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Abstract. This paper analyzes the private provision of public goods where consumers interact
within a fixed network structure and may benefit only from their direct neighbors’ provisions.
We present a proof for existence and uniqueness of a Nash equilibrium with general best-reply
functions. Our uniqueness result simultaneously extends similar results in Bergstrom, Blume,
and Varian (1986) on the private provision of public goods to networks and Bramoullé, Kranton,
and D’Amours (2011) on games of strategic substitutes to nonlinear best-reply functions. In
addition, we investigate the neutrality result of Warr (1983) and Bergstrom, Blume, and Varian
(1986) whereby consumers are able to offset income redistributions and tax-financed government
contributions. To this effect, we establish that the neutrality result has a limited scope of
application beyond regular networks.
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1. Introduction

The private provision of public goods is a subject of ongoing interest in several important strands
of the economics literature ranging from taxation to political economy. Private contributions to
public goods are important phenomena for many reasons. Voluntary contributions by members of
a community are vital for the provision of essential social infrastructure, whilst at the aggregate
level charitable giving accounts for a significant proportion of GDP in many countries. The seminal
contribution of Bergstrom, Blume, and Varian (1986), built on an earlier striking result by Warr
(1983), provides a rigorous investigation of the standard model of private provision of public goods.1

Their main results, with sharp testable implications, are the neutrality of both the aggregate

I am deeply grateful to Sanjeev Goyal for important and enlightening conversations in the early stages of this
research. I also thank Ted Bergstrom, Yann Bramoullé, Richard Cornes, Roger Hartley, Oscar Volij, and seminar
participants at SAET 2011 in Faro, PET 2011 meetings in Exeter and San Luis, CTN 2012 workshop in Paris,
Southampton, Marseille (GREQAM), and Paris (CES) for helpful comments. The hospitality of the Economics
Department at Cambridge University is gratefully acknowledged.

1There is a special issue in the Journal of Public Economics celebrating the 20th anniversary of Bergstrom,
Blume, and Varian (1986).
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public good provision and private good consumption to income redistribution preserving the set
of contributors and the complete crowding out of government contributions financed by lump-sum
taxes on contributors.

The findings of the private provision model rest on the assumption that each consumer benefits
from the public good provisions of all other consumers. Often, for various public goods such as
information gathering and new products experimentation, a consumer may benefit from provisions
accessible only through his social interactions or geographical position. For instance, there is
strong empirical evidence that farmers perceive the experimentation of a new technology as a
public good and adjust their experimentation level in an opposite direction to their neighbors’
provision (see, for example, Conley and Udry (2010)). Moreover, much of consumption is a social
activity and consumers often first seek information from friends, colleagues, or even their various
online communities before sampling the products themselves.

In this paper, we investigate the private provision of public goods where consumers interact
within a fixed network structure and benefit only from their direct neighbors’ provisions. Recently,
the economics of networks has gained prominence as a new approach to understand some of the
patterns governing various economic interactions (see Goyal (2007) and Jackson (2008)). The main
insights on formation and stability of networks are powerful predictive tools to both positive and
normative analysis in many fields, including development economics and labor economics. Public
goods provision on networks was first studied by Bramoullé and Kranton (2007). Their analysis,
under complete information, distinguishes between specialized and hybrid contribution equilibria
and shows that specialized contribution equilibria correspond to the maximal independent sets of
the network. Galeotti, Goyal, Jackson, Vega-Redondo, and Yariv (2010) show that the possibility
that consumers hold partial information about the network can shrink considerably the potentially
large set of equilibria that arise under complete information. Galeotti and Goyal (2010) study
a model of information sharing on a network where consumers simultaneously decide on their
information provision and connections.

Bramoullé, Kranton, and D’Amours (2011) introduce a new approach to investigate games of
strategic substitutes on networks2 with linear best-reply functions. The main contribution is to
introduce a new network measure related to the lowest eigenvalue of the adjacency matrix,3 which
is a key for equilibrium analysis. At the heart of their equilibrium analysis (existence requires a
straightforward application of Brouwer’s fixed point theorem), as in that of Bergstrom, Blume, and
Varian (1986), lies the proof of uniqueness of the Nash equilibrium. Bergstrom, Blume, and Varian
(1986) rely on the weak assumption of normality of private and public goods.4 On the other hand,
Bramoullé, Kranton, and D’Amours (2011) place a bound on the slope of the linear best-reply
functions that relies on the lowest eigenvalue to establish the uniqueness of a Nash equilibrium.
The proof technique appeals to the theory of potential games where consumers’ optimal strategies
concur in a common maximization problem of a potential function of which the strict concavity
provides the uniqueness of a Nash equilibrium.

2The private provision of public goods falls into this category since a consumer has incentives to adjust his public
good provision in the opposite direction of his neighbors’ provisions.

3Such a measure has not been used previously in any of the fields related to networks, including social networks,
biology, and physics. Moreover, Bramoullé, Kranton, and D’Amours (2011) provide an interesting discussion on the
structural properties of the network that may affect the lowest eigenvalue.

