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1 Introduction

Partnerships fail. Marriages break down, friendships rupture, your gym buddy stops
training. When partnerships break down, new partnerships are forged in the aftermath,
until an equilibrium, or something close to an equilibrium, is again reached. The reasons
that partnerships can break down are many: often human imperfection and the vicissi-
tudes of fate play a role. Errors, mishaps or misbehavior on the part of one of the partners
can contribute to the decline of a partnership. However, partnerships are not all alike.
Some partnerships are strong, some are weak. Some partnerships are easily substitutable,
others less so. It is not just the partnerships themselves that can be more or less robust.
Due to the interrelationship of different partnerships, networks of partnerships also dis-
play robustness characteristics which depend on the robustness of their constituent pair-
ings. This paper analyses such settings in the context of the well known marriage prob-
lem of Gale and Shapley (1962) as described in Jackson and Watts (2002). We show that
for standard matching dynamics, perturbed by an error process, any stochastically stable
matching is contained in the class of matchings which are most robust to one-shot devia-
tion. For the logit choice rule, this class corresponds to a non-transferable utility version
of the least-core as described in Maschler, Peleg and Shapley (1979). The results extend to
one-sided matching markets (roommate problems) and to many-to-one matchings (col-
lege admissions problems).

Similarly to the related papers of Jackson and Watts (2002) and Klaus, Klijn and Walzl
(2010), players occasionally make mistakes in a dynamic model of partnership formation.
Mistakes involve a player leaving an existing partner or matching with a new partner in
such a way that his payoff is reduced. Mistakes can be fatal to a partnership and can drive
the dynamic process of partnership formation to a new equilibrium. Jackson and Watts
(2002) and Klaus et al. (2010) derive results for stochastic stability of marriage and room-
mate problems under uniform mistake probabilities: every possible mistake has the same
order of probability of occurring. They find that all stable matchings are stochastically sta-
ble in the sense of Kandori, Mailath and Rob (1993); Young (1993).! When mistakes are
rare, in the long run the process will spend almost all of its time at stochastically stable
matchings.

The current paper addresses a large class of alternative mistake models, including
payoff dependent models such as logit choice (Blume, 1993) and probit choice (Dokumaci
and Sandholm, 2011; Myatt and Wallace, 2003), for which the decision rule depends ex-

!In the language of Noldeke and Samuelson (1993), they find that all the equilibria are part of a single
mutation connected component. This fact means that all of the stable partnership networks in their setting are
stochastically stable under uniform mistakes.



plicitly on cardinal preferences.? Due to differing strengths of partnerships, the authors
of the current paper believe cardinal preferences to be a natural assumption in matching
models. Moreover, abstraction away from cardinal preferences, or the choice of a dynamic
which is insensitive to such preferences, is not without loss when it comes to applying a
concept such as stochastic stability.> As pointed out by Bergin and Lipman (1996), the
identity of stochastically stable states depends on the mistake model. Therefore, results
which are applicable across a broad range of mistake models are of particular interest.

In this paper, it is no longer the case that all stable matchings are stochastically stable.
Given the large class of mistake models considered, this is unremarkable (Bergin and
Lipman, 1996). What is remarkable is that for all of these models there exists a simple
local property that must be satisfied by any stochastically stable matching. Specifically,
this paper shows that stochastically stable matchings must be contained in the set of stable
matchings which are most robust to one-shot deviation, that is the set of stable matchings
at which the most probable mistake is not more probable than the most probable mistake
at any other stable matching. When this set is a singleton, as at least one stochastically
stable state always exists, its unique member must be the unique stochastically stable
state. These results hold for marriage problems, roommate problems with nonempty
core, and college admissions problems with responsive preferences.

Our result is surprising because stochastic stability is a globally determined property:
existing characterizations (Kandori et al., 1993; Young, 1993) and partial characterizations
(Ellison, 2000) depend on transition paths between all of the stable states. Computing
probabilities for all such transition paths can be cumbersome. In contrast, the set of stable
matchings which are most robust to one-shot deviation is defined solely by reference
to local properties of the stable matchings. To compare with another contribution to the
partial characterization literature, Ellison (2000) provided a globally determined sufficient
condition for stochastic stability in any (finite) problem, whereas we provide a locally
determined necessary condition for stochastic stability in matching problems.

For the logit choice rule, the most probable mistake at a stable matching is the devia-
tion which causes the lowest payoff loss to the deviating players. The set of stable match-

ings which are most robust to one-shot deviation maximize this lowest possible payoff

2The relation of such rules to uniform mistake models can be thought of as similar to the relation be-
tween the static concepts of Proper Equilibrium (Myerson, 1978) and Trembling Hand Perfect Equilibrium
(Selten, 1975). In the former, mistakes associated with larger payoff losses are less likely, whereas in the
latter there is no difference.

31t is not uncommon to assume cardinal preferences in the literature on matching problems. Abdulka-
diroglu, Che and Yasuda (2011) discuss that a mechanism sensitive to cardinal preferences may achieve

a Pareto-superior matching to one obtained by the deferred acceptance mechanism of Gale and Shapley
(1962).



loss. This set is equal to a non-transferable utility version of the least-core as described in
Maschler et al. (1979). That is, there is a connection between perturbed adaptive dynam-
ics, matching problems, robustness to one-shot deviations and a well known concept in
cooperative game theory.

There is a growing literature which looks at equilibrium selection in matching prob-
lems (Bir6 and Norman, 2013; Boudreau, 2012; Echenique and Yariv, 2012; Pais, Pinter
and Veszteg, 2012). Typically, these papers use simulation or experimental evidence to
generate a distribution over absorbing states reached by a dynamic process without mis-
takes, conditional on the process being started at some initial matching. In contrast to
these papers, our results are independent of the initial matching and the probabilities
with which any players are chosen to better respond. Moreover, the results in the current
paper are analytical.* The papers cited above consider short run behavior given some
initial condition. In contrast, the current paper models the long run.

A useful literature from the perspective of the current paper is the paths to stability lit-
erature in matching problems with non-transferable utility. This focuses on convergence
to core allocations in situations where the payoff for an individual depends only on his
partner (Diamantoudi, Xue and Miyagawa, 2004; Roth and Vande Vate, 1990). Another
related literature is the literature on convergence to the core in cooperative games (Agastya,
1997; Feldman, 1974; Green, 1974; Newton, 2012). A branch of this literature has recently
explicitly focused on the case in which all relevant coalitions are pairs — the transferable
utility equivalent of the marriage problem, otherwise known as the assignment problem
(Bir6, Bomhoff, Golovach, Kern and Paulusma, 2012; Chen, Fujishige and Yang, 2010; Nax
and Pradelski, 2013; Shapley and Shubik, 1971). Of particular note is the work of Nax and
Pradelski (2013), who adapt the results of the current paper to obtain selection within the
core of the assignment game.

The paper is organized as follows. Section 2 gives the model and some relevant con-
cepts from the literature. Section 3 gives the main results for marriage problems. Section
4 applies our results to marriage problems under differing choice rules. Sections 5 and
6 extend our main result to many-to-one matching problems and to roommate problems

respectively.

4Boudreau (2011) writes of the prior approach: “Calculating the probability of each stable outcome for a given
market under the randomized tdtonnement process is extremely difficult due to the tremendous number of paths that
can be involved. . . Loops in the process mean that a closed form solution is virtually impossible to obtain.”
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2 Model

2.1 The marriage problem

We follow the description of the marriage problem in Jackson and Watts (2002). There
is a set of players, N, which is divided into a set of men, M = {my,...,my}, and a set of
women, W = {wy,...,w;}. An undirected network ¢ is a set of edges ij € g, each com-
prising a pair of players i,j € N, i # j, such that ij € ¢ < ji € g. Let G denote the set of
all undirected networks on N. Let g(i) = {j: ij € g} denote the set of players linked to
player i in network ¢. ¢(i) = @ means that i is single in g. The set of matchings in the
marriage problem, G, is the set of undirected networks in which each woman is linked to
at most one man, and each man is linked to at most one woman:

G={gegG: VijegieM&jeW), (VieN, |¢g(i)|<1)}.

In a slight abuse of notation, we sometimes write g(i) = j for g(i) = {j}. Let u = {(i,j) :
(3g € G:ij € g)} be the set of pairs of players between whom a link can potentially exist.

