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An Auction Approach
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Abstract: This paper proposes a micro-foundation for
knowledge spillovers. I model a city in which free knowl-
edge transfers are bids by experts to entrepreneurs who
auction jobs. These knowledge bids resemble a con-
sultant’s pitch to a potential client. Two fundamental
properties of knowledge underlie the model: First, it
is often necessary to reveal some knowledge to demon-
strate its value. Second, knowledge is freely reproducible.
Larger cities generate more meetings between experts
and entrepreneurs, resulting in more learning and better
matches. Larger cities also foster competition for jobs,
which motivates experts to raise their knowledge bids.
These results demonstrate how competitive behavior can
be a source of agglomeration economies, and contribute
to explain the higher productivity of urban workers.
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1. Introduction

Urban environments have the potential to catalyze learning and networking ac-

tivity. In Alfred Marshall’s influential argument, chance encounters and imitation

take place whenever individuals live in close proximity, and knowledge spillovers

in cities happen quite inadvertently.1 Intuitively, however, knowledge spillovers

also result from deliberate individual decisions (Helsley and Strange, 2004). The

motivation behind these individual decisions remains little understood,2 in the

face of growing evidence on the crucial role that knowledge spillovers play in

shaping the geography of production in modern economies.

The main objective of the paper is to explain why people sometimes let their

knowledge ‘spill’, instead of selling it in markets. I model uncompensated

knowledge transfers (knowledge spillovers) as bids by experts to entrepreneurs

who auction jobs. An expert could be a consultant pitching an idea to a potential

client, for instance a free advice on how to advertise a product. Unlike extant

literature that focuses on imitation and reciprocity, this explanation for knowledge

spillovers relies on competitive behavior and on the fundamental properties of

knowledge as an input. I use such knowledge spillovers as a micro-foundation for

agglomeration economies, to show how large cities improve knowledge diffusion

and offer better job matches between experts and entrepreneurs. Interestingly,

heightened competition for jobs enhances experts’ willingness to transfer free

knowledge, providing a new explanation for the higher productivity of workers

in large and dense urban areas.3

Interest in urban knowledge diffusion stems from the presumption that density

facilitates face-to-face transfers of productive ideas. Patent citations provide

direct evidence that physical proximity favors knowledge diffusion, and Jaffe,

Trajtenberg, and Henderson (1993) find that a patent holder is more likely to

1See Marshall (1920). Glaeser (1999) provides a model formalizing this idea, in which knowl-
edge flows through imitation of the old by the young, with the old getting a share from the
young’s returns to a successful skill transfer.

2Puga (2010), in his review of the literature, argues that: "We have good models of agglomera-
tion through sharing and matching, but not a deep enough understanding of learning in cities."

3A vast empirical literature in urban economics establishes that firms and individuals in larger
agglomerations are more productive; see Puga (2010) for a review of the literature. The classic
explanations for this productivity advantage are so-called ‘agglomeration economies’; processes
through which interactions between firms or individuals are facilitated in cities, in a way that
makes these units more productive.
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cite other patents from inventors who are geographically close. The importance

of face-to-face interactions is revealed in the very localized nature of production

externalities.4 Rosenthal and Strange (2008) and Arzaghi and Henderson (2008)

find that the productivity gains from spatial proximity to other people decay

sharply with distance. This decay suggests that face-to-face interactions, whose

cost is especially sensitive to distance, are prominent among the factors making

people in larger and denser cities more productive.

Wage regressions corroborate the importance of learning in cities. Workers

in large cities earn on average 30% more than workers in rural areas (Glaeser,

2011), but this premium does not immediately accrue to a worker upon moving

to a bigger city. Much of these earning gains arise only as a worker accumulates

experience in the city (Glaeser and Maré, 2001, De la Roca and Puga, 2013). Recent

estimates from Spain show that about half of the earning advantage of urban

workers is acquired through time (De la Roca and Puga, 2013), which suggests

that learning plays a central role in increasing urban workers’ productivity. Jacobs

(1968), Lucas (1988), and others take the argument further and conclude that in a

knowledge-based economy, idea transfers in cities are fundamental to economic

growth.

I develop a model in which individuals meet in a city, and then start to work.

During a meeting, an expert chooses how much knowledge to freely transfer to an

entrepreneur. After learning from all experts, an entrepreneur hires one of them

and produces a good with a constant returns to scale technology, using both the

knowledge obtained during meetings and that acquired from the hired expert.

The model’s intellectual foundation and defining assumptions – that the value of

knowledge is unobservable and communicated at no cost – derive from two key

ideas about the properties of knowledge as an input. The first idea, from Arrow

(1962), is that one often must possess knowledge to assess its value, or reveal

an idea to demonstrate its usefulness. This is unlike a physical object like a car,

which can be taken for a test drive and brought back. The second idea is that

4Few studies are able to directly assess the importance of knowledge spillovers relative to other
agglomeration forces. Rosenthal and Strange (2001) find evidence supporting all three sources
of agglomeration identified by Marshall (1920) - input sharing, labor pooling and knowledge
spillovers - with labor pooling being the best predictor of industry agglomeration. Ellison, Glaeser,
and Kerr (2010) also find evidence for all three sources by looking at coagglomeration patterns
for different industries, but conclude that input sharing (specifically, proximity to suppliers and
customers) has the most explanatory power.
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knowledge is freely reproducible, or has a negligible marginal cost of production

once a blue-print exists.5

Arrow’s property suggests the motivation behind uncompensated knowledge

transfers. For an expert, a free transfer is a bid for a job contract, a means to prove

how knowledgeable she is. For an entrepreneur, who auctions a job to experts,

the free knowledge transfers are an opportunity to accumulate knowledge, and

to find the best expert for a particular job. An auction framework delineates the

strategic incentives to give some valuable knowledge without direct payment, but

not all. It identifies conditions under which knowledge ‘spills’ in non-market

interactions, as opposed to market transactions occurring after the best expert

for a job is revealed and starts working for an entrepreneur. Agglomeration

economies result from free reproducibility of knowledge and from the greater

number of meetings between experts and entrepreneurs in a larger city. The

model uncovers a new agglomeration force, stemming from competitive behavior:

As the number of experts competing for jobs in a city increases, their willingness

to freely transfer knowledge – the size of their knowledge bid – also increases.

Dividing agglomeration forces into sharing, matching and learning as in Duran-

ton and Puga (2004), larger cities in this model stimulate more learning and better

matches.

Auction theory offers intuitive models of people’s behavior in competitive envi-

ronments, which reward individuals for being smarter and more knowledgeable

than others.6 As such, the model evokes so-called ‘industrial clusters ,’ in which

networking is essential, job changes are frequent and, as shown in Freedman

(2008), workers initially accept lower wages while they develop their reputations.

The model also captures the networking behavior of workers in finance, advertis-

ing, law, graphic design and other consulting industries, as they ‘pitch’ their ideas

to potential clients.7

5The first model relating increasing returns to the free reproducibility of knowledge is from
Romer (1990).

6At another extreme, Niehaus (2011) assumes that people transfer knowledge non-strategically,
as long as the benefits to the learner exceed the costs to the sender.

7While Marshall (1920) emphasizes within-industry externalities, Jacobs (1968) highlights the
importance of cross-industry spillovers. Glaeser, Kallal, Scheinkman, and Shleifer’s (1992) finding
that a diverse industry mix is more conducive to industry growth supports the preeminence of
Jacobian externalities. Henderson, Kunkoro, and Turner (1995), however, find that Marshallian
externalities are more important, at least for mature industries.
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The paper contributes to several strands of literature in urban economics,

innovation, knowledge markets and mechanism design (auctions). The innovation

literature, unlike this paper, emphasizes the role of reciprocity in fostering incen-

tives to engage in free knowledge transfers. In a seminal paper, von Hippel (1987)

uses survey evidence to document how the expectation of reciprocal transfers

motivates engineers in the steel industry to share knowledge with their peers.

With the exception of Glaeser (1999), who focuses on imitation, reciprocity is

also the motivation for knowledge transfers in theoretical models of knowledge

diffusion and creation. Jovanovic and Rob (1989) propose a model in which agents

can develop ideas privately, but can also share their ideas with other agents, such

interactions leading both to imitation (diffusion) and invention (creation). Berliant

and co-authors (2006, 2008 and 2009) refine Jovanovic and Rob’s insight that

new and better ideas originate from the contact of different ideas, and provide

an analysis of the costs and benefits of urban diversity for knowledge creation.

Helsley and Strange’s (2004) model is the first in which the choice of how much

knowledge to transfer is endogenous. In their model, agents living in a city barter

knowledge and develop a reputation for cooperation, in line with von Hippel’s

evidence on ‘know-how’ sharing. Finally, Davis and Dingel (2012) consider idea

exchange as an agglomeration force in a system of cities model.

The expectation of reciprocity certainly motivates many free knowledge trans-

fers, but my model purposely excludes the possibility of sharing or reciprocity.

I provide an alternative explanation for uncompensated knowledge transfers,

based on the incentives to communicate how knowledgeable one is. Supporting

this explanation, Appleyard (1996) finds that reciprocity is less important in

high-tech or other rapidly evolving industries, precisely the kind of industries

in which agglomeration economies are strongest (Moretti (2004), Fu (2007), and

others). Ignoring reciprocity reconciles theories on knowledge spillovers with

these empirical findings.

The paper also relates to the literature on knowledge markets. Bhattacharya

and Ritter (1983), Anton and Yao (2002), and others draw from Spence’s (1973,

1974) work on market signaling to show that Arrow’s property can lead firms

to provide a ‘voluntary disclosure of knowledge’ (another expression for ‘free

knowledge transfers’). My model differs from existing models of voluntary

knowledge disclosure, in that it defines a free knowledge transfer not as a ‘signal’,

4



but rather as a ‘bid’, a simpler concept that is better suited to informal and

semi-formal interactions in competitive urban environments.

Finally, the paper relates to the literature on auction theory. The solution to the

basic version of the model only involves the simplest case of a first-price auction

with no entry cost. However, knowledge auctions in an urban environment differ

in two ways from existing auction models. First, a knowledge auction is all-pay

from the auctioneer’s perspective, but not from that of the bidder. Second, entry

costs and search costs in urban environments are endogenous and depend on city

population.

The remainder of the paper is organized as follows: Section 2 presents the

basic knowledge auction model in a closed city. Section 3 is an extension of the

basic model in which experts and entrepreneurs face a binding time constraint.

Section 4 analyzes the equilibrium size and composition of an open city. Section

5 provides a discussion of the results and Section 6 concludes.

