are defined using three different
regions that correspond to the ratio between the value for two items and the value for one item:
high, mid, and low. The proof of the theorem is quite involved and for readability we divide it into
subsections that roughly correspond to these regions.

Subsection 4.1 gives an alternative definition of the triage auction, for the special case wherem = 2,
that is easier for us to work with. Subsection 4.2 characterizes the payment function for two items. The
results of subsection 4.1 hold for any scalable mechanism with a bounded approximation ratio, not just
ones with an approximation ratio better than 2. The next subsections are devoted to characterizing
the payment functions for one item. Subsection C.2 defines and “separates” the high-range from the
mid and low ranges: it shows that, roughly speaking, a valuation that is not in the high range induces
payment (for one item) that is also not in the high range. Subsection C.3 proves some basic properties,
like continuity, of the payment function in the low and mid range. The central part of the proof is
Subsection C.4 which shows that the payment functions in the mid range are equivalent to the payment
functions of weighted VCG. We conclude the proof with Subsection C.5 that handles the value of the
transition points between the high and mid range, and Subsection C.6 that handles the high range.

Due to lack of space we defer the last sections of the proof to the appendix, and keep here only the
simpler Subsection 4.2.

4.1 An Alternative Description of the Triage Auction with Two Items

Definition 4.2 Let p, q : [0, 1] → ℜ+ and f, g : [0, 1] → [0, 1] be real valued functions. The scalable
mechanism based on them is given by the following table.

Number Alice’s Alice’s Bob’s Bob’s
of items value payment value payment

One rv g(s) · q(s) · u su f(r) · p(r) · v
Two v q(s) · u u p(r) · v

6



Proposition 4.3 For any p, q : [0, 1] → ℜ+ and f, g : [0, 1] → [0, 1], the scalable mechanism based
on them is scalable and truthful (but may be infeasible and allocate more than 2 items). Any truthful
scalable mechanism (even a non-feasible one as long as it allocates at most two items to any bidder)
is equivalent to one based on some functions.

The proof of the proposition can be found in the appendix. We now give an alternative (equivalent)
definition of the triage auction, for the m = 2 case.

Definition 4.4 The (w, θA, θB)-triage auction for w > 0 and 0 ≤ θA, θB ≤ 1, θA ≥ 1 − θB, is the
scalable mechanism based on:

• For r ≤ 1− θB: f(r) = θB, and p(r) = w.

• For 1− θB ≤ r ≤ θA: f(r) = 1− r, and p(r) = w.

• For r ≥ θA: f(r) = 1− θA, and p(r) = wr/θA.

and

• For s ≤ 1− θA: g(s) = θA, and q(s) = w−1.

• For 1− θA ≤ s ≤ θB: g(s) = 1− s, and q(s) = w−1.

• For s ≥ θB: g(s) = 1− θB, and q(s) = w−1s/θB.

4.2 Characterizing the Payment for Two Items

The results in this section hold for any scalable and truthful mechanism with a bounded approximation
ratio. We usually prove the theorem only for the function p. The proof for q is symmetric. We remind
the reader that the following sections of the proof are in the appendix.

Lemma 4.5 The function p is monotone non-decreasing.

Proof: Assume towards contradiction that for some r′ > r we have p(r′) < u < u′ < p(r). Since
u > p(r′), on inputs (r′, 1) and (0, u) Bob must win both items, so Alice cannot win anything. Notice
that (r, 1) wins nothing against (0, u′(1 + ǫ)) (by payment scalability, (0, u′(1 + ǫ)) induces bigger
payments than (0, u′), and Alice did not win any items with the bigger valuation (r, 1)), but also Bob
does not win both items since u′(1 + ǫ) < p(r) for small enough ǫ > 0, so the total welfare achieved is
0 contradicting finite approximation.

Lemma 4.6 (weighting) p(0) · q(0) = 1.

Proof: Consider the following input:

Number Alice’s Alice’s Bob’s Bob’s
of items value payment value payment

One 0 ? 0 ?

Two v uq(0) u vp(0)

The only allocations that give finite approximation ratio on inputs of the form (0, v) and (0, u) are
those that give both items to one of the bidders. If u < vp(0) then Bob does not win two items; whereas
if u > vp(0) then he wins both items, and dually for Alice. So we get a contradiction to feasibility if
u > vp(0) and v > uq(0), i.e., if p(0)q(0) < 1. On the other hand, if u < vp(0) and v < uq(0), i.e., if
p(0)q(0) > 1, then we get a total welfare of 0, contradicting finite approximation ratio.

At this point we are ready to give a more precise definition of the payment function. We start with
the low range, i.e., when r < g(0). In particular we show that the function is constant in this range.
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Lemma 4.7 (low range) If r < g(0) then p(r) = p(0).

Proof: Assume that p(r) 6= p(0) then, using monotonicity, let p(r) > u′ > u > p(0). On input
(0, 1) and (0, u) Bob gets both items (since u > p(0)) and so Alice must get none. On inputs (r, 1)
and (0, u′) Alice gets at most 1 item (since, by the scalability of the payments, the payment induced
by Bob for two items has increased), but since u′ < p(r) Bob does not get two items, and so for finite
approximation, Alice must get an item, so r ≥ u′g(0)q(0) ≥ p(0)q(0)g(0) = g(0).

The following claim would be helpful in analyzing the payment function in the high range:

Claim 4.8 p(r) ≥ r/(g(0)q(0)).

Proof: Let u > p(r), then on input (r, 1) and (0, u) Bob gets both items. Alice’s payment for a
single item is ug(0)q(0) which for feasibility must be at least r. Since this holds for all u > p(r) we get
that r ≤ p(r)g(0)q(0) as required.

For the high range (r > g(0)) we show that the payment grows in a specific linear way:

Lemma 4.9 (high range) If r > g(0) then p(r) = r/(g(0)q(0)).

Proof: We will prove the contra-positive which by the previous claim assumes p(r) > u >
r/(g(0)q(0)). Consider the following input:

Number Alice’s Alice’s Bob’s Bob’s
of items value payment value payment

One r uq(0)g(0) 0 ?

Two 1 uq(0) u p(r)

In this case Bob cannot win both items so he gets a value of 0. By the choice of u, Alice’s payment
for two items is uq(0) > r/g(0) is greater than 1, thus she cannot win two items. Thus for finite
approximation she must win one item and thus r ≥ uq(0)g(0) and since this is true for every u < p(r),
we have r ≥ p(r)g(0)q(0), contradiction.

At this point we have completed the required characterization of p and q.

Definition 4.10 Let w = p(0), θA = g(0), and θB = f(0).

Lemma 4.11 (summary of subsection) For r ≤ θA we have that p(r) = w and for r ≥ θA we have
p(r) = wr/θA. Similarly, for s ≤ θB we have that q(s) = w−1 and for s ≥ θB we have q(s) = w−1s/θB.

Proof: The low range lemma states the required fact for r < θA. The high range lemma states the
required fact for r ≥ θA, taking into account the inverse lemma, p(0)q(0) = 1, the same holds for q,
replacing w with w−1, again relying on p(0)q(0) = 1. For r = θA we observe that p(r) = w since p is a
monotone function and approaches w above and below w.

5 Characterizing Mechanisms for any Number of Items

We showed that every two-item scalable mechanism that provides an approximation ratio better than
2 is a triage auction. This section gives an almost complete characterization for truthful and scalable
mechanisms that guarantee an approximation ratio better than 2 for any number of items. In particular
this section’s characterization implies that truthful and scalable mechanisms for multi-unit auctions
cannot guarantee an approximation ratio better than 2 in polynomial-time.
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The two-item characterization is used as a black box to characterize mechanisms for more items.
Importantly, the scalability assumption is not used in this section. In other words, proving that triage
auctions are the only truthful mechanisms (scalable or not) that provide an approximation ratio better
than 2 in multi-unit auctions with only two items, would immediately imply our characterization result
for any number of items, and in particular would imply an unconditional lower bound on the power of
all polynomial time truthful mechanisms. All missing proofs appear in the appendix.