The vector of utilities obtained from network g by the players is given by u : G —
RINI. Player i obtains utility u;(g) from network g, and this utility depends only on the
match of i. That is, for each 7, u;(g) = u;(¢) if ¢(i) = ¢’(i). We assume that players are
never indifferent between two potential matches: g(i) # ¢’(i) implies that u;(g) # u;(¢’).
Therefore, if ¢(i) # @, then u;(g) = u;({ig(i)}), and if g(i) = @, then u;(g) = u;(@). Define
g —1ij:=g\ {ij} as the network g with the edge ij removed if it exists in g. Similarly, define
g+ij:=(g\{kl:k=ileg(i)ork=j,1€g(j)}) U{ij} as the network g with the edge ij
added and any existing edges exiting i and j removed.

Definition 2.1 A matching g € G is stable if:
(i) Vijeg, ui(g)>ui(g—if).
(i) Bie M, jeW: ui(g+ij) >ui(g) and uj(g +1ij) > ui(g).

We denote the set of stable matchings by €. The set of stable matchings corresponds to the core
of the problem: the set of matchings from which no subset of players can improve their payoffs by
removing and adding edges in a coordinated manner.



2.2 Unperturbed blocking dynamic

5> Let ¢' be the network in

We describe a class of unperturbed blocking dynamics.
period t. At the beginning of period t + 1, a pair of players (i,/) is selected at random

according to a distribution Fy (.) with full support on .. Let ¢'*1 be determined as follows:

(i) If ¢'(i) = j and either u;(g" —ij) > u;(g") or uj(g" — ij) > u;(g"), then, with some
probability greater than zero, set ¢'*1 = ¢f — ij.

(i) If g'(7) #j, wi(g" 4 ij) > ui(g") and u;(g" + ij) > u;(g") then, with some probability
greater than zero, set ¢'*1 = ¢f +ij.

(iii) ¢'*! = ¢’ otherwise.

In the terminology of matching problems, a pair (i,]) € u blocks a matching g if they prefer
one another to their partners in g. Denote the transition probabilities of a given unper-
turbed blocking dynamic by Py(.,.). That is, Py(g,¢’) is the probability that ¢'*! = ¢/,
given that ¢' = g.

2.3 Perturbed blocking dynamic

Players meet and will usually take the myopically optimal action, whether that is to
stay with their current partner, dissolve an existing partnership, or create a new partner-
ship. However, from time to time, players make mistakes and take actions which reduce
their payoffs, whether it be leaving or creating a partnership. That is, a pair selected by
the dynamic will sever an existing beneficial link, or create a link which is worse than
the status quo for at least one of the players involved. We consider families of perturbed
blocking dynamics, with transition probabilities P, (.,.), indexed by a parameter 77 € (0,7 ).
The family {Py },c(0,7) is assumed to satisfy the following conditions.

Assumption 1 (conditions on the perturbed dynamic)

0
(i) Py U Py, where Py are the transition probabilities for some unperturbed blocking dynamic

as described in Section 2.2.
(it) Forn > 0, the chain induced by Py is irreducible.

(iii) Py vary continuously in 1.

Qur unperturbed dynamic is essentially the same as those of Roth and Vande Vate (1990), Jackson and
Watts (2002) and Klaus et al. (2010).



(iv) If, for g # §', Po(8,8") =0, P3(g,8") > 0 for some 1§ > 0, then lim,_,o —17log P;(g,8") = ¢
for some ¢ > 0.

(v) Foranyn >0, P;(g,8") > 0 implies §' = g +ij or g’ = g — ij for some (i,]) € p.

Condition (i) merely states that the family of perturbed dynamics corresponds to an un-
perturbed dynamic. Conditions (if), (iii), (iv) restrict the process to weakly regular Markov
chains. A broad class of strategy revision rules falls into this category. Examples include
best response with mutations, the logit choice rule, pairwise comparison rules, and the
probit choice rule (see Sandholm, 2010). Condition (v) means that transitions always in-
volve a single pair of players getting together or splitting up. This restriction is needed to
eliminate the possibility of two couples separating (or getting together) at the same point
in time with a higher (order of) probability than either one of the couples acting alone.

As a chain with 1 > 0 is irreducible, there exists a unique stationary distribution 7t;,.
For convenience, we assume the following.®

Assumption 2 (existence of limit)

T = rlllgcl) Ty exists.
A matching ¢ is stochastically stable if 71p(g) > 0. We denote the set of stochastically stable
states by SS.

Definition 2.2
SS:={geG: m(g) >0}

All stochastically stable matchings belong to recurrent classes of the unperturbed pro-
cess (Young, 1993) and from any matching there exists a finite sequence of transitions
under the unperturbed process that culminates in a stable matching being reached (Jack-
son and Watts, 2002; Roth and Vande Vate, 1990). Therefore, the only recurrent classes of
the unperturbed process are the individual stable states, i.e. SS C €. The identity of the
stochastically stable matchings is important, as for small error probabilities the process
will spend almost all of the time at these matchings.

®This condition could be avoided if stochastically stable states were defined as states for which Ty () A
Oasn —0.



2.4 Costs of transitions

The identity of stochastically stable states depends on the transition probabilities of the
process. To measure the limiting relative magnitude of these probabilities, a cost function

is defined as follows.

Definition 2.3 The 1-step cost of the process moving from g to g’ is defined as:
Y :i=1lim —n1 !
€(8,8) = lim —nlog Py (3,8'), (1)

adopting the convention that —log0 = co.

c(g,¢’) is the exponential decay rate of the transition probability from ¢ to ¢’. The rarer
a transition, the higher its cost. Impossible transitions have infinite cost. Note that for
g ¢ €, there is a zero cost transition from g. This is because there is some g’ # g, such
that P, (g,¢’) does not approach zero as 17 — 0. We are also interested in the overall cost
of moving between g and ¢/, even if many steps are required. Let the t-step transition
probabilities be given by P,; (8,8)=P(g'=4"18° =¢8P (..)).

Definition 2.4 The overall cost of the process moving from g to ¢ is defined as:

C(g,&") := minlim —ylog P} (g,8’), 2
(8,8) = minlim —ylog Py (8,8') (2)

We make one further assumption: we rule out other-regarding mistake probabilities.
That is, the cost of a mistake by a pair (i,j) is independent of the current matching of
every player other than i and j. Given that the unperturbed dynamic is self-regarding,

this seems a reasonable restriction.

Assumption 3 (self-regarding mistake probabilities)

Ifg(i) =g'(i) and g(j) = &'(j), then c(g,8 — ij) = c(¢',g' —ij) and c(g,8 +ij) = c(g', 8’ +1j).

A spanning tree rooted at ¢* € € is a directed graph over the set € such that every
g € € other than g* has exactly one exiting edge, and the graph has no cycles. The cost
of a spanning tree is the sum of the costs of its edges given by C(.,.). A minimum cost
spanning tree is a spanning tree whose cost is lower than or equal to the cost of any other
spanning tree. A state ¢* € € is stochastically stable only if there exists a minimum cost
spanning tree rooted at ¢* (Young, 1993).” Finding minimum cost spanning trees can be

difficult.® The principal contribution of the current paper is to show that any minimum

7For many dynamics, ‘only if’ can be replaced by ‘if and only if’. See Sandholm (2010) for details.
8The same applies to radius-(modified)coradius methods (Ellison, 2000).
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cost spanning tree, and hence any stochastically stable matching, must be in the set of
matchings which are most robust to one-shot deviation. We call a transition ¢ — ¢’ from a
matching ¢ € G the least cost deviation from g if it has the lowest cost of all possible 1-step

transitions from g.

Definition 2.5 Denote the set of possible least cost deviations from g € G by:

L(g) := argminc(g,g’)
g'#g

and the set of players involved in least cost deviations from g € G by:

NL(g):={(i,j))eMxW: 3g' eL(g): ¢ =g—ijorg’ =g+ij}

c1.(g) will be used to denote the cost of the least cost deviation from g.°

cL(g) :=minc(g,g’).
§'78
We use the word deviation as we shall be interested in the application of these concepts to
gecd

3 Stochastically stable matchings

Define OS, the set of matchings which are most robust to one-shot deviation:

OS = {g €G:cL(g) = maxcL(g’)}.
g'eG
As ¢ (g) is strictly positive only for ¢ € €, it must be that OS C €. We will show that OS
contains SS: a stochastically stable matching must be comparatively robust against one-
shot deviation. If OS contains only one matching, then that matching must be uniquely
stochastically stable.

Klaus et al. (2010) show that a single mistake suffices to move from any g € ¢ to some
other ¢’ € €. We show that the least cost deviation from a stable matching g ¢ OS is
enough to escape from its basin of attraction, and that the unperturbed dynamic can sub-
sequently lead the process closer to OS C €. This result is proved in Lemma 3.4, from

9This differs from the concept of the radius of a stable state ¢ € € (Ellison, 2000, citing a no longer extant
working paper of Evans, 1993). The radius is defined as R(g) = mingc¢\ (4 C(g,&') and requires a different
stable state to be reached by the process. It turns out that in the problems considered in the current paper
cL(g) = R(g) for all stable matchings outside of a specific set, but this does not follow from the definitions.