2. A model of knowledge transfers in a closed city

Consider a closed city with N inhabitants, a number X of which are experts who

hold some knowledge, and a number E of which are entrepreneurs who can use

that knowledge in production, so that X +E = N .

Experts and entrepreneurs play a two-stage game: first a meeting stage, then a

production stage. At the meeting stage, experts learn their type and choose how

much knowledge to freely transfer to entrepreneurs that they meet in the city. En-

trepreneurs learn from the knowledge transferred by experts. At the production

stage, each entrepreneur hires one expert and pays her for the knowledge that

she has not already given at the meeting stage.8 Entrepreneurs then produce a

consumption good, using both the knowledge accumulated at the meeting stage

and that acquired at the production stage of the game.

Let i index the set of X experts, and j index the set of E entrepreneurs. The

value of expert i’s knowledge to entrepreneur j is denoted by kij , so expert i’s

type is a E-vector of knowledge ki = (ki1...,kij ,...kiE). kij is independently and

identically distributed over the [0,1] uniform distribution, for all i ∈ {1,...,X}

8Online Appendix F solves a version of the model in which an entrepreneur can hire many
experts, and provides numerical evidence that an entrepreneur prefers to hire just one.
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and j ∈ {1,...,E}. The value of an expert’s knowledge to an entrepreneur is

independent of its value to another entrepreneur, to reflect the idea that different

experts are proficient in different fields, and that each entrepreneur puts a distinct

value on any expert’s knowledge.9 Knowledge has two properties: there is no cost

of communicating it (free reproducibility), and the value of an expert’s knowledge

is unobservable to entrepreneurs or other experts. So there is no cost of meeting,

an assumption that I relax in Section 3. The meeting technology is such that every

expert meets every entrepreneur in the first stage of the game, so the number of

meetings is E×X . The key assumption is that larger cities feature more meetings

per capita. The particular form of the matching function that realizes all possible

meetings only brings the benefit of simplicity, and it is not necessary to derive

the model’s main results. Section 3 proposes a microfoundation for a matching

function that delivers more meeting per capita as city size increase.

Define bij(kij ,X) as the knowledge transferred for free by expert i to an en-

trepreneur j that she meets in the first stage of the game. The notation anticipates

that this transfer will be function of kij and X . Each entrepreneur uses the same

constant returns to scale, additive production function to produce a single good

y, with knowledge as the only input. Entrepreneur j produces an amount yj of

the good, which is equal to the knowledge received for free at the meeting stage

of the game, plus the knowledge paid for at the production stage (denoted by xj),

so that:

yj =

(
X

∑
i=1

bij(kij ,X)

)
+ xj . (1)

The utility function of both experts and entrepreneurs is u(y) = y, where y is

the amount of the good consumed. Note that perfect substitutability of experts’

knowledge is not a necessary assumption, and online Appendix D numerically

replicates the model’s key results using a Cobb-Douglas production function.10

The wage setting mechanism is such that an expert earns a wage equal to his

9This independence does not affect any of the results in this section.
10With Cobb-Douglas production, there is some complementarity between the knowledge of

different experts, and the model is not simply one of knowledge diffusion. A production function
with complementarities captures some features of knowledge creation, because entrepreneurs
combine the knowledge of different experts to produce something different from the sum of its
parts.
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productivity at work, xj , paid for in units of the good.11 This wage contract

depends on the actual surplus created by an expert, not on the belief of an

entrepreneur about her type. Given the crs, additive production function, it

follows that expert i hired by entrepreneur j earns a wage equal to kij − bij(kij ,X);

the value of the knowledge that she has not already given during the meeting

stage of the game. Knowledge transferred for free cannot be given back and as

such is never paid for. An expert can work for any number of entrepreneurs, and

her wage is the same as her utility from obtaining a job, because of the linear

utility function.

It only remains to specify the job allocation mechanism. For an entrepreneur,

the unobservability of experts’ knowledge presents an opportunity to ask for free

knowledge, with a job offered as a reward. A particularly attractive mechanism

is the simple rule awarding a job to the expert who transfers the most knowledge

during the meeting stage of the game. As the next section demonstrates, this rule

(which turns out to be a first-price auction) allows an entrepreneur to find the

best expert for a particular job, as well as to obtain free knowledge from all other

experts.12 This first-price auction is arbitrarily close to any optimal mechanism

as the number of experts becomes large, in the sense that an entrepreneur freely

uses the knowledge of all experts. In the online appendix, I provide evidence

that this job allocation mechanism is optimal under two important extensions of

an entrepreneur’s action space. First, online Appendix E allows entrepreneurs

to require a minimum knowledge transfer, and shows that they prefer to set it

to zero. This result distinguishes knowledge auctions from standard auctions in

which an auctioneer can increase its expected payoff by setting a positive reser-

vation price (Myerson, 1981).13 Second, online Appendix F allows entrepreneurs

to hire any number of the top experts - who transferred the most knowledge

11Equivalently, the wage is settled through Nash bargaining over the surplus produced by a
working expert, and λ, the bargaining power of an entrepreneur, is equal to zero. A different
value of λ would not affect any of the main results of this section.

12A commitment problem arises if an entrepreneur has an incentive to motivate knowledge
transfers by pretending ex-ante that he will hire only one expert, but prefers ex-post to hire many
experts to earn some surplus from their work. Assuming that entrepreneurs do not get a share of
the experts’ surplus (λ = 0) resolves that commitment problem. Therefore, entrepreneurs in the
model do not need to commit to hiring only one expert in a Bayesian equilibrium.

13In a normal auction model like that of Myerson (1981), the seller only receives the largest bid.
A knowledge auction, however, is all-pay from the perspective of an entrepreneur, so a reservation
price is not desirable because it deters low type experts from participating in the auction.
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during meetings - and finds that they prefer to hire only one expert (this last

result, however, is only supported by numerical evidence). Of course, there exist

plausible extensions of an entrepreneur’s action space under which the first-price

auction is not optimal, for instance if entrepreneurs can make additional transfer

payments beyond the wage setting mechanism.14 The first-price auction, however,

is probably a more realistic representation of entrepreneurs’ behavior in informal

or semi-formal urban meetings than the richer incentive schemes suggested by

optimal mechanism design with larger action spaces.

2.1 Results

The previous section defined the job allocation mechanism (an auction) and the

production stage of the game, so it is now possible to work backwards and solve

for an expert’s equilibrium strategy at the meeting stage of the game. Using

auction terminology, kij becomes expert i’s valuation for a job with entrepreneur

j, and bij(kij ,X) becomes her bid for a job. An expert optimally works for every

entrepreneur who offers her a job, and the E auctions that she participates in are

strategically independent. The strategy of an expected utility maximizing expert

i, when meeting entrepreneur j, is to transfer the amount of free knowledge that

maximizes the probability that she gets the job times the utility (wage) that she

obtains if she is hired. If all other experts use the same bidding function b, i.e. in

a symmetric equilibrium, then the problem of an expert of type kij ∈ [0,1] is to

submit a bid bij ≥ 0 that solves:

max
bij

prob

(
bij > max

l∈{1,...,X}\{i}
b(klj ,X)

)
× (kij − bij)|b(kij )=bij

. (2)

Equation (2) demonstrates that for an expert, a meeting is equivalent to par-

ticipation in a first-price auction. The highest bidder wins and ‘pays’ his bid,

because an expert cannot be paid at the production stage for the knowledge

already transferred at the meeting stage. The solution to an expert’s problem

is well-known, as b(kij ,X) = ((X − 1)/X)kij is the unique Nash equilibrium of a

first-price auction in the independent private value model with quasi-linear utility

14Appendix B shows that entrepreneurs can increase their expected utility by offering a wage
top-up to an expert winning the auction.
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and a U [0,1] distribution of valuation, see for instance Jehle and Reny (2000).15 I

dropped the i and j indices because of symmetry and independence across auc-

tions. Note that an expert has no incentives to make a direct monetary payment

(i.e. a payment in units of the good) to an entrepreneur, because experts always

have enough knowledge to ‘pay’ their bid. Knowledge is freely reproducible, so

bidding knowledge is always preferable to bidding money. Lemma 1 summarizes

these results:

Lemma 1 For an expert, a meeting is equivalent to participation in a first-price auction

that requires solving equation (2). There exists a unique symmetric Bayesian Nash

equilibrium bidding function that is strictly increasing in k and with b(0,X) = 0, given

by b(k,X) = X−1
X k.16

An important corollary of Lemma 1 is that each entrepreneur k hires the expert

that is best for him, i.e. with the highest knowledge value kij from the set

{k1j , . . . ,kXj}. This is a consequence of a bidding function that strictly increases

in k, for all X > 0. Another key property of the bidding function is that ∂b
∂X

> 0,

for all k ∈ [0,1] and all X > 0 (I remove subscripts when no confusion if possible).

That is, the value of the free knowledge transferred by each type of experts

increases with the number of other experts competing for jobs in the city. Before

stating and proving the main proposition of this section on total production in a

closed city, I derive a number of intermediate results.

To compute E(x), the expected wage of an expert, define a random variable

k(X ,X) representing the highest order statistic of X draws from the i.i.d. U [0,1]

distribution, with probability distribution function f(k(X ,X)) = XkX−1
(X ,X)

. The

expected wage is then:

E(x) =
∫ 1

0

(
k(X ,X) − b(k(X ,X),X)

)
f(k(X ,X))dk(X ,X) (3)

=
∫ 1

0

(
k(X ,X) −

X − 1

X
k(X ,X)

)
XkX−1

(X ,X)
dk(X ,X)

15The result holds for all quasi-linear utility functions, so considering Nash bargaining for wages
with λ as the bargaining power of an entrepreneur would not affect the bidding function of
experts, which stays the same for wages equal to (1 − λ)× (k− b(k)) and 0 ≤ λ < 1.

16It would be possible to show that this equilibrium is unique, without restricting attention to
symmetric equilibria with bidding function strictly increasing in k and b(0,X) = 0. See Maskin
and Riley (2003) for a proof whose assumptions are satisfied by the distribution of valuation and
utility specification that I use (they make the additional assumption that experts never bid more
than their valuation).
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=
1

X + 1
,

where the first line is simply the expected value of the best expert’s knowledge

(highest order statistics) minus her expected bid, and the second equality substi-

tutes for the bidding function.

The expected utility of an expert can be computed both before and after she

learns her type (but note that an expert always knows her type when she bids).