5.1 Induced Mechanisms: Definition and Basic Properties

Our main working horses will be induced mechanisms. Induced mechanisms allow us to define a two-
item mechanism given an m-item mechanism. By leveraging our two-item characterization, we show
that the induced two-item mechanisms are triage auctions. We then study the relationship between
all induced mechanisms and prove that many of them must be welfare maximizers. We show that this
implies that the m-item mechanism we started with must have a very specific form, as needed.

Definition 5.1 Let l1, h1 be such that 1 ≤ l1 < h1 ≤ m. The (l1, h1)-extension of a two-item valuation
v, denoted vl1,h1, is defined as follows: for every k < l1, vl1,h1(k) = 0. For every h1 > k ≥ l1,
vl1,h1(k) = v(1). For every k ≥ h1, v

l1,h1(k) = v(2).

Definition 5.2 (Induced Mechanism) Let A be a mechanism for multi-unit auctions with m items
and 2 bidders. Let l1, h1, l2, h2 be positive integers with the following constraints: l1 < h1 ≤ m,
l2 < h2 ≤ m, l1 + l2 ≤ m, l1 + h2 > m and l2 + h1 > m. Define the induced mechanism Al1,h1,l2,h2

for 2 items as follows: given two valuations v and u run A with the (l1, h1)-extended valuation vl1,h1

and the (l2, h2)-extended valuation u(l2,h2). Let (a1, a2) be the output allocation of A and (p1, p2) be the
payments the bidders are charged in A. If a1 < l1 then let a′1 = 0, if l1 ≤ a1 < h1 then let a′1 = 1,
otherwise let a1 = 2. If a2 < l2 then let a′2 = 0, if l2 ≤ a2 < h2 then let a′2 = 1, otherwise let a2 = 2.
The output of Al1,h1,l2,h2 on v and u is (a′1, a

′
2). Alice’s payment is p1 and Bob’s payment is p2.

Proposition 5.3 Let A be a scalable mechanism for multi-unit auctions with m items and 2 bidders
that provides an approximation ratio of α. Let Al1,h1,l2,h2 be an induced mechanism. Al1,h1,l2,h2 is
feasible, truthful, scalable, and provides an approximation ratio of α.

In this section we denote the p(2) function of A (the payments induced by Alice) by f and by
f l1,h1,l2,h2 the p(2) function of the induced mechanism Al1,h1,l2,h2 . We denote by g the p(1) function
of A (the payments induced by Bob) and by gl1,h1,l2,h2 the p(1) function of the induced mechanism
Al1,h1,l2,h2 . As a corollary of Proposition 5.4 we get the following relationship between the payment
functions of A and its induced mechanisms.

Corollary 5.4 Let v be a two-item valuation and let v(l1,h1) be its (l1, h1)-extension. Let l2, h2 be such

that Al1,h1,l2,h2 is an induced mechanism. fl2(v
h1,l1) = f l1,h1,l2,h2

1 (v) and fh2
(vh1,l1) = f l1,h1,l2,h2

2 (v).
Symmetrically, let u be a two-item valuation and let u(l2,h2) be its (l2, h2)-extension. Let l1, h1 be

such that Al1,h1,l2,h2 is an induced mechanism. gl1(u
h2,l2) = gl1,h1,l2,h2

1 (u) and gh1
(uh2,l2) = gl1,h1,l2,h2

2 (u).

5.2 Relations between Induced Mechanisms

Let A be a scalable and truthful mechanism for multi-unit auctions for m items with an approximation
ratio better than 2. By our characterization and the discussion above above we have that all induced
mechanisms of A are triage auctions. Denote the parameters of the triage mechanism Al1,h1,l2,h2 by
θl1,h1,l2,h2

A , θl1,h1,l2,h2

B , wl1,h1,l2,h2 . The point of this subsection is to study the relations between the
parameters of the induced triage mechanisms of A.
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Claim 5.5 Let A be a truthful and scalable mechanism for multi unit auctions with m items that pro-
vides an approximation ratio better than 2. Let Al1,h1,l2,h2 and Al1,h1,l2,h

′

2 be two induced mechanisms

of A. Then, wl1,h1,l2,h2 = wl1,h1,l2,h
′

2, θl1,h1,l2,h2

A = θ
l1,h1,l2,h

′

2

A , and θl1,h1,l2,h2

B = θ
l1,h1,l2,h

′

2

B . Symmetri-
cally, let Al1,h1,l2,h2 and Al1,h

′

1,l2,h2 be two induced mechanisms of A. Then, wl1,h1,l2,h2 = wl1,h
′

1,l2,h2,

θl1,h1,l2,h2

A = θ
l1,h

′

1
,l2,h2

A , and θl1,h1,l2,h2

B = θ
l1,h

′

1
,l2,h2

B .

Claim 5.6 Let A be a truthful and scalable mechanism for multi unit auctions with m items that
provides an approximation ratio better than 2. Let Al1,h1,l2,h2 and Al1,h1,l

′

2,h2 be two induced mechanisms

of A. Then, θl1,h1,l2,h2

A = θ
l1,h1,l

′

2,h2

A and wl1,h1,l2,h2 = wl1,h1,l
′

2,h2. Symmetrically, let Al1,h1,l2,h2 and

Al′1,h1,l2,h2 be two induced mechanisms of A. Then, θl1,h1,l2,h2

B = θ
l′1,h1,l2,h2

B and wl1,h1,l2,h2 = wl′1,h1,l2,h2.

We now use the claims to prove that all induced mechanisms share the same w. Thus, after proving
it we may denote the wl1,h1,l2,h2 parameter of every induced mechanism Al1,h1,l2,h2 by (the same) w.

Lemma 5.7 Let A be a truthful and scalable mechanism for multi unit auctions with m items that
provides an approximation ratio better than 2. Let Al1,h1,l2,h2 and Al′

1
,h′

1
,l′
2
,h′

2 be two induced mechanisms
of A. Then, wl1,h1,l2,h2 = wl′

1
,h′

1
,l′
2
,h′

2.

5.3 Some Induced Mechanisms are Welfare Maximizers

The heart of this section is here. We show that “many” of the induced triage auctions take the simple
form of welfare maximizers. The crux is that the payment function for some items is simultaneously
the payment function of one item for one induced mechanism, and the payment function for two items
for another. Simple algebra then gives us that some θ’s must equal to 1. We are then able to specify
the payment functions of “simple” valuations.

Lemma 5.8 Let A be a truthful and scalable mechanism for multi unit auctions with m items with an
approximation ratio better than 2. Let Al1,m,l2,m where l1, l2 ≥ 2. Then, θl1,m,l2,m

A = θl1,m,l2,m
B = 1.

Definition 5.9 A valuation v is l-simple if there exists some 0 < l < m such that for every k < l,
v(k) = 0, and for every l ≤ k < m we have that v(k) = v(l).

Corollary 5.10 Let l ≥ 2. For every l-simple valuation v we have that fm(v) = wv(m) and for all
1 < t < m − 1 such that l + t ≤ m we have that ft(v) = w(v(m) − v(m − t)). Similarly, for every
l-simple valuation u we have that fm(u) = u(m)/w and for all 1 < t < m− 1 such that l + t ≤ m we
have that gt(u) = (u(m)− u(m− t))/w.

Proof: For the first statement, observe that Al,m,t,m is an induced mechanism for every t such that
l + t ≤ m and apply Lemma 5.8. The proof of the second statement is similar.

5.4 Concluding the Characterization

We are now ready to obtain our final characterization. We give an almost complete characterization
of the payment function for valuations where the value for one item is 0. Lemma 5.11 provides the
payment function for m items, and using it Lemma 5.12 the payment functions for smaller bundles.

Lemma 5.11 For each v where v(1) = 0, fm(v) = wv(m). Symmetrically, for each u where u(1) = 0,

gm(u) = u(m)
w

.