4However, the many subtleties of the proof may not have fully revealed the intuition behind the proof or shown
what a familiar uniqueness argument is at work. For discussions and alternative proofs, see, for example, Bergstrom,
Blume, and Varian (1992), Fraser (1992), and Cornes and Hartley (2007).
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In this paper, we present a general proof of existence and uniqueness of a Nash equilibrium in
the private provision of a public good on networks. We show that the shared ground of Bergstrom,
Blume, and Varian (1986) and Bramoullé, Kranton, and D’Amours (2011) is beyond the trivial
case of a complete network with linear best-reply functions. Indeed, our existence and uniqueness
results simultaneously extend similar results in Bergstrom, Blume, and Varian (1986) on the private
provision to networks and in Bramoullé, Kranton, and D’Amours (2011) on games of strategic
substitutes to nonlinear best-reply functions. A crucial innovation of this paper is the uniqueness
proof technique, which is based on an adaptation of Stiemke’s Lemma to the private provision
of public goods.5 In our approach, we overcome the lack of linear structure by resorting to a
network-specific normality assumption of both public and private goods which stipulates bounds
on the nonlinear best-reply functions. In addition, an inherent advantage of our proof technique
is that it applies directly to the original public good game and, therefore, it provides insights on
what is driving the uniqueness result in this class of games.

The closely related literature on clubs/local public goods also investigates the strategic interac-
tions underlying the formation of clubs and communities. If one thinks of a network as a collection
of clubs formed either by the edges or the nodes then the public goods network literature and the
club/local public goods literature are essentially equivalent. However, such an equivalence is not
very useful since a network is then a collection of overlapping clubs and, so far, only a few pa-
pers have explored the Nash equilibrium with overlapping clubs structure. Bloch and Zenginobuz
(2007) present a model of local public goods allowing spillovers between communities, and hence
violating one of Tiebout’s assumptions, which may be interpreted as a weighted network. Eshel,
Samuelson, and Shaked (1998) and Corazzini and Gianazza (2008) adapt Ellison’s (1993) local
interaction model to public good games played on a spatial structure, which in a network setting
correspond to a circulant network.

Of the policy questions that arise in connection with the private provision of public goods, the
one of paramount importance is the effect of income redistribution. For a complete network, the
question has, to a large extent, been settled by the neutrality result mentioned above. However, it
appears that there has been no attempt in the economics of networks literature to explore whether
the neutrality result holds beyond complete networks. To this effect, we provide an innovative
approach based on the notion of main eigenvalue from spectral graph theory, due to Cvetković
(1970), and Bonacich centrality, first introduced to economics in the seminal paper of Ballester,
Calvó-Armengol, and Zenou (2006), to show that the neutrality result will not, generally, hold
beyond regular networks. We also expand on the links between main eigenvalues and Bonacich
centrality to establish some results on the patterns of changes in the aggregate public good provision
following some income redistributions in some non-regular networks. Hence, we provide some useful
predictions for the social planner or the network designer on which to base redistributive policies.

The paper is organized as follows. In Section 2, we present the model of private provision
of public goods on networks. In Section 3, we establish the existence and uniqueness of a Nash
equilibrium. In Section 4, we investigate the local stability of the Nash equilibrium. We explore
the effect of income provision and introduce Bonacich centrality in Section 5 and we investigate
the validity of the neutrality result in networks in Section 6. Section 7 provides some comparative
statics results for the aggregate public good provision and Section 8 concludes the paper.

5Stiemke’s Lemma, which is a strict version of Farkas–Minkowski’s Lemma, has been a fundamental tool to
characterize arbitrage-free portfolios in asset pricing theory.
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2. The model

There are n consumers embedded in a connected fixed network g. Let G = [gij ] denote the
adjacency matrix of the network g, where gij = 1 indicates that consumer i and consumer j
are neighbors and gij = 0 otherwise. In particular, we assume that gii = 0 for each consumer
i = 1, . . . , n. Let Ni = {j | gij = 1} denote the set of consumer i’s neighbors. The adjacency
matrix of the network, G, is symmetric with nonnegative entries and therefore has a complete set of
real eigenvalues (not necessarily distinct), denoted by λmax(G) = λ1 ≥ λ2 ≥ . . . ≥ λn = λmin(G),
where λmax(G) is the largest eigenvalue and λmin(G) is the lowest eigenvalue of G. By the Perron–
Frobenius Theorem, it holds that λmax(G) ≥ −λmin(G) > 0 and, in particular, the equality
−λmin(G) = λmax(G) holds if and only if G is a bipartite network. Moreover, there is a matrix V
such that G = V DV T , where D = diag(λ1, λ2, . . . , λn) is a diagonal matrix whose diagonal entries
are the eigenvalues of G and V is a matrix whose columns, v1, v2, . . . , vn, are the corresponding
eigenvectors of G that form an orthonormal basis of Rn.

The preferences of each consumer i = 1, . . . , n, are represented by the utility function ui(xi, qi+
Q−i), where xi is consumer i’s private good consumption, qi is consumer i’s public good provision,
and Q−i =

∑
j∈Ni

qj is the sum of public good provisions of consumer i’s neighbors. For simplicity,
we assume the public good can be produced from the private good with a unit-linear production
technology. The utility function ui is continuous, strictly increasing in both arguments, and strictly
quasi-concave. Consumer i faces the following maximization problem:

max
xi,qi

ui(xi, qi +Q−i)

s.t. xi + qi = wi and qi ≥ 0,

where wi is his income (exogenously fixed). It follows from the strict quasi-concavity that consumer
i’s public good provision is determined by a (single-valued) best-reply function fi. At a Nash
equilibrium (q∗1 , q

∗
2 , . . . , q

∗
n), every consumer’s choice is a best reply to the sum of his neighbors’

public good provisions, that is, q∗i = fi(Q
∗
−i) for each consumer i = 1, . . . , n.