Such distinction is useful in extensions of the models in which experts can migrate

to an open city, covered in Section 4. The expected utility of an expert i after

learning her type ki is equal to:

E

(
E

∑
j=1

(kij − b(kij ,X)) I [kij > khj ,∀h ∈ {1,...,X}\{i}]

)
(4)

=
E

∑
j=1

kX−1
ij (kij − b(kij ,X))

=
E

∑
j=1

kXij

X
,

where I{·} is an indicator function equals to 1 if expert i wins a job from

entrepreneur j. The first equality obtain because E is a linear operator, and kX−1
ij

is the probability that expert i wins the auction of entrepreneur j. The second

equality comes from substituting the bidding function. Equation (4) shows that

after learning her type, the expected utility of an expert increases with the number

of entrepreneurs and with the value of her knowledge, and decreases with the

number of competing experts.

The expected utility of an expert before learning her type is equal to:

1

1 +X
×

E

X
, (5)

the expected wage from equation (3), times E/X , the number of jobs that each

expert can expect to win. Therefore, the expected utility of an expert before she

learns her type increases with the number of entrepreneurs and decreases with

the number of other experts.

To find the expected utility of an entrepreneur, recall that they do not get a

share of the surplus produced by working experts. So an entrepreneur j’s ex-

pected utility is equal to the expected value of the knowledge transferred during

10



meetings:

E

(
X

∑
i=1

b(kij ,X)

)
= X

∫ 1

0
b(y,X)dy = X

∫ 1

0

X − 1

X
ydy =

X − 1

2
. (6)

This function displays increasing returns to the number of experts. Increasing

returns arise because of the competitive behavior of experts, who bid more as

the number of other experts increases, and because of the special nature of

knowledge. That is, the knowledge auction is all-pay from the perspective of

an entrepreneur, who makes productive use of the knowledge bids of all experts,

including those that he does not hire. The expected utility of an entrepreneur

does not depend on E, as there is no competition between entrepreneurs in the

model.

Finally, an expression for expected total production in the city results from

simple arithmetics.

Proposition 1 Expected total production in a closed city is equal to Y =

E
(
X−1

2 + 1
X+1

)

Proof The term inside the bracket is expected production per entrepreneur, which

is equal to the expected sum of the knowledge transfered to each entrepreneur

in the meeting stage of the game (equal to (X − 1)/2, from equation 6), plus the

expected knowledge obtained by each entrepreneur during the production stage

(equal to 1/(X + 1), the expected wage paid by an entrepreneur, from equation

3). All entrepreneurs are identical, so expected total production is equal to E

times per entrepreneur production.

The defining feature of total expected production is the presence of external

returns to scale. That is, doubling the number of experts and entrepreneurs in the

city more than doubles Y , despite the production function itself having constant

returns to scale. There are two sources of increasing returns to the number of

city inhabitants: an increase in the number of meetings (extensive margin) and an

increase in the productivity of each meeting (intensive margin).

First, increasing returns at the extensive margin come from the matching

function, which displays increasing returns to scale because it matches each

entrepreneur with each expert. This is apparent in the expression for Y in Propo-

sition 1. This expression is equal to the number of entrepreneurs times the sum of
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the knowledge transferred in both stages of the game by all experts, and it closely

resembles the expression for the number of meetings (E ×X). Second, increasing

returns at the intensive margin originate from experts’ choice to reveal more

knowledge during meetings as competition for jobs heats up. This theoretical

prediction is supported by robust empirical evidence that bids in independent

private value first-price auctions increase with the number of participants (Kagel,

1995). This intensive margin is also apparent in the expression for Y ; the average

knowledge transferred in both stages by an expert,
(
X−1

2 + 1
X+1

)
, increases more

than proportionally with the number of experts.17 All the increasing returns come

from X−1
2 , the average knowledge transferred during meetings. At the intensive

margin, there are only increasing returns to X , the number of experts in the city.

These returns vanish as X becomes large and experts bid the entire value of their

knowledge at the meeting stage (limX→∞ b(k) = limX→∞((X − 1)/X)k = k). In

this case, the auction mechanism is necessarily optimal for entrepreneurs, who

extract all the knowledge of every expert during meetings. The city is also

efficient, as expected production Y tends to its maximum level – the expected

total amount of knowledge in the economy – of (E ×X)/2.

Intuitively, increasing returns to city size arise because interactions are cheaper

and the number of potential partners is higher in larger cities. The model captures

this intuition through a matching function such that each expert and entrepreneur

in the city meets once, at no cost. Unsurprisingly, increasing returns at the exten-

sive margin is a prerequisite for increasing returns at the intensive margin, and

heightened competition or better matches in larger cities depend on increasing

returns from the matching function. This paper formalizes and extend these ideas

by combining a theory of strategic interaction – auction theory – with the funda-

mental properties of knowledge as an input. The idea that valuable knowledge

must be given in order to demonstrate its value explains the incentive of an expert

to transfer knowledge. Free reproducibility in turn leads to increasing returns,

because each expert is able to transfer his knowledge to many entrepreneurs

without losing it. In some sense, Arrow’s property enhances the efficiency of

17 d 1
X (X−1

2 + 1
X+1 )

dX = X2+4−4X

2X2(X−2)2 − 1+2X
X2(X+1)2 = 1

2X2(X+1)2

(
X2 − 2X − 1

)
> 0 for all integers

X > 2. There are no increasing returns from competition when starting from X = 1, because if
there is only one expert in the city she bids nothing but is hired by everyone, which is efficient
compared to the case in which there are two experts who bid against each other, but with only
one of them working.
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cities. The unobservability of experts’ knowledge empowers entrepreneurs to ask

for free transfers during meetings. This diffusion of knowledge might not happen

if the value of experts’ knowledge was perfectly observable.

Another defining property of the knowledge auction lies in its ability to match

each entrepreneur with the expert whose knowledge is most valuable to him.

The value of an expert’s knowledge is uncorrelated across entrepreneurs, so

different experts, with expertise in different fields, are matched with different

entrepreneurs. This is consistent with the assumption that an expert’s type is not

common knowledge (as it probably would be if the same expert was best for every

entrepreneur) and that meetings are necessary to reveal the nature and extent of

expert’s knowledge. In fact, the potential for better matches between workers and

firms is believed to be one of the main agglomeration forces generating cities.18

The knowledge transfer mechanism in this paper provides a possible explanation

for how entrepreneurs manage to identify more suitable workers when the pool

of candidates is larger. In bigger cities, more numerous and valuable informal

meetings generate more productive working relationships.19

To summarize, the auction framework suggests answers to the why, how

and when of uncompensated knowledge transfers. For an expert, meeting an

entrepreneur is an opportunity to display the extent of his knowledge, in a bid

to impress an entrepreneur enough to get a job. For an entrepreneur, meeting an

expert is an opportunity to receive free knowledge, and to find the best expert

for a job. Market transactions, in the form of compensated knowledge transfers

at the production stage of the game, only follow non-market interactions after

revelation of the best expert.

18See Duranton and Puga (2004) for a review of the literature on micro-foundation for agglom-
eration economies

19The analysis of these gains is hard within the model because increasing the productivity of
meeting decreases productivity at work. Note, however, that an entrepreneur gains from better
matches under the assumption that he captures a share λ of a hired expert’s production at work.
In equilibrium, an entrepreneur can infer the type of an expert from his bid, and it is easy to show
that the expected production of the best expert is larger than that of the second best. Under the
assumption that λ = 0, however, ‘hiring the best expert’ is a good strategy for an entrepreneur
only because it provides incentives for experts to transfer knowledge.
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3. Adding a time constraint

This section introduces a time constraint in the model of the previous section, to

relax the assumption that each expert meets each entrepreneur in the city. Experts

incur a time cost of searching for, meeting with, and working for entrepreneurs,

of whom they meet only a random subset. The search cost of an expert decreases

with the number of entrepreneurs in the city. Such a decrease in the cost of

meeting other people is widely acknowledged as a fundamental advantage of

modern cities (e.g. Glaeser and Kohlhas, 2004).20 As a result, the matching

function receives a microfoundation that delivers more meetings per capita in

larger cities. So just as in the model of Section 2, increasing returns arise because

larger cities enable more meetings per capita, and heightened competition renders

each meetings more productive. At the end of this section, I discuss an alternative

model with constant search cost, in which experts are able to sort into meetings

with entrepreneurs for whom their knowledge is most valuable. I solve this model

in online Appendix H.

The city population is X + E = N , with z = E/X defined as the ratio of

entrepreneurs to experts in the city. In what follows I hold city composition z

constant, and I explore the impact of an increase in city size N . Each expert

and each entrepreneur has one unit of time. The time cost of meeting to give or

receive knowledge is the same for experts and entrepreneurs, and equal to c < 1.

An expert who works for an entrepreneur incurs an additional time cost equal to

c. Finally, an expert who wishes to find an entrepreneur to meet with incurs a

search cost equal to c(E), with c(1) = c, limE→∞
c(E) = 0 and c′(E) < 0. This

last property is crucial and captures the idea that the search cost is lower when

entrepreneurs are numerous. The set of entrepreneurs that each expert searches

for is random (see online Appendix G for a model in which an expert’s searches

are directed towards entrepreneurs for whom her knowledge is most valuable.)

I make two assumptions on the time constraint of experts and entrepreneurs.

First, the time constraint need only bind in expected value. That is, an expert

20This assumption can be consistent with a cost of living that increases in city population. For
instance, individuals could first incur a cost of housing and of commuting to a central business
district, both of which increase with population. Once in the cbd, however, workers find it cheaper
to search for a meeting partner in a large city. For simplicity, I do not model commute and housing
costs in this section.
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chooses a number of searches before learning her type, such that her expected

use of time is equal to 1. Second, I restrict attention to cases in which the time

constraint of an expert binds, but that of an entrepreneur does not. It will be easy

to show that this is always the case if N is large enough and if z > 1, i.e. if there

are more entrepreneurs than experts.21 Together, these assumptions imply that

an expert’s searches are always successful, because an entrepreneur has time to

meet with every expert who searches for him.

3.1 Results

I first solve for S, the number of searches that each expert makes. It is always

optimal for experts to reach their boundary restriction, so the time constraint of

an expert in expected value can be written as:

c(E)S + c(1)S + c(1)
E

X

(
1 −

(
1 −

S

E

)X
)

= 1, (7)

where the third term, equal to c(1) times the expected number of jobs that each

experts gets, is derived using the symmetry of the problem and the probability(
1 − S

E

)E/z
that an entrepreneur meets no expert and does not allocate a job.22

In this model, the decreasing search cost implies a greater number of searches

per expert as city population increases (S ′(E) > 0), a result that I state in the

following lemma. The lemma also provides a condition on c′(E) ensuring that

S ′(E) is large enough. This condition will turn out to be sufficient to prove that

the bid of each type of experts increases with city size.