Lemma 5.12 Let v be a valuation with v(1) = 0. For every k 6= 1,m − 1 we have that fk(v) =
w(v(m) − v(m − k)). Similarly, for every valuation u with u(1) = 0 we have, for every k 6= 1,m − 1
that gk(u) = w−1(u(m) − u(m− k)).
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Our final characterization result is:

Definition 5.13 A valuation v is degenerate if v(1) = 0 and v(m− 1) = v(m− 2).

Theorem 5.14 (Characterization of mechanisms for any number of items) Let A be a truth-
ful and scalable mechanism for m > 2 items and two bidders that provides an approximation ratio better
than 2. There exists a constant w > 0 such that on all inputs (v, u) where v and u are degenerate, A
outputs a solution with value maxk(v(k) + wu(m− k)).
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A Appendix for Section 2

Proposition A.1 Let A be an allocation scalable mechanism. Then, A is also payment scalable.

We prove the lemma for the case of n = 2 but the proof easily extends to n > 2 bidders. Fix a
valuation u of Bob. Let Bt(u) be the set of all valuations v that assign Alice t items in input (v, u).
Formally, Bt(u) = {v|A1(v, u) = t}. We say that t is in the range of u if Bt 6= ∅.

We claim that t is in the range of u if and only if t is in the range of α · u. To see that, consider
t that is in the range of u. We have that t is also in the range of α · u since A(v, u) = A(α · v, α · u).
The ’only if’ direction is symmetric.

We now show that for every t, t′ in the range of u and α > 0, α(p
(i)
t (u)−p

(i)
t′ (u)) = p

(i)
t (α·u)−p

(i)
t′ (α·u)

(for bundles not in the range we set the payment to be equal to the payment of the next bigger
bundle that is in the range, and use the appropriate tie-breaking rule). Fix some t in the range of
u such that there exists v ∈ Bt(u) that is on the border of Bt(u) (in the usual topological sense).

If there is no such point, Alice is always assigned t and we are done by letting p
(i)
i (α · u) = 0 for

every α 6= 0. Assume otherwise. There exists at least one t′ 6= t which is in every ǫ-neighborhood

of v and in Bt′ , since v is on the border. Thus we have p
(i)
t (u) − p

(i)
t′ (u) = v(t) − v(t′). From

scalability, we have that α · v is on the border of Bt(u) with t′ playing the same role. We have that

p
(i)
t (α · u)− p

(i)
α·t′(u) = α(v(t) − v(t′)) = α(p

(i)
t (u)− p

(i)
t′ (u)).

We continue similarly. Fix t′′ 6= t, t′′ where there exists v ∈ Bt′′(u), and v is on the border of Bt∪Bt′ .
Thus, in every ǫ-neighborhood of v there exists a valuation v′ for which v′ ∈ Bt or v

′ ∈ Bt′′ . Without
loss of generality assume that u′ ∈ Bt (otherwise, switch the roles of t and t′). By using scalability

similarly to the arguments above, we get that v(t)− v(t′′) = p
(i)
t (u)− p

(i)
t′′ (u), and consequently we also

have α(v(t)− v(t′′)) = p
(i)
t (α · u)− p

(i)
t′′ (α · u) = α(p

(i)
t (u)− p

(i)
t′ (u)). The proof continues similarly until

all bundles in the range are considered.

B Appendix for Section 3

Fixing the other bidder’s valuation, we say that a bundle of s items is in the winning set of a bidder,
if this bundle maximizes his profit. We assume that the algorithm chooses an allocation (s, t) with the
maximal value such that s is an the winning set of Alice and t is in the winning set of Bob.

B.1 Proof of Theorem 3.2

We will use the following claim several times:

Claim B.1 For triage auctions with w = 1, for each optimal allocation (k,m − k), Alice’s winning
set contains at least one of the following bundles: k items, one item, or no items. Similarly, Bob’s
winning set contains at least one of the following bundles: m− k items, one item, or no items.

Proof: We will show that the equation v(k)−p
(2)
k (u) ≥ v(t)−p

(2)
t (u) holds for t 6= 0, 1. The equation

implies that Alice prefers k items over t items, thus if t is in the winning set so does k, as needed. To

see that, observe that for each t 6= 1, 0 we have that p
(2)
k (u) − p

(2)
t (u) ≥ u(m − k) − u(m − t). Since

(k,m− k) is an optimal allocation, we also have that v(k) + u(m− k) ≥ v(t) + u(m− t). Together we

have that v(k) − p
(2)
k (u) ≥ v(t)− p

(2)
t (u), for t 6= 0, 1.

Lemma B.2 The (w, θA, θB)-Triage auction is feasible.
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Proof: We first note that without loss of generality we may assume that w = 1 (since multiplying
one bidder’s payments by w and dividing the other’s by the same w maintains feasibility).

Suppose first that (k,m − k) is an optimal allocation where k 6= 0,m. We claim that in this case
the mechanism is feasible: by Claim B.1, Alice’s winning set contains at least one of the following
bundles: 0, 1, or k items. Similarly, Bob’s winning set contains at least one of the following bundles:
0, 1, m− k. Thus there is a feasible allocation (s, t) such that s is in the winning set of Alice and t is
in the winning set of Bob.

Thus from now on we assume that in all optimal allocations at least one bidder is assigned the empty
bundle. Suppose that (m, 0) is an optimal allocation (the case where (0,m) is an optimal allocation
is similar). Bob’s winning set contains either the empty bundle of the bundle of 1 item (since the
optimality of (m, 0) implies that v(m) ≥ u(m), and if the bundle of m items is in the winning set, so
is the empty bundle). Thus, we only have to show that if Bob’s winning set contains only the bundle
of 1 item, then Alice’s winning set contains also bundles that have less than m items.

Bob’s winning set will contain only the bundle of 1 item implies that u(1) > p
(2)
1 (v). The definition

of triage auction implies that this means that u(1) > v(m) − v(m − 1) or u(1) > v(m)θB , depending
on the ratio between v(m − 1) and v(m). The first case cannot happen since it implies that u(1) +
v(m− 1) > v(m), which is false since we assumed that (m, 0) is an optimal allocation. In the second

case, p
(1)
m = u(1)

θB
, since u(1) > v(m)θB ≥ u(m)θB . Therefore, the bundle of m items is not in Alice’s

winning set since v(m) < u(1)
θB

.

Lemma B.3 The (1, θA, θB)-Triage auction provides an approximation ratio of max( 1
θA

, 1
θB

).

Proof: Let (k,m − k) be an optimal allocation. In case Alice has the bundle of k items in her
winning set and Bob has the bundle of m− k items in his winning set then the approximation ratio is
1. By Claim B.1, the only other cases to consider are when at least one of the bidders (without loss of
generality Alice) does not has these bundles (but instead has either the empty bundle or the bundle
of one item).