Following a standard modification in the public goods literature, the utility maximization prob-
lem can be rewritten with consumer i choosing his (local) public good consumption, Qi, rather
than his public good provision, qi, that is,

max
xi,Qi

ui(xi, Qi)

s.t. xi +Qi = wi +Q−i and Qi ≥ Q−i.

If we ignore the last constraint Qi ≥ Q−i in the above maximization problem, we obtain a standard
utility maximization problem of consumer demand theory. Hence a standard demand function for
consumer i’s public good consumption can be expressed by Qi = γi(wi + Q−i), where wi + Q−i

may be interpreted as consumer i’s “social income” and γi is the Engel curve for Qi. In view of
this, acknowledging the constraint Qi ≥ Q−i again leads to Qi = max{γi(wi +Q−i), Q−i}, which
in turn implies

qi = Qi −Q−i = max{γi(wi +Q−i)−Q−i, 0} = fi(Q−i). (2.1)

Hence, consumers can only contribute a positive amount of the public good determined by their
own demand for the public good, which in turn is a function of their (social) income and also their
neighbors’ public good provision.
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3. Existence and uniqueness of the Nash equilibrium

In this section, we shall prove the existence and uniqueness of the Nash equilibrium for general
networks and best-reply functions. In the case of a complete network, Bergstrom, Blume, and
Varian (1986) rely on the assumption of normality of private and public goods to establish the
existence and uniqueness of the Nash equilibrium. In the following, we introduce the following
network-specific normality assumption.

Network normality. For each consumer i = 1, . . . , n, the Engel curve γi is differentiable and it
holds that 1 + 1

λmin(G) < γ′
i(·) < 1.

The network normality assumption places bounds on the marginal propensity to consume the public
good. Indeed, the left-hand-side inequality stipulates a strong normality of the public good, which
depends on the lowest eigenvalue of the adjacency matrix G, while the right-hand-side inequality
is the standard normality of the private good.

Theorem 3.1. Assume network normality. Then there exists a unique Nash equilibrium in the
private provision of public goods.

Proof. The existence of a Nash equilibrium is guaranteed by Brouwer’s fixed point theorem.
Suppose there are two Nash equilibria q1 = (q11 , q

1
2 , . . . , q

1
n) �= (q21 , q

2
2 , . . . , q

2
n) = q2; then for each

consumer i = 1, . . . , n, it holds that

q1i = fi(Q
1
−i) = max{γi(wi +Q1

−i)−Q1
−i, 0} and q2i = fi(Q

2
−i) = max{γi(wi +Q2

−i)−Q2
−i, 0}.

Since q1 �= q2 it follows that the set C = {i | Q1
−i �= Q2

−i} �= �©. Moreover, from the mean value
theorem, for each consumer i ∈ C there exists a real number βi such that

γi(wi +Q1
−i)− γi(wi +Q2

−i) = γ′
i(βi)(Q

1
−i −Q2

−i)

and hence

(γi(wi +Q1
−i)−Q1

−i)− (γi(wi +Q2
−i)−Q2

−i) = (1− γ′
i(βi))(Q

2
−i −Q1

−i).

Let a = maxi∈C{1− γ′
i(βi)}; then it follows from the network normality assumption that for each

consumer i ∈ C,

0 < 1− γ′
i(βi) ≤ a < − 1

λmin(G)
.

For each consumer i = 1, . . . , n, define si as follows:

si =

{
1 if Q1

−i ≤ Q2
−i,

−1 otherwise.

Thus, for each consumer i = 1, . . . , n, it holds that

0 ≤ si(q
1
i − q2i ) = si(max{γi(wi +Q1

−i)−Q1
−i, 0} −max{γi(wi +Q2

−i)−Q2
−i, 0})

≤ si((γi(wi +Q1
−i)−Q1

−i)− (γi(wi +Q2
−i)−Q2

−i))

≤ sia(Q
2
−i −Q1

−i).

Rearranging terms, since q1i �= q2i at least for some i, it follows from the above inequalities that6

0 < (q1 − q2)(S,−(I + aG)S), (3.1)

6Consider x = (x1, x2, . . . , xn)T ∈ R
n; then x ≥ 0 if xi ≥ 0 for each i = 1, . . . , n and x > 0 if x ≥ 0 and xi > 0

for some i.
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where I is the identity matrix and S = diag(s1, s2, . . . , sn) is the diagonal matrix whose diagonal
entries are si. The rest of the proof relies on a version of Stiemke’s Lemma, as stated below.
Stiemke’s Lemma. If A is an m × n real matrix, then one of the following mutually exclusive
alternatives holds true:

(1) There exists x ∈ R
n
++ such that Ax = 0.

(2) There exists y ∈ R
m such that yTA > 0.

Indeed, since inequality (3.1) implies alternative (2) holds for the matrix (S,−(I+aG)S), it follows
that there exists no x ∈ R

2n
++ such that (S,−(I+aG)S)x = 0. That is, there exists no x1, x2 ∈ R

n
++

with (I+aG)Sx2 = Sx1 which in turn implies that (I+aG)S(Rn
++)∩S(Rn

++) = �© . By continuity,
it holds that (I + aG)S(Rn

+) ∩ S(Rn
++) = �© . From Minkowski’s separating hyperplane theorem,

there exists a hyperplane with normal π �= 0, and a scalar α such that

(i) for all u ∈ (I + aG)S(Rn
+), π · u ≤ α;

(ii) for all v ∈ S(Rn
++), π · v ≥ α.