21The case of N small, in which neither the time constraint of an expert nor that of an en-
trepreneur binds, is equivalent to the model in Section 2. One argument to support the restriction
z > 1 comes from the next section, which shows, in a simpler setting without time constraints,
that z has to be much larger than 1 to equalize experts’ and entrepreneurs’ utility in an open
city equilibrium, because experts provide an uncompensated externality. If the constraint of an
entrepreneur was to bind, then one would need to specify a mechanism matching experts to
entrepreneurs, or else there is an inefficiency in large cities as the searches of experts are wasted
on entrepreneurs who have no more time to meet.

22This coordination friction alone would induce experts to make slightly more searches as city
size increases, but this is a very small effect that is not the source of increasing returns in the
model. See Rogerson, Shimer, and Wright (2005) for a discussion of such coordination frictions
in the search-theoretic literature, in which the type of matching function in my model is often
referred to as an ‘urn-ball matching process’.
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Lemma 2 If c′(E) < 0, then S ′(E) > 0. Moreover, if c′(E) < −2
E2 then S ′(E) >

(
S(E)
E

)2
.23

Proof In Appendix A.

To show that the expected number of auction participants, denoted by Q, also

increases with city size, define q = S(E)/E as the probability that an expert

participates in any entrepreneur’s auction. The number of experts participating

in an auction is therefore a binomial random variable with distribution BX ,q and

expected value Q such that Q = qX = XS
E = S

z .24 Note that Q, S and q are

endogenous variables, but I often drop their dependence on E and X from the

notation to improve readability.

To solve for the bidding function of an expert, I follow Harstad, Kagel, and

Levin (1990), who study the equilibrium of first-price auctions with an uncertain

number of bidders. From the perspective of an auctioneer, the binomial probabil-

ity that a bidders participate in the auction is:

s(a) := prob(a bidders) =

(
X

a

)
qa(1 − q)X−a. (8)

From the perspective of an expert who already participates in the auction, the

binomial probability of a participants is:

p(a) := prob(a bidders|1 is a bidder) =
as(a)

∑
X
i=1 is(i)

=
a

Q
s(a). (9)

As before, the value of a job with entrepreneur j for expert i is kij , which

is independently and identically distributed over the [0,1] uniform distribution,

for all i ∈ {1,...,X} and j ∈ {1,...,E}. If all other experts use the same bidding

23One search cost function that satisfies this condition - along with all other assumptions on the
search cost - for all E large enough is c(E) = cE−α for 0 < α < 1.

24It is now possible to derive the condition under which the time constraint of an entrepreneur
does not bind. In expected value, an entrepreneur’s constraint is c(1)Q ≤ 1, which can be written

as c(1)Sz ≤ 1. The largest value of S occurs at c(E) = 0 (i.e. when N → ∞), at which, using

equation (7), we find S = 1−c(1)z(1−e−S/z)
c(1)

. Plugging this into the constraint of an entrepreneur,

we find z ≥ 1
1+c(1)(1−e−S/z)

. The right-hand side of this expression is always smaller than 1,

because 1− e−S/z > 0 for any positive values of S or z. So the constraint of an entrepreneur never
binds if z > 1, even for N arbitrarily large.
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function b, i.e. in a symmetric equilibrium, then the problem of an expert of type

kij ∈ [0,1] is to submit a bid bij ≥ 0 that solves:

max
bij

X

∑
a=1

p(a)Prob

(
bij > max

l∈{1,...,a}\{i}
b(klj)

)
(kij − bij)|b(kij )=bij

(10)

for all j ∈ {1, . . . ,S}. In what follows I drop the dependence of b on the model’s

parameter X , c and z from the notation, and by symmetry the i and j indices are

superfluous, so I use b(k) to denote the bid of an expert with value of knowledge

k. The following result is a simple adaption of Harstad et al. (1990) to the case of

the i.i.d. U [0,1] distribution of valuation:

Lemma 3 For an expert, a meeting is equivalent to participation in a first-price auction

with an uncertain number of bidders that requires solving equation (10). There exists a

unique symmetric Bayesian Nash equilibrium bidding function that is strictly increasing

in k, and with b(0) = 0, given by:

b(k) =
X

∑
a=1

wa(k)
a− 1

a
k, (11)

where wa(k) =
ka−1p(a)

∑
X
i=1 k

i−1p(i)
.

Proof See Theorem 1 in Harstad et al. (1990). Also, online Appendix G contains

derivation of this bidding function in a more general case.

Note that b(k) is a weighted sum of terms a−1
a

k, each equivalent to the bid of

an expert facing a− 1 competitors with certainty (see Section 2). The next lemma

shows that the bid of each type of experts increases with city population under a

sufficient condition that c(E) decrease fast enough with E.

Lemma 4 If c′(E) < −2
E2 , then b(k) is increasing in N , for all k ∈ (0,1].

Proof In Appendix A.

As N increases - holding z constant - the search cost c(E) decreases, and the

expected number of auction participants increases. Heightened competition, as

in Section 2, leads to greater willingness to transfer free knowledge. The essence

of the proof is to show that the probability distribution given by wa shifts mass to
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the right as N increases. The bidding function is an expected value of increasing

outcomes a−1
a k over this distribution, and thus is increasing in N as well.

To obtain an expression for expected total production in the city, I first compute

the expected total knowledge transferred at the meeting stage as:

E

[
E

∑
j=1

X

∑
i=1

b(kij)

]
= E

X

∑
a=1

s(a) a
∫ 1

0
b(y)dy

= EQ

∫ 1

0
b(y)dy. (12)

Next I compute the expected total knowledge transferred at the production

stage, which is equal to the number of entrepreneurs times the expected knowl-

edge transferred at work by an expert who wins an auction:

E
X

∑
a=1

s(a)
∫ 1

0
(y − b(y))aya−1dy, (13)

where aya−1 is the probability distribution function of the highest order statistic

out of a draws from the i.i.d. U [0,1] distribution.25

As in Section 2, total expected production in the city is simply a sum of the

expected total knowledge transferred at the meeting stage (equation 12) and at

the production stage (equation 13). The next proposition is the key result of this

section, as it shows that expected total production displays increasing returns

to scale even in the presence of a time constraint. That is, if city population

doubles, then expected total production more than doubles, so expected per capita

production increases.

Proposition 2 Expected total production is given by:

Y (N) = E
X

∑
a=1

s(a)
∫ 1

0
(y − b(y))aya−1dy+EQ

∫ 1

0
b(y)dy. (14)

If c′(E) < −2
E2 , then Y (N) exhibits increasing returns to scale.

Proof In Appendix A.

25The sum in equation (12) and (13) runs from a = 1 instead of a = 0, to highlight the fact that
nothing is produced and no knowledge is transferred when there are no auction participants.
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As in the model without a time constraint of Section 2, there are two sources

of increasing returns to the number of city inhabitants: an increase in the num-

ber of meetings (extensive margin) and an increase in the productivity of each

meeting (intensive margin). Increasing returns originate entirely from knowledge

exchanged in meetings (the term EQ
∫ 1

0 b(y)dy) in equation 14). At the extensive

margin, the expected number Q of experts meeting each entrepreneur increases

with N , so larger cities feature more meetings per capita because of declining

search costs. Again, the intensive margin derives from the extensive margin.

Meetings are more productive in larger cities because the higher number of

experts participating in each auction generates more intense competition for jobs,

so that b(k) increases with N for all k (Lemma 4).

3.2 Sorting of the best experts

Online Appendix G provides an alternative model with a time constraint, in

which an expert’s cost of searching for an entrepreneur to meet with is constant

at c, and does not decrease with E. However, experts are able to find and meet

only with the entrepreneurs for whom their knowledge is most valuable.26 As in

the model above, experts receive entrepreneur-specific draws, and they know the

value of their knowledge for each entrepreneur that they meet. The model with

sorting differs in that experts can use this information to sort into more productive

meetings.

In such a model with a time constraint and constant search, meeting and work

time costs, there are no increasing returns coming directly from the matching

function (extensive margin). A larger pool of entrepreneurs is only desirable

because it enhances experts’ ability to find entrepreneurs for whom their knowl-

edge is highly valuable. As the number of entrepreneurs tends to infinity, experts

choose to meet only with entrepreneurs for whom their knowledge reaches its

maximum value. In this sense, increasing returns arise because in larger cities,

26In the terminology of the search-theoretic literature, such a model is a directed search model,
while the model presented before is a random search model. See Rogerson et al. (2005) for a
review of that literature.
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entrepreneurs meet experts better suited to their needs.27 This sorting is another

explanation for the higher productivity of workers in larger cities, beyond the

higher number of meetings and heightened competition for jobs that are the

sources of increasing returns in Section 2 and in the model with a time constraint

presented above.

4. Migration into an open city

This section extends the closed city model of Section 2 to consider a country in

which experts and entrepreneurs can choose to migrate to an open city. Open

city models add an entry cost to the model of Section 2. In what follows, experts

decide to migrate before learning their type, so there is no sorting of the best

experts into the city (at the end of this section I discuss a model with sorting,

and I solve such a model in online Appendix H.) The main result of this section

is the existence of a unique locally stable spatial equilibrium city whose size,

composition and knowledge markets are all inefficient. The auction framework

suggests a tax policy to raise a city’s productivity both by attracting more experts

and by enhancing their incentives to transfer knowledge for free.

There is a large number of potential experts and entrepreneurs in the coun-

tryside, whose utility is normalized to 0. As before, N = E + X is the city’s

population, and z = E/X represents the city’s composition. It is useful to express

the number of entrepreneurs and experts in the city as a function of its population

and composition, as E = Nz/(z + 1) and X = N/(z + 1). The job allocation

mechanism (a first-price auction) and the production technology are as in the

closed city model of Section 2. I introduce a cost of urban living C, in units of

the good, which can be interpreted as housing rents or as a cost of driving to

the city center to meet and work. C is a continuously differentiable, convex and

increasing function of a city’s population, with C (0) = 0, C ′ > 0 and C ′′ > 0

27In online Appendix G, I show that expected per capita production as city size tends to infinity
(perfect sorting) is always larger than expected per capita production when the time constraint
just binds. This demonstrates the presence of some increasing returns to city size over the range
of populations for which the time constraint binds.
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for all N ≥ 0, and with limN→0
C ′(N) finite.28 C is the same for experts and

entrepreneurs and it covers the costs of rent plus travel to all meetings and work.