The first case we consider is when Alice’s winning set does not contain the bundle of k items, but
contains the empty bundle (in particular, we have that k 6= 0). Since the empty bundle has a zero
profit, it means that the profit from the bundle of k items is negative: v(k) < p1k(u). By the definition

of the payment function we either have that p1k(u) ≥ u(m)−u(m− k) or that p1k(u) =
u(1)
θB

−u(m− k).
The first option does not occur since otherwise v(k) < u(m) − u(m − k). In other words, the

social welfare of the allocation (0,m) is bigger than the social welfare of the allocation (k,m − k), a
contradiction to the optimality of the latter. Thus, the second option occurs and in particular:

v(m) <
u(1)

θB
(1)

Since Alice’s profit for the bundle of k items is negative, (i.e., v(k) < u(1)
θB

− u(m − k)), we have, in

particular, that v(m) < u(1)
θB

. Therefore, to prove that an approximation of 1
θB

, it suffices to show that

that Bob has at least one non-empty bundle in his winning set. Suppose not, i.e.: u(1) < p
(2)
1 (v) ≤

θBv(m) (the last inequality is from the definition of the payment function – the payment for one item

is always at most θBv(m)). But then, u(1)
θB

≤ v(m), a contradiction to (1).
We are left with considering the case where the only bundle in Alice’s winning set is the bundle

of one item. We start by showing that u(m − 1) ≤ (1 − θA)u(m). Suppose for contradiction that

u(m − 1) > (1 − θA)u(m). Since the bundle of one item maximizes the profit: v(1) − p
(1)
1 (u) >

v(k) − p
(1)
k (u). Using the definition of the payment function: v(1) + u(m− 1) > v(k) + u(m − k). In

other words, the allocation (k,m− k) is not optimal, a contradiction. Thus we have established that

u(m− 1) ≤ (1− θA)u(m) (2)
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Recall that the bundle of one item is profitable for Alice. Using (2) and the definition of the
payment function, we claim that:

v(1) ≥ θAu(m) (3)

Since the bundle of one item maximizes the profit, using the definition of the payment function:
v(1) + u(m− 1) > v(k) + u(m− k). Using (2) we have that:

v(1) + (1− θA)(m) > v(k) + u(m− k) (4)

Thus, the approximation ratio is no worse than v(k)+u(m−k)
v(1) ≤ v(1)+(1−θA)u(m)

v(1) ≤ 1 + (1−θA)u(m)
θAu(m) ≤ 1

θA

(where the leftmost inequality is due to (4), and the middle one is due to (3)).

B.2 Shifted Welfare Maximizers

Definition B.4 An α-shifted welfare maximizer is the following two-bidder auction: Bob’s payment
for t items, t 6= 0,m is (1 + α)v(m) − v(m − t), for t = 0 items is 0, and for t = m items is v(m).
Alice’s payment for t items, t 6= 0,m is (1 + α)u(m) − u(m − t), for t = 0 items is 0, and for t = m
items is u(m).

In all proofs we assume without loss of generality that v(m) ≥ u(m).

Lemma B.5 For any α > 0 the α-shifted welfare maximizer is feasible.

Proof: Observe that this implies that if the bundle of m items is in Bob’s winning set, so does the
empty bundle. Suppose that Alice has the bundle of k items in her winning set. We show that Bob
has a bundle of size at most m− k items in his winning set, hence the mechanism is feasible. If Alice
has the bundle of k items in her winning set, we have that for every t 6= 0,m:

v(k)− ((1 + α)u(m) − u(m− k)) ≥ v(t)− ((1 + α)u(m) − u(m− t))

v(k) + u(m− k)) ≥ v(t) + u(m− t))

Thus we have that Bob (weakly) prefers m− k items over m− t items, for every t 6= 0,m:

u(m− k)− ((1 + α)v(m) − v(k)) ≥ u(t)− ((1 + α)v(m)− v(t))

Note that this concludes the proof for this case: we have already argued that if Bob has the bundle of
m items in his winning set he also have the empty bundle, and if Bob is assigned 0 items feasibility
still holds.

We now handle the case where Alice is allocated m items. We have that for every t 6= 0,m:

v(m)− u(m) ≥ v(t)− ((1 + α)u(m) − u(m− t))

v(m) ≥ v(t) + u(m− t)− αu(m)

(1 + α)v(m) ≥ v(t) + u(m− t)

Therefore, the profit of Bob from taking m− t 6= m, 0 items is at most 0:

u(m− t)− ((1 + α)v(m) − v(t)) ≤ 0

The proof is now concluded, since if m is in Bob’s winning set, so does the empty bundle.

Lemma B.6 For any 1 ≥ α > 0 the α-shifted welfare maximizer provides an approximation ratio of
1 + 1

α
.
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Proof: Observe that when Alice is allocated m items then we have a 2-approximation. Thus assume
that Alice is allocated some bundle of k < m items. Suppose that k = 0. In this case Alice also has
the bundle of m items in her winning set. Notice that Bob has the empty bundle in his winning set,
hence the algorithm provides a 2 approximation (t 6= 0,m):

0 ≥ v(t)− ((1 + α)u(m) − u(m− t))

(1 + α)v(m) − v(t) ≥ u(m− t)

Which implies that Bob has a non-positive profit for m − t items. Thus from now we assume that
k > 0. We claim that the optimal solution is (k,m− k). To see that, observe that for every t 6= 0,m:

v(k)− ((1 + α)u(m) − u(m− k)) ≥ v(t)− ((1 + α)u(m) − u(m− t))

v(k) + u(m− k)) ≥ v(t) + u(m− t))

We also have to show that the welfare of (k,m− k) is bigger than the welfare of (m, 0):

v(k) − ((1 + α)u(m)− u(m− k)) ≥ v(m)− u(m)

v(k) + u(m− k) ≥ v(m) + αu(m)

From the last inequality we also get that v(k) ≥ αu(m) since u(m − k) ≤ v(k). Using this fact,

we conclude that the approximation ratio that the algorithm provides is at most v(k)+u(m−k)
v(k) = 1 +

u(m−k)
v(k) ≤ u(m)

αu(m) = 1 + 1
α
.

B.3 Fractions Auction

Definition B.7 Given constants 0 ≤ α1 ≤ ... ≤ αm−1 ≤ 1, the (αm−1, . . . , α1)-fractions auction is the
following: Bob’s payment for m items is v(m), for t 6= m, 0 items is αt · v(m), for t = 0 items it is 0.

Alice’s payment for t > 0 items is max{u(m), u(m−1)
αm−1

, . . . , u(m−t)
αm−t

}. Alice’s payment for t = 0 items is
0.

Lemma B.8 The (αm−1, . . . , α1)-fractions auction is feasible.

Proof: Suppose that Bob has the bundle of k items in his winning set. We will show that Alice
in her winning set a bundle of size at most m − k, hence the mechanism is feasible. The bundle of k
items has a non-negative profit for Bob:

u(k) ≥ αkv(m)

Now observe that for every t > m− k the payment of Alice is max{u(m), u(m−1)
αm−1

, . . . , u(t)
αk

} ≥ u(k)
αk

. For

Alice to have m− k items in her winning set (and not the empty bundle) we must therefore have that

v(m) ≥ v(m− k) > u(k)
αk

. However, this is false since u(k) ≥ αkv(m).

Lemma B.9 The (αm−1, . . . , α1)-fractions auction provides an approximation ratio of 2
α1
.

Proof: Suppose that Bob is allocated k > 0 items. Since the bundle of k items is has a non-negative
profit for Bob, we have that u(k) ≥ αkv(m), and this is a lower bound to the welfare of the allocation.
The welfare of the optimal allocation is at most v(m) + u(m). Observe that since Bob is allocated k
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and not m items we have that u(k)−αkv(m) ≥ u(m)−v(m) and therefore u(m)−u(k) ≤ (1−αk)v(m).
The approximation ratio of the algorithm in this case is at least

v(m) + u(m)

u(k)
≤

v(m) + u(k) + (1− αk)v(m)

u(k)
≤

u(k)

u(k)
+
v(m) + (1− αk)v(m)

u(k)
≤ 1+

v(m) + (1− αk)v(m)

αkv(m)

≤
2

αk

≤
2

α1

The other case is when Bob is allocated the empty bundle. Let k be the number of items that Alice
is assigned. Observe that k > 0: since Bob is not allocated any items, we have that for all t 6= 0,m,
u(t) ≤ αt ·v(m) and also u(m) ≤ v(v). Thus Alice has a non-negative profit from taking the bundle of m

items, therefore k > 0. In particular we have that v(k) ≥ max{u(m), u(m−k)
αm−k

}. As in the previous case,

we also have that, since Alice prefers k items over m items, v(m) −max{u(m), u(m−1)
αm−1

, . . . , u(1)
α1

}αt ≤

v(k)−max{u(m), u(m−1)
αm−1

, . . . , u(m−k)
αm−k

}. Thus, v(m)− v(k) ≤ u(m)
α1

− u(m).