Since 0 belongs to the closure of the two sets, we can choose α = 0. Moreover, it follows from (ii)
in the separation theorem that π ∈ S(Rn

+). Thus, it follows from (i) that πT (I +aG)π ≤ 0. Hence,
(I + aG) is not positive-definite, which is a contradiction. Therefore, there exists a unique Nash
equilibrium.�

We have the following two corollaries:

Corollary 3.2. (Bergstrom, Blume, and Varian (1986)) Assume that g is the complete network
and that both private and public goods are normal goods. Then there exists a unique Nash equilib-
rium.

Proof. When g is the complete network, it holds that λmin(G) = −1.7 Thus, the normality of
both private and public goods implies the network normality assumption and, hence, there exists
a unique Nash equilibrium.�

Corollary 3.3. (Bramoullé, Kranton, and D’Amours (2011)) Consider a linear strategic substitute
game such that for each consumer i = 1, . . . , n, it holds that qi = max{1−αi

∑n
j=1 gijqj , 0}, where

αi ∈]0,− 1
λmin(G) [. Then there exists a unique Nash equilibrium.

Proof. Observe that from (2.1), the linear strategic substitute game coincides with the public
good game where for each consumer i = 1, . . . , n, γ′

i(·) = 1 − αi and wi =
1

1−αi
. Since 1 − αi ∈

]1 + 1
λmin(G) , 1[, it follows that the network normality assumption is satisfied and, hence, there

exists a unique Nash equilibrium.�

4. Stability of the Nash equilibrium

We shall now investigate the issue of stability of the Nash equilibrium. Stability is of paramount
importance to the study of comparative statics. If, following a small perturbation of parameters,
the new equilibrium can be reached by a dynamic adjustment process, then the comparative
statics analysis is strengthened. To explore the dynamic stability of the unique Nash equilibrium

7The adjacency matrix of the complete network is J − I, where J is the all-ones matrix. Since J has eigenvalues
n and 0 with multiplicities 1 and n − 1, respectively, we see that the complete network has eigenvalues n − 1 and
−1 with multiplicities 1 and n− 1.



7

in the private provision of public goods, we consider a myopic adjustment process defined for each
consumer i = 1, . . . , n, by

.
qi =

dqi
dt

= μi(fi(Q−i)− qi),

where μ1, μ2, . . . , μn > 0 are the adjustment speeds (see Dixit (1986)).
Let (q∗1 , q

∗
2 , . . . , q

∗
n) denote the unique Nash equilibrium. Before investigating stability, we par-

tition the consumers into three sets: the set of active contributors

A = {i | γi(wi +Q∗
−i) > Q∗

−i}
formed of consumers that would still contribute after a small perturbation of endowments; the set
of knife-edge non-contributors

K = {i | γi(wi +Q∗
−i) = Q∗

−i}
formed of consumers on the verge of becoming contributors; and the set of slack non-contributors

S = {i | γi(wi +Q∗
−i) < Q∗

−i}
formed of consumers that would not contribute even after a small perturbation of endowments.
The set of knife-edge non-contributors K is more likely to be empty, generically. Moreover, for
notational simplicity, we also assume that S = �©. Indeed, from the interlacing eigenvalue theorem,
it holds that8 λmin(G) ≤ λmin(G \ S) < 0 and, therefore, 0 < −1

λmin(G) ≤ −1
λmin(G\S) . Hence, if the

network normality assumption holds for the network g, it also holds for the network g \ S.
The following result shows that the private provision Nash equilibrium is locally asymptotically

stable under the same assumption required to ensure its uniqueness. Thus, local stability and
uniqueness of equilibrium are closely related.

Theorem 4.1. Assume network normality. Then the unique Nash equilibrium of the private
provision of public goods is locally asymptotically stable.

Proof. To study the local stability of the unique Nash equilibrium, we consider the Jacobian
matrix at q∗ :

J = −

⎛
⎜⎜⎜⎜⎜⎜⎝

μ1g11 μ1b1g12 . . . μ1b1g1n
μ2b2g21 μ2g22 . . . μ2b2g2n

... . . . . . .
...

... . . . . . .
...

μnbngn1 μnbng2n . . . μngnn

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where bi = 1 − γ′
i(wi + Q∗

−i). The unique Nash equilibrium is locally asymptotically stable if
all eigenvalues of the Jacobian matrix J have negative real parts. Let B = diag(b1, b2, . . . , bn)
and U = diag(μ1, μ2, . . . , μn); then it holds that J = −U(I + BG). Let us consider the matrix
K = −J = U(I +BG). In the following lemma, we show that the eigenvalues of the matrix K are
positive real numbers, which implies that the eigenvalues of the Jacobian matrix J are negative.

Lemma 4.2. Assume network normality. Then the eigenvalues of the matrix K are positive real
numbers.

8The matrix G \S is the adjacency matrix of the network g \S obtained by deleting in the network g the nodes
in S as well as the edges emanating from them.
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Proof. First, observe that the matrix

K = U(I +BG) = (UB)(B−1 +G)

is a symmetrizable matrix, as defined by Taussky (1968), since it is the product of the two sym-
metric matrices UB and B−1 +G, one of which (UB) is also positive-definite. Hence, the matrix

K is similar to the symmetric matrix U
1
2 (I +B

1
2GB

1
2 )U

1
2 since

K = U(I +BG) = (UB)
1
2 [U

1
2 (I +B

1
2GB

1
2 )U

1
2 ](UB)−

1
2 .