An expert incurs C before learning her type, consistent with the idea that an

expert’s knowledge has a different value to different entrepreneurs, and that a

meeting with an entrepreneur is necessary for an expert to discover the value of

her knowledge to his particular needs.29

4.1 Optimal city

The optimal city maximizes per capita production minus the congestion cost

(recall that utility is linear in the amount of the good consumed.) In the optimal

city, each entrepreneur must use the knowledge of all experts in the city, so total

expected production is Y = XE
2 = N2z

2(z+1)2 . The optimal city then has a scale (N)

and composition (z) that maximizes:

max
N ,z

U(N ,z) = max
N ,z

Y

N
− C(N) = max

N ,z

Nz

2(z + 1)2
− C(N). (15)

Setting ∂U
∂z

= 0, one finds that z = 1 at any stationary point of U . So the

optimal city features an equal number of entrepreneurs and experts, because of

a symmetric matching function that generates more meetings per capita when

E = X . Setting ∂U
∂N

= 0 and plugging z = 1 leads to C ′(N) = 1/8 which defines

optimal city size.30

28One way to derive such a cost function from a structural model is to add a congestion cost to a
standard residential location model. In this model, workers consume land and a good. The cost of
urban living C(N ) is equal to land rent plus the cost of a commute to a central business district to
meet and work. Define cost of commute for someone who lives at distance d from the cbd as τdNα

(the Nα term is non-standard and represents a road congestion cost, which is necessary to obtain
C ′′ > 0.). If land use is fixed at 1 unit, in a spatial equilibrium all variation in rent comes from the
commute cost, and the derivative of rent with respect to distance from cbd must be r′(d) = −τNα.
Assuming that land has no opportunity cost, its value outside of the city is 0 and the land rent
function is r(d) = −τNα(b− d), where b is the boundary of the city (note that r(b) = 0.) The city
could be linear or circular. If linear, then it must be that N = b for the land market to clear (recall
that everyone consumes one unit of land.) So C(N ) = r(d) + τNα = τN1+α, which satisfies all
the assumption in the proposition.

29This intuition is formalized in the assumption that corr(kij,kih) = 0, for all j,h ∈ {1,...,E}, i.e.
experts are not ’good’ or ’bad’ for every entrepreneur, but rather their knowledge has a different
value to different entrepreneurs.

30z = 1 and C ′(N ) = 1/8 is the only stationary point of U (z,N ) and it is easy to show that it is
a local maximum, with positive utility if C(N ) is not too large. To assess whether this point is a
global maximum over all the positive real values of z and N , note that U equals 0 when N equals
0, and U becomes negative when either z or N tends to infinity or z equals 0.
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4.2 Spatial equilibrium

Equilibrium city size and composition is determined by free migration of experts

and entrepreneurs from the country-side.31 An equilibrium must have three

properties: first utility in the city and in the country side is equalized, second

the equilibrium must be locally stable, and third experts must behave optimally

in the knowledge transfer game.

When experts choose to migrate to a city before learning their type, the (sunk)

cost of living does not affect their bid, or their decision to meet with all en-

trepreneurs. The same would be true if there was a fixed communication cost

to each meeting, incurred before learning one’s type. As a result, the benefits of

living in the city stay exactly as in Section 2. Therefore, one can use equation (5)

to obtain the expected utility of an expert who migrates to a city with population

N and composition z:

UX(N ,z) =
E

X(X + 1)
−C(N) =

z(z + 1)

N + (z + 1)
−C(N), (16)

and equation (6) to obtain the expected utility of an entrepreneur:

UE(N ,z) =
(X − 1)

2
− C(N) =

N − (z + 1)

2(z + 1)
− C(N). (17)

Experts and entrepreneurs only migrate if their expected utility in the city is

positive, so the free-entry spatial equilibrium condition is:

UE(N ,z) = 0 (18)

UX(N ,z) = 0.

The easiest way to demonstrate the existence of a unique stable spatial equilib-

rium is to represent the indifference curves UE(N ,z) = 0 and UX(N ,z) = 0 in

the (N ,z) space. From equation (16), it is immediate that ∂UX

∂N
< 0 and ∂UX

∂z
> 0,

for all z > 0 and N > 0, and therefore the indifference curve of an expert slopes

upward from the origin (recall that C (0) = 0, so UX(0,0) = 0). To determine the

shape of an entrepreneur’s indifference curve, I use equation (17), and isolate z

31Assuming costless individual migration to cities is standard and follows the seminal work of
Henderson (1974). Helsley and Strange (2014) analyze the impact of costless individual migration
in a system of cities model with many worker types.
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Figure 1: Unique stable equilibrium in an open city
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N

2C(N) + 1
− 1 (19)

∂z

∂N
=

2C(N) + 1 − 2NC ′(N)

4(C(N) + 0.5)2
. (20)

From equation (20), the indifference curve of an entrepreneur slopes up from

(0, − 1), which satisfies equation (19), then down.32 Figure 1 represents both

indifference curves.

From Figure 1, a locally stable equilibrium exists if the peak of an en-

trepreneur’s indifference curve lies above the indifference curve of an expert. A

sufficient condition for existence is that C takes small enough values, meaning

that if C = τC̃, a stable equilibrium exists for τ small enough (the following

proposition includes a formal statement of this condition.) For instance, if

C = τN2, then it is easy to show that a stable equilibrium exists if τ < 0.02.

The equilibrium is locally stable because experts and entrepreneurs move into

or out of the city when their expected utility from such a move is positive. The

32To see this, note that the denominator of (20) is always positive. The limit of the numerator
as N → 0 is also positive, because C (0) = 0 and limN→0 C

′(N ) is finite. As C is continuously

differentiable, the indifference curve must slope up for small N . For N large enough, ∂z
∂N

becomes
negative, because C ′ > 0 and C ′′ > 0 imply that the negative term −2NC ′(N ) grows faster than
the positive term 2C(N ) (the derivative of NC ′(N ) is NC ′′(N ) + C ′(N ), and the derivative of
C(N ) is C ′(N ), so the assumption that C ′ > 0 and C ′′ > 0 for all N > 0 implies that NC ′′(N ) +
C ′(N ) > C ′(N ), for all N > 0.)
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four arrows of motion in Figure 1 illustrate that through such migration, the city

returns to equilibrium after any small perturbation away from it. When both

UX > 0 and UE > 0, N must increase, because both experts and entrepreneurs

benefit from moving into the city. When UX < 0 and UE < 0, N must decrease,

because both experts and entrepreneurs benefit from moving out of the city.

When UX < 0 and UE > 0, z must increase, because entrepreneurs gain from

moving into the city while experts gain from moving out of the city. By a similar

reasoning, z decreases when UX > 0 and UE < 0. I summarize the above results

in the following proposition:

Proposition 3 Suppose that experts move into an open city before learning their types,

that the expected utility of experts and entrepreneurs is given by equation (16) and (17),

that the cost of urban living is C = τC̃, where C̃(0) = 0, C̃ ′ > 0 and C̃ ′′ > 0 for all

N , limN→0
C̃ ′(N) is finite, and that E and X can be any positive real numbers. Then

there is a value τ∗ such that for all τ ∈ (0,τ∗) there exist a unique locally stable spatial

equilibrium in which city composition z and city size N satisfy UE(N ,z) = UX(N ,z) =

0.

Proof In Appendix A.33

4.3 Sources of inefficiency in equilibrium

The equilibrium city differs from the optimal city due to three sources of ineffi-

ciency; in size, in composition and in knowledge transfers.

Size The classic result from Henderson (1974) is that cities are too large in

equilibrium. In my model, there also exist out-of-equilibrium cities with smaller

population than in equilibrium, and in which both experts and entrepreneurs are

better-off. Figure 1 features areas with smaller N in which UX > 0 and UE > 0,

instead of UX = UE = 0 as in equilibrium. Excess migration is a standard result

in a self-organizing equilibrium, because agents do not internalize the negative

congestion externality that they impose on others, and migrate until the benefits

of city living exactly offset its costs. However, the next subsection shows that if

33If E and X must be integers, then there may not be any stable equilibrium even if all other
conditions of Proposition 3 are satisfied.
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C does not increase too fast, then the optimal city in my model is larger than the

equilibrium one, because equilibrium composition is inefficient.34

Composition The work of Helsley and Strange (2014) on coagglomeration high-

lights the pervasiveness of inefficiencies in city composition. In a context with

different industries and worker types, they argue that “individual migration is

a weak instrument for promoting efficiency.” To find equilibrium composition

in my model, note that equilibrium requires that zeq = {z : UE = UX}. Using

equation (16) and (17), zeq can be defined implicitly as:

N =
√
(zeq + 1)2(2zeq + 1).

This expression shows that zeq grows like N2/3, and the ratio of entrepreneurs

to experts is larger than its optimal value of 1 for all N > 2. The ratio zeq

increases with city size, because in equilibrium the payoff of experts decreases

with the number of other experts through tougher competition, so the number of

entrepreneurs must increase even more to maintain experts’ utility constant. This

imbalance in the ratio of entrepreneurs to experts in equilibrium worsens as pop-

ulation increases, which reduces the number of meetings per capita. Therefore,

increasing returns in production are weaker under self-organized migration than

in a city with optimal composition. This implies that if the cost of urban living

does not increase too fast, then the optimal city is larger than the equilibrium

one.35 This result contrasts with the standard case in Henderson (1974), and

even with the result in Helsley and Strange (2014), in which the composition

inefficiency reinforces the scale inefficiency. Ultimately, the number of experts

in equilibrium is inefficiently low because they provide a positive externality

without internalizing its benefits.

Knowledge transfers Finally, knowledge transfers are inefficient in the equilib-

rium city. Section 2 shows that experts do not transfer all their knowledge to

entrepreneurs at the meeting stage of the game, although it would be efficient to

34Note that even if the optimal city is larger than the equilibrium one, there still exist cities with
smaller population and higher utility than in equilibrium, as shown in Figure 1.

35If C increases fast, for instance if C(N ) = 0.5N2, then the optimal city is smaller than the
equilibrium city, as in the canonical case.
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do so. Knowledge spillovers, like any positive externality, create benefits that are

not internalized, hence the inefficient provision of knowledge.

4.4 Policy analysis

A combination of two policies can achieve the optimal city. First, subsidizing the

work of the best experts can lead to efficiency in composition and knowledge

transfers. Second, restricting entry into the city can generate efficient city size.

A subsidy to an expert’s work amounts to offering a wage top-up w. In equi-

librium, the top-up always goes to the best experts, who win the knowledge auc-

tions. Appendix B shows that in a first-price knowledge auction with a wage top-

up w, the knowledge bid of an expert increases to b(k,X ,w) = ((X − 1)/X)k +w.