Again, an upper bound on the value of the optimal allocation is v(m) + u(m). The approximation
ratio of the algorithm is at least

u(m) + v(m)

v(k)
=

v(m)

v(k)
+

u(m)

v(k)
≤

v(k) + (u(m)
α1

− u(m))

v(k)
+

u(m)

v(k)
≤ 1 +

u(m)

α1v(k)
≤ 1 +

1

α1
≤

2

α1

where the one-before-last inequality is since u(m) ≤ v(k), and the last one is since α1 ≤ 1.

C Characterization of Scalable 2-Item Auctions

C.1 Proof of Proposition 4.3

The first direction is trivial. Truthfulness implies the existence of payments p
(2)
1 (v(1), v(2)) and

p
(2)
2 (v(1), v(2)) for Bob that depend only on v(1), v(2). So now define p(r) = p

(2)
2 (r, 1) and f(r) =

p
(2)
1 (r, 1)/p2(r, 1). Our mechanism on input (v(1), v(2)) by definition gives the two-item payment

v(2) · p(v(1)/v(2)) = v(2) · p−2
2 (v(1)/v(2), 1) = p−2

2 (v(1), v(2)), where the last equality follows from the

scalability of p
(2)
2 . Similarly the payment given for one items is v(2) · p(v(1)/v(2)) · f(v(1)/v(2)) =

v(2) ·p
(2)
2 (v(1)/v(2), 1) ·p

(2)
1 (v(1)/v(2), 1)/p

(2)
2 (v(1)/v(2), 1) = v(2) ·p

(2)
1 (v(1)/v(2), 1) = p

(2)
1 (v(1), v(2)),

where the last equality follows from the scalability of p
(2)
1 .

C.2 Separating the high range

In this section we show that for r ≤ θA we have that f(r) ≤ θB . Similarly it follows that for s ≤ θB
we have that g(s) ≤ θA. Note that by the previous section r ≤ θA if and only if p(r) > w, and this
last condition is what drives this section.

At this point we separate into two cases, according to whether r > wf(r). We start with the
easy case: we show that if the payment for one item is “too high” then we do not get the required
approximation ratio.

Lemma C.1 (case I) If r ≤ θA and r ≤ wf(r) then f(r) ≤ θB.

Proof: Assume by way of contradiction that f(r) > θB and so q(f(r)) > w−1, and for ǫ small enough
consider the input:
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Number Alice’s Alice’s Bob’s Bob’s
of items value payment value payment

One r ? f(r)(1− ǫ)w f(r)w

Two 1 w(1− ǫ)q(f(r)) > 1 (1− ǫ)w w

Notice that Bob gets negative utility from taking an item or two items and thus takes nothing.
Alice gets negative utility from taking two items so can take at most a single item. The total welfare is
thus at most r, whereas the social optimum is at least r+wf(r). Since r ≤ wf(r) this is a contradiction
to better than 2-approximation.

For the second case we first need to prepare two lemmas and a corollary.

Lemma C.2 (weak one-side inverse) If r ≤ θA then for any δ > 0, wg(f(r)− δ)q(f(r)− δ) ≥ r.

Proof: Assume to the contrary wg(f(r) − δ)q(f(r)− δ) < r and consider the following input:

Number Alice’s Alice’s Bob’s Bob’s
of items value payment value payment

One r wg(f(r) − δ)q(f(r)− δ)(1 + ǫ) < r (f(r)− δ)w(1 + ǫ) w(f(r)− δ)

Two 1 ? w(1 + ǫ) w

Bob takes two items. However, when ǫ is small enough, Alice gets positiveutility from one item so
she will take (at least) a single item, contradicting feasibility.

Lemma C.3 For r > θA we have that r > f(r)p(r).

Proof: Consider the input:

Number Alice’s Alice’s Bob’s Bob’s
of items value payment value payment

One r ? f(r)p(r)(1− ǫ) f(r)p(r)

Two 1 q(f(r))p(r)(1− ǫ) p(r)(1− ǫ) p(r)

Bob has negative utility for either one item or two items. Since p(r) > w and q(f(r)) ≥ w−1, Alice
has negative utility for two items, as long as ǫ is small enough. Thus the total welfare is at most r,
whereas the social optimum is at least r+ f(r)p(r)(1− ǫ), so for better than 2-approximation we must
have r > f(r)p(r).

Corollary C.4 If f(r) > θB then f(r) > g(f(r))q(f(r)).

Proof: This is the previous lemma with the roles of the players switched and with s = f(r).

We are now ready to handle the second case:

Lemma C.5 (case II) If r ≤ θA and r > wf(r) then f(r) ≤ θB.

Proof: Assume towards contradiction that there exists δ > 0 such that f(r)−δ > θB. Combining the
weak one-sided inverse lemma and the previous corollary we have that f(r)−δ > g(f(r)−δ)q(f(r)−δ) ≥
r/w; Contradiction.

Which concludes this subsection:
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Lemma C.6 For r ≤ θA we have f(r) ≤ θB. For s ≤ θB we have q(s) ≤ θB.

Proof: The Case I and Case II lemmas cover all possibilities for f ; for g the situation is symmetric.

C.3 The low and mid range

In this subsection we continue dealing with the range r < θA and show that it splits into two sub-ranges,
the low-range r ≤ lA, for which f(r) = θB , and the mid-range, lA < r < θA, for which lB < f(r) < θB.
We get that by proving an interesting-by-its-own property of f in this range: continuity.

Lemma C.7 (monotone consistency) For r ≤ θA and s ≤ θB we have that s ≤ f(r) if and only if
r ≤ g(s).

Proof: We will prove the only if direction, and the other direction is symmetric. Assume towards
contradiction that r > g(s) and for small enough ǫ > 0 consider the input:

Number Alice’s Alice’s Bob’s Bob’s
of items value payment value payment

One r g(s)(1 + ǫ) < r s(1 + ǫ)w wf(r)

Two 1 ? (1 + ǫ)w w

The utility of Bob from one item is at most s fraction of his utility for two items which is positive,
so Bob wins two items. Alice wins at least one item, contradiction to feasibility.

As a corollary of the lemma, we get a strong version of the weak one-sided inverse lemma:

Corollary C.8 (one-sided inverse) If r ≤ θA then g(f(r)) ≥ r.

Proof: Use the previous lemma with s = f(r).

Corollary C.9 (monotonicity) f is monotone non-increasing on r ≤ θA.

Proof: Assume that f(r) < f(r′), for some r < r ≤ θA. Take s = f(r′). First, since s > f(r) we
apply the monotone consistency lemma to get r > g(s). Second, since s ≤ f(r′) we apply the previous
monotone consistency lemma again to get r′ ≤ g(s). Putting these two inequalities together gives
r > r′, contradiction.

We show that f and g cannot decrease too quickly, and satisfy a Lipschitz condition.

Lemma C.10 (Lipschitz condition) If 0 ≤ r′ < r < θA then f(r′) − f(r) ≤ (r − r′) · f(r)/(1 − r)
and if 0 ≤ s′ < s < θB then g(s′)− g(s) ≤ (s− s′) · g(s)/(1 − s).

Proof: As usual we will prove for f , and the case for g is similar. The required outcome is equivalent
to f(r′)/f(r) ≤ (1−r′)/(1−r), so assume towards contradiction that f(r′)/f(r) > α > (1−r′)/(1−r),
and consider the following input:

Number Alice’s Alice’s Bob’s Bob’s
of items value payment value payment

One rα g(f(r′)) wf(r′) αwf(r) < wf(r′)

Two α 1 w ?
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Bob gets positive utility for one item so he takes (at least) an item. Since α > (1− r′)/(1− r) > 1,
taking two items is profitable for Alice and she will take both items as long that is preferable to taking
one item, i.e., if α − 1 > αr − g(f(r′)). But our assumption that α > (1 − r′)/(1 − r) is equivalent
to α − 1 > αr − r′, and that implies the previous inequality since, by the one-sided inverse corollary,
g(f(r′)) ≥ r′. Thus all together at least three items are allocated. Contradiction.