9



which the main theorem is proven using a minimal cost spanning tree argument. First,
we present a couple of lemmas which assist in the proof of Lemma 3.4.
The following lemma shows that the least cost deviation from a stable matching ¢ ¢ OS

cannot involve two single players forming a partnership.
Lemma 3.1 Suppose that g € €and ¢ ¢ OS. If (i,j) € NL(g), then g(i) # @ and/or g(j) # 2.

Proof. Suppose ¢(i) = @ and g(j) = @. Then, i and j are single in every stable match-
ing (Theorem 2.22 of Roth and Sotomayor (1992)), including the matchings in OS. As
(i,j) € NL(g), g +ij € L(g). Thenfor g* € OS, c1.(¢") < (g%, 8" +ij) = (8,8 +1j) =cL(g),
therefore ¢ € OS, which contradicts our premise. m

The next lemma demonstrates that if a pair is involved in a least cost deviation from a
stable matching ¢ € OS, then they do not both have the same current partner as in some
matching within OS.

Lemma 3.2 Suppose that g € Cand ¢ ¢ OS. If (i,]) € NL(g), then forall ¢* € OS, ¢(i) # ¢* (i)
andfor g(j) # g™ (j)-

Proof. Let g™ € OS. Suppose g(i) = ¢* (i) and ¢(j) = ¢*(j). If ¢(i) =, then cL(g*) <
c(g",8" —ij) = c(g,8 —ij) = cL(g). I g(i) # j, then cr.(g%) < c(g", 8" +if) = c(g, g +1j) =
cL(g). Therefore ¢ € OS, which contradicts our premise. m

We now present the key lemma, which asserts that following the least cost deviation
from any stable matching ¢ ¢ OS, the unperturbed dynamic can move to another stable
matching which is strictly closer to OS than the initial matching. First, we define an index

m which measures the similarity between matchings.

Definition 3.3 m(g,g’) is the number of players who have the same partner in g and g'.

m(g,8') == {i€ N: g(i) =g'(i)}|

Lemma 3.4 (Getting Closer Lemma) Let ¢g* € OS. Suppose that ¢ € € and ¢ ¢ OS. Let
g1 € L(g). Then, 3¢’ € €, t € N, such that m(g*,g") > m(g*,g) and P§(g1,8") > 0.

The proof of Lemma 3.4 is given in the appendix. Using Figure 1 to illustrate our argu-
ment, we here emphasize how our result is stronger than existing results in the literature,
such as Lemma 5 of Klaus et al., 2010 and a similar claim in Diamantoudi et al. (2004).
These results show that, starting from any given unstable matching, it is possible, under
the unperturbed dynamic, to reach a stable matching ¢’ € € which is strictly closer to a

target stable matching ¢* than the initial unstable matching is to ¢*. In Figure 1, this result

10



Figure 1: g,¢* are stable matchings. g1,g> are unstable matchings. Distance on the page
represents distance under m(.,.). Directed edges represent transitions and the numbers
above the edges their respective transition costs.

corresponds to the existence of a zero cost path from g; and g» to some stable matching
which is closer to ¢*. From g, it may be the case that any such path reaches g. The de-
viation from ¢ to g1 may not lead to a stable matching closer to ¢*. Such a result suffices
for the subsequent stochastic stability arguments of Klaus et al., 2010, as all mistakes have
the same cost in their model, so from g it is possible to ‘choose” a desirable deviation such
as the one to ¢ in Figure 1. From gy, ¢* can be reached at no further cost. This option is
not open to us. It may be that the least cost deviation from ¢ moves away from g*, such
as is the case in the deviation from ¢ to g1 in the figure. We prove, that if ¢ ¢ OS and
g* € OS, then there exists a path (the dashed line in the figure) from g; that circumvents
g, reaching an unstable state such as g», which is at least as close to g* as g is to g*. The
application of previous results (generalized to the many to one case by Lemma 5.5 of the
current paper) completes the argument. The least cost deviation from g suffices to move
the process to a stable matching which is closer to g* € OS. The example in Section 4.2
will further illustrate these arguments.

Note that Lemma 3.4, and with its many-to-one equivalent later in the paper, can be
understood as ‘paths to stability” results which are stronger than the existing results in the
literature. They allow us to say more than could previously be said about which stable
states can be reached from different starting points. The knowledge of these paths gained

from the Lemma is exactly what is required to prove the main theorem.
Theorem 3.5 SS C OS.

The formal proof is in the appendix. In brief, any stochastically stable matching must
be the root of a minimum cost spanning tree. If a tree is rooted at some g € €, ¢ € OS,
then Lemma 3.4 can be used to build another tree rooted at some ¢g* € OS. Starting at
g, use Lemma 3.4 to add edges between stable matchings which get progressively closer
to ¢*. We obtain a sequence (¢ = ¢1,...,91 = &) with edges between g; and g; 1 fori =
1,...,L — 1. Each of these new edges has the cost of a lowest cost deviation, C(g;,gi+1) =

11



cL(gi). Deleting the edge exiting g*, we are left with a tree rooted at g*. As ¢ ¢ OS,
g* € OS, the cost of the new edge exiting ¢ must be lower than the cost of the deleted
edge which exited g*. So the tree rooted at g* has a lower total cost than the total cost of

the tree rooted at g. Therefore no tree rooted at ¢ can be a minimum cost spanning tree.
Thatis, g ¢ SS.

Remark 3.6 Consider the special case of uniform mistake probabilities, that is when there exists
a € R such that for all g,¢' € G, ¢(g,8’) > 0 implies c(g,g') = a. It follows immediately from
the proof of Theorem 3.5 that SS = OS. The result of Jackson and Watts (2002) and Klaus et al.
(2010) is recovered.

Finally, we note that the proof of Theorem 3.5 extends to give a bound on convergence

times.

Remark 3.7 It follows immediately from the proof of Theorem 3.5 that the modified-coradius (see
Ellison, 2000) of OS equals maxg¢oscL(g) and that therefore, starting from any matching, the

PPN ~ i MaXgz0s €1 (8)
expected hitting time of OS is O (e ¢ ).

So, SS C OS. This is important, as the set OS is defined solely by reference to lo-
cal properties of the stable matchings. Stochastically stable matchings must be match-
ings which are most robust to one-shot deviation. If OS is a singleton, then the unique
stochastically stable state can be determined solely by looking at the lowest cost one-shot
deviation from stable states: there is no need to resort to minimal cost spanning trees or

to radius-coradius methods.

4 Examples

In this section we apply the one-shot deviation principle to study stochastic stability
under commonly used choice rules. In Section 4.1, we consider a dynamic induced by
the logit choice rule and link OS to the notion of the least-core proposed by Maschler et al.
(1979). Thus, our one-shot deviation principle combined with logit choice provides an
evolutionary foundation for the least-core.!” In Section 4.2, we provide a comparison of
dynamics induced by three leading choice rules, the uniform mistake, the logit choice,
and the probit choice.

19%We thank Bary Pradelski and Heinrich Nax for bringing this connection to our attention. Nax and
Pradelski (2013) adapt the methods of the current paper to give least-core selection in assignment problems.
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4.1 The logit choice rule

At the beginning of period t + 1, a pair of players (i,]) is selected at random according

t+1

to a distribution F(.) with full support on . ¢ is determined as follows:

(i) If ¢'(i) = j, then ¢'*! = ¢' — ij with probability

1- T -

kG{l]}€’7 k( )_}_6;7 (gtfij)‘

That is, each of i and j chooses to cut or retain the link ij with probabilities given by
the logit choice rule, and unless both players choose to retain the link, it will be cut.

(ii) If g'(i) #j, then ¢g'*! = ¢! + ij with probability

fuk(g +ij)

ke{z]}e’Y uk(g )_|_e,7”k(g +ij)

That is, i and j each agree to leave their existing partner and form a new link ij
with probability given by the logit choice rule. Both i and j must agree for a new
partnership to be formed.

(iii) ¢! = ¢ otherwise.

Under the logit choice rule, transition probabilities are sensitive to the amount by which
cardinal utility is reduced. The sum of negative changes in revising players’ payoffs for
transition g — ¢’ is the cost of g — ¢’ (Sawa, 2013). If the easiest transition at matching ¢
is for two players to form a partnership, then:

cL(g) = Il?é? [max{u;(g) — ui(g +if),0} +max{u;(g) — u;(g +ij),0}], 3)

whereas if the easiest transition at matching ¢ is for a player to dissolve an existing part-

nership, then:

cL(g) = r{l)l;lg[max{u( 8) —ui(g —ig(i)),0}] = jmin (max{u;(g) — ui(2),0}]. (4)

For the logit choice rule, ¢y (g) is therefore the minimum of the quantities in (3) and (4).