If w is large enough, then all experts transfer the entire value of their knowledge

during any meeting.36 In this case, knowledge transfers are efficient. The subsidy

can then be increased until city composition reaches its efficient level of z = 1.37

Finally, migration in the city must be restricted to ensure that utility is not driven

down to 0 by excess migration.

An interesting question is whether entrepreneurs themselves have an incentive

to implement this policy. In a standard first-price auction, an auctioneer cannot

increase his payoff by subsidizing the winner, because the cost of the subsidy

exactly offsets the increase in the winner’s bid. A knowledge auction, however,

is all-pay for an entrepreneur, who finds it optimal to set a wage top-up w large

enough to ensure that all types of experts transfer the entire value of their knowl-

edge during the meeting stage (see Appendix B). Subsidizing the work of experts

is a good policy because it incites every expert to transfer more knowledge, even

those who fail to get the job. This result relates to Lazear and Rosen (1981)

‘tournament’ theory, which successfully explains the presence of oversized wages

at the top of a firm’s hierarchy, as a mean to motivate workers in the lower ranks.

36This solution assumes that the budget constraint of an expert never binds. That is, the total

bid of an expert is always b(k,X ,w) = X−1
X k + w. If an expert bids more than the value of her

entire knowledge, then the difference is deducted from her wage should she win the job, or is just
a separate payment to the entrepreneur.

37Appendix B shows that a subsidy of 1/X is sufficient to ensure that experts transfer all their
knowledge. Using equation (16) and (17), it is easy to show that for all N ≥ 6, the subsidy
w must be larger than 1/X to equalize the utility of entrepreneurs and experts. Therefore, for
N ≥ 6, attaining efficient composition requires an additional subsidy beyond that necessary to
make knowledge transfers efficient.
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So entrepreneurs have incentives to implement a policy that makes knowledge

transfers efficient, but unless they can coordinate they have no incentives to offer

a subsidy large enough to insure optimal composition.38

Land developers or city governments can achieve the optimal city if they have

the policy tools described above i.e. the power to subsidize the best experts and to

restrict migration into the city. The implementation of both policies seems beyond

the capabilities of land developers or local governments in the United States,39 but

it is noteworthy that the location decision of experts has become a current public

policy issue. Florida (2002), for instance, argues that cities should strive to attract

members of the ‘creative class’. Florida recommends raising the value of urban

living for the creative class, by subsidizing amenities that they like more than

other people do. Such a policy is reasonable if creative types, like experts in the

model, provide positive externalities.40

4.5 Sorting by types

Online Appendix H solves an open city model in which experts choose to mi-

grate after learning their type. In this setting, the knowledge auction becomes a

first-price auction with an endogenous entry cost. An analysis of the migration

decision of experts reveals a trade-off between the quality and the quantity of

experts migrating to the city. There are two main findings. First, only the best

experts sort into the city. This sorting by skills is consistent with empirical evi-

dence from Combes, Duranton, and Gobillon (2008) that more productive workers

choose to live in larger cities. Second, an exogenous increase in the expected cost

of urban living generates an increase in the average quality of experts living in

the city, and a decrease in their expected number.

A unique feature of this model with sorting is that aggregate production

depends directly on the cost of urban living, because a large entry cost decreases

38In Appendix B, entrepreneurs take the number of experts as given and do not take into account
the effect of their subsidy on experts’ entry. This is a good approximation when the number of
entrepreneurs is large.

39See Helsley and Strange (2014) for a discussion of the role of land developers in a model with
size and composition inefficiencies.

40In the real world, in which most experts already live in different cities, place-based policies
designed to attract experts to a particular city have general equilibrium effects which impact their
incidence (see Kline (2010) for a recent theoretical discussion.) Subsidies designed to enhance
incentives for knowledge transfers, however, would still produce efficiency gains.
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experts’ willingness to transfer knowledge for free. Given that the cost of entry

depends on the number of city inhabitants, knowledge bids do not necessarily

increase with the number of experts competing for entry into the city. However,

one can show that if the cost of living is low enough, then there are increasing

returns in production to the number of experts in the country.41

5. Discussion

5.1 Interpretation of auction framework

Auction theory is relevant to knowledge transfers in cities because its main

tenets have a plausible interpretation within the context of urban working and

networking environments.

First, an auction implies that a free transfer is a bid, rather than a signal,

a reciprocal transfer, or something else. In competitive urban environments,

individuals care about recognition as more knowledgeable than their rivals for

jobs, and a bid will often capture the motivation behind knowledge transfers

better than a purely reciprocal exchange. This may explain why studies find reci-

procity to be less important in industries featuring the strongest agglomeration

economies. While extensions of the signaling model of Spence (1973) can explain

voluntary knowledge disclosure for firms (e.g. Bhattacharya and Ritter 1983), the

relative complexity of signaling games lessens their relevance to informal and

semi-formal interactions, and makes them less amenable to modeling competitive

41In this model with sorting, the number of potential experts in the country-side matters, and it
is not assumed to be infinite. There is little empirical evidence of increasing returns to population
at the country level, but the model suggests that even negligible returns to the number of potential
experts can be magnified into sizable returns to the number of city experts, that are observed
in practice. This happens because experts staying in the countryside are not productive, while
competition spurs both higher bids and sharper sorting of experts moving into the city. In a
dynamic setting with many cities, Rossi-Hansberg and Wright (2007) show that a balanced growth
path at the country level is consistent with increasing returns at the city level.
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environments.42

Second, an auction implies that the value of an expert’s knowledge corresponds

to his valuation for a job. This condition holds if more knowledgeable experts,

who perform better at work, earn larger rewards. Most industries feature some

degree of performance pay, more so in agglomerated sectors like technology,

professional services (finance, law, marketing, etc) and consulting. I argue in

the next subsection that such sectors provide the clearest real-world counterparts

to my model.

Third, an auction implies that the number of experts competing for a job affects

the size of their knowledge bid. Intuitively, more intense competition for jobs

should improve people’s disposition towards free knowledge transfer. Empirical

studies consistently find that bids in first-price auctions increase with the number

of other bidders (Kagel, 1995). In the context of my model, this prediction really

depends on the notion that one cannot be paid for knowledge already transferred

for free, i.e. that knowledge is expropriable. In this case, there are clear incentives

to transfer just enough knowledge to outbid all other experts, and the number of

competing experts matters. In theory, expropriability is just a corollary of Arrow’s

property that knowledge needs to be possessed for its value to be assessed (Anton

and Yao, 2002). Empirically, expropriability is hard to verify. In some indus-

tries, ethical concerns, social norms, regulations or non-disclosure agreements

supercede entrepreneurs’ pecuniary interest in expropriating experts.43

42In a basic auction model, individuals with higher valuation for a good (in this paper, a job)
bid more. Signaling games, however, generally feature multiple equilibria, as the cost of sending
a given message may be lower for high types, but the informativeness of this message depends on
whether low types imitate it or not. Moreover, auction theory’s straightforward predictions on the
relationship between the number of bidders and the size of their bids, which are important to this
paper on agglomeration, have no parallel in the signaling literature, which almost always feature
one sender. One recent exception is from Barraquer and Tan (2012), who study competition in
a signaling model with multiple senders. They show that when the number of senders is large
enough, the only equilibrium satisfying a selection criterion is that in which all agents send the
most informative message.

43There is certainly much anecdotal evidence, for instance, that designers pro-
viding free designs in the hope of winning a contest are paid below mar-
ket rates. For a discussion see the article by Michelle Goodman When to work
for nothing in the New York Times ‘Shifting Careers’ blog, November 9, 2008

(http://shiftingcareers.blogs.nytimes.com/2008/11/09/when-to-work-for-free/,
retrieved 10 August 2013).
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5.2 Industry examples

The model intends to expose the general motivation behind many informal or

semi-formal urban interactions. The building blocks of the model, however, are

more readily apparent in industries featuring a sharp distinction between holders

and users of knowledge, and between a free knowledge transfer stage and an

employment stage. Examples abound in ‘creative’ occupations like advertising,

architecture, graphic design, finance, or in job interview situations, in which the

model’s ‘bid’ is often called a ’pitch’. Studying how these industries cope with

free knowledge transfers allows to determine whether the strategic incentives of

the agents in the model have parallels in the real-world. In the absence of hard

data, the most supportive evidence for the theory comes from industries in which

free knowledge transfers are most controversial, and therefore better documented.

Free transfers appear especially unfair in the presence of communication costs,

which, as I show in online Appendix H, can drive some experts completely out

of the city.

Graphic design is such an industry, in which free transfers – called

‘spec(ulative) work’ or ‘working on spec’ – are deemed so problematic that some

professional associations explicitly prohibit their members from providing free

designs.44 While a design or a logo does not possess all the strong properties

of knowledge assumed in the model – designs are not necessarily freely repro-

ducible, and there is a design cost – the bans highlight the incentives of experts

to give knowledge for free in a competition for jobs.

In advertising and marketing, free knowledge transfers are somewhat less

controversial, perhaps because of the lower cost of creating a marketing strategy

or a slogan for a product. Unlike a design, a marketing advice can often be used

productively even if it comes from an advisor who did not win a contract. In this

case, free transfers not only generate better matches, but also more learning, as

44The Society of Graphic Designers of Canada, for instance, prohibits its members from provid-
ing free designs, or from entering into a design contest in which only the winner is remuner-
ated (http://www.gdc.net/business/ethics_and_professional_practice/articles/186.php,
retrieved 10 August 2013). In the United States, the largest such professional organiza-
tion, AIGA, only goes so far as stating that: "AIGA believes that professional designers
should be compensated fairly for their work [...]. To that end, AIGA strongly encourages
designers to enter into client projects with full engagement to show the value of their cre-
ative endeavor, and to be aware of all potential risks before entering into speculative work."
(http://www.aiga.org/position-spec-work/, retrieved 10 August 2013)
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in the model.45 This being said, there are also vocal opponents to free knowledge

transfers within the advertising community. Win Without Pitching, a consulting

firm for advertising agencies, voices the grievances of many agencies. An extract

from The Win Without Pitching Manifesto (Enns, 2010) reads as follow: “The forces

of the creative professions are aligned against the artist. These forces pressure him to give

his work away for free as a means of proving his worthiness of the assignment. Clients

demand it. Advertising agencies and design firms resign themselves to it”. Indeed,

competitive pressures to work for free can impose a significant burden on small

players in big cities. From an efficiency perspective, one has to worry that such

competition discourages individuals from acquiring knowledge, from actively

developing creative ideas, or from incurring the cost of moving to a city.46

Finally, there is little evidence that uncompensated knowledge transfers are

contentious in consulting industries, and among professionals such as lawyers,

accountants, financial advisors and many other providers of business services.47

Free knowledge transfers are part of standard networking practices. An example

from the finance and banking industry is the mergers and acquisitions’ (m&a)

pitch, through which a firm specializing in m&a services provides a candidate

firm with free information about the benefits of merging with, or acquiring

another firm. Another example is ‘stock pitching’, an exercise to which expert

practitioners have given sports-like qualities. Indeed, stock pitch competitions

are popular with commerce students. Lawyers are often legally prevented from

pitching free ideas to individuals or firms (to prevent ‘ambulance chasing’), but

most large firms have an in-house lawyer who can legally receive a pitch from

45Of course, experts often consider a situation unfair precisely when an entrepreneur profits
from a free advice without offering a job.