Corollary C.11 (continuity) The function f is continuous on [0, θA) and g is continuous on [0, θB).

Proof: The Lipschitz condition implies continuity.

We are now able to separate the region for which f(r) = θB from that which f(r) < θB . Mono-
tonicity implies that the first is a prefix, so let us define:

Definition C.12 Let lA = sup{r ≤ θA | f(r) = θB} and lB = sup{s ≤ θB | g(s) = θA}.

C.4 The mid range

This is the central part of the proof in which we show that in the middle range f and g are linear, and
in fact the payments are identical to those given by weighted VCG.

Claim C.13 (inverses) For lA < r < θA we have g(f(r)) = r.

Proof: The monotone consistency lemma implies that for s ≤ f(r) we have g(s) ≥ r whereas its
contra-positive states that for s > f(r) we have g(s) < r. So continuity implies that for s = f(r) we
have g(s) = r.

Corollary C.14 (bijective) The function f(r) is bijective from the interval (lA, θA) to the interval
(lB , θB) and the function g(s) is bijective from the interval (lB , θB) to the interval (lA, θA).

The following lemma shows that the Lipschitz bound above is actually tight and defined a constant
derivative for f , at least for small enough r. The approximation ratio of the mechanism plays a similar
role to that of the role the feasibility of the mechanism played in the proof of Lipschitz condition.
Hence, from now on to the end of this subsection we fix the guaranteed approximation ratio of the
mechanism to be 2/(1 + δ), for 0 < δ ≤ 1.

Lemma C.15 (differences) For every lA < r′ < r < θA and r ≤ (1 + δ)wf(r′)(1 − r)/(1 − r′) we
have f(r′)− f(r) = (r − r′) · f(r)/(1− r).

Proof: The required outcome is equivalent to f(r′)/f(r) = (1 − r′)/(1 − r), so assume towards
contradiction that f(r′)/f(r) < α < (1 − r′)/(1 − r) (since the other direction was shown to be
impossible), and consider the following input:

Number Alice’s Alice’s Bob’s Bob’s
of items value payment value payment

One rα g(f(r′)) wf(r′) αwf(r)

Two α 1 w αw

Bob will not take both items since α > f(r′)/f(r) > 1, and will not take a single item since αf(r) >
f(r′). Alice will not take both items if taking one item is preferable, i.e., if α−1 < αr−g(f(r′)) = αr−r′

which is equivalent to our assumption that α < (1 − r′)/(1 − r). Thus the total utility obtained is
rα whereas the optimum is at least rα + wf(r′) in contradiction to 2/(1 + δ)-approximation since
α < (1− r′)/(1 − r) implies rα < (1 + δ)wf(r′).

The differences lemma gives us an important property of f . We now use it to show that in some
regions f behaves in a certain linear way.
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Lemma C.16 For lA < r < θA with r < (1+δ)wf(r) we have that f(r) = c · (1−r) for some constant
c > 0.

Proof: Take la < r′ < r. By the differences lemma f(r)/(1− r) = f(r′)/(1 − r′). Thus we have the
required result in an open interval around r (by setting c = f(r′)/(1 − r′), and since this is true for
every r and the intervals are overlapping, it must be the same constant c everywhere.

Corollary C.17 For lA < r < θA with r(1+δ) > wf(r) we have that f(r) = 1−c′r for some constant
c′ > 0.

Proof: The symmetric version of the previous lemma for g states that for s < (1 + δ)w−1g(s) we
have g(s) = c′′(1−s). Use s = f(r) and the fact that g(f(r)) = r to obtain that for f(r) < (1+δ)w−1r
we have r = g(f(r)) = c′′(1− f(r)), which implies the corollary, for c′ = 1

c′′
.

Combining the last lemma and last corollary together we get that f behaves in the mid range like
the VCG mechanism:

Corollary C.18 For every lA < r < θA we have that f(r) = 1− r.

Proof: Since f is continuous, the range r(1+ δ) > wf(r) overlaps the range r < (1+ δ)wf(r). Thus
for every r in this interval we have that c(1− r) = f(r) = 1− c′r. This implies c = c′ = 1.

Which leads us to the conclusion of this subsection:

Lemma C.19 (summary of subsection) For every 1 − θB < r < θA we have that f(r) = 1 − r.
For every θA < s < θB we have that g(s) = 1− s. For every r < 1 − θB we have that f(r) = θB. For
every s < 1− θA we have that g(s) = θA.

Proof: As g is monotone decreasing, continuous and onto, we must have lims→θBg(s) = lA. The
previous corollary allows directly evaluating the limit to be θB and the lA = 1 − θB, which gives the
desired result as the statements of the previous corollary as well as the definition of lA and lB .

C.5 The Value of f(θA) and g(θB)

B now we have completed the characterization of f and g for the mid and low range. Before handling
the high range, we handle the transition points between the mid and high range, i.e., f(θA) and g(θB).

Lemma C.20 f(θA) = 1− θA and g(θB) = 1− θB.

We prove the lemma for f(θA) but it symmetrically holds for g(θB). The proof consists of the
following two claims:

Claim C.21 f(θA) ≥ 1− θA.

Proof: Suppose towards a contradiction that f(θA) < 1−θA. Consider the following instance, where
δ > 0:

Number Alice’s Alice’s Bob’s Bob’s
of items value payment value payment

One θA (1− δ)θA (1− δ)(wf(θA)+1−θA
2 ) wf(θA)

Two 1 (1− δ) (1− δ)w w
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Notice that Alice’s payment for one item is indeed (1 − δ)θA, since Bob’s value for one item is in
the low range. Alice is allocated 2 items (her most profitable bundle). We choose δ > 0 such that

(1− δ)(wf(θA)+1−θA
2 ) > wf(θA), and thus Bob is allocated at least one item. This is a contradiction to

the feasibility of the mechanism.

Claim C.22 f(θA) ≤ 1− θA.

Proof: Suppose towards a contradiction that f(θA) > 1− θA. Choose t to be such that f(θA) > t >
1− θA. Consider the following instance:

Number Alice’s Alice’s Bob’s Bob’s
of items value payment value payment

One θA (1 + δ)g(t) (1 + δ)wt wf(θA)

Two 1 (1 + δ) (1 + δ)w w

If δ > 0, Bob is allocated 2 items. Also notice that g(t) < θA, since t is in the mid range. Thus if δ
is small enough taking one item is profitable for Alice. Hence the mechanism is allocating at least 3
items, in contradiction to the feasibility of the mechanism.

C.6 The high range

In this section we characterize the high range. We prove that for every r > θA, f(r) =
r
θA

− r, and for
every r > θB, g(r) =

r
θB

− r. The first two claims we prove establish together that θA ≥ wf(θA).

Claim C.23 For every r > θA, r > wf(r). Similarly, for every r > θB, θB > g(r)/w.

Proof: We prove only the first part. The proof is similar to the proof of Lemma C.3. Suppose
towards a contradiction that r ≤ wf(r). Consider the following instance, for γ > 0:

Number Alice’s Alice’s Bob’s Bob’s
of items value payment value payment

One r ? wf(r)− γ wf(r)

Two 1 > 1 w(1 + γ) wr
θA

If γ is small enough then Bob is not allocated any items. Alice is allocated at most one item. Thus,
when γ, ǫ approach 0 the approximation ratio approaches 2: the solution that allocates one item to
each of the bidders has value of r+ ǫ+wf(r)− γ whereas the algorithm returns a solution with value
at most r ≤ wf(θA).

Claim C.24 For every r > θA, wf(θA)−wf(r) ≤ w(1−θA). For every r > θB, w
−1g(θB)−w−1g(r) ≤

w−1(1− θB).