Example 4.1 Suppose that M = {my,my,m3}, W = {wy,w,, w3}, and that the matrix giving
their payoffs from a given match is shown below. For example, the top left cell tells us that m; gets
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a payoff of 10 from being matched with w1.'1 The payoffs from being single are zero for all men
and women. Let the perturbed dynamic be the logit choice rule.

w1 wap w3
my | 10,1 5,5 | 1,10
my | 1,10 | 10,1 | 5,5
ms | 5,5 1,10 | 10,1

There are three stable matchings as below.

@1 = {mywq, mowy, maws}, o = {mywo, mows, myw1}, g3 = {myws, mywy, mzws}.

Note that g1 is man-optimal and g3 is woman-optimal. Also note that c; (g) =1 for g € {81,483}
For example, one of the least cost deviations from g1 is wy becoming single, which costs 1. Let g’
denote the resulting matching. The cost of this deviation is:

cL(g1) =c(81,8") = ttw, (81) — U, (§) =1-0=1.

Followed by {myw,}, {mows}, {mswy } matching sequentially, the dynamic will reach g».

Moreover, c1,(g2) = 4. One of the least cost deviations from gy is for my and wy to partner,
causing the payoff of wy to decrease by 4. These values for ¢y (.) imply that OS = {g2}. So
SS = {g2}, the unique stochastically stable matching is g».

Under the logit choice rule, OS corresponds to a non-transferable utility version of the
least-core (Maschler et al., 1979).

Definition 4.2 For A C N, let G(A,g) be the set of matchings §' # g such that ij € ¢ for all
i,jEgAijeg andij¢ g foralli ¢ A, ij & g. Then the excess of A at g is defined as

e(A,g) := max min{0, u;(¢') —u;(g)},
(A,8) g,eG(A,g)ig {0, ui(g') —ui(g)}

and the least-core is

£¢ = i A, Q).
argmin max e(A,g)

Note that in contrast to the definition of excess in Maschler et al. (1979), we do not allow

players’ gains to enter the calculation. Within the core, excess is a measure of the amount

This example is a version of Example 2.17 of Roth and Sotomayor (1992) in which we have removed a
man and a woman.
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by which a constraint is satisfied, and in a non-transferable utility setup this is unaffected
by potential gains in payoff. In marriage problems, the maximum excess can be found by
analyzing A such that |A| < 2. The following proposition follows immediately.

Proposition 4.3 Under the logit choice rule, OS = £¢€.

We can further characterize properties of matchings in OS for generic payoffs un-
der logit and similar choice rules. Suppose a set of payoff vectors which satisfy, for all
ij,i’,j €N, 8¢ €G,

ui(g £if) —ui(g) =up(§' £1'j') —up(g") = i=1, j=7, g(i) =g'({).

where ¢ £ xyis ¢ + xy if xy € g and ¢ — xy otherwise. The payoffs are generic in the sense
that the complement of the closure of such a set has Lebesgue measure zero in RIG/*IN|

satisfying payoff assumptions in Section 2.1.

Remark 4.4 For generic payoffs, under the logit choice rule, the set of pairs of players involved
in least cost deviations is a singleton, and is identical across matchings in OS. That is, NL(g) =
N(g') for all g,¢' € OS. This implies that ¢(i) = g'(i) and g(j) = §'(j) for (i,j) € Np(g) for
all g, ¢’ € OS.

4.2 Comparison of alternative rules

By means of an example, we now consider three popular choice rules successively.
In doing so we show differences and subtleties, highlighting the difference between the
current work and previous work which considers only uniform errors (Jackson and Watts,
2002; Klaus et al., 2010).

Suppose that M = {mq,my,m3}, W = {wy,wy, w3}, and that the matrix giving play-
ers’ payoffs from a given match is given below. The stable matchings are gw =
{myw,, mywy, mzws} and gpr = {mywq, mowy, msws}. gw is the woman optimal matching
and gy the man optimal matching.

w1 wp w3
mq | 10,5 15,10 | 6,1
my | 5,10 | 10,5 | 2,10
ms | 3,3 | 23|55
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4.2.1 Uniform mistakes

Consider a move from g to gy1. Earlier work on uniform mistakes would consider
the simplest sequence of transitions from g to gy1. For example, Step 2 in the proof of
Theorem 2 of Klaus et al. (2010) could be interpreted as follows. Since w, = gw(my) #
gm(my) = wy, the pair (mq,wq) is chosen to match. This is a mistake as w; loses payoff.
The resulting matching is g» = {mywy, my, wy, mzws }. Note that m(g2,gm) > m(gw,gm)-
That is, the new matching is closer to gy than was the original matching. From g», the
unperturbed dynamic can costlessly reach gps. One mistake which is carefully chosen to
increase m(-,gp1) can move the process from gw to gar. A similar trick is used to move
from gy to gw, and as every mistake has the same cost under uniform errors, OS =
{gw,gm}. Further, as discussed in Remark 3.6, SS = {gw,gm}. Note that when both
players are mistaken in forming a match, it does not matter whether this counts as one
or two errors: as we have just seen, on the required paths, it is never the case that both

players who form a match are mistaken in doing so.

4.2.2 Logit choice rule

When employing payoff-dependent (or otherwise differing) mistakes, we are treading
into more tricky territory. Theorem 3.5 shows we can, indeed must, restrict our attention
to particular deviations which incur the minimum cost. The least cost deviation from g
under the logit choice rule has {myws3} forming a link. Denote the resulting matching
1 = {mywy, myws, w1, m3}. my loses 3 units of payoff from the match, and ws does not
make a loss, so c(gw, 1) =3 + 0 = 3. Observe that g; is more distant from g, than was
the original matching: m(g1,9m) < m(gw,gm). What Lemma 3.4 shows is that even from
g1, the process can costlessly reach some state closer to gy than g is. Figure 1 earlier
in the paper illustrates the contrast between the paths used when considering uniform
errors and the paths which must be used to prove Theorem 3.5. In the example under
consideration, following the move to g, it can be the case that {mjw; }, {mpw,}, {mzws}
match sequentially, reaching gas. These transitions have zero cost. So, a single least cost
deviation suffices to move the process from gw to gp. While, the least cost deviation
from gy involves m3 and w; matching. They each make a payoff loss of 2 by forming this
match, so the cost of the mistake is 2 4+ 2 = 4. We conclude that OS = {gu}, so gu is the
unique stochastically stable matching.
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4.2.3 Probit choice rule

The reader may conjecture that because of our one-shot deviation principle, any mis-
take model in which the cost of mistakes is increasing in payoff loss will always give
the same result as the logit choice rule. Such a conjecture is false, as we now show. The
conjecture is true if we choose an error model in which every mistake only involves loss
of payoff by a single player. However, the possibility of two players erring at the same
time complicates matters. To see this, consider the probit choice rule. Specifically, con-
sider a perturbed dynamic similar to that in Section 4.1, differing in that players decide
whether to accept new matchings or leave existing matchings according to probit instead
of logit choice. Dokumaci and Sandholm (2011) show that under probit choice, mistake
costs are proportional to the square of payoff loss. However, the combined cost of two
players making a mistake will still be additive. The example of this section has been con-
structed so that least cost deviations remain the same under logit and probit. Calculating,
we see that ¢ (gw) = 3% + 0% = 9 and cr (gy1) = 2° + 22 = 8. That is, under probit choice,
OS = {gw}, so gw is the unique stochastically stable matching. Note that compared to
logit, the convexity of costs in probit is friendly towards mistakes by multiple players.'?

More generally, OS under the probit choice rule coincides with a variant £&p;, of the
least-core (Definition 4.2) with excess renormed as

epro(A,g) = max —(Z[min{O, uf(g’)—uf(g)}]z) :

g'EG(A,g) icA

Recalling that —e(A, ) is a minimum sum of potential payoff losses of members of A,
—epro(A, g) can be interpreted as the minimum Euclidean length of vectors of potential
payoff losses. Hence the difference between logit and probit when it comes to determin-
ing OS is equivalent to the difference between using the taxicab'® and Euclidean norms

to assess the size of a vector of payoff losses.

4.2.4 Non-genericity of predictions of uniform mistake models

Consider a choice rule with an arbitrary a > 0 for which individual mistake costs are
proportional to payoff loss to the power of a. In the special cases of 2 = 0,1,2, we have
the uniform, logit and probit cases respectively. Considering our example above, if b =
log2/log2 —log3, then OS = {gum} for 0 <a < b,and OS = {gw} fora >b. Iffa=0o0ra =1,

1250 when it comes to making mistakes, the adage ‘misery loves company’ is more true under probit
choice than under logit.
13The taxicab norm sums the elements of a vector.
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then OS = {gw,gm}- Results for the uniform case are non-generic in this class of models.