46These issues are mostly beyond the scope of the paper, but online Appendix H shows that
there are always benefits from competition – increasing returns in production to the number of
experts – when the entry cost in the city is low enough.

47An interesting case of a free knowledge transfer in finance that was controversial comes from
‘The Big Short’, a book on the 2007-2008 financial crisis and the preceding housing bubble (Lewis,
2010) . The book tells the tale of Michael Burry, a fund manager who shares his ideas with
potential investors on how to short the housing market and benefit from an eventual housing
bust. Burry’s idea, in retrospect, was worth billions. As it turned out, many of these potential
investors did enter the trade Burry described, but never invested in Burry’s fund (his guess is that
they hired another ‘expert’, Goldman Sachs, to help). To quote Burry from the book: “If I describe
something it sounds compelling and people think they can do it themselves [...] if I don’t describe it enough,
it sounds scary and binary and I can’t raise the capital”. This shows both Arrow’s property and free
reproducibility at work.
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another lawyer hoping to land a contract, and such free advices are relatively

common (Asher, 2004). Generally, consulting industries tend to share the model’s

main features: knowledge is (almost) freely reproducible, and it is impossible to

take back knowledge transferred for free. Also, there are often obvious benefits

from hiring one consultant, ideally the best, while getting knowledge from many.

For instance, an entrepreneur needs at least one lawyer to sign legal papers, or

one broker to trade stocks, but there is almost unlimited potential for legal actions

to take or stocks to buy.

By and large, the entrepreneurs versus experts set-up is representative of the

general motivation behind urban networking. Casual meetings and professional

encounters are often opportunities to tell others what and how much one knows,

and to learn about and from others’ knowledge. These are the essential ingredi-

ents of successful networking; of a process that can lead to a job offer directly as in

the model, or indirectly through name-dropping by others, or even to recognition

as a valuable partner in a reciprocal relationship. In the model, experts strive

to display their knowledge because of competition for entry into a contractual

relationship with an entrepreneur, but competition for entry into reciprocal re-

lationships likely fosters very similar incentives for knowledge transfers. These

incentives find clear real-world manifestations not only in the business services

described above, but also in high-tech industries and clusters like Silicon Valley,

which are likely the environments with the strongest agglomeration economies.

In these milieus, a reputation for expertise carries a high premium, and en-

trepreneurs must be aware of who knows what, and of how good they are. As a

result, workers in high-tech clusters experience frequent job changes, and initially

accept lower wages (Freedman, 2008) while hoping for a lucrative contract after

establishing their reputation.

A potentially important obstacle to the productive use of knowledge trans-

ferred during meetings is the signature of a non-disclosure agreement (nda).

One expects ndas to be largely absent from the kind of informal and semi-

formal settings which are the model’s closest real-world counterparts. Gault and

von Hippel (2009) document the prevalence of such agreements in more formal

settings, among Canadian manufacturing firms that have developed process in-

novations. Remarkably, they find that about half of these firms do not protect

their innovation, which frequently ends up used by competitors and suppliers.
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Anecdotal evidence also suggests that investors being pitched a startup idea will

generally not sign an nda, for fear of future litigation.48

5.3 Sorting and knowledge diffusion

Sections 3 and 4 briefly discuss extensions of the basic model featuring sorting

of the best experts into meetings (these models are fully derived in the online

appendix.) This sorting, motivated either by a time constraint in Section 3 or an

entry cost in Section 4, provides entrepreneurs with better matches and can play

an important role in explaining the production advantage of cities (Combes et al.,

2008).

The knowledge auction with an entry cost or a time constraint uncovers impor-

tant trade-offs between the frequency and the quality of urban interactions. The

downtowns of large cities are expensive places to live in, and face-to-face interac-

tions are often costlier than other modes of communication. The impact of entry

costs on the quality of participants in urban meetings is reminiscent of Storper

and Venables (2004) quip about face-to-face interactions, that ‘the medium is the

message’. In a knowledge auction the message itself matters, but there are benefits

from high entry costs, which encourage stricter sorting of the best experts into

meetings. Among mechanisms for screening valuable communication partners,

the leading alternative to voluntary sorting by willingness to pay is the design of

reputation systems. Intuitively, reputation formation mechanisms become essen-

tial when communication costs are low. For instance, such mechanisms are key

prerequisite for productive use of the Internet. In general, sorting and reputation

formation are not mutually exclusive and can be part of the same process. If

experts in the model were able to develop a reputation for being knowledgeable,

they would be even better disposed towards free knowledge transfers while they

establish their reputation.

Of course, lower communication costs also have advantages. Online Appendix

H shows that a reduction in the cost of meeting can directly increases the size of

experts’ knowledge transfers. This demonstrates how low communication costs

48Michael Marasco, an expert on innovation and entrepreneurship from Northwestern Uni-
versity, puts it this way: “Venture capitalists and angel investors will laugh at you if you
present them with a nondisclosure agreement [...]” Quote retrieved on 8 August 2014 from
http://www.chicagobusiness.com/article/20120811/ISSUE02/308119997/.
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can enhance incentives to disseminate knowledge. Importantly, such knowledge

diffusion, which is the focus of the paper, is often a precondition to knowledge

creation.49 While many authors have rightly emphasized the salience of social

norms and diversity for policies aiming at faster knowledge growth,50 lowering

the costs and augmenting the rewards from learning about others’ ideas are also

obvious targets.

6. Conclusion

Urban environments offer opportunities to learn and network, which take center

stage in recent thinking about the purpose and future of cities. Starting from

the key properties of knowledge as an input in production, I model knowledge

transfers as bids in first-price auctions for jobs. The knowledge auction illustrates

why knowledge sometimes ‘spills’ in non-market interactions before being bought

and sold in markets. Endogenous agglomeration economies arise because of the

greater number of meeting partners in urban areas, and heightened competition

for jobs that enhances incentives for knowledge transfers. The model is too

stylized to offer clear-cut policy recommendations, and it ignores the impact of

reciprocity and diversity. However, it can inform discussions and empirical work

on the origin of knowledge spillovers, and on how the cost of meeting and the

number of potential competitors and partners affects an individual‘s decision to

move to a city and transfer her knowledge.

49Online Appendix D captures knowledge creation in a rudimentary way, by introducing
complementarities between the knowledge of different experts.

50 Saxenian’s (1994) comparative analysis of the technology clusters in Silicon Valley and Route
128 highlights social norms favoring knowledge flows as drivers of Silicon Valley’s success. A
theoretical literature emphasizes the importance of knowledge heterogeneity, see for instance
Berliant, Reed III, and Wang (2006). Empirical studies also explore the impact of diversity on
group decision making, for instance, West and Dellana (2009) find that both ability diversity and
cognitive diversity reduce group decision errors.
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Appendix A. Proofs

Proof of Lemma 2

I first show that c′(E) < 0 implies S ′(E) > 0. Using E = zX , I can express

equation (7) as a function of E, and differentiate it implicitly to characterize S ′(E):

c′(E)S(E)+ (c(E)+ c(1))S ′ (E)− c(1)
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which is equivalent to:

S ′(E)

(
c(E) + c(1) + c(1)

(
1 −

S(E)

E

)E/z
E

E − S(E)

)
(a1)

= c(1)

(
1 −

S(E)

E

)E/z (
ln

(
1 −

S(E)

E

)
+

S(E)

E − S(E)

)
− c′(E)S(E).

A necessary and sufficient condition for S ′(E) > 0 is that:
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ln

(
1 −

S(E)

E

)
+

S(E)

E − S(E)

)]
.

Using the inequality ln(x) > 1 − 1
x for 0 < x < 1, it follows that:

c(1)

(
1 −

S(E)

E

)E/z (
ln

(
1 −

S(E)

E

)
+

S(E)

E − S(E)

)
> 0. (a2)

Hence a sufficient condition for S ′(E) > 0 is that c′(E) < 0.

I now show that c′(E) < −2
E2 implies S ′(E) >

(
S(E)
E

)2
. From equation (a1) it

follows that S ′(E) >
(
S(E)
E

)2
if and only if:

c(1)
(

1 − S(E)
E

)E/z (
ln
(

1 − S(E)
E

)
+ S(E)

E−S(E)

)
− c′(E)S(E)

(
c(E) + c(1) + c(1)

(
1 − S(E)

E

)E/z
E

E−S(E)

) >

(
S(E)

E

)2

. (a3)

Using equation (a2) again, a sufficient condition for (a3) to hold is that:

−c′(E)S(E)

c(E) + c(1) + c(1)
(

1 − S(E)
E

)E/z
E

E−S(E)

>

(
S(E)

E

)2

. (a4)
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or equivalently:

− c′(E) >
S(E)

E2

(
c(E) + c(1) + c(1)

(
1 −

S(E)

E

)E/z
E

E − S(E)

)
. (a5)

Using the time constraint in equation (7), I can rewrite equation (a5) as:

− c′(E)E2 > 1 + c(1)S

(
1 −

S(E)

E

)E/z−1

− c(1)z

(
1 −

(
1 −

S(E)

E

)E/z
)

. (a6)

To conclude that c′(E) < −2
E2 is a sufficient condition for (a6) to hold, note

that the third term on the right-hand side in equation (a6) is negative because

0 < S(E)/E < 1, and that the second term is smaller than 1, because the time con-

straint implies that c(1)S < 1 and
(

1 − S(E)
E

)E/z−1
< 1 because 0 < S(E)/E < 1

and E/z − 1 > 1 for all X > 1.

Proof of Lemma 4

Before proving Lemma 4, it is useful to establish a preliminary lemma from

Klenke and Mattner (2010). The lemma states conditions under which binomial

distributions exhibit the monotone likelihood ratio property.

Lemma 5 Let ≤mlr denote the monotone likelihood ratio property. That is, for two

probability distributions P and Q, we have that P ≤mlr Q if their respective probability

distribution functions p and q are such that x 7→ q(x)
p(x)

is monotone nondecreasing. Let

B(n,p) be a binomial distribution for n trials with probability of success p. Then we have

that Bn1,p1
≤mlr Bn2,p2 if and only if p1 = 0 or:

n1 ≤ n2 and
n1p1

1 − p1
≤

n2p2

1 − p2
.