Proof: Consider the following instance, where ǫ = r−θA
1−θA

:

Number Alice’s Alice’s Bob’s Bob’s
of items value payment value payment

One r θA(1− ǫ) w(1− θA)(1− ǫ) wf(r)

Two 1 1− ǫ w(1 − ǫ) wr
θA
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Alice’s profit from both one and two items is positive and equal ǫ. Thus for any slightly bigger value
of ǫ Alice will be allocated two items. However if wf(r) < w(1− θA)(1− ǫ), Bob will be allocated one
item. This is a contradiction to the feasibility of the mechanism as at least three items are allocated
overall. This implies the claim.

Corollary C.25 θA ≥ wf(θA). Similarly, θB ≥ f(θB)/w.

Proof: From the last claim we have that as r > θA approaches θA, wf(θA)−wf(r) either approaches
0 or is negative. Since we also have that for every r > θA, r > wf(r), this implies that θA ≥ wf(θA).

Before giving the precise description of the high range, we need one last claim:

Claim C.26 Let Bob’s valuation be u = (w + (θA − w(1 − θA)) + ǫ, θA + ǫ), for some small enough
ǫ > 0. Denote Alice’s payment for one item by p. Then, p = θA. Similarly, let Alice’s valuation be
v = ( 1

w
+ (θB − (1− θB)/w) + ǫ, θB + ǫ), for some small enough ǫ > 0. Bob’s payment for one item is

θB.

Proof: We prove only the first part; The second part is very similar. Consider the following instance:

Number Alice’s Alice’s Bob’s Bob’s
of items value payment value payment

One θA (1 + δ)p (1 + δ)(θA + ǫ) w(1− θA)

Two 1 > 1 (1 + δ)(w + (θA − w(1− θA)) + ǫ) w

When δ = 0, the profit of Bob from either one item or two items is equal and non-negative (by
Claim C.23, since θA ≥ wf(θA)). Thus, when δ > 0 Bob is allocated two items and Alice is allocated
no items. This implies that p ≥ (1 + δ)θA. When δ < 0 the no bidder is allocated two items. If δ < 0
and ǫ > 0 are small enough, to preserve the approximation ratio each bidder, and in particular Alice,
must be allocated one item (since each bidder contributes about half of the value of the solution that
allocates one item to each bidder). In this case we therefore have that p ≤ (1 + δ)θA. Taking δ to 0
from above and below we get that p = θA, as needed.

We are now about to finish the proof of the characterization by giving a formula for the high range:

Lemma C.27 Let r > θA. Then f(r) = r
θA

− r. Similarly, for every r > θB, g(r) =
r
θB

− r.

Proof: We prove only the first statement. Let 1 ≥ t ≥ θA. Consider the following instance (Alice’s
payment for one item is by Claim C.26):

Number Alice’s Alice’s Bob’s Bob’s
of items value payment value payment

One θA (1 + δ)θA (1 + δ)(θA + ǫ) wtf(θA
t
)

Two t > 1 (1 + δ)(w + (θA − w(1− θA)) + ǫ) w

We will show that when δ = 0, for every 1 ≥ t ≥ θA, Bob’s payments are identical: for one
item the payment is always w(1 − θA) and for 2 items it is w. This implies, using scalability, that
tf(θA

t
) = f(θA) = 1− θA. From the last equation we can calculate f(r) for every 1 ≥ r ≥ θA: using t

such that r = θA
t
, we have that θA

r
f(r) = 1− θA, and therefore f(r) = r

θA
− r, as needed.

We start by showing that Bob’s payment for two items is identical for all 1 ≥ t ≥ θA. Using

scalability and the formula for the payment for two items, the payment is w · t ·
θA
t

θA
= w.
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We now show that the Bob’s payment for one item is the same for all such t. Suppose for contra-
diction that for some t, tf(θA

t
) > 1 − θA. Observe that for small enough δ < 0 the Bob is allocated

two items, whereas Alice is allocated one item – a contradiction to the feasibility of the mechanism.
Now suppose that for some t, tf(θA

t
) < 1− θA. In this case fix some small enough δ > 0 and observe

that Bob is allocated one item, whereas Alice is allocated no items at all. In this case the value of
the solution that allocates one item to each bidder is θA + (1 + δ)θA, but the value of the solution the
algorithm obtains is only (1 + δ)θA. The algorithm provides an approximation ratio that approaches
2 as δ approaches 0. A contradiction.

D Missing Proofs of Section 5

D.1 Proof of Proposition 5.3

We prove that the four properties hold. Recall that (a1, a2) is the output of A and (a′1, a
′
2) be the

output of the induced mechanism.

• Feasibility: Since l1+h2 > m if Bob is allocated two items in Al1,h1,l2,h2 then Alice is allocated
no items. Similarly, l2+h1 > m so if Alice is allocated two items then Bob is allocated no items.
Thus Al1,h1,l2,h2 is feasible if there is a bidder that is allocated two items. Feasibility is obvious
when each of the bidders is allocated at most one item in Al1,h1,l2,h2 .

• Truthfulness: We prove for Alice with valuation v. The proof for Bob with valuation u is
similar. Observe that vl1,h1(a1) = v(a′1) and that the payment of Alice is identical in A and in
Al1,h1,l2,h2 . Hence, the profit of Alice from taking t items in A is identical to her profit from
taking t′ items in the induced mechanism (t′ = 0 if t < l1, t

′ = 2 if t ≥ h1 and t′ = 1 otherwise).
Thus, since A is a truthful mechanism and Alice is allocated her most profitable bundle in A, she
is also allocated her most profitable bundle in the induced mechanism. To conclude this proof,
observe that since A is truthful the payment of Alice depends only on Bob’s valuation.

• Approximation Ratio: Observe that for every allocation of 2 items s′ = (s′1, s
′
2) there is an

allocation for m items s = (s1, s2) such that v(s′1)+u(s′2) = vl1,h1(s1)+ul2,h2(s2), and vice versa.
In particular, the value of the optimal solution in the instance (v, u) and in (vl1,h1 , ul

1,h1

) is the
same. Thus, if the allocation of m items (a1, a2) provides an approximation ratio of α to the
welfare, so does the allocation of 2 items (a′1, a

′
2).

• Scalability: A is scalable and thus, for every α > 0, (a1, a2) = A(vl1,h1 , ul2,h2) = A(α ·vl1,h1 , α ·
ul2,h2). Since the output of the induced mechanism, (a′1, a

′
2), depends only on the output of A,

(a1, a2), we have that, for every α > 0, (a′1, a
′
2) = Al1,h1,l2,h2(v, u) = Al1,h1,l2,h2(α · v, α · u).

D.2 Proof of Claim 5.5

We prove only the first statement, the second one is proved using symmetric arguments. Consider

the payment functions f l1,h1,l2,h2

1 (v) and f
l1,h1,l2,h

′

2

1 (v). These functions must be the same since by
Corollary 5.4 they equal fl1(v

′), where v′ is the (l1, h1)-extension of v. Notice that the equality of these
two payment functions implies equality of all the parameters that define the single-item payment:

1 − θl1,h1,l2,h2

B = 1 − θ
l1,h1,l2,h

′

2

B is the infimum of all r such that the derivative of f l1,h1,l2,h2

1 ((1, r)) =

f
l1,h1,l2,h

′

2

1 ((1, r)) is negative. θl1,h1,l2,h2

A = θ
l1,h1,l2,h

′

2

A is the infimum of all r ≥ 1 such that the deriva-

tive of f l1,h1,l2,h2

1 ((1, r)) = f
l1,h1,l2,h

′

2

1 ((1, r)) is positive. Finally, to see that wl1,h1,l2,h2 = wl1,h1,l2,h
′

2 ,

notice that wl1,h1,l2,h2θl1,h1,l2,h2

B = f l1,h1,l2,h2

1 ((1, 0)) = f
l1,h1,l2,h

′

2

1 ((1, 0)) = wl1,h1,l2,h
′

2θ
l1,h1,l2,h

′

2

B . Since

we already have that θl1,h1,l2,h2

B = θ
l1,h1,l2,h

′

2

B we conclude that wl1,h1,l2,h2 = wl1,h1,l2,h
′

2 .
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D.3 Proof of Claim 5.6

We prove only the first statement, the second one is symmetric. As in the proof of Claim 5.5, we have

that the equality f l1,h1,l2,h2

2 (v) and f
l1,h1,l

′

2,h2

2 (v), for every 2-item valuation v. This implies equality

in all parameters that define the two-items payment. To see that, observe that f l1,h1,l2,h2