425 OS #SS

Least cost deviations are always enough to move from stable matchings outside OS to-
wards stable matchings in OS, but the same is not necessarily true when moving between
matchings in OS. This fact implies that there exist cases in which OS # SS.

Let w3 be a slightly eccentric individual who is particularly prone to leaving her part-
ner.'* Let the cost of any mistake in which ws leaves her partner be 1. Let the cost of all
other mistakes be 2. Then a least cost deviation from both gy and gy is for w3 to leave
m3 and become single at a cost of 1. Therefore OS = {gw,gm}. Starting from g, follow-
ing this least cost deviation, {mjw3}, {maw,}, {myw1}, {msws} can match sequentially at
zero cost, reaching ¢);. However, starting from g, following the least cost deviation, the
only costless transition is for {m3,ws} to rematch, returning to gp;. To move from gy to

gw a more costly error is required. Hence SS = {gm} # OS.

5 Many-to-one matching problems

We extend our analysis to many-to-one matching problems, also known as college
admissions problems. The difference from one-to-one matching problems is that each
agent of one population, the colleges, may be matched with more than one agent of the
other population, the students. Each student is matched with at most one college.

There are two sets, K= {Kj,...,K;} and S = {s1,...,5m}, of colleges and students re-
spectively. There is positive integer gk, called the quota, of college K which indicates the
maximum number of positions college K may fill. Thatis, |¢(K)| < gk. All gg positions of

college K are identical. The set of matchings in the college admissions problem is:
G={geG: (VijegieS&jeK), (Vies, |g(i)] <1), (VK; €K, [g(K))| < qK],)}.

The preferences of college K are determined by the subset of students to which K is
matched. That is, although ¢(K) can now be of size greater than one, it is still the case
that g(K) = ¢/(K) implies that ug(g) = ux(g’). Preferences over subsets of students are
still assumed to be strict: g(K) # ¢'(K) < uk(g) # uk(g').

Definition 5.1 A matching g is in the core of a matching problem, denoted ¢ € ¢' if JA C N,
g’ € G such that:

4We assume such an individual so as to use the same example and make the discussion simpler. Exam-
ples for which OS # SS can be shown for logit and probit dynamics.
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(i)i¢gAjeEAijeg=ijeg
(ii) ij¢ g ijegd =icAjeA
(iii) i€ A= u;(g") > u;(g).
We restrict our attention to responsive preferences (Roth, 1985). If a college has re-
sponsive preferences, then its preferences over any two students s;, s; are independent
of the other students to whom it is matched. That is, if a college, K, prefers s; to Sj and

T, |T| < gk, is some subset of students which includes neither s; nor sj, then the college

prefers T Us; to T Uss;. We assume that all colleges have responsive preferences.

Definition 5.2 The preferences of college K € K over sets of students are responsive if they satisfy
the following conditions.

(D If g(K) = ¢'(K) U {s;} \ {s;},si ¢ §'(K),sj € §'(K), then ug({Ks;}) > ux({Ksj}) <
uk(g) > uk(g').

(ID) If g(K) = ¢'(K) U {s;},s; & &' (K), then ug ({Ks;}) > ug(2) < ug(g) > ux(g’).

Following Chapter 5 of Roth and Sotomayor (1992), we consider a related marriage
problem, in which each college K is broken into g positions of itself: ky,..., kg, each of
which has a quota of one. In the related market, the players are students and college
positions each of which has a quota of one. The college positions are assumed to have
the same preferences over the individual students as their original college. With a slight
abuse of notation, we let K denote the set of positions in college K, i.e. K = {ki,..., kg },
g(K) = Ui<i<g 8(ki).

We assume that both the unperturbed and the perturbed dynamics forbid positions
of the same college from competing for students. In the original problem, college K is
indifferent between a student filling position k; € K or k; € K. Hence it is unrealistic
that two positions within the same college compete with one another for a student. We

prevent such competition by imposing the assumption below. '°

Assumption 4 Let v(g) := {(i,k;) : kj € K€ K, i # g(kj),i € g(K)}. At the beginning of
period t 4 1, the updating pair of players will be chosen according to a distribution with full
support on 1\ v(g').

The next lemma shows that the set of absorbing states, €, of the dynamic in section 2.2

amended to satisfy Assumption 4 corresponds to the core, ¢/, in the college admission

problem.

15There may exist cases in which different departments of a college compete for students. In such cases,
we let K and K’ be such that K # K’ represent different departments.
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Lemma 5.3 For ¢’ € G, let g € G satisfy: for all K = {ky,..., ks } €K,
(@) icg'(K)& JkjeK: g(kj) =i
(b VieN, |g(i)| < 1.

Theng' e ¢’ < gec.

Note that the logit dynamic under Assumption 4 is still irreducible. For any network
¢, a pair (g(k),k) will cut their link with positive probability in the perturbed dynamic
satisfying Assumption 4. For all g,¢’ € G, there is a positive probability that the perturbed
dynamic starting with ¢ will become the empty network within |N| periods, and then will

become ¢’ within another |N| periods.

Definition 5.4 Define the set of matchings equivalent to g as:

Eq(g) ={g' € G: ¢'(K) = g(K) VK € K}.

In words, Eq(g) is the set of matchings in which students are matched to the same colleges
as they are in matching g, i.e. matchings in Eq(g) are identical in the original college
admission problem.

We make a natural symmetry assumption on the dynamic regarding the behavior of
positions of a college. We assume that the cost of transitions is unaffected by the labelling
of the positions of any given college.

Assumption 5 If ¢ € Eq(g); k1,k2 € K@ g(k1) = §(k2);s€S5: g(s),8(s) € KjeKorg(s) =
3(s) = @; then:

(i) c(g,8 +kis) =c(g,§ +kos),
(ii) If g(k1) # @, then c(g,8§ — kig(k1)) = c(§,§ — k28 (k2)), and

(iii) If §(s) # @, then c(g,g — sg(s)) = ¢(&,& = 5§(s))-
Note that the logit choice rule satisfies Assumption 5.

Take any unstable matching ¢ ¢ €, and a target stable matching ¢’ € €. The following
lemma, which is important to the results of the paper, shows that, starting from g, the
unperturbed dynamic can move to some matching gr which is strictly closer to g’ than
g is. This lemma extends the implications of Lemma 5 of Klaus et al. (2010) to many-to-
one matching problems. First, define a similarity function for the many-to-one matching
problem:

m(g,¢') = max m(g,$) (5)
8€Eq(g’)
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Note that (g,g") > m(g,g’). Also note that m(.,.) =(.,.) for one-to-one matching prob-
lems.

Lemma 5.5 Assume Assumption 4 holds. Let ¢ ¢ €, ¢’ € €. Then, 3T € N4, g1 € G, such that
Py (8,81) > 0and m(gr,8') > m(g,g').

The proof is left to the appendix, and makes use of the fact that given g and g/, there is
no student matched to different positions of the same college under g and the ¢* which

solves the maximization in (5).

Lemma 5.6 Let ¢ ¢ €, ¢’ € €. Let

g™ € argmax m(g,$).
$€Eq(g")

Forallie€ S, g(i) € K, g*(i) € K= g(i) = g*(i).

Proof. Assumei € S, g(i) € K, g*(i) € K, g(i) # ¢*(i). Let ¢** = ¢* +ig(i) + g*(1)g*(g(7)).
Then ¢** € Eq(¢*) = Eq(g’) and m(g,¢**) > m(g,8*) + 2, contradicting the definition of
g m

The proof of Lemma 5.5 relies on the construction of closed cycles of players who have
strict preferences between ¢ and ¢g*. Lemma 5.6 ensures that players who have the same
partner in ¢ and ¢*, and who are therefore indifferent between the two matchings, form
separate cycles of size two.

Lemma 5.5 directly implies the following corollary. It is similar to Roth and Vande Vate
(1990) except that we have not assumed students to have strict preferences over the posi-

tions within colleges.!6-17

Corollary 5.7 (Random paths to stability) Suppose a college admission problem, its related
marriage problem, and an unperturbed dynamic satisfying Assumption 4. For any g & <, there
exists T € Ny, ¢* € €, such that P{ (g,¢*) > 0.

Define cr (g) and OS as in the one-to-one matching problem. Using Lemma 5.5, a
many-to-one version of Lemma 3.4 can be proved. Then, we have the following theorem.
See Appendix for proofs.

Theorem 5.8 Under Assumptions 4 and 5, SS C OS.