Recall that the symmetric matrix B
1
2GB

1
2 has real eigenvalues. Moreover, it follows from Ostrowski

(1959) that the eigenvalues of B
1
2GB

1
2 are given by θiλi, where λi is an eigenvalue of G and θi lies

between the smallest and the largest eigenvalues of B. From the network normality assumption,
it follows that for each i = 1, . . . , n,

0 < mini{1− γ′
i(wi +Q∗

−i)} ≤ θi ≤ maxi{1− γ′
i(wi +Q∗

−i)} < − 1

λmin(G)
.

Consequently, the eigenvalues of I + B
1
2GB

1
2 , given by 1 + θiλi, are positive since for each i =

1, . . . , n, it holds that

0 = 1− 1 < 1 + θiλmin(G) ≤ 1 + θiλi.

From Ostrowski (1959) again, it follows that the eigenvalues of U
1
2 (I + B

1
2GB

1
2 )U

1
2 are given by

νi(1 + θiλi), where 0 < miniμi ≤ νi ≤ maxiμi, which, therefore, implies that 0 < νi(1 + θiλi).

Since K is similar to U
1
2 (I +B

1
2GB

1
2 )U

1
2 , it follows that the eigenvalues of K are also positive.�

5. Income redistribution and Bonacich centrality

The seminal paper of Ballester, Calvó-Armengol, and Zenou (2006) shows in the case of linear
best-reply functions that the Nash equilibrium actions are proportional to the Bonacich centrality
vector, due to Bonacich (1987), defined for a < 1

λmax(G) by the vector

b(G, a) = 1T (I − aG)−1 =
+∞∑
k=0

ak1TGk,

where 1 is the all-ones vector. Bonacich centrality is a measure of prestige, power, and network
influence in sociology. In interpretation, since the ith entry of the vector 1TGk denotes the number
of walks of length k in G terminating at i, it follows that the ith entry bi(G, a) of the Bonacich
centrality vector is the sum of all walks in G terminating at i weighted by a to the power of their
length.

In the following, in the case of nonlinear best-reply functions we show that equilibrium actions
and Bonacich centrality are also closely related. More specifically, we establish that the effect of
income redistribution on the aggregate public good provision may be determined by a generalization
of Bonacich centrality. Let t = (t1, t2, . . . , tn)

T ∈ R
n, where ti denotes the income transfer made

to consumer i. The income transfer may be either a tax (ti < 0) or a subsidy (ti ≥ 0). The
social planner or network designer is constrained to balance his budget; hence 1 · t = ∑n

i=1 ti =
0. Let (q∗1 , q

∗
2 , . . . , q

∗
n) (resp. (qt1, q

t
2, . . . , q

t
n)) denote the unique Nash equilibrium before income

redistribution (resp. after income redistribution) and Q∗ =
∑

i q
∗
i (resp. Qt =

∑
i q

t
i) denote the

aggregate public good provision before income redistribution (resp. after income redistribution).
Similar to Bergstrom, Blume, and Varian (1986), we choose t relatively small in magnitude so that
the set of active contributors remains unchanged after income redistribution. For simplicity, as in



9

our stability analysis, we also assume that all consumers are active contributors. Hence, it follows
that for each consumer i = 1, 2, . . . , n,

qti − q∗i = (γi(wi + ti +Qt
−i)−Qt

−i)− (γi(wi +Q∗
−i)−Q∗

−i).

From the mean value theorem it follows that for each i such that ti + Qt
−i �= Q∗

−i, there exists a
real number βi such that

qti − q∗i = γ′
i(βi)(ti +Qt

−i −Q∗
−i)− (Qt

−i −Q∗
−i) = (γ′

i(βi)− 1)(Qt
−i −Q∗

−i) + γ′
i(βi)ti. (5.1)

Define ai as follows:

ai =

{
1− γ′

i(βi) if ti +Qt
−i �= Q∗

−i,
1− γ′

i(Q
∗
−i) otherwise,

and let us consider the diagonal matrix A = diag(a1, a2, . . . , an).

Proposition 5.1. Assume network normality. Then it holds that

qt − q∗ = (I +AG)−1(I −A)t.

Proof. First, rearranging terms in (5.1), it follows that for each i such that ti + Qt
−i �= Q∗

−i, it
holds that

qti − q∗i + ai
∑
j∈Ni

(qtj − q∗j ) = (1− ai)ti. (5.2)

Moreover, observe that (5.2) also holds trivially for each i such that ti+Qt
−i = Q∗

−i. Consequently,
it holds that (I +AG)(qt − q∗) = (I −A)t. Applying Lemma 4.2 for B = A and U = I, it follows
that the eigenvalues of the matrix I + AG are positive, which implies that I + AG is invertible.
Hence, qt − q∗ = (I +AG)−1(I −A)t.�
Proposition 5.1 is useful for the comparative statics analysis of the private provision of public
goods since one can relate the changes in each consumer’s public good provision to the income
redistribution t and the marginal propensities ai. In particular, if one is concerned with the change
in the aggregate public good provision, it follows that

Qt −Q∗ = 1 · (qt − q∗) = bdw(G,−A)(I −A)t, (5.3)

where
bdw(G,−A) = 1T (I +AG)−1.