2 ((1, 0)) =

f
l1,h1,l

′

2,h2

2 ((1, 0)) and that f l1,h1,l2,h2

2 ((1, 1)) = f
l1,h1,l

′

2,h2

2 ((1, 1)). The first equality shows that wl1,h1,l2,h2 =

wl1,h1,l
′

2
,h2 . From the second equality we get that wl1,h1,l2,h2

θ
l1,h1,l2,h2
A

= wl1,h1,l
′

2
,h2

θ
l1,h1,l

′

2
,h2

A

and thus θl1,h1,l2,h2

A =

θ
l1,h1,l

′

2
,h2

A .

D.4 Proof of Lemma 5.7

Construct a graph where each node represents an induced mechanism ofA with parameters (l1, h1, l2, h2).
Construct the following edges: an edge between a node (l1, h1, l2, h2) and a node (l′1, h

′
1, l

′
2, h

′
2) exists

if and only if exactly one of the following equalities does not hold: l1 = l′1, h1 = h′1, l2 = l′2, h2 = h′2.
Notice that by Claims 5.5 and 5.6 if two nodes (l1, h1, l2, h2) and (l′1, h

′
1, l

′
2, h

′
2) are connected then

w(l1,h1,l2,h2) = w(l′1,h
′

1,l
′

2,h
′

2). Thus to prove the lemma it suffices to show that the graph is connected.
We will show this by observing that there is a path from every node (l1, h1, l2, h2) to (1,m, 1,m):
starting from (l1, h1, l2, h2), we first increase hA and then hB all the way up to m and then reduce lA
and lB to 1 while changing one index at a time.

D.5 Proof of Lemma 5.8

The proof uses the following two claims:

Claim D.1 Let m− 2 ≥ l1 ≥ 2. Then, θl1,l1+1,m−l1,m−l1+1
A = 1. Similarly, let m− 2 ≥ l1 ≥ 2. Then,

θm−l2,m−l2+1,l2,l2+1
B = 1.

Proof: We prove only the first statement. The second one is symmetric. Consider the two in-
duced mechanisms Al1,l1+1,m−l1,m−l1+1 and Al1−1,l1,m−l1+1,m−l1+2. Let u′ be the (m− l1,m− l1 + 1)-
extension of the valuation (1, 1, 0). Notice that u′ is also the (m − l1 + 1,m − l1 + 2)-extension

of the valuation (1, 0, 0). Thus we have that w

θ
l1−1,l1,m−l1+1,m−l1+2

B

= gl1−1,l1,m−l1+1,m−l1+2
l1

(u′) =

gl1,l1+1,m−l1,m−l1+1
l1

(u′) = wθl1,l1+1,m−l1,m−l1+1
A . Since the θA and θB parameters of all induced mech-

anisms take values between 0 and 1, we have that θl1,l1+1,m−l1,m−l1+1
A = θl1−1,l1,m−l1+1,m−l1+2

B = 1.

Claim D.2 Let m − 2 ≥ l1 ≥ 2. Then, θl1,m,l2,m
A = 1. Similarly, let m − 2 ≥ l2 ≥ 2. Then,

θl1,m,l2,m
B = 1.

Proof: We prove only the first statement. The second one is symmetric. By Claim D.1 we have that
θl1,l1+1,m−l1,m−l1+1
A = 1. By applying claim 5.5 twice, first increasing the value of h1 to m and then

the value of h2 to m we have that θl1,m,m−l1,m
A = 1. By applying claim 5.6 while changing the third

coordinate from m− l1 to l2, we conclude that θl1,m,l2,m
A = 1.

The lemma follows by applying the last claim twice, once for Alice and once for Bob.

D.6 Proof of Lemma 5.11

We prove only the first statement. The second one is symmetric. The proof consists of the following
two claims.
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Claim D.3 For each v, fm(v) ≥ wv(m).

Proof: Assume towards a contradiction that for some v, we have that fm(v) = w(v(m) − ǫ), for
some ǫ > 0. Consider the instance (v, u) where u = (wv(m)−w ǫ

2 , 0, . . . , 0). Bob’s profit for m items is
positive whereas his profit for every k 6= m items is at most 0, since u(k) = 0. Thus Bob is allocated m
items. On the other hand, since u is k-simple, gm(u) = v(m) − ǫ

w
, by Corollary 5.10. Thus the profit

of Alice from taking m items is positive, hence Alice is not allocated the empty bundle. In conclusion,
more than m items are allocated, a contradiction to the feasibility of the mechanism.

Claim D.4 For each v where v(1) = 0, fm(v) ≤ wv(m).

Proof: Assume towards a contradiction that for some v, we have that fm(v) = w(v(m) + ǫ), for
some ǫ > 0. Consider the instance (v, u) where u = (w(v(m) + ǫ

2), 0, . . . , 0). Notice that the profit
of the Bob is negative for the bundle of all items and therefore his contribution to the welfare is 0.
The contribution of Alice to the welfare is 0 too: u is (in particular) a 2-simple valuation. Thus, by
Corollary 5.10, gt(u) = (v(m) + ǫ

2 ) > v(m) for every t 6= m, 1. In addition, the bundle of all items
has a negative profit for Alice. Thus Alice is allocated at most one item, but v(1) = 0 (observe that
by the monotonicity of the payments, gm−1(u) ≥ gm−2(u) > v(m), thus Alice is not allocated m − 1
items). In conclusion, the mechanism outputs an allocation with a welfare of 0, a contradiction to the
fact that the mechanism provides a bounded approximation ratio.

D.7 Proof of Lemma 5.12

We prove only the first statement. The second one is symmetric. Notice that the lemma holds
for k = m, by Lemma 5.11. Next, towards a contradiction, assume that for some valuation v and
some k, fk(v) > w(v(m) − v(m − k)) (we will consider the case where fk(v) < w(v(m) − v(m − k))
later). Let ǫ = fk(v) − w(v(m) − v(m − k)). Let u be the valuation where u(m) = w(m) + ǫ/4,
u(l) = w(v(m) − v(m − k)) + ǫ/2, for k ≤ l < m and u(l) = 0 for every l < k. Consider the instance
(v, u). Bob is allocated m items since this is its only profitable bundle. Observe that the payment
induce by Bob for m−k items is: w−1(u(m)−u(k)) = w−1(w(m)+ ǫ/4−w(v(m)− v(m−k))− ǫ/2) =
v(m − k) − w−1ǫ/2. Hence, Alice’s profit from taking m − k items is positive and the mechanism
allocates more than m items. A contradiction to the feasibility of the mechanism.

Now, towards a contradiction, assume that fk(v) < w(v(m)− v(m− k)). Let ǫ = w(v(m)− v(m−
k))− fk(v). Let u be the valuation where u(m) = w(v(m)− ǫ/4), u(l) = w(v(m)− v(m− k)− ǫ/2), for
k ≤ l < m and u(l) = 0 for every l < k. Consider the instance (v, u). Bob is allocated at least k items.
Observe, however, that Alice is allocated more than m− k items since by Corollary 5.10 her payment
for every t items, 1 < t ≤ m− k, is v(m)− ǫ/4− (v(m)− v(m− k)− ǫ/2) = v(m− k) + ǫ/4 and since
her profit for the bundle of m items is positive. A contradiction to the feasibility of the mechanism.
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