16See Chapter 5 of Roth and Sotomayor (1992) for a way to construct strict preferences in such problems.
17 As students only ever match with a single college, their preferences are substitutable. Therefore, the
many-to-many paths to stability result of Kojima and Unver (2008) also implies this corollary.
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Example 5.9 (the logit choice rule and Assumption 4)
The implications of Assumption 4 for the costs of deviations under the logit choice rule are as
follows. Let

E(g) = {ik;: ikj ¢ g, ikj € ¢’ for some g’ € Eq(g)}.

In words, ik]- € E(g) means that i and k]- € K are not matched in g, but i is matched with some
ki € K, k; # kj. Assumption 4 implies that pairs in E(g) may not deviate if the process is in g.
For the logit dynamic, expressions for cy(g) will be as in expressions (3) and (4), but with the
minimum being taken over ij ¢ ¢ U E(g) in expression (3).

We conclude this section with three examples. Example 5.10 is an application of The-
orem 5.8 with a note emphasizing the role of Assumption 4. Examples 5.11 and 5.12
demonstrate that extending our result beyond responsive preferences, for example to set-
tings in which colleges have a preference for some form of diversity in their student bod-
ies, is not straightforward.

Example 5.10 Let S = {s1,s2,53}, K= {K,K'}, K = {ky,ko} and K’ = {k3}. Assume that a
college’s utility is additive over the utility it obtains from each student, and that the perturbed
dynamic is the logit choice rule. Preferences are given by the following matrix. The payoff from
remaining unmatched is assumed to be zero.

k1 k2 k3
s; 10,10 [ 10,10 | 5,10
s, | 10,8 | 10,8 | 6,8
ss| 59 | 59 |10,5

Observe that under Assumption 4, the set of stable matchings is € = {g1,82, 3,84} where

g1 = {(s1,k1), (s2,k2), (s3,k3) }, g2 = {(s1,k2), (s2,k1), (s3,k3) },
g3 = {(s1,k1), (52,k3), (s3,k2) }, g1 = {(s1,k2), (s2,k3), (s3,k1) }-

The first two matchings are equivalent, go € Eq(g1). s1 and s, are matched to K in both matchings.
Similarly, ga € Eq(g3).

Suppose that the current network is g1. In the absence of Assumption 4, a deviation by (s1,k»)
to g1 + s1kp could occur with cost zero. Subsequently, (sp,k3) and (s3, k1) could form partner-
ships, and the process could reach g4 without any additional cost. So C(g1,84) would equal zero.
Similarly, we can cycle between all of the matchings in €.

22



Under Assumption 4 (s1,ky) will never be selected as a revising pair when the current state
is g1. The least cost deviation from g1 is L(g1) = {g1 + s2ks} with cost ¢ (g1) = 4. Also,
cL(g2) =4, cL(g3) =1, c(ga) = 1. OS = {g1,92}. Since g1 and g are equivalent, the unique
stochastically stable matching is that K and K" are matched to {s1,s,} and sz respectively.

Example 5.11 (Non-responsive preferences) Consider a college admissions problem with S =
{s1,52,83}, K= {K} and qx = 3. Let ux(K) =10 and u, (&) =0 forall x € S. Also, for X C S,
let

5 i|X] =3,
4 if | X| =2,

wx)={* T ©
2 (x| =1,
0 fX=0.

In words, each student prefers being in K to being out. College K prefers to have at least two
students to none, but prefers none to having one student only. Let the perturbed dynamic be the
logit choice rule.

There are two stable matchings: one where K accepts all students and another where none are
accepted. The former is uniquely stochastically stable, while the latter is most robust to one-shot
deviation. To see this, observe that one costly deviation, which costs 2, is enough to move from
none accepted to all accepted. While at least two costly deviations, which cost 7, are required in
the opposite move. Lemma 5.5 does not apply here and hence Theorem 5.8 does not hold.

Note that in the absence of responsive preferences, Lemma 5.3 does not hold. In Ex-
ample 5.11, we just saw that although the core contains a unique matching in which every
student matches with the college, there is an additional stable matching in which no stu-
dents match with the college. It may be argued that, in the absence of the equivalence
result of Lemma 5.3, a richer process of strategic updating should be used. The following
example allows groups of players to rematch amongst themselves each period, with no
limitations on the size of such a group. One of the colleges has a preference for a diverse
student body. This violates responsiveness, and Theorem 5.8 still fails to hold.

Example 5.12 (Calibrate diversity) Consider a college admissions problem with three students
S = {sy1,5y2,5p3}, and two colleges K = {K;, K}, qk, = gk, = 3. The students are either Yellow
students (s,1,8,2), or Pink students (sp3). Yellow students prefer college Ky, and Pink students
prefer college K. Let us,, (Ky) = us,, (Ky) = tis,5(Kp) =20, us,, (Kp) = us,, (Kp) = 15,5 (Ky) =
10, ux(@) = 0 for all x € S. Let the utilities of the colleges, which do not satisfy responsiveness,
be given by the following table.
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XCS ug, (X) ug, (X)

10 0 0

{sy1} {sy2} {sp3} -1 -2
{sy1,5p3}, {8y2,5p3} 2 2
{841,852} -5 2
{sy1,5y2,5p3} 5 5

Both colleges would like to have all of the students and prefer no students to having one student
only. College K, prefers two students to none. College Ky, prefers two students to none only if the
students are of different types. That is, college K, has a strong antipathy towards a non-diverse
student population. The core of the problem contains two matchings, ¢, and gy, in which all of the
students attend either college K, or college K, respectively. That is,

gy(Ky) = {Sy1/5y2/5p3} = gp(Kp).

Let the process of rematching be as follows. Each period some subset of players A C N is
chosen. Let ¢' = g be the current matching. A conjectured rematching ¢’ which satisfies (i) and
(ii) of Definition 5.1 is chosen at random and accepted by each member of A with probabilities
given by the logit choice rule. If any member of A rejects the rematching, then ¢! = ¢t = ¢. If
every member of A accepts the rematching, then g1 = ¢'.

From gp, the least cost deviation involves student sy or s,p moving to college K. That is,
L(gp) = {81,82}, 81(Ky) = {syn}, 81(Kp) = {sy2,5p3}, 82(Ky) = {sy2}, §2(Kpp) = {sy1,5p3}-
Note that cy.(gp) = 1. However, following such a deviation, there is no zero cost path to g,, and
unless there is at least one further, considerably more costly, deviation (such as college Ky, accepting
another y-student), g, cannot be reached.

Observe that from g, the least cost deviation involves student sy3 and college K, matching.
That is, L(gy) = {83}, 83(Ky) = {sy1,5,2}, 83(Kp) = {sp3}, and c(gy) = 2. Following such a
deviation, a zero cost path to g, exists.

So we have that OS = {g,}, yet SS = {g}. Theorem 5.8 does not hold.

6 Roommate problems

In the one-sided matching problem, or roommate problem, the set of admissible
matchings is not restricted to be bipartite. Anyone can partner with anyone. The set
of networks of interest is broadened to:

G={ge§: (VieN,[g(i)| <1)}.
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Gusfield and Irving (1989) show that two key properties of marriage problems extend to
all roommate problems with strict preferences over partners. Firstly, the set of unmatched
players is the same at every stable matching. Secondly, if g,¢’ € €, i prefers g to ¢/, g(i) =7,
¢'(i) =k # j, then both j and k prefer ¢’ to ¢. These properties are exactly those used in our
results of section 3. Furthermore, Diamantoudi et al. (2004) show that if ¢ is nonempty,
then there exists a sequence of mutually beneficial blockings ending in €. In the context
of this paper, this means that nonempty ¢ implies that all recurrent classes of the unper-
turbed Markov process lie in €. There are no absorbing cycles. Assuming nonemptiness
of ¢, lemmas 3.1, 3.2, 3.4 still hold. It follows that:

Theorem 6.1 If € # &, then SS C OS.

Thus our main result does not rely on two-sidedness of the matching market.

7 Conclusion

This paper has shown that in marriage problems, roommate problems and college ad-
mission problems, all stochastically stable matchings are in the class of matchings which
are most robust to one-shot deviation. There are two significant implications of this from
a market design perspective. Firstly, a desired matching may not be stochastically stable,
so even if implemented in the short run, in a world in which people make the occasional
mistake, it would be rarely observed in the long run. Secondly, making a desired match-
ing more robust to one-shot deviation than any other matching will suffice to make it
uniquely stochastically stable. The main results, which link stochastic stability to a local
property of the individual matchings, are derived from the structure of stable matchings
and from the unperturbed blocking dynamic. The class of unperturbed blocking dynam-
ics we use is common in the paths to stability literature. Further attempts to extend our
results to, for example, hedonic games or many-to-one matchings with complementari-

ties, are left for future work.