The vector bdw(G,−A), which is well defined, may be thought of as a “diagonally weighted”
Bonacich centrality where each node carries a different weight. The “diagonally weighted” Bonacich
centrality summarizes information concerning each node impact on the aggregate public good
provision. Recent contributions of Candogan, Bimpikis, and Ozdaglar (2010) and Golub and
Carlos (2010) have proposed other useful generalizations of Bonacich centrality, which, provided
that they are well defined, characterize equilibria outcomes in some classes of games.

6. Neutrality in networks

In this section, we shall explore the effect of income redistribution on the aggregate public good
provision. For a complete network, the invariance result of Warr (1983) and Bergstrom, Blume,
and Varian (1986), the so-called neutrality result, shows that income redistributions that preserve
the set of contributors will have no effect on the aggregate public good provision or individual
private good consumption. The following proposition provides a proof of the neutrality result
based on network analysis of the private provision of public goods.
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Proposition 6.1. Assume network normality and that g is the complete network. Then it holds
that qt − q∗ = t.

Proof. First, observe that, from the network normality assumption, it follows that both matrices
I +AG and I −A are invertible. Moreover, it holds that

(I −A)−1(I +AG) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 + a1

1−a1

a1

1−a1
. . . a1

1−a1
a2

1−a2
1 + a2

1−a2
. . . a2

1−a2

... . . . . . .
...

... . . . . . .
...

an

1−an

an

1−an
. . . 1 + an

1−an

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Let u = ( a1

1−a1
, a2

1−a2
, . . . , an

1−an
)T ; then it holds that (I − A)−1(I + AG) = I + u1T . From the

Sherman–Morrison formula (see, for example, Maddala (1977, p. 446)), it follows that

(I +AG)−1(I −A) = (I + u1T )−1 = I − 1

1 +
∑n

i=1 ui
u1T .

Hence, it follows from Proposition 5.1 that

qt − q∗ = (I − 1

1 +
∑n

i=1 ui
u1T )t = t.�

What is remarkable in the neutrality result is that, regardless of the form of the preferences, each
consumer adjusts his public good provision by precisely the amount of the income transfer made
to him, provided that the set of contributors remains unchanged.

Remark 1. An alternative way to establish the invariance of the aggregate public good provision
that avoids calculating the inverse of the matrix (I−A)−1(I+AG) is to notice that the matrix has
constant column sums. This implies that 1T is a left eigenvector for the matrix (I−A)−1(I+AG)
and it holds that

Qt −Q∗ = bdw(G,−A)(I −A)t = 1T (I +AG)−1(I −A)t =
1

1 +
∑n

i=1
ai

1−ai

1 · t = 0.

We now turn our attention to investigate the neutrality in general networks. We will focus only
on the first part of the invariance result, that is, whether the aggregate public good provision is
independent of income redistribution. In principle, provided that it holds, the neutrality result
is not special to a particular form of preferences. Therefore, we can also focus our analysis on
preferences yielding parallel affine Engel curves, the so-called Gorman polar form, of which the
Cobb-Douglas preferences are a special case.9

In the following, we will introduce the concept of main eigenvalue, due to Cvetković (1970),
from spectral graph theory, to pursue our analysis of the effect of income redistribution on the
aggregate public good provision. An eigenvalue μi of the adjacency matrix G is called a main
eigenvalue if it has a (unit) eigenvector ui not orthogonal to 1, that is, 1 · ui �= 0. Since for

9This also corresponds to the class of games studied by Bramoullé, Kranton, and D’Amours (2011) where all
consumers have the same linear best-reply function. In the literature, the theoretical and empirical attraction of
preferences of the Gorman polar form is that one can treat a society of utility-maximizing individuals as a single
consumer. Such a concept, albeit different, bears a great methodological similarity to the concept of potential games
of Monderer and Shapley (1996).
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eigenvalues with multiplicity greater than one we can choose the corresponding eigenvectors in such
a way that, at most, one of them is not orthogonal to 1, without loss of generality, we may also
assume that ui ∈ {v1, v2, . . . , vn}, the orthonormal basis of Rn formed by the eigenvectors of G. In
addition, it also holds that the main eigenvalues of G are distinct and may, consequently, be ordered
μ1 > μ2 > . . . > μs. Recall that, by the Perron–Frobenius Theorem, the principal eigenvector v1
has positive entries and, hence, μ1 = λmax(G). The set of main eigenvalues M = {μ1, μ2, . . . , μs}
is called the main part of the spectrum. Cvetković (1970) shows that the number of walks in a
network is closely related to the main part of the spectrum. Indeed, let Wk = 1TGk1 denote the
number of walks of length k in G; then there exist constants c1, c2, . . . , cs such that for every k,
Wk =

∑s
i=1 ciμ

k
i . The following result provides an easy characterization of the main part of the

spectrum.

Theorem 6.1. (Harary and Schwenk (1979)) The following statements are equivalent for a net-
work g.:

(1) M is the main part of the spectrum.
(2) M is the minimum set of eigenvalues the span of whose eigenvectors includes 1.
(3) M is the set of those eigenvalues which have an eigenvector not orthogonal to 1.

The following theorem, based on the concept of main eigenvalues, shows that the neutrality
result of Warr (1983) and Bergstrom, Blume, and Varian (1986) has a limited scope of application
beyond regular networks.