Proof See Klenke and Mattner (2010), Section 1.2.

I now prove Lemma 4, and show that the bidding function b is increasing in

the number of experts X (or equivalently in city size N) for all k ∈ (0,1]. First

consider the bidding function in equation (11), and note that wa(k,X) ∈ (0,1) for

all a ∈ {1,...,X} and that ∑
X
a=1 wa(k,X) = 1, so that wa(k,X) is a probability. In

this sense, the bidding function b(k) = ∑
X
a=1 wa(k,X)a−1

a
k is just the expected

value of a lottery with payoffs a−1
a k, so we can write:

b(k,X) = Ew(k,X)

(
a− 1

a

)
k.
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a−1
a is increasing in a, so to prove that b is increasing in X it suffices to show that

the probability distribution induced by wa(k,X) is stochastically increasing in X

- in the sense of first-order stochastic dominance - for each k ∈ (0,1). A suffi-

cient condition for strict first-order stochastic dominance is the strict monotone

likelihood ratio property, i.e. that:

a 7→
wa(k,X + 1)

wa(k,X)

is monotone increasing.

To show that this condition holds, note that:

wa(k,X + 1)

wa(k,X)
=

p(a,X + 1)

p(a,X)
∑

X
i=1 k

i−1p(i,X + 1)

∑
X+1
i=1 ki−1p(i,X)

is increasing in a if and only if p(a,X+1)
p(a,X)

is increasing in a, i.e. if the binomial

BX ,q(X) displays the strict monotone likelihood ratio property.51 Using the condi-

tions in Lemma 5, we find that BX ,q(X) <mlr BX+1,q(X+1) if:52

X
q(X)

1 − q(X)
< (X + 1)

q(X + 1)

1 − q(X + 1)
. (a7)

The remainder of the proof is just to show that inequality (a7) holds. Given that

q(X) = S(E)/E and that E/z = X , I can write X
q(X)

1−q(X)
= S(E)E

z(E−S(E))
to find:

∂
S(E)E

z(E−S(E))

∂E
=

S ′(E)−
(
S
E

)2

zE2(E − S(E))2
. (a8)

So the proposition follows if S ′(E) >
(
S
E

)2
, because it implies that

∂X
q(X)

1−q(X)

∂X > 0

so that equation (a7) holds. As shown in Lemma 2, a sufficient condition for

S ′(E) >
(
S
E

)2
is c′(E) < −2

E2 .

51 Recall that s(a,X) is the probability of a bidders generated by the binomial distribution

BX ,q(X), and
s(a,X+1)
s(a,X)

increases in a if and only if
p(a,X+1)
p(a,X)

increases in a, because:

s(a,X + 1)

s(a,X)
=

(X + 1)q(X + 1)

Xq(X)

p(a,X + 1)

p(a,X)
.

52If the inequalities in Lemma 5 are strict, then the lemma yields the strict monotone likelihood
ratio property.

41



Proof of Proposition 2

The proof relies on two results. First, the bidding function is increasing in N

(established in Lemma 4). Second, the probability distribution governing the

number of bidders a induced by s(.,X) is stochastically increasing in X (or

equivalently, in N).

I first rewrite expected total production from equation (14) in the following

way:

Y (N) = E
X

∑
a=1

s(a,X)
a

a+ 1
+
∫ 1

0
b(y,X)

(
EQ−

X

∑
a=1

as(a,X)ya−1

)
dy

= E
X

∑
a=1

s(a,X)
a

a+ 1
+
∫ 1

0
b(y,X)

X

∑
a=1

as(a,X)(E − ya−1)dy, (a9)

where the second equality uses Q = ∑
X
a=1 as(a,X). It is possible to express

equation (a9) using expectations with respect to the probability distribution s(.,X)

as follows:

Y (N) = EEs(.,X)

[
a

a+ 1

]
+
∫ 1

0
b(y,X)Es(.,X)[a(E − ya−1)]dy.

To characterize this equation, we first need to show that the probability distribu-

tion induced by s(.,X) is stochastically increasing in X , in the sense of first-order

stochastic dominance. Exactly as in the proof of Lemma 4, a sufficient condition

is that the sequence {s(.,X)}X∈N>0
satisfies the strict monotone likelihood ratio

property, which was established in the proof of Lemma 4 using the condition

c′(E) < −2
E2 .

It is now possible to complete the proof using the definition of increasing

returns, and to show that Y (αN) > αY (N) for all α > 1. So I write:

Y (αN) = αEEs(.,αX)

[
a

a+ 1

]
+
∫ 1

0
b(y,αX)Es(.,αX)[a(αE − ya−1)]dy

> αEEs(.,X)

[
a

a+ 1

]
+
∫ 1

0
b(y,αX)Es(.,X)[αa(E − ya−1)]dy, (a10)

where the second inequality in equation (a10) follows because the distribution

induced by s is stochastically increasing in X and the expectations with respect to

s are defined over an sequence of increasing outcomes. Using the fact that b(.,X)
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is also increasing in X we obtain:

Y (αN) > αEEs(.,X)

[
a

a+ 1

]
+
∫ 1

0
b(y,X)Es(.,X)[αa(E − ya−1)]dy

> α

(
EEs(.,X)

[
a

a+ 1

]
+
∫ 1

0
b(y,X)Es(.,X)[a(E − ya−1)]dy

)

= αY (N), (a11)

which concludes the proof.

Proof of Proposition 3

In the text, I showed that there exist a unique stable equilibrium if and only if the

UX(N ,z) = 0 and UE(N ,z) = 0 curves cross for some (N ,z) ∈ R
2
>0. I now provide

a condition on C under which the stable equilibrium exists. I show that if the cost

of urban living C = τC̃ is small enough (i.e. if τ is small enough), then it must be

that UX = UE = 0 for some (N ,z) ∈ R
2
>0.

The first step is to find N as a function of z such that UX = UE . Equating

equation (16) and (17) I find:

N =
√
(z + 1)2(2z + 1). (a12)

Recall that UX = z(z+1)
N+(z+1)

− C(N), so in equilibrium it must be that:

z(z + 1)√
(z + 1)2(2z + 1) + (z + 1)

− τC̃

(√
(z + 1)2(2z + 1)

)
= 0, (a13)

where I replaced N in equation (16) by its equilibrium value from equation (a12).

Note that for large values of z, the positive term on the left-hand side of equation

(a13) grows like z1/2, while the negative term grows at least like z3/2 (the input

of C̃ grows like z3/2 and the second derivative of C̃ is positive.) It follows that for

large enough z, the negative term in equation (a13) grows faster than the positive

term. I conclude that if τ is small enough, then there is a value zeq > 0 such that

the equality in equation (a13) holds. From equation (a12), there also exist a value

of Neq > 0 such that UX(Neq ,zeq) = UE(N
eq ,zeq) = 0.
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Appendix B. Auctions with transfer payments: offering a wage

top-up

This appendix extends the basic model of Section 2 to let entrepreneurs make

transfer payments to experts, outside of the wage setting mechanism specified in

Section 2. I restrict attention to transfers going to experts who win a knowledge

auction, which are equivalent to a wage top-up, denoted by w. I show that an

entrepreneur gains from setting w > 0, and that any w large enough to ensure

that all types of experts bid the entire value of their knowledge is optimal from

the perspective of an entrepreneur.

Suppose that expert i meets an entrepreneur j offering a wage top-up wj . In a

symmetric equilibrium, this expert submits a bid bi ≥ 0 that solves:

max
bij

prob

(
bij > max

l∈{1,...,X}\{i}
b(klj ,X ,wj)

)
× (kij + wj − bij)|b(kij )=bij

. (a14)

This expression is similar to equation (2) governing experts’ behavior in the basic

first-price auction of Section 2, aside from the extra wj in the payoff. Equation

(a14) implicitly assumes that an expert does not face a binding budget constraint.

That is, whenever an expert bids more than the entire value of her knowledge,

any part of the bid that exceeds her knowledge value is deducted from her wage

should she get the job. It is straightforward to prove that the bidding function

becomes b(k,X ,w) = X−1
X k+ w (I removed subscripts to improve legibility).

The optimal w is that which maximizes UE , the expected utility of an en-

trepreneur, which is equal to:

UE = X

(∫ wX

0
ydy+

∫ 1

wX

(
X − 1

X
y +w

)
dy

)
+
∫ wX

0

(
w−

y

X

)
XyX−1dy−w.

(a15)

The first of the three terms on the right-hand side of equation (a15) is the expected

value of the total knowledge transferred by all experts during meetings. The

first integral in the parenthesis of the first term is the expected value of the bids

for experts with types ((X − 1)/X)k + w > k who bid the entire value of their

knowledge at the meeting stage.53 The second integral in the parenthesis is the

expected value of the bids for experts who have enough knowledge to transfer

53To compute the boundaries of the integral, note that wX solves ((X − 1)/X)k+w = k.
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((X − 1)/X)k +w at the meeting stage. The second term in equation (a15) is the

expected deduction from the wage of an expert who won the auction but bid all

her knowledge at the meeting stage, and owes the difference ((X − 1)/X)k+w−

k = w− k
X to the entrepreneur.54 The third term is minus the wage top-up. Note

that equation (a15) is only correct over the domain w ∈ [0,1/X ]. For w larger that

1/X , all types of experts bid their entire knowledge at the meeting stage.

To find the value of w that maximizes UE , I solve the integrals in equation (a14)

to obtain:

UE =
X − 1

2
+ w(X − 1)−w2X

2

2
+

(wX)X+1

X(X + 1)
,

and I take a derivative with respect to w to find:

∂UE

∂w
= (X − 1)−wX2 + (wX)X .

This derivative is positive at w = 0, and it decreases with w until it reaches 0 at

w = 1/X . Therefore, over the domain w ∈ [0,1/X ], the expected utility of an

entrepreneur reaches a maximum at w = 1/X , which is a wage top-up just high

enough to ensure that all types of experts bid the entire value of their knowledge.

At w = 1/X , the expected payoff of an entrepreneur is X
2 − 1

1+X
, and it is easy

to show that it stays constant for all w > 1/X . I conclude that an entrepreneur

chooses a wage-top up large enough to motivate all types of experts to transfer

all their knowledge for free at the meeting stage.

54Recall that f (k(X ,X)) = XkX−1
(X ,X)

is the probability distribution function of the highest order

statistic from X draws of the i.i.d. U [0,1] distribution.
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