A Appendix

In this section, we prove Theorem 5.8. Theorem 3.5 is implied by Theorem 5.8, as
Assumptions 4 and 5 do not have any effect in the one-to-one setting. Similarly, Lemma
3.4 is implied by its many-to-one equivalent, Lemma A.4. The proof of Lemma 5.5, one of
our key lemmas, is given as below.

25



Proof of Lemma 5.5. Let

¢* € argmax m(g,$).
$€Eq(g’)

If there exists i € N such that g(i) # @ and ¢(g,g — ig(i)) = 0 and ¢*(i) = @, then let
gr = g — ig(i) and we are done: i (gr,g) > m(gr,8°) > m(g,g°) = (g8

If there does not exist such an i € N, let each i € N such that u;(&) > u;(g) leave their
partners. Denote the resulting matching g1 Note that m(g1,8%) = m(g,8%). g1 ¢ € as
if g1 # g, for i € S such that g(i) # g1(i) = @, §*(i) # @, so i is not single in any stable
matching. Note that ¢* € argmaXycpo oy M (gl,g). As g1 £ ¢, 3(i,k;): c(g1,81 +1kj) =0

Case I: 3(i,k;): c(g1,81 + ik;) = 0 and ik; € g*.
Let g7 = g1 + ikj. Then m(gr,g') > m(gr, ") >m(g1,8") =m(g,¢*) =m(g,¢) and we

are done.

Case IL: V (i,k;): c(g1,81 +ik;) =0, ik; & g~

First, we decompose the player set N into singletons who are unmatched in g; and g%,
pairs of players who have the same partner in g; and ¢*, and cycles defined below. Then,
we will construct a path of blockings which increase (-, ¢™).

Foralli e S: g1(i) € K, g*(i) € K*, K = K*, we have by Lemma 5.6 that g; (i) = ¢*(i).

For alli € S: ¢1(i) € K, ¢*(i) € K*, K # K*, either u;(g1) > u;(g™) or u;(¢™) > u;(g1)-
We assume that u;(g1) > u;(¢*). The arguments when the converse holds are identical.
Let f : N — N be such that f(j) = g1(j) if uj(g1) > u;(g*) and f(j) = g™ (j) otherwise.'®
Suppose a sequence {i, f (i), (i), f3( ),...} where f2(i) = f(f(i)) and fk() for k > 3 is
defined similarly. Since N is finite, the sequence must repeat and create a cycle. Denote
the cycle by a sequence (11,12, ...,1,,), where ny =i, n; = fl_1 (n1), and ny, is the last non-
repeated element of the cycle. In the sequence, members’ preferences alternate between
g1 and g*, i.e. g% (nj) = njiq if j is odd, and g (1) = nj,1 otherwise.” Note that m is
even and that g*(n,) = i under the assumption that u;(g1) > u;(¢*). Thus, N can be
decomposed into singletons, pairs of players and cycles in which players have different
partners in g1 and g*.

Now, observe that #(i,kj): c(g1,82 = g1+ ik;) = 0, u;(g1) > u;(g*) and ug;(81) =

!8Note that strict preferences and the definition of ¢* imply that u;(g) # u;(g*) if ¢(j) # ¢*(j)-
If g1(nj) = nj;1, then n;j prefers gy to g*, so nj,1 cannot prefer g to g*, or (1j,n;,1) would block g*. If
g*(nj) =njy1, then n; prefers g* to g1, so nj, 1 cannot prefer ¢* to g1, or (nj,nj41) € g* would block g1.
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u,(g*). If there did exist such a (i,k;), then u;(g2) > ui(g1) > u;(g™) and uy;(g2) >
ug;(81) = U (8¥), so (i,kj) would be a blocking pair for g* € €. So, u;(g*) > u;(g1) and/or
i g > ug;(§1). Without loss of generality, let 1, be a member of a blocking pair for g
such that uy,(g*) > uy,(g1)-° Note that g2(g1(n2)) = g2(n1) = &, and that u,,, (g*) >
Un,, (1) (11,1y) is a blocking pair for g». Let g3 = g0 + nyny,. m(g3,8*) = m(g2,8*) + 2.

If 1(82(n2)) # §*(82(n2)), then m(g2,8") = m(g1,8") = m(g,8"), so m(gs,8") =
m(g3,g*) > m(g,¢*) =m(g,¢") and we are done.

If g1(82(n2)) = 8" (82(n2)), then m(g2,8”) > m(g1,8") — 2. I m > 6, then (ny—2,1y—1)
is a blocking pair for g3 as g3(1—1) = 9, Un,, ,(8*) > un, ,(1). Let gu = g3+ nyy—11—2.
Then 11(84,8") = m(8s,8") = m(g3,8") +2 = m(g2,8") + 4 > m(g1,8") = m(g,8") =
m(g,8'), and we are done.

For m = 4, it cannot be that u,,(g2) > u,,(g"), or (n2,§2(n2)) would be a blocking pair
for ¢*. If u, (g2) < Un,(g*), then (n3,n3) is a blocking pair for g3. Let g5 = g3 + npn3. Now
m(gs,8') = m(gs,g") =m(gs,8") +2=m(g2,8") +4>m(g1,8") =m(g,g") =m(gg),
and we are done. If uy,(g2) = un,(g*), then ns, go(n2) are positions in the same college.
Therefore 1(g2,8') = m(g1,8"). As 1m(g3,8") = m(g2,8’) + 2, we have that m(g3,¢") >
m(g,8’), and we are done. m

The proof of Lemma 5.5 above implies the following corollary. Over any two stable
states ¢,¢* € € such that /m(g,¢*) =m(g,g*), any i € N such that g(i) # g* (i) has prefer-
ences (over ¢ and ¢*) in opposition to the preferences of his partners in g and g*.

Corollary A.1 Let ¢,¢' € €. Let ¢* € argmax,c (o) M(8,§). Forall i € N such that g(i) #
¢* (i), if i prefers g to g* (¢* to g), then (i) and ¢* (i) prefer ¢* to g (g to ¢*).

We now show lemmas analogous to Lemmas 3.1, 3.2 and 3.4. The next lemma is anal-
ogous to Lemma 3.1.

Lemma A.2 Suppose that g € Cand ¢ ¢ OS. Ifi € S, kj € K€K, (i,kj) € NL(g), then g(i) # &
and/or g(k]-) + .

Proof. Suppose (i) = @ and g(k;) = @. Then, in any ¢’ € €, ¢(i) = @ and there exists
k; € K'such that g'(k;) = @. As (i,kj) € NL(g), g +ik; € L(g). Let g € OS C &, k; € K such
that ¢*(k;) = @. Then c (") < c(g*,&" + ik;) = c(g,& + ikj) = cL(g). Therefore g € OS,
which contradicts our premise. m

The next lemma is analogous to Lemma 3.2.

20Such a member must be in a cycle since players who are not in cycles are indifferent between ¢; and
*

g .
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Lemma A.3 Suppose that g € €, ¢ ¢ OS, and Assumption 4 holds. Suppose that (i,k;) € NL(g).
Let K,K" € K be such that g(i) € K and kj € K'. Then, for all g* € OS, either ¢* (i) ¢ K and/or
g(kj) ¢ g*(K').

Proof. Let ¢* € OS. Suppose ¢* (i) € K, and g(k;) = g* (k;) for some k; € K. If K=K/, then
by Assumption4, i = g(k;),soi=g*(k;) and cL(g*) < c(g", 8" —ik;) = c(g,& —ikj) = cL(g)-
If K # K, then c(g*) < c(g%,¢* +ik;) = c(g,8 + ikj) = cL(g). Therefore ¢ € OS, which
contradicts our premise. m

Lemma A.4 (Getting Closer Lemma II) Suppose the dynamic satisfies Assumptions 4,5 . Let
¢ € OS. Suppose that ¢ € € and ¢ ¢ OS. Let g1 € L(g). Then, 3¢" € €, t € Ny, such that

m(g’,g") >m(g',g) and Pj(g1,8") > 0.

Proof. Let g* satisfy:

g* € argmax m(g,$)
g€Eq(g’)

and

¢* € argmax m(gy,$).
$€Eq(8")
It is possible to choose such a ¢* as any student matched to the same college in g and g1
is matched to the same position of that college.