Theorem 6.2. Assume network normality and that the preferences of consumers yield parallel
affine Engel curves, that is, γ′

i(·) = 1−a for each consumer i = 1, . . . , n. Then the aggregate public
good provision is invariant to income redistribution if and only if the network is regular.

Proof. From the network normality assumption, it follows that the matrix I + aG has positive
eigenvalues and so is invertible. Since G = V DV T , where D = diag(λ1, λ2, . . . , λn) whose di-
agonal entries are the eigenvalues of G and V is a matrix whose columns, v1, v2, . . . , vn, are the
corresponding eigenvectors of G that form an orthonormal basis of Rn, it holds that

(I + aG)−1 = V (I + aD)−1V T =
n∑

i=1

1

1 + aλi
viv

T
i .

Moreover, since {u1, u2, . . . , us} ⊂ {v1, v2, . . . , vn}, it follows that

b(G,−a) = 1T (I + aG)−1 =

n∑
i=1

1 · vi
1 + aλi

vTi =

s∑
i=1

1 · ui

1 + aμi
uT
i . (6.1)

From (5.3), it follows that Qt − Q = 1 · (qt − q) = (I − a)b(G,−a)t, and, hence, the aggregate
public good provision is invariant to income redistribution if and only if there exists a real number
λ such that b(G,−a) = λ1T , which from (6.1) is equivalent to

b(G,−a) = λ1T = λ
s∑

i=1

1 · uiu
T
i =

s∑
i=1

1 · ui

1 + aμi
uT
i . (6.2)

Recall that the main eigenvectors u1, u2, . . . , us are linearly independent. Thus, (6.2) is equivalent
to

λ =
1

1 + aμ1
=

1

1 + aμ2
= . . . =

1

1 + aμs
,
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which, since the main eigenvalues μ1, μ2, . . . , μs are distinct, holds if and only if s = 1. From (2)
in Theorem 6.1, it follows that s = 1 if and only if 1 is an eigenvector of G, which is equivalent to
g being a regular network.�

The above result shows that neutrality fails to hold in non-regular networks since the aggregate
provision is affected by income redistribution. It is worth noting that even in regular but not
complete networks, the neutrality holds only for the aggregate public good provision and it may
be easily observed that either the private good consumption or the public good consumption may
have been changed for some consumers.

Remark 2. To the best of our knowledge, the equality b(G,−a) =
∑s

i=1
1·ui

1+aμi
uT
i in (6.1) is the

first formulation of Bonacich centrality in terms of the main part of the spectrum. Note that the
non-main eigenvalues do not contribute to Bonacich centrality since the corresponding eigenvectors
are orthogonal to 1.

Remark 3. Often, each eigenvector vi of G may determine a measure of relative importance in the
network where the weight of a particular node j corresponds to the jth entry of the eigenvector vi
normalized by the sum of the entries of the various nodes. Such a measure is self-referential since,
by the definition of an eigenvector, the weight of a node is proportional to the sum of the weights
of its neighbors. Consequently, it is not possible for a non-main eigenvalue vi �= u1, u2, . . . , us to
generate a measure of relative importance since the sum

∑n
j=1 v

j
i = 1 · vi = 0 and the entries of

the various nodes eventually cancel each other out.

7. Comparative statics

In view of the limited redistributive neutrality in general networks, it may be desirable for the
social planner or network designer to learn about the pattern of changes in the aggregate public
good provision following some income redistributions. From a purely welfare standpoint, it is worth
noting that, in spite of the typical suboptimality of the Nash equilibrium in the private provision
of public goods, an increased aggregate public good provision in another equilibrium, achieved
after income redistribution, may not necessarily support a Pareto improvement. Setting aside the
questions of (second-best) optimality, one may argue that the aggregate public good provision may
serve as a benchmark for free-riding or aggregate activity in the network, or may affect the social
welfare function of the social planner or network designer separately.

7.1. Networks with exactly two main eigenvalues (s = 2). This is the first instance of non-
regular networks in which the neutrality fails to hold. The simplest examples of networks with just
two main eigenvalues are the complete bipartite networks and the networks obtained from deleting
a node in a strongly regular network. More generally, it holds that a network g and its complement
network g have the same number of main eigenvalues. Let d = (d1, d2, . . . , dn)

T denote the vector
of degree centrality, where di is the degree of node i, so that d = G1.

Proposition 7.1. Assume network normality and that the preferences of consumers yield parallel
affine Engel curves, that is, γ′

i(·) = 1− a for each consumer i = 1, . . . , n. If network g has exactly
two main eigenvalues, then it holds that

Qt −Q∗ =
−a(1− a)

(1 + aμ1)(1 + aμ2)
d · t.
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Proof. From Hagos (2002), it follows that if μ1 and μ2 are the two main eigenvalues of G, then
the associated unit eigenvectors are, respectively,

u1 =
(G− μ2I)1√

(μ1 − μ2)1T (G− μ2I)1
and u2 =

(G− μ1I)1√
(μ2 − μ1)1T (G− μ1I)1

.