Suppose that ¢ —ig(i) € L(g). Suppose that i € S. Let g(i) € K and ¢*(i) € K*. Under
Assumption 5, ¢’ € OS implies ¢* € OS. This, and g ¢ OS imply g(i) € K # K* 5 ¢*(i),
so m(g*,81) = m(g*,g), and as 11(g’,81) = m(g*,g1) and 1m(g',g) = m(g*,g), we have
m(g’',¢1) = m(¢’,g). Since g7 is unstable (i is single), Lemma 5.5 guarantees there exists
T € N4, g1 € G, such that P{ (¢1,¢7) > 0and m(g’,g7) > m(g’,¢1) = m(g,g).

Next, suppose that g + ik; € L(g). If g(i) # @, let K be such that g(i) € K and K* be
such that g* (i) € K*. Let k; € K;. Lemma A.3 implies that (¢(i) # @ and K # K*) and/or
(@ # g(kj) ¢ " (K;)). Furthermore, Lemma A.2 implies that g(i) # @ and/or g(k;) # @.

CaseI: (g(i) # @, K # K* and @ # g(kj) ¢ ¢*(K;)) and/or (ik; € g*).

Note that /i1(g’,81) = m(g*,81) > m(g*,g) = m(g',¢), with the inequality strict if ik; €
g*. If ik; ¢ g%, since g1 is unstable (g(k;) is single), Lemma 5.5 implies that there exists
T € N4, g1 € G, such that P{ (¢1,¢7) > 0and m(g’,g7) > m(g’,¢1) = m(g,g).

Case I: (§(i) # @, K # K* and (& # g(k;) € g*(K;) or g(kj) = @)) and (ik; ¢ g*).
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By definition of g*, it must be that g(k;) = ¢*(k;). Note that m(g*,g1) > m(g*,g) — 2
as g1(kj) # g(k;) = g"(kj).

If ¢*(g(i)) = @, then g(K) = ¢*(K)?!, so ¢*(i) € K and we have a contradiction. There-
fore g* (g(1)) # 2.

First, suppose that g*(¢(i)) is indifferent between ¢ and ¢*. This implies ¢(¢™(g(7)))
and ¢*(¢™(g(i))) = g(i) are positions in the same college. By definition of ¢* and lemma
5.6 we have ¢(¢*(g(1))) = ¢*(¢™(g(i))) = g(i). So ¢*(g(i)) = i, implying in turn that
¢(i) = ¢*(i) and K = K* which is a contradiction. Therefore ¢*(¢(i)) is not indifferent
between g and g*.

Second, suppose that ¢*(¢(i)) prefers ¢* to ¢. Let go = ¢1 + g(1)¢™(g(i)). Recall that
¢(i) is single, that ¢* (g (7)) is either single or indifferent between ¢ and g7, and that As-
sumption 4 does not prevent ¢(i) and ¢*(g(i)) from being matched, so Py(g1,$2) > 0.
Note that 172(g’,¢2) > m(g*,82) > m(g*,¢) =m(g’,g). It cannot be that ¢*(g(i)) = g(k;) as
by g(k;) = g*(k;) we then have that g* (g(i)) = g*(kj) which would imply g(i) = kj, contra-
dicting ¢ +ik; € L(g). If g(kj) # @, &2 is unstable because g(k;) is single. If ¢(k;) = &, then
for all § € €, g(K;) = g(Kj), so g(i) ¢ K; implies ik; is not in any stable matching and g»
is unstable. Lemma 5.5 implies that there exists T € N, g1 € G, such that P{ (¢2,47) > 0
and m(g’,g1) > m(g',82) = m(g',g).

Third, suppose that ¢*(g(i)) prefers ¢ to ¢*. Corollary A.1 implies that ¢(i) prefers ¢*
to g, and that i prefers g to ¢*, and that g* (i) prefers ¢* to g.* If k; prefers g* to g1 and
g*(kj) # @, then let k; and g* (k;) get matched.”® If g*(k;) = @, let k; leave i to become a
singleton. Let the resulting network be ¢3. Note that 111(g’,g3) > m(g*,g3) > m(g*,¢) =
m(g’,g). Since g3 is unstable (i is single), Lemma 5.5 implies that there exists T € IN,
g1 € G, such that P{ (g3,g7) > 0 and m(g’,gr) > m(g’,g3) > m(g’,g). If kj prefers g1 to
g*, then i prefers g* to g1.2* g* (i) # kj, so g1(g*(i)) = g(g*(i)) and g*(i) does not prefer
¢1 to g. Therefore ¢*(i) prefers ¢* to ¢1. Let i and ¢™(i) get matched. Let g4 denote the
resulting network. Note that (g’,g4) > m(¢™,g4) > m(g*,8) = m(¢,g). (i) is single
and g* (i) ¢ K, so |g4(K)| < |g(K)| and g4 is unstable. Lemma 5.5 implies that there exists
T € Ny, gr € G, such that P{ (g4,97) > 0 and m(g’,g7) > m(g’,ga) > m(g’, ).

2IRoth (1986) tells us that any college with unfilled places in some stable matching is matched to the
same set of students in any stable matching. A corollary of this is that any college must be matched to the
same number of students in any stable matching.

22They strictly do so. g(i) and ¢*(i) are college positions and have strict preferences over students.
K # K* implies that student 7 has strict preferences over ¢ and g*.

BIf g (kj) # @ then g* (k;) is single in g1 because g(k;) = g*(k;). Assumption 4 does not prevent k; and
g™ (k;) from being matched.

;41' ftrictly dose so. ik; ¢ ¢* and the definition of ¢* imply that i is matched to different colleges in g;
and g*.

29



Case IIL: (g(i) = @ or g(i) # @, K= K*) and (& # g(k;) ¢ ¢*(K;)) and (ik; & g*).

Note that m(g*,g1) > m(g*,g) — 2 as g(k;) ¢ g*(K;). First, suppose that i prefers g to
g1- If g(i) # &, let i and g(i) get matched. If g(i) = &, let i leave k; to be single. Let g5
denote the resulting network. g(i) € K=K* or ¢(i) = ¢*(i) = @ implies that 1m(g’,g5) >
m(g*,g5) > m(g*,g) =m(g’,g). Since gs is unstable (g(k;) is single), Lemma 5.5 implies
that m(g’,¢r) > m(g’,g5) > m(g’,g) with Pl (gs,¢7) > 0 forsome T € N, g7 € G.

Next, suppose that i prefers g1 to g. Then k; prefers ¢ and g* to g;. If k;j prefers g*
to g, then g(k;) prefers g to ¢*. This implies that g*(g(k;)) prefers g* to . Let g*(g(k;))
and g(k;) get matched. Let g denote the resulting network. If g(g*(g(k;))) = @, then
by definition of g* and Roth (1986) we have ¢*(g* (g(k;))) = g(k;) = &, contradicting our
assumptions for Case IIL If g(g*(g(k;))) # @, then g(g*(g(k;))) is single in g, 0 g6 is
unstable. Lemma 5.5 implies that m(g’,¢1) > m(g’,g6) > m(g’,g) with PL(ge,g7) > 0 for

some T € Ny, g1 € G.

If k; prefers g to g*, then g* (k;) prefers ¢* to g. Let k; and ¢*(k;) get matched. Let g7
denote the resulting network. Note that m(g’,g7) > m(g*,g7) > m(¢*,¢) =m(¢’,g). Since
g7 is unstable (g (k;) is single), Lemma 5.5 implies that m(g’, g7) > m(g’,g7) > 1m(g’, &) with
Pl(g7,9r) > 0forsome T € N4, g7 € G.

For all cases, we have shown that there exists T € IN, g1 € G, such that POT (¢1,87) >0
and m(g’,gr) > m(g',g). If gr € €, then we are done by letting gr = ¢”. If g7 ¢ €, then
repeated application of Lemma 5.5 will lead the process to ¢” € € such that m(g’,¢") >

m(g',g). m

Proof of Theorem 5.8. If ¢ € SS, then ¢ € € and there exists a minimal cost spanning
tree rooted at . Denote the cost of this tree by cost(g). Assume g ¢ OS. Choose g’ € OS.
Construct a path of edges (¢ = ¢',...,¢") such that ¢' € ¢, ¢' ¢ OS fori =1,...,L — 1,
and gL € OS. The path is constructed as follows. For each gi, i=1,...,L—1, Lemma A4
implies:

3gtee: m(g gt >m(g,g) and C(gg"!) =cils).

This is repeated until we reach some g" € OS. Add these edges to the conjectured minimal

cost spanning tree, replacing the existing edges exiting ¢?,...,¢"~!. Remove the edge
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leaving g'. Denote the cost of the new tree by cost(g"). Then:

cost(gh) < cost(g) + cp(g) — cL(gF) < cost(g).

The first inequality follows from the construction of the tree rooted at gL ; the second
inequality holds as ¢ ¢ OS implies c.(g) < cL(g%). So, the conjectured minimal cost span-
ning tree can have been no such thing. Contradiction. m
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