Hence, it follows from (5.3) and (6.1) that

Qt −Q∗ = (1− a)(
1 · u1

1 + aμ1
u1 +

1 · u2

1 + aμ2
u2) · t

=
1− a

(1 + aμ1)(1 + aμ2)
[(1 + aμ2)(1 · u1)u1 + (1 + aμ1)(1 · u2)u2] · t

=
1− a

(1 + aμ1)(1 + aμ2)
[(1 + aμ2)

(1T (G− μ2I)1)(G− μ2I)1

(
√
(μ1 − μ2)1T (G− μ2I)1)2

+ (1 + aμ1)
(1T (G− μ1I)1)(G− μ1I)1

(
√
(μ2 − μ1)1T (G− μ1I)1)2

] · t

=
1− a

(1 + aμ1)(1 + aμ2)
[
(1 + aμ2)(G− μ2I)1− (1 + aμ1)(G− μ1I)1

μ1 − μ2
] · t

=
1− a

(1 + aμ1)(1 + aμ2)
[
[(1 + aμ2)− (1 + aμ1)]G1− [μ2(1 + aμ2)− μ1(1 + aμ1)]1

μ1 − μ2
] · t

=
1− a

(1 + aμ1)(1 + aμ2)
[
a(μ2 − μ1)G1

μ1 − μ2
] · t = −a(1− a)

(1 + aμ1)(1 + aμ2)
d · t.�

Hence, for networks with, at most, two main eigenvalues (s = 1, 2), our results generate precise and
clear predictions about the effect of income redistribution on the aggregate public good provision.
Furthermore, it turns out that the aggregate public good provision is determined by the degree
centrality rather than the more sophisticated Bonacich centrality.10 Our results are in line with
similar observations in the economics of networks literature. König, Tessone, and Zenou (2009)
present a model of dynamic network formation where the degree and Bonacich centrality rankings
coincide and Galeotti, Goyal, Jackson, Vega-Redondo, and Yariv (2010) emphasize the importance
of the degree centrality as a measure of immediate influence and local knowledge of the network.

7.2. Asymptotic behavior of Bonacich centrality. It is well known that the Bonacich cen-
trality becomes asymptotic to the eigenvector centrality, defined by the principal eigenvector v1,
when the attenuation factor of the Bonacich centrality approaches 1

λmax(G) from below. In our

case, since we deal with the private provision of public goods which belongs to the general class
of games of strategic substitutes, the attenuation factor of the Bonacich centrality is negative and,
thus, the behavior of Bonacich centrality must be explored at the other end of the spectrum, that
is, in the neighborhood of 1

λmin(G) .

In the following, we show that the concept of main eigenvalue is also relevant for the study
of the asymptotic behavior of Bonacich centrality. Indeed, our analysis of preferences that have

10It is worth noting that degree centrality is a local network measure since only walks of length 1 are considered,
unlike Bonacich centrality, which is a global network measure since all walks are considered. Moreover, observe that
for networks with, at most, two main eigenvalues, the neutrality holds for income redistributions amongst consumers
with the same degree.
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parallel affine Engel curves reveals that the key issue is whether the lowest eigenvalue is a main
eigenvalue.

Proposition 7.2. If λmin(G) = μs, then, when a approaches −1
λmin(G) from below, the Bonacich

centrality b(G,−a) is asymptotic to the eigenvector us.

Proof. First, observe that from (6.1) it holds that

lim
a↑ −1

λmin(G)

(
1 + aλmin(G)

1 · us
)b(G,−a) = lim

a↑ −1
λmin(G)

(
1 + aλmin(G)

1 · us
)

s∑
i=1

1 · ui

1 + aμi
uT
i

= lim
a↑ −1

λmin(G)

s−1∑
i=1

(1 + aλmin(G))(1 · ui)

(1 · us)(1 + aμi)
uT
i + uT

s = uT
s .�

Proposition 7.2 may have a useful policy implication for non-regular networks with λmin(G) = μs.
Indeed, in the case of general preferences having Engel curves close enough to an affine curve with
a slope of 1 + 1

λmin(G) , it holds by a continuity argument that the “diagonally weighted” Bonacich

centrality bdw(G,−A) is also asymptotic to the eigenvector us. Furthermore, since the eigenvector
us is orthogonal to the positive entries principal eigenvector u1, it follows that the eigenvector us

has both positive and negative entries. Thus, income redistributions that follow the sign patterns of
the eigenvector us will have a predictable impact on the aggregate public good provision. Finally,
for non-regular networks with λmin(G) = μs, the predictions are less clear and vary according to
the vector of Bonacich centrality

b(G,
1

λmin(G)
) = λmin(G)

s∑
i=1

1 · ui

λmin(G)− μi
uT
i .

8. Conclusion

In this paper, we have established that beyond regular networks, consumers are no longer able
to offset income transfers by changes in their public good provisions. Our result restores, to
some extent, the role of income redistribution and tax-financed government contribution as main
channels for policy intervention. In the literature, various lines of research have been proposed to
counter the paradigm of neutrality of income redistribution. Often, the reason for the neutrality
to break down appears to hinge on the imperfect substitution amongst the various consumers’
provisions (see, for example, Andreoni (1990)). Our result suggests that the neutrality fails in the
private provision of public goods on non-regular networks for similar reasons. However, unlike the
various behavioral and technological explanations in the literature, the lack of perfect substitution
seems to be brought about by the inherent degree heterogeneity of non-regular networks.

Finally, most of our results, including existence, uniqueness, and stability of the Nash equilibrium
in the private provision of public goods on networks, are based on properties of the best-reply
functions and, hence, may accommodate the general class of games of strategic substitutes on
networks with nonlinear best-reply functions, which are the cornerstone in the study of various
areas of economics (see Bulow, Geanakoplos, and Klemperer (1985) and subsequent literature).
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